
Getting It Together: Enabling Multi-organization Provenance Exchange 

M. David Allen, Adriane Chapman, Barbara Blaustein, Len Seligman 

{dmallen, achapman, bblaustein, seligman}@mitre.org 

The MITRE Corporation 

Abstract 

We present an architecture that supports provenance queries in large, dynamic, multi-organizational environments. The 

Provenance Challenges have explored exchange across disparate provenance systems, yet this is only a first step. We 

describe requirements for multi-organizational provenance, evaluate candidate architectures, describe the approach 

implemented in the PLUS prototype provenance manager, and present performance results that indicate the approach is 

scalable. 

 

1. Introduction 

Provenance, the record of origin and manipulations, is a 

useful tool for helping users understand and use their data 

appropriately. A small amount of provenance is often 

better than nothing, but its utility increases as more 

relationships are tracked, even if tracking many 

relationships requires user assistance in manipulating the 

information, such as [1]. However, current system 

architectures make it difficult to easily extend the amount 

of provenance available to a user.  

Until now, provenance systems have been either a single 

system keeping track of what a user or group of users did 

within that individual system [4, 7, 9, 16], or a group of 

pre-determined heterogeneous systems keeping track of 

what multiple users did with well-defined processes and 

data [3, 17]. Current systems are set up to manage 

provenance within their own walls, which often mirror 

organizational boundaries; yet, inter-organization 

information sharing is becoming common. Users need 

answers to their provenance queries even when 

provenance graphs cross organizational boundaries.  

Enabling provenance exchange amongst disparate 

provenance systems has been the focus of the Provenance 

Challenges [12, 15]. Using a standard exchange format 

[11], individual provenance systems execute a given 

workflow, exchange provenance in the specified format, 

and then answer provenance-related questions based on 

provenance generated from a different provenance 

system.  

However, the ability to exchange provenance information, 

while an important first step, is hardly sufficient to enable 

provenance in large-scale multi-organizational 

environments. When there are many participants with 

large, dynamic stores, it is impractical to replicate all 

provenance across all stores to answer any possible user 

query. We are aware of no prior work that describes a 

realistic architecture for multi-organizational provenance 

that meets the following desiderata: 

a. scalability: There should be a very high limit (or 

ideally none) to the number of participants. With more 

participants, the resulting provenance can be richer. 

b. agility: When new participants join the network, 

other participants are not required to change software or 

have knowledge of the new participants. When 

participants use the same data sets unbeknownst to one 

another, they can discover each other’s provenance 

without prior knowledge of each other’s existence. 

c. autonomy: Providers retain tight control over their 

own data, including who they are willing to share with. 

Without this requirement, fewer organizations will be 

willing to provide information.  

d. resiliency: Even if some stores fail, the remaining 

stores are still available for use. 

Figure 1 illustrates some of the challenges. It shows three 

provenance stores, each containing only part of a 

potentially huge, multi-organizational graph. Because 

provenance graphs are inter-linked in ways that are 

unknown a priori, this challenge is a mixture between a 

data exchange and a discovery problem. Provenance 

software must discover and connect data sources without 

knowing ahead of time which data sources or connections 

need to be made.  This differs from more traditional 

integration problems where only a single step of 

discovery is necessary, followed by one or more 

exchanges.  Users need answers to their provenance 

queries as if the full graph were replicated locally. We 

propose an architecture that meets this need. Our 

contributions are that we:  

1. Enumerate the architectural requirements necessary 

for true multi-organizational provenance exchange, 



2. Analyze several standard architectural paradigms 

for usage with provenance, 

3. Identify a candidate architecture for discovering 

and exchanging provenance information among 

many individual provenance systems, 

4. Propose a mechanism to identify the same artifact 

across multiple different systems, independent of 

the way that the artifact is accessed, and 

5. Present an algorithm for assembling a provenance 

graph from many different provenance systems. 

