
SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 69

Adaptive Defense Against Various Network Attacks

Cliff C. Zou1, Nick Duffield2, Don Towsley1, Weibo Gong1

1 University of Massachusetts, Amherst, MA
2 AT&T Labs Research, Florham Park, NJ

Abstract

In defending against various network attacks, such as
Distributed Denial-of-Service (DDoS) attacks or worm
attacks, a defense system needs to deal with various net-
work conditions and dynamically changing attacks. In
this paper, we introduce an “adaptive defense” principle
based on cost minimization — a defense system adap-
tively adjusts its configurations according to the network
condition and attack severity in order to minimize the
combined cost introduced by false positives (misidentify
normal traffic as attack) and false negatives (misidentify
attack traffic as normal) at any time. In this way, the
adaptive defense system generates fewer false alarms in
normal situations (or under light attacks) with relaxed
defense configurations, while protecting a network or a
server more vigorously under severe attacks. Specifi-
cally, we present detailed adaptive defense system de-
signs for defending against two major network attacks:
SYN flood DDoS attack and Internet worm infection.
The adaptive defense is a high-level system design that
can be built on top of various non-adaptive detection and
filtering algorithms, which makes it applicable for a wide
range of security defenses.

1 Introduction

The current Internet is constantly under network attacks.
Many defense methods and systems have been proposed
to deal with these attacks. These systems typically first
detect the on-going attack traffic, then block (filter) the
attack traffic accordingly. Attack detection is of crucial
importance in such defense systems. An imperfect detec-
tion algorithm will inevitably generate detection errors
in terms of “false positives” and “false negatives”. A
“false positive” means incorrectly identifying a normal
packet (or connection, or host, etc) as an attack whereas
a “false negative” means incorrectly identifying an attack
as a normal one.

Most research has focused on stationary network op-
eration with fixed configurations. However in reality,
attack detection systems have to face rapidly changing
network conditions and various attack intensities. There-
fore, besides finding a good detection algorithm, it is
equally or more important to design an “intelligent” de-
fense system that can automatically adjust its detection
and filtering parameters to achieve the best performance
possible under every possible attack situation.

We introduce an “adaptive defense principle” based on
“cost minimization” — a defense system adaptively ad-
justs its configurations according to network conditions
and “attack severity” in order to minimize the combined
cost introduced by false positives and false negatives at
any time. We call such a defense system as an “adaptive
defense system”. Compared to a traditional non-adaptive
defense system, an adaptive defense system generates
fewer false alarms in normal situations (or under light
attacks) while protecting a network or a server more vig-
orously under severe attacks.

Denote by κt the “attack severity” at time t, which
can be the fraction or volume of attack traffic, or other
metrics determined by the types of attacks. Denote by
θt the set of configuration parameters used in the detec-
tion algorithm. A defense system’s false positive cost
and false negative cost at time t, denoted by Cp(κt, θt)
and Cn(κt, θt) respectively, are functions of κt and θt.
Whenever the attack severity κt changes, the adaptive
defense system will choose the up-to-date optimal con-
figurations θt by minimizing the combined cost:

f = min
θt

{Cp(κt, θt) + Cn(κt, θt)} (1)

We present concrete adaptive defense systems for de-
fending against two major network attacks: SYN flood
DDoS attack, and Internet worm infection. The adaptive
defense is a high-level system design that can be built
on top of various non-adaptive detection and filtering al-
gorithms, which makes it applicable for a wide range of
security defenses.

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association70

The rest of the paper is organized as follows. Section
2 surveys related work. We present the system design for
defending against DDoS attack and Internet worm infec-
tion in Section 3 and Section 4, respectively. In Section
5 we evaluate the performance of these two adaptive de-
fense systems. Finally Section 6 concludes this paper.

2 Related Work

Mirkovic et al. [10] presented a comprehensive taxon-
omy of DDoS attack and defense mechanisms. Many
DDoS detection approaches, such as the “IP traceback”
[12], or the “MULTOPS” [2], try to find the identities of
the real attacking sources. Hussain et al. [6] presented
a framework to classify DDoS attacks into single-source
and multi-source attacks. However, these methods can-
not be used directly to block attack DDoS traffic. In
order to detect and filter SYN flood packets at the vic-
tim end, Kim et al. [8] provided a general anomaly de-
tection framework. Jin et al. [3] provided a concrete
“Hop-Count Filtering” algorithm to filter out spoofed at-
tack SYN packets based on packets’ TTL values.

