
Panda: A System for Provenance and Data∗

Robert Ikeda and Jennifer Widom
Stanford University

1 Introduction
In its most general form, provenance (also sometimes
called lineage) captures where data came from, how it
was derived, manipulated, and combined, and how it has
been updated over time. Provenance can serve a number
of important functions:

• Explanation. Users may be particularly interested
in or wary of specific portions of a derived data set.
Provenance supports “drilling down” to examine the
sources and evolution of data elements of interest, en-
abling a deeper understanding of the data.

• Verification. Derived data may appear suspect—due
to possible bugs in data processing and manipulation,
because the data may be stale, or even due to ma-
liciousness. Provenance enables auditing how data
was produced, either for verifying its correctness,
or for identifying the erroneous or outdated source
data or processing nodes that are responsible for er-
roneous or outdated output data.

• Recomputation. Having found outdated or incorrect
source data, or buggy processing nodes, we may want
to correct the errors and propagate the corrections
forward to all “downstream” data that are affected.
Provenance helps us recompute only those data ele-
ments that are affected by the corrections.

There has been a large body of very interesting work
in lineage and provenance over the past two decades.
(Space limitations preclude detailed discussion of previ-
ous work here, but surveys are presented in, e.g., [3, 4, 5],
and a growing list is maintained on our Panda project
web site [1].) Nevertheless, we believe there are still
many limitations and open areas. Specifically:

1. Most work has been either: data-based, in which
fine-grained provenance of data elements is tracked
based on well-defined, transparent properties of data
models and query languages; or process-based, in
which coarse-grained provenance is tracked, typi-
cally involving workflows and data at the schema
level.

2. Often the primary focus is on modeling and captur-
ing provenance: How is provenance information rep-
resented? How is it generated? There has been con-
siderably less work on querying provenance: What
can we do with provenance information once we’ve

∗This work is supported by the National Science Foundation under
grants IIS-0414762 and IIS-0904497.

captured it?
3. Many projects have focused on specific functions or

application domains, rather than developing a gen-
eral provenance system that can be used for different
purposes and across domains.

In the nascent Panda (for “provenance and data”)
project at Stanford, our goal is to fill these gaps. Specifi-
cally, we want to:

1. Seamlessly merge data-based and process-based
provenance, so that the two types of provenance
can be combined (e.g., workflows that combine
“opaque” processing nodes with well-understood re-
lational queries and transformations). We also want
to develop a model and system that offers users a
full range from fine-grained to coarse-grained prove-
nance.

2. Define a set of useful operators for taking advantage
of provenance after it has been captured, as well as
a general-purpose language for querying and analyz-
ing provenance, and for combining provenance with
relevant data.

3. Develop a general-purpose open-source system that
is flexible and configurable enough to be used for a
wide variety of applications. The system will support
its own mechanisms for provenance capture, storage,
operators, and queries, while also offering interfaces
for coupling with outside data sources, processes,
and systems.

2 Running Example
We use a detailed fictitious example to motivate our
plans for the Panda system. Consider ClothCo, a mail-
order clothing company that is trying to decide which
items to feature most prominently in its upcoming cata-
log. ClothCo runs an analytics workflow to predict which
items will have the largest demand among its customers.
The workflow is shown in Figure 1.

The initial input to the workflow is customer lists
CustList1, CustList2, . . ., CustListn, obtained
from ClothCo’s own databases and from partnerships
with other companies. The lists contain names, ad-
dresses, and possibly additional attributes (e.g., gender,
income), all of which are used for list deduplication and
for buying-behavior predictions. The workflow involves
the following steps:

• Dedup: Records from the customer lists are dedupli-

1



CE 

CU 

CE’ 
CC CP 

CustList1 
Europe 

USA 

Dedup Union Predict ItemVolumes ... ItemAgg 

CustList2 

CustListn‐1  CU’ 
ClothCo 
Items  Buying 

Patterns CustListn 

Figure 1: Analytics workflow example.

cated so that customers represented in multiple lists
are counted only once. The deduplicated customer
records are then partitioned into a European customer
set (CE) and a USA customer set (CU). (If Dedup
cannot determine that a customer is European, it by
default assumes the customer is American.)