2. Architectural Alternatives 

We now consider candidate architectures for multi-

organizational provenance. Assembly of provenance 

graphs poses extra challenges beyond typical data 

exchange. In a typical data exchange, the sought-after 

data is specifiable ahead of time, e.g. return all data with 

“animals” in the title. The exact data and where it resides 

is not known in advance, but the query for it is self-

contained in advance. In the case of multi-organization 

provenance, the provenance graph is distributed across 

many different data stores, and the entire set of nodes and 

edges are not specifiable in advance. Only the set of edges 

incident to the node of interest are specifiable at any one 

time. There is no service to connect to that can provide 

the needed data set; to “connect the dots”; software must 

repeatedly discover and query many previously unknown 

stores in order to assemble a larger data structure (the 

provenance graph) by traversing the currently discovered 

set of edges. Thus, this data exchange challenge is 

different from many others in two ways: first, no one 

entity has the entirety of the desired data and two, 

recreating the data involves repeated automatic service 

discovery and query without a human in the loop.  

2.1. SOA 

Each individual provenance manager can expose the 

information it manages through a query service. If 

provenance sharing is desired between organizations, it is 

possible for one provenance manager to query another via 

this service interface. Given the current Provenance 

Challenge methods for provenance exchange, i.e. produce 

a serialized XML document and send it to another player, 

this method is a natural first step for multi-organizational 

provenance exchange. However, this approach limits the 

extent to which provenance can be discovered and 

exchanged.  

When a system X wants to request information from a 

provenance service P, X must know about P before it can 

issue any requests for information. This clearly violates 

the agility property, particularly at large scales, where no 

single service/UDDI catalog can be assumed. Moreover, 

if you must know about a provenance service in advance, 

it constrains the actual number of participants possible, 

thereby violating the scalability property. 

 

Org. #1 (Air Force) Org. #2 (Army)

Org. #3 (Joint Command)

Provenance
Store

Provenance
Store

Service Layer

Network

Provenance

Store

User
Query: Provenance of          ?5

1
2
3 4 5

Response:

5
4 5

1
2
3 4

User

Query: Provenance of          ?4

1
2
3 4 5

Response:

 

Figure 1: An example of provenance stored across many disparate provenance systems. Users from any node should be 

able to see query results as if the global graph were stored locally. 



2.1. Federated Systems 

Another option is a federated system in which a central 

node provides access to the information in the individual 

provenance stores. However, this architecture has the 

following problems:  

1. All individual provenance stores must trust the 

federated store (controlled by some third party) 

to store or publish their information 

appropriately, violating the autonomy property. 

2. As demand for provenance grows, multiple 

federations will arise; there is typically no 

central, globally trusted entity to operate a single 

gateway. Integrating multiple federations then 

becomes a large problem, clearly violating 

scalability. Even integrating a new provenance 

store within an existing federation violates 

agility. 

3. If the centralized node/federated server is 

attacked or taken offline, all provenance 

information is unavailable, violating the 

resiliency property.  

4. Someone must fund, maintain and operate the 

federation. While this does not violate any 

desiderata, it lowers the probability of this 

solution being used. 

2.2. P2P 

A standard P2P arrangement is a federation of equal 

peers.  While there may be intermediate “infrastructure” 

nodes that aid routing of individual messages to address 

network topology issues, P2P is resilient in that there is 

no single coordinating authority. P2P networks implement 

“overlay networks,” in essence a virtual network of peers, 

each connected to one another by nature of their 

participation in the P2P network.  Each peer in the 

overlay network exposes a certain number of services that 

can be called by all other peers. In order to join the 

network, a system must guarantee to expose a certain set 

of services (as well as meet any other criteria the network 

may specify), but once it joins, standard P2P routing 

techniques support discovery over all other peers in the 

network, satisfying scalability and agility. Finally, 

autonomy is supported since each individual system only 

exposes information to the participants it authorizes.  

There is no need for trust in a third party to store, 

distribute, route, or inspect any message traffic. 

3. Enabling Multi-organizational Exchange 

3.1. Artifact Identification 

A content-bound artifact identification scheme assigns an 

identifier as a function of the contents. This is essential 

because a person who has the data also can identify the 

data’s provenance records without any additional 

information.  Identifiers that are not content-bound may 

be used, but for the purposes of multi-organizational 

provenance exchange using multiple provenance 

managers, content-bound identifiers are essential. 

