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Abstract

We propose a new spam detection algorithm that uses
structural relationships between senders and recipients
of email as the basis for spam detection. A unifying rep-
resentation of users and receivers in the vectorial space
of their contacts is constructed, that leads to a natural
definition of similarity between them. This similarity
is then used to group email senders and recipients into
clusters. Historical information about the messages sent
and received by the clusters is obtained by forwarding
messages to an auxiliary spam detection algorithm and
this information is used to reclassify messages. In the
framework proposed, our algorithm aims at correcting
misclassifications from an auxiliary algorithm. A simu-
lation is performed based on actual data collected from
an SMTP server from a large University. We show that
our approach is able reduce false positives, produced by
the auxiliary classification algorithm, up to about 60%.

1 Introduction

The relentless rise in spam email traffic, now account-
ing for about 83% of all incoming messages, up from
24% in January 2003 [14], is becoming one of the great-
est threats to the use of email as a form of communi-
cation. Spam is also increasingly at the root of major
security breaches as more viruses, worms and other ma-
licious software makes use of spam messages to spread
throughout the Internet.

A major problem in detecting spam stems from active
adversarial efforts to thwart classification. Spam senders
use a multitude of techniques based on knowledge of cur-
rent algorithms, to evade detection. These techniques
range from changes in the way text is written to frequent
changes in elements, such as user names, domains, sub-
jects, etc. Although such evasion strategies are usually
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naturally understood by humans, it is hard to automati-
cally analyze them.

A central question that remains unanswered is: what
are the identifiers of spam that are most costly to change,
from the point of view of the spammer? The limitations
of attempts to recognize spam by analyzing content are
emphasized in [7]. Content-based techniques [15, 22, 16]
have to cope with the constant changes in the way spam-
mers generate their solicitations. The structure of the
target space for these solicitations tends, however, to be
much more stable since spam senders still need to reach
recipients in order to be effective. Specifically, by struc-
ture we mean the space of recipients targeted by a spam
sender, as well as the space of senders that targets a given
recipient, i.e. the contact lists of a user. The contact lists,
or subsets thereof, can then be thought of as a (dynami-
cal) signature of spam senders and recipients. Addition-
ally by constructing a similarity measure in these spaces
we can track how lists evolve over time, by addition or
removal of addresses.

In this paper, we propose and evaluate an algorithm
for improving spam detection that uses structural rela-
tionships between senders and recipients as the basis for
the detection of spam messages. The algorithm works in
conjunction with another spam classifier (hereafter called
auxiliary algorithm), necessary to produce spam or legit-
imate mail tags on past senders and receivers, which in
turn are used to infer new ones, through structural sim-
ilarity. The key idea is that the set of distinct recipients
that spammers and legitimate users send messages to, as
well as the set of distinct senders from which users re-
ceive messages from (which, in both cases, we call con-
tact lists), can be used as identifiers of senders and recip-
ients in email traffic [19, 11, 12]. We show that the ap-
plication of our structural algorithms over the auxiliary
classifier’s results leads to the correction of a number of
misclassifications.

This paper is organized as follows: Section 2 presents
the methodology used to handle email data. Our struc-
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tural algorithm is described in Section 3. We present the
characteristics of the workload studied in section 4, as
well as the classification results obtained with our algo-
rithm over this data set. Related work is presented in
Section 5 and conclusions and future work in Section 6.

2 Modeling Similarity Among Email
Senders and Recipients

Our proposed spam detection algorithm exploits the
structural similarities in groups of senders and recipients
of email. This section introduces a unifying modeling
framework of individual email users and a metric that
captures the similarity between them.

Our basic assumption is that, in legitimate and spam
traffics, users have a list of peers they often have contact
with (i.e., they send/receive an email to/from), as can be
seen in Section 4. In legitimate traffic, contact lists stem
from social relationships. On the other hand, the lists
created by spammers to distribute their solicitations are
guided by business opportunities and, generally, do not
reflect any form of social interaction. Contact lists cer-
tainly change over time. However, we expect them to be
much less variable than other identifiers commonly used
for spam detection, such as the presence of certain key-
words in the email content or its size and encoding. In
other words, we expect contact lists to be an effective
basis for detecting spam.