• Europe / USA / Union: The deduplicated records are
routed either to Europe or USA, where the records’
addresses are “canonicalized” into a standard form
using existing software specialized for the region.
The output lists CE’ and CU’ are unioned back to
form canonicalized customer list CC.

• Predict: The next stage in the workflow predicts
which ClothCo items customers are most likely to
purchase. Specifically, for each customer in input list
CC, and for each item ClothCo stocks, the Predict
module consults a Buying Patterns database and at-
taches to the customer-item pair a likelihood that the
customer will buy the item. Predict’s output CP is a
set of customer-item-probability triples.

• ItemAgg: Finally, from the CP triples, ItemAgg ag-
gregates the predicted demand for each of ClothCo’s
items. The output, ItemVolumes, contains a list of
items and predicted sales volumes for each one.

Now suppose a ClothCo analyst runs the workflow and
is surprised to find that the item in ItemVolumes pre-
dicted to have the highest demand is a cowboy hat, de-
spite the fact that ClothCo’s target customers rarely hail
from the southern United States. Noticing this anoma-
lous result, the analyst would like to find out why the
predicted demand for cowboy hats is so high.

We envision that the Panda system will support the
following interaction. Tracing the provenance of the
cowboy-hat record in ItemVolumes back one step to
CP yields a large data set, but with a simple provenance
query the analyst discovers that the majority of the cus-
tomers predicted to want the cowboy hat live in Paris,
Texas. Something is clearly wrong: the population of
Paris, Texas is only 25,000, and ClothCo doesn’t cater to
this demographic anyway.

Further tracing the provenance of the relevant CP
records, the analyst discovers that most of them were

processed by USA, but they came originally from a
French customer list. It turns out because the French
list did not specify “France” explicitly in its addresses,
Dedup mistakenly routed these customer records to
USA, which added “Texas” during the canonicalization
process.

To fix the error, a simple new module is inserted that
appends “France” to the addresses from the problematic
list. Using provenance, when the modified workflow is
rerun with the new module, only the item predictions po-
tentially affected by the modifications are recomputed.

While this example captures a large number of the
most important capabilities we want to include in the
Panda system, there are a few missing. For example, we
want to also capture provenance from human-generated
data edits and manipulations, along with the computer-
generated ones. Also, we expect that capturing and man-
aging evolving versions of data, including long-term and
frequent evolutions, will be a critical feature.

3 Processing Nodes and Provenance
Capture

The workflow in our example is representative of the va-
riety of processing node types that Panda should be able
to support. Specifically, we want to handle processing
nodes that vary from fully transparent (e.g., relational
queries) to fully opaque (e.g., private code, calls to exter-
nal services). We plan to define an interface by which any
type of processing node (including a human) can write
out provenance information in a well-specified uniform
fashion, so that it can be used by the Panda system.

In our example, the Union and ItemAgg nodes per-
form standard relational operations. For relational nodes,
there is a great deal of past work that can be applied for
capturing and tracing provenance automatically and ef-
ficiently (see [4] for a survey). Consider ItemAgg, for
example, which is a standard relational group-by aggre-
gation operator. As defined by past work, the provenance
of an item I output by ItemAgg consists of all items in
CP with the same group-by attribute as I .

Now consider Dedup, an opaque processing node.
We cannot rely on the automatic methods for relational
queries mentioned above to capture and trace provenance

2



for Dedup. Either Dedup must be instrumented to write
out provenance information as it executes (presumably
in the form of mappings between deduplicated records
and their original customer records), or it must provide
some sort of procedure for provenance-tracing, or in the
worst case we cannot determine fine-grained provenance
at all. Since the Panda system is designed specifically for
provenance and data, we prefer the first approach.

