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Abstract

This paper studies the techniques a backbone ISP can
employ to reduce unwanted traffic on its network. For
this purpose, we extract likely sources of exploit (thus
unwanted) traffic from packet traces collected on back-
bone links using an Internet traffic behavior profiling
methodology we developed earlier. We first study the
characteristics of exploit traffic from several aspects,
such as network origins and severity. Based on these
characteristics, we propose several heuristic rules that an
ISP may pursue for reducing unwanted traffic, and eval-
uate their cost and performance. Using packet traces col-
lected from backbone links, we demonstrate that simple
blocking strategies could potentially reduce substantial
exploit traffic in a backbone network.

1 Introduction

Recently we have seen a tremendous increase in un-
wanted or exploit traffic [1] [2] – malicious or unproduc-
tive traffic that attempts to compromise vulnerable hosts,
propagate malware, spread spam or deny valuable ser-
vices. A significant portion of this traffic is due to self-
propagating worms, viruses or other malware; this leads
to a vicious cycle as new hosts are infected, generat-
ing more unwanted traffic and infecting other vulnerable
hosts. In addition to self-propagating malware, new vari-
ants of old malware or new exploits emerge faster than
ever, producing yet more unwanted traffic. Current mea-
sures in stopping or reducing unwanted or exploit traffic1

rely on various firewalls or similar devices deployed on
the end hosts or at stub networks (i.e., networks such as
enterprise or campus networks that do not provide transit
services) to block such traffic. In this paper we are inter-
ested in the feasibility and effectiveness of stopping or
reducing unwanted traffic from the perspective of transit
networks or ISPs (Internet Service Providers), in partic-
ular that of a backbone ISP.

As a prerequisite to stop or reduce unwanted traffic at
an ISP, we first need an effective and efficient mecha-
nism to identify such traffic and its sources, especially
using packet header information of one-way traffic only.
In a recent work [3], we have developed a backbone
traffic profiling methodology – using a combination of
information-theoretical and data mining techniques – to
automatically discover and classify interesting and sig-
nificant communication patterns from largely unstruc-
tured traffic data. Using packet header traces of one-
way traffic collected on Sprint backbone links, we have
demonstrated that our methodology is capable of identi-
fying canonical behavior patterns for well-known servers
such as the HTTP, SMTP, and DNS, as well as for traffic
generated by known or unknown exploits. In addition,
our methodology also uncovers “unusual” behavior pat-
terns that deviate from the canonical profiles and thus
warrant further investigation by security analysts.

Given the exploit traffic thus identified, in this paper
we consider blocking strategies an ISP may pursue to re-
duce unwanted traffic, by installing access control lists
(ACLs) on routers at entry points of an ISP. Although
most of exploit traffic is associated with a relatively small
set of (destination) ports, simply blocking these ports
from any source is, in general, infeasible for a backbone
ISP. This is because many ports that are vulnerable to at-
tacks such as port 1434 (Microsoft SQL server) [4] or
port 139 (Common Internet File System for Windows)
are also used by legitimate applications run by an ISP’s
customers. An alternate approach is to block the spe-
cific offending sources (and the exploit destination ports)
of exploit traffic. However, these sources can number
in tens or hundreds of thousands for a large backbone
network; hence there is a significant scalability problem
(primarily due to overheads incurred in backbone routers
for filtering traffic using ACLs) in attempting to block
each and every one of these sources. Hence this ap-
proach is likely to be most cost-effective when used to
block the top offending sources that send a majority of
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self-propagating exploit traffic, in particular, in the early
stage of a malware outbreak, to hinder their spread.

The contributions of this paper are i) characterizing
unwanted traffic in a backbone network in terms of their
sources, severity and sequential activities; ii) devising
and evaluating possible blocking strategies for reducing
unwanted traffic in a backbone network.

The remainder of the paper is structured as follows.
In section 2 we provide a short overview of the back-
bone traffic behavior methodology we have developed,
and apply it to identify individual sources that generate a
significant amount of exploit traffic in any 5-minute time
period. In section 3 we study the characteristics of ex-
tracted exploit traffic from several aspects. In section 4
we propose several heuristic blocking rules for reducing
exploit traffic and evaluate their efficacy and trade-offs.
In section 5 we summarize our findings and outline the
future work.