For Internet worm defense, Williamson [16] proposed
a rate-limiting “throttling” method to constrain infection
traffic. “EarlyBird” in [13] and “Autograph” in [7] de-
tect and block worm spreading through identifying the
common bit-strings among all infection network traf-
fic of a worm. To prevent internal infection, Staniford
[14] presented the segmentation idea to separate an en-
terprise network into many isolated subnetworks. Jung et
al. [4][5] presented “Threshold Random Walk (TRW)”
detection algorithms to detect and block worm infection
based on the excessive number of unsuccessful scans sent
by a worm. Weaver et al. [15] presented a simplified ver-
sion of TRW algorithm that is suitable for both hardware
and software implementation. Pang et al. [11] provided
a comprehensive study of the characteristics of the ab-
normal traffic in the Internet.

Lee et al. [9] considered various cost factors, includ-
ing false positive/negative cost, in the process of devel-
oping Intrusion Detection System (IDS). However, such
a cost-sensitive design is a static system design method,
which does not consider how to dynamically adjust an
IDS’s configurations according to the attack condition.
Our previous paper [17] only briefly mentioned the adap-
tive defense principle, but never explored it.

3 Adaptive Defense System I: SYN Flood
DDoS Attack

“SYN flood” attack is a denial-of-service attack by send-
ing a large amount of SYN packets to a network or a
server [10]. The attack packets usually have spoofed

source addresses to hide the real attacking sources and
also make defense much harder. For simplicity, we refer
to the victim of a SYN flood attack as a server.

3.1 Underlying detection algorithm: ex-
tended “Hop-Count Filtering”

The “Hop-Count Filtering” (HCF) algorithm presented
in [3] is a concrete and promising approach for SYN
flood DDoS attack. In a nutshell, HCF infers the hop-
length of a connection request source to a server based
on the Time-to-Live (TTL) value in the incoming SYN
packet IP header, then compares this value with the
real hop-length of the client, which is derived from the
client’s previous successful connections. If these two
values are different, HCF determines that the incoming
SYN packet is a spoofed attack packet. Since attack-
ers do not know the real hop-counts from their spoofed
source addresses to the victim, spoofing the initial TTL
values cannot help attack packets to avoid HCF detection
as proved in [3]. Due to space constraint, please refer to
[3] for the detail of the HCF detection.

Denote the “false positive probability” as Pp, the prob-
ability of incorrectly dropping a normal packet (or a nor-
mal connection, or a normal host for other types of at-
tacks); denote the “false negative probability” as Pn,
the probability of incorrectly treating an attack as a nor-
mal one. Due to memory constraint and Internet routing
path changes, the HCF can change its detection strict-
ness by allowing curtain deviation of the observed hop-
count value from the value saved in its hop-count table.
We run the HCF detection on the simulated normal SYN
traffic and spoofed SYN flood traffic, respectively. From
the simulation, we derive the detection performance in
terms of Pp and Pn under different detection configura-
tions. Fig. 1 shows the detection performance trade-off
for the server “net.yahoo.com”, whose hop-count data is
provided to us by authors in [3]. Nine small circles in the
figure from the left to the right represent the detection
performance under different configurations. We define a
detection sensitivity parameter δ (0 ≤ δ ≤ 8): each small
circle in Fig. 1 from the left to the right corresponds to
δ = 0 to δ = 8, respectively.

We extend this discrete HCF to a continuous HCF
based on “probabilistic dropping”. Suppose the continu-
ous HCF uses a real number δ as its detection parameter,
0 ≤ δ ≤ 8. Denote an integer m = �δ� and a real value
q = δ − m. Then, this continuous HCF will accept all
packets acceptable by the discrete HCF with δ1 = m
while drop all packets that should be dropped by the dis-
crete HCF with δ2 = m + 1. For the remaining packets
that should be dropped by the δ1 HCF but accepted by
the δ2 HCF, the continuous HCF accepts them with the
probability q. In this continuous HCF, both Pp and Pn

2

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 71

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

False negative P
n

F
al

se
 p

os
iti

ve
 P

p

Figure 1: HCF detection performance under different
configurations

are piece-wise linear functions of δ. Therefore, Pp is also
a piece-wise linear function of Pn as shown in Fig. 1.