Content-bound identifiers are particularly interesting 

because they provide traceability: given a data set, we can 

trace whether the data set has the same identifier as one 

previously seen. Most content-bound identifiers though, 

do not work in the reverse; e.g., content hashing 

represents a 1-way compression operation. Given the 

data, we can determine the identifier, but we cannot 

determine the data with only the identifier.  Because 

provenance records what happened to data, the data 

involved in the provenance never changes, and there is no 

need to account for potential changes in the content-

bound identifier. While old and new versions of a data 

object are distinct, the provenance information may link 

them via the process that created the new version. 

3.2. P2P Framework Needs 

The P2P network maintains a distributed hash table 

consisting of advertisements published by the peers.  

These advertisements consist of the unique identifier, and 

other details, of the data resource being advertised.  In the 

case of provenance information, the unique identifiers 

refer to provenance nodes (that is, invocations or data) 

and the additional data provided in the advertisement 

indicates whether the peer has details about that node, 

edges incident to that node identifier, or both.  Users 

discover provenance graphs by finding the node that 

corresponds to the data they possess, and then tracing 

through the provenance graph. 

All sharing architectures require their participants to 

implement certain contracts so that each peer can rely on 

the others for an agreed on set of services and interfaces. 

The basic requirements to make the architecture in Figure 

1 effective are: 

1. The list of provenance node advertisements that 

indicate what the peer’s provenance holdings 

are, and 

2. A “Provenance Node Access Service”. The input 

is a list of content-bound node identifiers, the 

credentials of the user, attribute or role that is 



requesting the information. The output is a 

collection of provenance objects matching those 

identifiers that the provenance store deems 

releasable given the input credentials. 

3.3. Assembling the Complete Graph 

Assembling the provenance graph requires: discovery 

(finding out which store contains which provenance item), 

requesting the provenance items, and connecting all 

results into a final provenance graph. Provenance 

information requires repeated discovery and query, 

combined with information linkage. This differs from 

traditional P2P architectures, where the user obtains an 

entire data item at once. Figure 2 contains pseudo-code 

which implements the discovery/fetch cycle necessary to 

retrieve provenance graphs from the P2P network.  It 

contains the following steps: 

1. Query advertisements for Node X. 

2. Return all advertisements with any information 

(node, annotation, edge) about X, i.e., find out 

which peer has which information. 

3. Query the peers directly and provide credentials 

for the provenance information (nodes, 

annotations, edges). 

4. Inspect each response for other provenance node 

identifiers not yet seen (e.g., an identifier 

returned as part of an edge description). 

5. Assemble the provenance graph, with the results 

of several iterations of steps 1-4. 

4. Evaluation 

4.1. System Implementation 

For our proof of concept implementation, we used JXTA
1
 

version 2.6 for the P2P backbone. Because we were not 

                                                           
1
 http://java.sun.com/othertech/jxta/index.jsp 

Function DiscoverProvenance(ID startingPoint): 

Queue = (startingPoint); 

 

Results = ({}, {}); Seen = {} 

 

While Queue is not empty: 

  ObjID = removeFirst(Queue) 

  if seen contains ObjectID: continue; 

  Advertisements = getAdvertisements(ObjID) 

   

  For ad in advertisements: 

    (Nodes, Edges) = Service(ad.RemotePeerAddr, ad.ObjID) 

    Results.addNodes(Nodes); 

     

    for edge in Edges: 

      if seen does not contain edge.fromId: 

         Queue.add(edge.fromId) 

      if seen does not contain edge.toId: 

         Queue.add(edge.toId) 

      Results.addEdge(edge) 

 

Figure 2: Pseudocode for provenance discovery & data exchange in a multi-organizational setting. 

 

Figure 3: Time to discover provenance objects from multiple 

provenance managers. 

 

Figure 4: Time to retrieve provenance objects from multiple 

provenance managers. 