One of the most important first steps in Panda will
be to formalize a model that its provenance information
must conform to. On one end, our model could be a sim-
ple bipartite graph structure connecting input and out-
put data elements. Or, we could adopt the much higher-
level and more “semantic” Open Provenance Model [2].
A likely scenario is some combination of these two ap-
proaches, in keeping with our goal of combining data-
based and process-based provenance as discussed in Sec-
tion 1. Combining these two approaches in some fashion
may also serve our goal (also discussed in Section 1)
of allowing provenance to be captured at a variety of
granularities, ranging from individual data elements, to
schema-level data sets, to processing-node signatures.
Once the provenance model is defined, we then must de-
fine a uniform interface by which all types of processing
nodes can create and manipulate provenance, both man-
ually and automatically.

Once provenance has been captured, what are we go-
ing to do with it? Our overall goal is to support the fea-
tures mentioned in Section 1: explanation, verification,
and recomputation. To do so, we will introduce a set
of basic operations (Section 4) and an ad-hoc query lan-
guage (Section 5).

4 Provenance Operations
We plan to offer at least two methods of using the prove-
nance captured in the Panda system:

• A set of built-in operations that can be used on their
own or as building blocks for higher-level function-
ality.

• A full-featured query language that can be used to
pose ad-hoc queries and analyses over provenance
information, and over provenance information com-
bined with relevant data.

For basic built-in operations, we envision at least the fol-
lowing two:

• Backward tracing. Given a derived data element D,
where did D come from? That is, what data elements
and/or processing contributed to D? In our running
example, we used backward tracing to go from the
output cowboy-hat record C to the record-set R in
input list CP from which C was derived. Then we
used further backward tracing to determine that most
records producingR came through the USA process-

ing node and originated from a specific French cus-
tomer list.

• Forward tracing. Given an input or derived data ele-
ment D, where did D subsequently go? That is, what
processing nodes did D later pass through and what
data elements were produced by it? In our running
example, we can use forward tracing to determine all
of the item predictions that were affected by French
customers erroneously passing through the USA pro-
cessing nodes.

From these two basic operations, we can layer on ad-
ditional functionality, for example:
• Forward propagation. If an input or derived data

element D changes, propagate the change to every-
thing it affects. Clearly this function will rely on
forward tracing. In our running example, once we
correct the problem with our French customer list,
we can use forward propagation to recalculate only
those item predictions affected by the correction.

• Refresh. Given a derived data element D, check if
D is still valid. If it is not, refresh it to its new
valid value. Clearly this function will rely on both
backward tracing and forward propagation. In our
running example, suppose we correct the error with
the French addresses, but ironically a celebrity then
begins wearing cowboy hats. Suddenly cowboy hat
sales soar, with corresponding modifications in our
Buying Patterns database. We decide to once again
investigate the cowboy hat prediction in ItemVol-
umes, this time asking for it to be refreshed to ensure
we get the latest predicted demand.

5 Provenance Queries
The operations in the previous section are not specific to
a particular application, but they still encode very spe-
cific provenance-based functionality. We believe that in
addition to a set of common operations, it will be very
useful for a general-purpose provenance system to sup-
port a declarative ad-hoc query language, similar to what
is provided by database management systems.

We can only begin to develop a query language once
our provenance model is fully defined, but we do have a
few guiding principles. One is that we want our query
language to operate over provenance and data seam-
lessly, so that they can be combined in useful ways. Sec-
ond, we want our query language to be compact and in-
tuitive for basic queries, with specific features for addi-
tional expressiveness, similar in spirit to SQL. Finally,
the language must be amenable to finding efficient query
execution plans, again in a database-system style.

Using our running example, here are a few queries
in English to demonstrate the type of functionality we
would like to support in a query language:

3



• From our specific example: Aggregate the data ele-
ments in CP contributing to the cowboy hat output
element in ItemVolumes.

• Determine which customer list contributes the most
to the top 100 predicted items.

• Considering only customers from a specific list,
which items have significantly higher demand among
those customers than among the general population?