3.2 System design based on a general cost
function

Denote by π the fraction of attack packets among all
incoming SYN packets. π naturally exhibits the rela-
tive attack intensity compared to the normal payload of
a server, and hence, we use π to represent the “attack
severity” of a SYN flood DDoS attack.

The adaptive defense system updates its HCF detec-
tion parameter δ periodically at each discrete time de-
noted by k (k = 1, 2, . . .). During the time interval from
k to k+1, the HCF implements δ(k), which corresponds
to the pair of Pp(k) and Pn(k). During this time period,
the fraction of incoming packets identified by the defense
system as attack packets is denoted by π′(k), while the
real attack fraction is denoted by π(k).

π(k) differs from the observed value π′(k) because:
(1) the limited samples within a discrete time interval
introduce an observation statistical error; and (2) some
attack packets are not counted in π′(k) due to false nega-
tives whereas some normal packets are counted in π′(k)
due to false positives.

In the following we derive an unbiased estimate of the
real attack severity, denoted by π̂(k). Suppose during
the time interval from k to k+1, the attack severity π(k)
does not change and the defense system receives N(k)
SYN packets. Then, π(k)N(k) packets are attack pack-
ets while the remaining [1−π(k)]N(k) are normal ones.
The defense system drops π′(k)N(k) packets, among
which [1 − Pn(k)]π(k)N(k) are real attack packets and
the remaining Pp(k)[1 − π(k)]N(k) are falsely dropped
normal packets. Therefore, we have

π′(k)N(k) = [1−Pn(k)]π(k)N(k)+Pp(k)[1−π(k)]N(k)

Removing N(k) from both sides yields

π′(k) = [1 − Pn(k)]π(k) + Pp(k)[1 − π(k)] (2)

From (2), we derive the estimation formula of π(k) as:

π̂(k) =
π′(k) − Pp(k)

1 − Pn(k) − Pp(k)
(3)

Through statistical analysis, we find E[π̂] = π; hence
π̂(k) is an unbiased estimate.

Figure 2: Adaptive defense system architecture

Fig. 2 illustrates the architecture of the adaptive de-
fense system. At the end of time k, the adaptive defense
system first uses (3) to derive an estimate π̂(k) of the real
attack severity, then finds the “optimal” detection param-
eters Pn(k + 1), Pp(k + 1) (i.e., δ(k + 1)) for use in the
next time interval. The “optimization” module tries to
minimize the combined cost of false positives and false
negatives by minimizing:

f = min
δ(k+1)

{cp[1− π̂(k)]Pp(k +1)+ cnπ̂(k)Pn(k +1)}

(4)
where [1 − π̂(k)]Pp(k + 1) is the fraction of falsely
dropped normal packets and π̂(k)Pn(k + 1) is the frac-
tion of attack packets that pass through to the server.

Those two cost factors, cp and cn, have concrete physi-
cal meanings: they represent the cost of incorrectly drop-
ping (accepting) a normal (attack) SYN packet, respec-
tively. In some cases, they can be chosen as constants
whereas in other cases they should be functions of the at-
tack severity. For example, while a server can tolerate a
small number of false negatives, beyond some point, the
received attack traffic will severely consume the system’s
resources. Whether to choose constant or functional cost
factors should be determined by the specific defense re-
quirement and experiences from security staffs.

3.3 “Buffer-aware” performance function

The general cost function (4) is suitable for a wide range
of security defense systems. If a server has a specific
requirement, however, an object-oriented performance
function would achieve a better defense performance.

A server usually has two separate buffers for incom-
ing TCP connections: one for pending connections called

3

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association72

“pending buffer”; another for connections that have been
established. The pending buffer is susceptible to SYN
flood DDoS attack. Suppose the server’s performance is
not affected by the number of pending connections in the
pending buffer so long as the buffer is not overflowed.
Such a server has a specific performance objective: to
accept as many as possible normal connection requests.