0

2

4

6

8

0 20 40 60 80

# a
ds

 re
lat

ed
 to

 
ob

jec
t

time (ms)

0

5

10

15

0 50 100

# P
ro

ve
na

nc
e 

Ob
jec

ts

time (ms)



assessing exchange formats, we used multiple instances of 

a single provenance system, PLUS [2]. Jena v 2.6.2 

generated the data content. Our network consisted of three 

peers: two were provenance stores, connected as JXTA 

Rendezvous peers, and the third was a “client” that issued 

all requests and captured the data presented in the 

experiments.  The client was configured as a JXTA Edge 

peer. 

All experiments were run on a CentOS 5.5 server running 

Linux kernel 2.6.18 on a single Intel quad core CPU at 

2.66Ghz/core with 4GB total RAM, 8GB of swap space, 

and JVM version 1.6.0_11. In order to minimize network 

latency, all three peers were run on the same server, 

communicating via TCP but not using JXTA’s option for 

HTTP exchange. 

4.2. Experiments 

Figure 3 shows the time to discover provenance objects 

over multiple managers. Figure 4 shows the time it takes 

to query those managers and retrieve the requested 

provenance objects; each dot represents a timed 

query/response interaction, varying in amount of time 

necessary (x-axis) and number of results returned (y-axis). 

In general, query times (Figure 4) are longer than just 

discovery (Figure 3) since several additional steps occur 

for a query request. The remote host does the following: 

parses and interprets; queries the database; converts the 

results to an RDF/XML string; zips the resulting XML 

and base 64 encodes it; places it into JXTA resolver query 

message and sends it. The receiving host decodes, unzips 

to RDF, and maps the RDF to an internal provenance 

API. We expect to tune the system to lower costs. 

These preliminary experiments show that the P2P 

Framework can be adapted to handle provenance 

information, with acceptable graph query and creation 

time. Although the experiment included only a small 

number of nodes, the scaling of such networks is well 

understood, and is unlikely to create substantially 

different performance figures for larger numbers of peers 

in the P2P network [18]. 

5. Related Work 

In [5], because the systems in which provenance is being 

captured are Grid and Web Services, the system focus is 

SOA. However, no statement is made about the type of 

architecture that is necessary to the provenance system. 

However, the setup described in this work is in agreement 

with the fundamentals described in[5]: a provenance 

system must support capture, storage, querying and 

management; query results are created by tracing back 

edge by edge through the DAG structure and are limited 

by other filters (such as depth of traversal), etc. In [5], 

three distinct provenance store setups are described: 

single, shared, separate. In this work, we agree that each 

of these setups are valid and necessary to support. 

However, [5] manages the possibility of storing p-

assertions in different provenance stores by locally saving 

a link to the provenance store in which the p-assertion is 

stored. Given the requirement that organizations may join 

and leave the network at will, and that we may wish to 

query organizations for deeper provenance than we have 

current knowledge of (by tracing paths in the DAG), we 

have created a more flexible arrangement.  

PReServ [6], with its SOAP Web Services messaging 

layer, is closest to being ready for distributed provenance 

queries, but has to this point been used only as a 

standalone repositories. Other systems such as PASS [13], 

Panda [8], Taverna [14], Vistrails [16] and ES3 [4] have 

to this point been used only as a single repository. Even 

ProvManager [10], which allows execution of multiple 

workflow systems in a distributed environment (Taverna 

and Vistrails) still reports into a single provenance 

repository. The goal of our work is to provide an 

architecture by which any of these systems can remain as 

they are, support a very limited service contract, and 

become a part of a fully distributed provenance system. In 

other words, we are not aiming to capture provenance in 

distributed systems, but query over distributed 

provenance systems.  

6. Conclusions and Future Work 

Provenance will be most useful when systems can be 

unaware of its capture, exchange data without sharing a 

single provenance system, and still create full and 

complete provenance graphs in response to user queries. 