• Which customers have more duplication in our orig-
inal customer lists—those that are eventually pro-
cessed by USA, or those that are processed by Eu-
rope?

6 System Issues

Building a full-featured generic system for managing
provenance and data together will require a significant
effort just for the basic functions: provenance capture
and storage, built-in operations like those in Section 4,
and general-purpose query processing. In addition, we
see a number of specific opportunities and challenges.

Query-Driven Capture

The most general approach is to capture provenance in
support of any possible operation or query that may sub-
sequently be performed using it. However, if there is a
known restricted set of operations and queries to be per-
formed, we may be able to streamline what is captured.

Eager vs. Lazy

Even when supporting arbitrary operations and queries,
there may be a choice between eager and lazy prove-
nance capture. It’s a typical space-time tradeoff: ea-
ger capture occupies space but speeds up operations and
queries. (Note that capturing all possible provenance at
a fine-grained level could entail enormous amounts of
space.) Also, similar to materialized views, eager capture
may incur an update cost if we wish to keep provenance
up-to-date. The choice between eager and lazy might be
made on a per-processing-node basis. For example, ea-
ger capture makes sense for Dedup, since the overhead
of recording the source customer records contributing to
each deduplicated record may be fairly low, while recom-
puting that information may be very expensive (perhaps
requiring deduplicating the entire data set again). On the
other hand, for ItemAgg, if we have access to interme-
diate data set CP, then computing the provenance of an
output item in ItemAgg is a simple selection query over
CP.

Intermediate Results

Along similar lines, in a workflow such as our ClothCo
example, we may or may not wish to store all of the in-

termediate data sets. Storing these data sets may be very
helpful for provenance operations (such as finding the
provenance of an ItemAgg output element by querying
CP, as above) but the storage overhead may be high, and
intermediate results may not always be necessary. For
example, if we only wish to consider provenance from
final output elements back to initial input data, and we
take a fully eager approach, then no intermediate data
sets are necessary. Overall, we envision a suite of inter-
esting optimization problems involving decisions about
intermediate data sets and eager versus lazy computation.

Fine-Grained vs. Coarse-Grained

Another trade-off, perhaps intertwined with the previous
two, is between fine-grained and coarse-grained prove-
nance. Even if it is prohibitive to compute provenance
eagerly at the data-element level, it may be helpful to
record some provenance at the data-set level: some oper-
ations and queries may only need coarse-grained prove-
nance, or perhaps coarse-grained provenance can be used
to support later computation of fine-grained provenance.
Suppose, for example, for each input list we record only
the percentage of its customers that are eventually sent
to processing node Europe, versus those sent to process-
ing node USA. Queries may ask for this information di-
rectly, or in some cases (e.g., lists that are 100% Europe
or 100% USA), this schema-level information may be
used to optimize provenance queries involving individ-
ual records.

Approximation

Another avenue for dealing with prohibitively large
fine-grained provenance may be to support approximate
provenance capture, operations, and/or query results.

Acknowledgments
We are grateful to Parag Agrawal, Diana MacLean,
Abhijeet Mohapatra, Raghotham Murthy, Aditya
Parameswaran, Hyunjung Park, and Alkis Polyzotis, for
many useful Panda meeting discussions that have been
instrumental in forming the direction for our system. We
thank Philip Guo for his helpful comments on the paper.

References
[1] http://i.stanford.edu/panda.

[2] The Open Provenance Model (v1.01). July 2008.
http://eprints.ecs.soton.ac.uk/16148/.

[3] BOSE, R., AND FREW, J. Lineage retrieval for scientific data
processing: a survey. ACM Comput. Surv. 37, 1 (2005), 1–28.

[4] CHENEY, J., CHITICARIU, L., AND TAN, W.-C. Provenance
in databases: Why, how, and where. Foundations and Trends in
Databases 1, 4 (2009), 379–474.

[5] SIMMHAN, Y. L., PLALE, B., AND GANNON, D. A survey of
data provenance in e-science. SIGMOD Rec. 34, 3 (2005), 31–36.

4