Define “sojourn time” to be the time period a SYN
packet resides in the pending buffer. Denote the average
sojourn time of a normal SYN packet as T1 and the av-
erage sojourn time of an attack SYN packet as T2. The
adaptive defense system updates its parameters periodi-
cally at each discrete time k and the time interval is de-
noted by ∆. The defense system still has the same ar-
chitecture as shown in Fig. 2. Suppose the server has
a pending buffer that can hold K pending TCP connec-
tions at the same time. At the end of discrete time k,
denote the number of incoming packets during the last
time interval as N(k).

If the defense system deactivates its filtering function-
ality and allows all N(k) packets to pass through, the
buffer size requirement, denoted by B0, is:

B0 =
T2

∆
π̂(k)N(k) +

T1

∆
[1 − π̂(k)]N(k) (5)

If the defense system activates its filtering functional-
ity with parameters Pp(k + 1), Pn(k + 1), then Pn(k +
1)π(k)N(k) attack packets and [1 − Pp(k + 1)][1 −
π(k)]N(k) normal packets will pass through the detec-
tion/filtering module to reach the server. Thus the buffer
size requirement, denoted by B1, is:

B1 =
T2

∆
Pn(k + 1)π̂(k)N(k) + (6)

T1

∆
[1 − Pp(k + 1)][1 − π̂(k)]N(k)

Therefore, at time k, the adaptive defense system
should choose its defense parameters Pp(k + 1), Pn(k +
1) for the next time interval according to:

• If B0 < K, deactivate the filtering functionality
(the server’s pending buffer will not overflow any-
way).

• If B0 ≥ K, activate the filtering functionality and
choose the optimal Pp(k+1), Pn(k+1) (i.e., δ(k+
1)) by minimizing:

f = min
δ(k+1)

|B1 − K| (7)

In this way, the server can accept the maximum
number of normal SYN packets.

Basically, (7) tries to minimize the cost caused by
over-filtering (B1 < K) or under-filtering (B1 > K).

4 Adaptive Defense System II: Internet
Worm Infection

In this section, we study how to design an adaptive de-
fense system for defending against a fast spreading Inter-
net worm, such as Code Red, Slammer and Blaster [1].

Because a scanning worm blindly scans IP space to
find targets, a worm-infected host has a much lower prob-
ability to set up successful connections than a benign
host. “Threshold Random Walk (TRW)” [4][5] detec-
tion is based on the fact that a worm-infected host sends
out many more failed connection requests than success-
ful requests. Weaver et al. [15] further simplified the
TRW algorithm for hardware implementation. We de-
ploy a modified version of the worm detector presented
in [15] as the underlying detection algorithm.

Our modified TRW detector works in the following
way: each source host that initiates a connection is as-
signed a non-negative “counter” with the initial value of
zero. This counter (if not equals to zero) decreases by
one if the source host initiates a successful connection,
and increases by one if the source initiates a failed con-
nection. Multiple connection attempts from a source tar-
geting the same destination are treated as one connection
attempt (e.g., TCP/SYN retransmission before the time-
out). A source host is determined to be infectious when
its counter reaches a threshold W .

The next step is to represent the Internet worm “attack
severity”. An enterprise network has a fraction of unused
IP addresses. All connection attempts to these addresses,
which are called “illegal scans”, will always fail. We use
the number of illegal scans observed in a discrete time
interval, denoted by Z, to represent the attack severity.

Figure 3: Adaptive defense system architecture for de-
fending against Internet worm infection

Fig. 3 illustrates the architecture of the adaptive de-
fense system. Whenever the “detector” detects an in-
fected host, it sends the host IP to the “filter” where fur-
ther scanning traffic from the host will be blocked. De-
note by Z(k) the number of illegal scans observed from
time k to k + 1 and W (k) the detection parameter used
from k to k+1. Fig. 3 shows that at the end of time k, the
system derives the optimal W (k + 1) to use for the next
time interval based on the current attack severity Z(k).