2 Profiling Behavior of Exploit Traffic

We provide a short overview of the backbone traf-
fic behavior profiling methodology we have developed
in [3]. By using a combination of information-theoretical
and data mining techniques, the profiling methodology
can identify several “canonical” behavior profiles such
as “normal traffic” associated with typical servers and
heavy-hitter client hosts, “unwanted” or exploit traffic,
as well as rare or anomalous behavior patterns. The
methodology is extensively evaluated and validated us-
ing packet header traces collected on backbone ISP links.

The behavior profiling works by examining commu-
nication patterns of end hosts (source and destination IP
addresses) or ports (source and destination port numbers)
that account for a significant number of flows in a time
period (5-minute is used in this and our earlier studies).
For example, for a given source IP address (srcIP) a,
the profiling process includes i) extracting the 5-tuple
flows whose srcIP is a in the 5-minute time period into
to a cluster, Ca, referred to as the srcIP cluster (associ-
ated with a); ii) characterizing the communication pat-
terns (i.e., behavior) of a using information-theoretical
measures on the remaining three feature dimensions of
the flows, i.e., source port (srcPrt), destination port
(dstPrt) and destination IP address (dstIP). Note
that the profiling process also works for dstIP, sr-
cPrt or dstPrt.

We introduce an information-theoretic measure – rela-
tive uncertainty2 (RUX) – to provide an index of variety
or uniformity on each of the three feature dimensions,
X = {srcPrt, dstPrt, dstIP}. Based on this
measure, we define an RU vector [RUsrcPrt, RUdstPrt

and RUdstIP ] to characterize the uncertainty of the three
dimensions for each srcIP cluster. Hence each sr-

cIP cluster can be represented as a single point in a
3-dimensional space of the RU vectors. This leads to
a behavior classification scheme which classifies all sr-
cIPs into various behavior classes based on their similar-
ity/dissimilarity in the RU vector space. In particular,
we identify three canonical behavior profiles, namely,
server profile, heavy hitter profile, and exploit profile, to
which most of srcIP clusters belong. We have applied
the framework on a diverse set of backbone links and
demonstrated the applicability of the profiling methodol-
ogy to the problem of classifying distinct behavior pat-
terns. For example, using the packet traces collected
from an OC48 backbone link during a 24-hour period,
we identified 418, 466 and 3728 distinct srcIPs with
server, heavy hitter and exploit behavior profiles, respec-
tively. Due to a lack of space, we will only show the
results for this link, L, in this paper. The results for other
links are presented in [5].

As an example to illustrate the distinct behaviors of
normal vs. exploit traffic profiles, Figs. 1[a] and [b]
plot the points in the RU vector space corresponding
to the srcIPs belonging to the three canonical traffic
profiles3. The points are clustered in three clearly separa-
ble groups. The points on the left side of Fig. 1[a] belong
to the server profile, where they share a strong similarity
in RUsrcPrt (low uncertainty) and RUdstPrt (high un-
certainty): a server typically talks to many clients using
the same service srcPrt and randomly selected dst-
Prt’s. The cluster on the right side of Fig. 1[a] belong to
the heavy hitter profile, where they share a strong similar-
ity in RUsrcPrt (high uncertainty), RUdstPrt (low uncer-
tainty), and have low-to-medium uncertainty in RUdstIP :
a heavy-hitter client host tends to talk to a limited num-
ber of servers using randomly selected srcPrt’s but the
same dstPrt. Closer inspection reveals that the sr-
cPrt’s in the server profile almost exclusively are the
well-known service ports (e.g., TCP port 80); whereas
the majority of the dstPrt’s in the heavy-hitter profile
are the well-known service ports, but they also include
some popular peer-to-peer ports (e.g., TCP port 6346).

In contrast, the points in the exploit traffic profile
(Fig. 1[b]) all have high uncertainty in RUdstIP and low
uncertainty in RUdstPrt, and fall into two categories in
terms of RUsrcPrt. Closer inspection 4 reveals that the
dstPrts include various known exploit ports (e.g., TCP
ports 135, 137, 138, 445, UDP ports 1026-28) as well
as a few high ports with unknown vulnerabilities. They
also include some well-known service ports (e.g., TCP
80) as well as ICMP traffic (“port” 0). Fig. 2 plots the
popularity of the exploit ports in L in the decreasing
order, where the popularity of an exploit port is mea-
sured by the number of sources that have an exploit pro-
file associated with the port. Clearly, a large majority
of these ports are associated with known vulnerabilities
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Figure 1: The RU vector distribution of the canonical behavior profiles for significant srcIP’s in L during a 24-hour
period.

and widely used by worms or viruses, e.g., TCP port 135
(W32/Blaster worm), TCP port 3127 (MyDoom worm).
Several well-known service ports (e.g., TCP port 80,
UDP port 53, TCP port 25) are also scanned/exploited
by a few sources. Most sources target a single exploit,
however, a small number of sources generate exploit traf-
fic on multiple ports concurrently. In most cases, these
ports are associated with the same vulnerability, for in-
stance, the port combination {TCP port 139, TCP port
445} associated with MS Window common Internet file
systems (CIFS), and {UDP ports 1026-1028} associated
with MS Window messenger pop-up spams.