Given the constraints of provenance exchange, we have 

assessed several architectures and determined one which 

is particularly suitable for provenance exchange. We have 

performed a basic implementation as a proof of concept, 

and present initial performance metrics that show that true 

on-the-fly provenance exchange is possible. 

7. Bibliography 

[1] O. Biton, S. Davidson, S. Khanna, and S. Roy, "Optimizing 

user views for workflows," in ICDT, 2009, pp. 310-

323. 

[2] B. T. Blaustein, L. Seligman, M. Morse, M. D. Allen, and 

A. Rosenthal, "PLUS: Synthesizing privacy, lineage, 

uncertainty and security," ICDE Workshops, pp. 242-

245, 2008. 

[3] B. Cao, B. Plale, G. Subramanian, P. Missier, C. A. Goble, 

and Y. L. Simmhan, "Semantically Annotated 

Provenance in the Life Science Grid," in SWPM, 2009. 



[4] J. Frew, D. Metzger, and P. Slaughter, "Automatic capture 

and reconstruction of computational provenance," 

Concurr. Comput. : Pract. Exper., vol. 20, pp. 485-

496, 2008. 

[5] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. 

Tsasakou, and L. Moreau, "An Architecture for 

Provenance Systems," Technical Report, ECS, 

University of Southampton, 2006. 

[6] P. Groth, S. Miles, and L. Moreau, "PReServ: Provenance 

Recording for Services," UK OST e-Science second 

AHM, 2005. 

[7] D. A. Holland, M. I. Seltzer, U. Braun, and K.-K. 

Muniswamy-Reddy, "PASSing the provenance 

challenge," Concurrency and Computation: Practice 

and Experience, vol. 20, pp. 531-540, 2008. 

[8] R. Ikeda and J. Widom, "Panda: A System for Provenance 

and Data," TaPP, 2010. 

[9] B. Liu, L. Chiticariu, V. Chu, H. V. Jagadish, and F. Reiss, 

"Refining Information Extraction Rules using Data 

Provenance," IEEE Data Eng. Bull., vol. 33, pp. 17-

24, 2010. 

[10] A. Marinho, L. Murta, C. Werner, V. Braganholo, E. 

Ogasawara, S. M. S. d. Cruz, and M. Mattoso, 

"Integrating Provenance Data from Distributed 

Workflow Systems with ProvManager," IPAW, 2010. 

[11] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. 

Groth, N. Kwasnikowska, S. Miles, P. Missier, J. 

Myers, B. Plale, Y. Simmhan, E. Stephan, and J. Van 

den Bussche, "The Open Provenance Model core 

specification (v1.1)," Future Generation Computer 

Systems, 2010. 

[12] L. Moreau, B. Ludäscher, and e. al, "Special Issue: The 

First Provenance Challenge," Concurrency and 

Computation: Practice and Experience, vol. 20, pp. 

409-418, 2008. 

[13] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and 

M. I. Seltzer, "Provenance-Aware Storage Systems," 

USENIX, pp. 43-56, 2006. 

[14] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. 

Ferris, K. Glover, C. Goble, A. Goderis, D. Hull, D. 

Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. 

Stevens, A. Wipat, and C. Wroe, "Taverna: lessons in 

creating a workflow environment for the life sciences: 

Research Articles," Concurr. Comput. : Pract. Exper., 

vol. 18, pp. 1067-1100, 2006. 

[15] ProvenanceChallenge, 

"http://twiki.gridprovenance.org/bin/view/Challenge/

WebHome." 

[16] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. 

Silva, "Querying and Re-Using Workflows with 

VisTrails," SIGMOD, 2008. 

[17] W. Tan, R. K. Madduri, A. Nenadic, S. Soiland-Reyes, D. 

Sulakhe, I. Foster, and C. Goble, "caGrid Workflow 

Toolkit: A Taverna based workflow tool for cancer 

Grid," BMC Bioinformatics vol. 11, 2010. 

[18] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. 

Joseph, and J. Kubiatowicz, "Tapestry: a resilient 

global-scale overlay for service deployment," IEEE 

Journal on Selected Areas in Communications, vol. 

22, pp. 41-53, 2004. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