4

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 73

The “optimization” module derives W (k + 1) based on
the performance function:

f = min
W (k+1)

{cp ·
1

W (k + 1)
+cn ·W (k+1) ·Z(k)} (8)

As W increases, an infected host is able to send more
scans before it is detected and blocked; but fewer benign
hosts would be incorrectly blocked. Therefore, W (k)
describes the trade-off: cp/W (k + 1) corresponds to the
false positive cost and cn ·W (k + 1) ·Z(k) corresponds
to the false negative cost.

5 Evaluation

In this section, we evaluate the defense performance of
the above two adaptive defense systems based on either
simulation experiments or real attack traces.

5.1 Defense against SYN flood DDoS

5.1.1 General cost function

First, we study the adaptive defense system with the gen-
eral cost function (4). We assume that during each time
interval ∆ (e.g., δ = 30 seconds), the server receives
1,000 normal SYN packets. The spoofed SYN flood at-
tack varies its attack intensity as shown in the top graph
of Fig. 4. The simulated SYN flood attack includes two
types of attack dynamics: (1) attacking traffic gradually
increases its intensity (from time 0 to 500); and (2) all
distributed attacking hosts begin to send attacking pack-
ets at the same time (from time 700 to 800). The bottom
graph of Fig. 4 shows how the adaptive defense system
automatically tunes its detection parameter δ (In this ex-
periment, cp/cn = 2).

0 200 400 600 800 1000
0

2000

4000

of

 S
Y

N
s

Time k

Normal traffic
Attack traffic

0 200 400 600 800 1000
0

2

4

6

8

P
ar

am
et

er
:

δ

Time k

Figure 4: SYN flood attack scenario and the defense sys-
tem response based on the general cost function (4)

To verify the attack severity estimation (3), we plot
the real value π(k), the observed value π′(k) and the es-
timated value π̂(k) as functions of time k in Fig. 5. This

figure clearly shows that Eq. (3) provides accurate esti-
mation results at any time.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

π

Time k

Real π
Observed π
Estimated π

Figure 5: Verification of the estimation formula (3)

5.1.2 Buffer-aware performance function

Next, we study the adaptive defense system based on the
buffer-aware function (7). ∆ = 30 seconds as used in
previous experiment. We assume that normal SYN pack-
ets have the average sojourn time T1 = 3 seconds in the
pending buffer; attack packets have T2 = 25 seconds
(since most attack packets will stay in the buffer until
time-out). The pending buffer is assumed to be able to
support K = 200 connection requests at the same time.

Figure 6: Adaptive defense system response based on the
buffer-aware performance function (7)

The SYN flood attack follows the same dynamics as
the experiment shown in Fig. 5. Fig. 6 shows how the
defense system adjusts its parameter δ. δ > 8 means
the defense system deactivates its filtering functionality.
This figure and previous Fig. 4 show that both adaptive
defense systems have the similar responses. The differ-
ence is that the adaptive defense system here has a con-
tinuously changing optimal δ since (7) is a non-linear
function of δ (while (4) is a linear function of δ).

5.1.3 Performance comparison

In the above two experiments, we also obtain the infor-
mation of accepted normal packets. To see the adap-
tive defense performance, we also conduct a baseline
experiment where a fixed-parameter HCF with δ = 1
is deployed, which is the recommended setting in [3].
Fig. 7(a) and Fig. 7(b) show the defense performance in

5

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association74

0 200 400 600 800 1000
300

400

500

600

700

800

900

1000

1100

Time k

of

 s
er

ve
d

no
rm

al
 S

Y
N

s

Buffer−aware adaptive
fixed−parameter filtering

(a). Based on buffer-aware function (7)

0 200 400 600 800 1000
300

400

500

600

700

800

900

1000

1100

Time k

of

 s
er

ve
d

no
rm

al
 S

Y
N

s

General cost adaptive
fixed−parameter filtering

(b). Based on general cost function (4)

Figure 7: Performance of adaptive defense systems compared with the fixed-parameter system

terms of the number of accepted normal SYNs for these
two adaptive defense systems, respectively.