10
0

10
1

10
2

10
3

10
4

Port

P
op

ul
ar

ity

13
5 0

13
7

31
27

61
29 90
1

44
5

13
9

14
33

17
30

0 21
12

34
5 80

14
34

27
37

4
48

99 53 44
3

40
00

34
81

6 25
10

80
61

49
33

89
99

99
61

12 59
3

55
4

38
10

34
10

27
01

5 22
20

16
8

12
84

9

Figure 2: Port popularity of exploits traffic in L during a
24-hour period

It is worth noting that our focus is on significant end
hosts or services, so the sources we built behavior pro-
files are far less than the total number of sources seen
in backbone links. Thus, it is not surprising that our be-
havior profiling framework identifies a subset of sources
that send exploit traffic. However, these sources often
account for a large percentage of exploit traffic. For ex-
ample, Fig. 3[a] shows the total number of sources that
send at least one flow on the most popular exploit port,
port 135, as well as the number of significant sources
extracted by our clustering technique that targeted port

135. As illustrated in Fig. 3[b], the percentage of such
significant sources ranges from 0% to 26%. However, as
shown in Fig. 3[c], these significant sources account for
80% traffic on TCP port 135 for most intervals. This ob-
servation suggests that our profiling framework is effec-
tive to extract most exploit traffic sent by a small number
of aggressive sources.

3 Characteristics of Exploit Traffic

We study the characteristics of the exploit traffic from the
sources profiled as exploits in section 2 in terms of net-
work origins, their frequency, intensity and target foot-
prints in the IP space. Our objective is to shed light on
effective strategies we can explore for reducing such un-
wanted traffic.

3.1 Origins of Exploit Traffic

We first examine where the sources of exploit traffic are
from, in terms of their origin ASes (autonomous sys-
tems) and geographical locations. Among the 3728 sr-
cIPs in L during a 24-hour period, 57 are from the pri-
vate RFC1918 space [6]. These source IP addresses are
likely leaked from NAT boxes or spoofed. For the re-
maining srcIP’s, we search its network prefix using the
longest prefix match in a snapshot of the BGP routing ta-
ble of the same day from Route-Views [7], and obtain the
AS that originates the prefix. These 3671 srcIP’s are
from 468 different ASes. Fig. 4 shows the distribution of
the exploit sources among these ASes. The top 10 ASes
account for nearly 50% of the sources, and 9 out of them
are from Asia or Europe.
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Figure 3: Aggregated traffic from significant sources of exploit on TCP port 135 over a 24-hour period (i.e., 288
five-minute periods.
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Figure 4: Distribution of srcIP counts across all ASes for
3728 sources of exploit in L during a 24-hour period.

3.2 Severity of Exploit Traffic

We introduce several metrics to study the temporal and
spatial characteristics of exploit traffic. The frequency,
Tf , measures the number of 5-minute time periods (over
the course of 24 hours) in which a source is profiled
by our methodology as having an exploit profile. The
persistence, Tp, measures (in percentage) the number of
consecutive 5-minute periods over the total number of
periods that a source sends significant amount of exploit
traffic. It is only defined for sources with Tf ≥ 2. Hence
Tp = 100(%) means that the source continuously sends
significant amount of exploit traffic in all the time slots it
is observed. We use the spread, Fs, of the target footprint
(i.e., destination IP address) to measure the number of
/24 IP address blocks that a source touches in a 5-minute
time period, and the density of the target footprint, Fd,
to measure the (average) number of IP addresses within
each /24 block that a source touches in the period. Fi-
nally, we use the intensity, I , to relate both the temporal
and spatial aspects of exploit traffic: it measures the (av-
erage) number of distinct target IP addresses per minute
that a source touches in each 5-minute period. Thus it is

an indicator how fast or aggressive a source attempts to
spread the exploit.