Compared with the fixed-parameter defense, both
adaptive defense systems accept more normal connection
requests either under very light attacks or under heavy
attacks. The fixed-parameter defense system uses a set
of settings that is optimal only for a specific attack con-
dition, which is not suitable for a real implementation
where people expect a defense system to work well un-
der various network conditions.

Fig. 7 also shows that we do not need to design a very
accurate adaptive defense system in order to improve the
performance of an underlying non-adaptive detection al-
gorithm. As long as we use the adaptive defense princi-
ple to adjust a system’s settings, the defense performance
will be improved more or less. In fact, we run the experi-
ment shown in Fig. 4 many times with different values of
cp and cn, the adaptive defense system always improves
its performance compared with the fixed-parameter sys-
tem in terms of the number of accepted normal requests
(similar results as shown in Fig. 7).

5.2 Defense against worm infection

In the following experiments, we use a monitored Slam-
mer propagation trace to study the performance of the
adaptive defense system. The trace is a tcpdump data
containing all UDP packets (targeting at port 1434) re-
ceived by a /16 network. The top graph of Fig. 8 shows
the number of Slammer UDP packets received during
each second, which is Z(k) as we use one second for
the discrete time interval. The monitored /16 network
has two Internet connections. At 150 seconds, one con-
nection went down and caused the monitored Slammer
scans dropped suddenly. At 217 seconds, one internal
computer was infected and its scanning traffic caused lo-
cal congestion, and hence, the monitored Slammer scans
dropped suddenly for the second time.

The bottom graph of Fig. 8 shows how the defense

0 50 100 150 200 250 300
0

200

400

600

800

1000

Time k (second)

of

 s
ca

ns
/s

ec

0 50 100 150 200 250 300
1
3
5
7
9

11
13

Time k (second)

T
hr

es
ho

ld
 W

Figure 8: Slammer attack and the response by the adap-
tive defense system based on TRW detection

system responds to the attack changes by adjusting W (k)
(in this experiment, cp/cn = 1000). W (k) = 1 is the
most aggressive defense that the system can operate: any
host will be blocked (on the suspicious port only) as soon
as one illegal scan from it is observed.

0 50 100 150 200 250 300
0

50

100

150

200

Time k (second)

of

 p
as

se
d

sc
an

s

Adaptive system
fixed parameter

Figure 9: Worm scans passing the defense system

Fig. 9 shows the number of worm scans entering the
/16 network — the other worm scans are blocked by the
defense system (the peak level of original worm scans is

6

SRUTI ’05: Steps to Reducing Unwanted Traffic on the Internet Workshop USENIX Association 75

1000 per second). For comparison, we also show in this
figure the case of a fixed-parameter system where W =
4. Note that since the number of vulnerable computers in
a local network is usually much smaller than the number
of addresses allocated to the network, only a very small
percentage of passed worm scans could possibly cause
infection. Of course, if we are very concerned with the
worm infection, we can increase the ratio of cp/cn to
make the defense system quickly updates its threshold
W (k) to 1 when Z(k) increases (at the cost of increasing
the number of falsely blocked normal hosts).

For the evaluation of false positives, [4] and [15] have
used real network traces to show that the “Threshold
Random Walk” algorithm has very limited false positives
(most of those falsely detected hosts are web crawlers or
proxies). Since our adaptive worm defense system uses
the similar underlying detection algorithm, we do not re-
peat such an evaluation here.

6 Conclusion

To defend against various network attacks, we introduce
an “adaptive defense” principle based on cost minimiza-
tion — a defense system adaptively adjusts its config-
urations according to the network condition and attack
severity in order to minimize the combined cost intro-
duced by false positives and false negatives at any time.
In this paper, we present concrete system designs to
defend against two major network attacks: SYN flood
DDoS attack and Internet worm infection. The adaptive
parameter update includes very simple estimation and
optimization, thus the computational overhead is very
small. The adaptive defense is a high-level system design
that can be built on top of various non-adaptive detection
and filtering algorithms, which makes it applicable for a
wide range of security defenses.

There are still many work to do on the adaptive de-
fense design. First, we want to further study how to
choose the cost factors cp and cn quantitatively according
to the defense requirements. Second, in order to under-
stand accurately the impact of false positives/negatives,
we plan to evaluate the adaptive defense system based on
real monitored traces that include both attack and normal
traffic. Third, when defense settings are adaptive, attack-
ers might be able to influence the detection in such a way
as to deny service to legitimate traffic. We plan to further
study this system robustness issue.

Acknowledgements

We gratefully thank Eric Cronin and Anthony Kurc for
sharing their hop-count dataset, and Andrew Daviel from
TRIUMF, Canada for sharing his monitored Slammer

trace. This work was supported in part by ARO contract
DAAD19-01-1-0610, NSF Grant EEC-0313747, EIA-
0080119, ANI-0085848 and CNS-0325868.

References

[1] CERT. CERT/CC advisories.
http://www.cert.org/advisories/.

[2] GIL, T. M., AND POLETTO, M. MULTOPS: a data-structure for
bandwidth attack detection. In Proceedings of USENIX Security
Symposium (August 2002).

[3] JIN, C., WANG, H., AND SHIN, K. G. Hop-count filtering: an
effective defense against spoofed DDoS traffic. In Proceedings
of 10th ACM Conference on Computer and Communications Se-
curity (October 2003).

[4] JUNG, J., PAXSON, V., BERGER, A. W., AND BALAKRISH-
NAN, H. Fast portscan detection using sequential hypothesis
testing. In Proceedings of the IEEE Symposium on Security and
Privacy (May 2004).

[5] JUNG, J., SCHECHTER, S. E., AND BERGER, A. W. Fast de-
tection of scanning worm infections. In Proceedings of the 7th
International Symposium on Recent Advances in Intrusion De-
tection (RAID) (September 2004).

[6] KEROMYTIS, A., MISRA, V., AND RUBENSTEIN, D. A frame-
work for classifying denial of service attacks. In Proceedings of
ACM SIGCOMM (August 2003).

[7] KIM, H., AND KARP, B. Autograph: Toward automated,
distributed worm signature detection. In Proceedings of 13th
USENIX Security Symposium (August 2004).

[8] KIM, Y., LAU, W., CHUAH, M., AND CHAO, H. Packetscore:
Statistical-based overload control against distributed denial-of-
service attacks. In Proceedings of the IEEE INFOCOM (March
2004).

[9] LEE, W., FAN, W., MILLER, M., STOLFO, S., AND ZADOK,
E. Toward cost-sensitive modeling for intrusion detection and
response. Journal of Computer Security 10, 1,2 (2002).

[10] MIRKOVIC, J., AND REIHER, P. A taxonomy of DDoS attack
and DDoS defense mechanisms. ACM SIGCOMM Computer
Communication Review 34, 2 (2004).

[11] PANG, R., YEGNESWARAN, V., BARFORD, P., PAXSON, V.,
AND PETERSON, L. Characteristics of Internet background ra-
diation. In Proceedings of the Internet Measurement Conference
(IMC) (October 2004).

[12] SAVAGE, S., WETHERALL, D., KARLIN, A., AND ANDERSON,
T. Practical network support for IP traceback. In Proceedings of
ACM SIGCOMM (August 2001).

[13] SINGH, S., ESTAN, C., VARGHESE, G., AND SAVAGE, S.
Automated worm fingerprinting. In Proceedings of the 6th
ACM/USENIX Symposium on Operating System Design and Im-
plementation (OSDI) (December 2004).

[14] STANIFORD, S. Containment of scanning worms in enterprise
networks. Journal of Computer Security (2003).

[15] WEAVER, N., STANIFORD, S., AND PAXSON, V. Very fast con-
tainment of scanning worms. In Proceedings of 13th USENIX
Security Symposium (August 2004).

[16] WILLIAMSON, M. M. Throttling viruses: Restricting propaga-
tion to defeat mobile malicious code. In 18th Annual Computer
Security Applications Conference (December 2002).

[17] ZOU, C. C., GONG, W., AND TOWSLEY, D. Worm propagation
modeling and analysis under dynamic quarantine defense. In Pro-
ceedings of ACM CCS Workshop on Rapid Malcode (WORM’03)
(October 2003).

7