Figs. 5(a)(b)(c)(d) show the distributions of the fre-
quency vs. persistence, a scatter plot of the spread vs.
density of target footprint, the distribution of intensity,
and the distributions of frequency vs. intensity for the
3728 exploit sources, respectively. From Fig. 5(a) we
observe that frequency follows a power-law like distribu-
tion: only 17.2% sources have a frequency of 5 or more,
while 82.8% sources have a frequency of less than 5. In
particular, over 70% of them have frequency of 1 or 2.
Furthermore, those 17.2% frequent (Tf ≥ 5) sources ac-
count for 64.7%, 61.1% and 65.5% of the total flows,
packets, and bytes of exploit traffic. The persistence
varies for sources with similar frequency, but nearly 60%
of the sources (Tf ≥ 2) have a persistence of 100 (%):
these sources continuously send exploit traffic over time
and then disappear.

From Fig. 5(b) we see the exploit sources have quite
diverse target footprints. In nearly 60% cases, exploit
sources touch at least ten different /24 blocks with a den-
sity of above 20. In other words, these sources probe an
average of more than 20 addresses in each block. How-
ever, in about 1.6% cases, the sources have a density of
less than 5, but a spread of more than 60. In a sense,
these sources are smart in selecting the targets as they
have a low density in each block. As the rate of ex-
ploit seen from each destination network is slow [8], they
may evade port scan detection mechanisms used, e.g., in
SNORT [9], Bro [10] or [11]. Upon close examination
we find that these sources employ two main strategies
for target selections. One is to randomly generate tar-
gets (or to use a hit-list). The other is to choose targets
like a.b.x.d or a.x.c.d, instead of a.b.c.x, where x ranges
from 1 to 255, and a, b, c, d take constant values.

The exploit intensity (Fig. 5(c)) also follows a power-
law like distribution. The maximum intensity is 21K tar-
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Figure 5: Temporal and spatial aspects of exploit traffic for the sources with exploit profiles in the backbone link
during a 24-hour period. Note that (a) and (d) have the same index in x axis.

gets per minute, while the minimum is 40 targets per
minute. There are only 12.9% sources with an inten-
sity of over 500 targets per minute, while nearly 81.1%
sources have an intensity of less than 500 targets per
minute. Those 12.9% aggressive (I ≥ 500) sources ac-
count for 50.5%, 53.3%, and 45.2% of the total flows,
packets, and bytes of exploit traffic. However, as evi-
dent in Fig. 5(d), there is no clear correlation between
frequency and intensity of exploit traffic: the intensity
of exploit activities varies across sources of similar fre-
quency.

In summary, we see that there is a relatively small
number of sources that frequently, persistently or ag-
gressively generate exploit traffic. They are candidates
for blocking actions. Whereas a small percentage of
sources are also quite smart in their exploit activities:
they tend to come and go quickly, performing less inten-
sive probing with wide-spread, low-density target foot-
print. These sources may be operated by malicious at-
tackers as opposed to innocent hosts infected with mal-
ware that attempt to self-propagate. These sources need
to be watched for more carefully.

4 Initial Assessment of Blocking Strategies

In this section, we propose several heuristic rules of
blocking strategies based on characteristics of exploit ac-
tivities and then evaluate their efficacy in reducing un-
wanted traffic.

In order to determine which sources to block traffic
from, we use the behavior profiling technique outlined in
section 2. For every five minute interval, we profile all
sources and identify those that exhibit the exploit traf-
fic profile. We then devise simple rules to select some
or all of these sources as candidates for blocking. In-
stead of blocking all traffic from the selected sources, we
consider blocking traffic on only the ports that a source
seek to exploit. This is because exploit hosts may in-

deed be sending a mixture of legitimate and exploit traf-
fic. For example, if an infected host behind a NAT box is
sending exploit traffic, then we may observe a mixture of
legitimate and exploit traffic coming from the single IP
address corresponding to the NAT box.

For our evaluation, we start with the following bench-
mark rule. If a source is profiled as an exploit source
during any five minute interval, then all traffic from
this source on vulnerable ports is blocked from then
on. Fig. 6[a][b] illustrates the total blocked flows from
sources of exploit every 5-minute interval in L, and
the percentage of such flows over all traffic from these
sources, respectively. Overall, the benchmark rule could
block about 80% traffic from the sources of exploit. In
other words, this rule may still not block all traffic from
the source due to two reasons. First, the source might al-
ready have been sending traffic, perhaps legitimate, prior
to the time-slot in which it exhibited the exploit profile.
Second, as explained above, only ports on which we see
exploit traffic are considered to be blocked.

While this benchmark rule is very aggressive in select-
ing sources for blocking, the candidate set of source/port
pairs to be added to the ACLs of routers may grow to
be very large across all links in a network. Therefore,
we consider other blocking rules that embody additional
(and more restrictive) criteria that an exploit source must
satisfy in order to be selected for blocking.

• Rule 2: an ACL entry is created if and only if the
source has been profiled with an exploit behavior
on a port for n consecutive intervals. This rule is to
block traffic from persistent sources;

• Rule 3: an ACL entry is created if and only if the
source has an average intensity of at least m flows
per minute. This rule is to block aggressive sources;

• Rule 4: an ACL entry is created if and only if the
source is exploit one of the top k popular ports. This
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Figure 6: a) blocked flows using the benchmark rule on L over a 24-hour period; b) percentage of blocked flows over
the total flows from sources of exploit.

rule is to block exploit traffic of the popular ports;

• Rule 5: Rule 2 plus Rule 3.

We introduce three metrics, cost, effectiveness, and
wastage to evaluate the efficacy of these rules. The cost
refers to the overhead incurred in a router to store and
lookup the ACLs of blocked sources/ports. For simplic-
ity, we use the total number of sources/ports as an index
of the overhead for a blocking rule. The effectiveness
measures the reduction of unwanted traffic in terms of
flow, packet and byte counts compared with the bench-
mark rule. The resource wastage refers to the number of
entries in ACLs that are never used after creations.

Table 1 summarizes these rules of blocking strategies
and their efficacy. The benchmark rule achieves the op-
timal performance, but has the largest cost, i.e., 3756
blocking entries5. Rule 2 with n = 2 obtains 60% re-
ductions of the benchmark rule with 1585 ACL entries,
while Rule 2 with n = 3 obtains less than 40% reduc-
tions with 671 entries. Rule 3, with m = 100 or m = 300
achieves more than 70% reductions with 2636 or 1789
entries. Rule 4 has a similar performance as the bench-
mark rule, but its cost is also very high. The Rule 5, a
combination of Rule 2 and Rule 3 has a small cost, but
obtains about 40% reductions compared with the bench-
mark rule.

We observe that the simple rules, Rule 3 with m = 100
or m = 300 and Rule 2 with n = 2, are most cost-
effective when used to block the aggressive or frequent
sources that send a majority of self-propagating exploit
traffic, in particular, in the early stage of a malware out-
break, to hinder their spread.

5 Conclusions and Ongoing Work

This paper studied the characteristics of exploit traffic
using packet-level traffic traces collected from backbone
links. Based on the insights obtained, we then investi-
gated possible countermeasure strategies that a backbone
ISP may pursue for reducing unwanted traffic. We pro-
posed several heuristic rules for blocking most offend-
ing sources of exploit traffic and evaluated their efficacy
and performance trade-offs in reducing unwanted traffic.
Our results demonstrate that blocking the most offending
sources is reasonably cost-effective, and can potentially
stop self-propagating malware in their early stage of out-
burst. We are currently performing more in-depth anal-
ysis of exploit traffic, and correlating exploit activities
from multiple links. Ultimately we plan to incorporate
these mechanisms in a comprehensive security monitor-
ing and defense system for backbone ISPs.
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Notes
1Strictly speaking, in this paper we will use the term exploit traffic

to mean traffic that is generated with the explicit intention to exploit
certain vulnerabilities in target systems - a large subset of unwanted
traffic, although frequently we do use the two terms interchangeably.

2Suppose the size of Ca is m and X may take NX discrete val-
ues. Moreover, P (X) denotes a probability distribution, and p(xi) =
mi/m, xi ∈ X, where mi is the frequency or number of times
we observe X taking the value xi. Then, the RU of X for Ca is

defined as RU(X) :=
H(X)

Hmax(X)
= H(X)/log min{NX , m},

where H(X) is the (empirical) entropy of X defined as H(X) :=
−

∑
xi∈X

p(xi) log p(xi).
3For clarity of presentation, points belonging to the rare behavior

classes, i.e., those falling outside the three canonical behavior profiles,
are excluded in both plots. These rare behavior classes tend to also
contain anomalous or suspicious activities. See [3] for more details.

4Our profiling approach reveals the dominant activity of a given
source, and not all activities. For example, an infect host, which sends
a large number of exploit traffic, could also send legitimate web traffic.

5The cost exceeds the total number of unique sources of exploit
since a few sources have exploit profiles on multiple destination ports.