We start by representing an email user as a vector in a
multi-dimensional vectorial space created out of all pos-
sible contacts. We represent email senders and recipients
separately. We then use vectorial operations (the nor-
malized inner product in the sender/recipient spaces) to
express the similarity among multiple senders/recipients.
Finally, similarity is used to associate users into clus-
ters. Note that the term email user is used through-
out this work to denote any identification of an email
sender/recipient (e.g., email address, domain name,
SMTP relay, etc).

Let N, be the number of distinct recipients. We repre-
sent a sender s; as a IN,. dimensional vector, §;, defined
in the vectorial space of email recipients. The n-th di-
mension (representing recipient r,,) of s; is defined as:

Sl ={ 5 e (1)

otherwise
where s; — 7, indicates that sender s; has sent at least
one email to 7, recipient.

Similarly, we define 7; as a N5 dimensional vector rep-
resenting recipient r;, where N, is the number of distinct
senders being considered. The n-th dimension of this
vector is analogously set to 1 if recipient r; has received
at least one email from s,,.

We next define the similarity between two senders s;
and s; as the cosine of the angle between their vectorial
representation (s; and s;). The cosine is a well known
metric that has been successfully employed in several
application areas, including document similarity in in-
formation retrieval systems [3, 20] and intrusion detec-
tion [21]. This similarity metric is computed as:

, 5;05j o o
sim(s;, 85) = |si||s_'J| = cos(si, 5), @
ill5;

where §; o §; represents the internal product of the vec-
tors and |$;| is the norm of $;. This metric varies between
0, when senders do not share any recipient in their con-
tact lists, and 1, when senders have identical contact lists
and thus have the same representation. The similarity
between two recipients is similarly defined.

We note that our similarity metric has different inter-
pretations in legitimate and spam traffics. In legitimate
email traffic, it represents social relationships that con-
sist of interactions with the same group of users, whereas
in the spam traffic, a great similarity probably represents
the use of different identifiers by the same spammer or
the sharing of distribution lists by distinct spammers.

Finally, we can use our vectorial modeling approach
to represent a cluster of senders or recipients. A sender
cluster sc;, represented by vector s¢;, is computed as the
vector sum of its elements, that is:

SC; = S5 3)

The similarity between a sender s and an existing clus-
ter sc; can be assessed by extending Equation 2 as fol-
lows:

cos(s¢; — §,8),

Ci if s € sc;
cos(sé;, §), @

sim(sc;, s) = { otherwise

We note that the vectorial representation of a sender §
and of the the sender’s cluster may change over time as
new emails are considered. In order to accurately esti-
mate the similarity between a sender s and a sender clus-
ter s¢; to which s currently belongs to, we first remove §
from s¢;, and then take the cosine between the two vec-
tors (s¢; — § and §). This guarantees that the previous
classification of a user does not influence its new clas-
sification. Recipient clusters and similarities are defined
analogously.

3 Structural Similarity Algorithm

This section introduces our new email classification ap-
proach, which exploits the similarity between email
senders and recipients for their association into clusters,
which are tagged by historical information. Our algo-
rithms is designed to work together with any existing
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spam detection or filtering technique. Our goal is to pro-
vide a significant reduction of false positives (i.e., legit-
imate emails wrongly classified as spam), which can be
as high as 15% in current filters [2].

Spam Filter

Similarity
Algorith

Original
cana .

Figure 1: Architecture Proposed.

Message— — Classification

The architecture proposed in this paper is shown in
Figure 1. A message arrives at the spam detection system
and is directed to the structural similarity algorithm. This
algorithm first sends the message to the auxiliary detec-
tion algorithm to retrieve a first classification of that mes-
sage. Based on this classification, on the cluster formed
by senders and recipients, and on previous historical in-
formation, our algorithm generates a new classification,
which may or may not coincide with the original classi-
fication provided by the auxiliary. The idea is to use the
classification provided by the auxiliary method to build
an incremental historical knowledge base that becomes
more representative as more messages are processed.

for all arriving message m do
mClass =classification of m by auxiliary detection method;
sc =find cluster for m.sender;
Update spam probability for sc using mClass;
Py (m) =spam probability for sc;
Pr(m) = 0;
for all recipient 7 € m.recipients do
rc¢ =find cluster for r;
Update spam probability for rc using mClass;
Pr.(m) = Pr(m)+spam probability for rc;
end for
Pr(m) = Pr(m)/size(m.recipients)
S P(m) = compute spam rank based on Ps(m) and P-(m);
if SP(m) > w then
classify m as spam;
else if SP(m) < 1 — w then
classify m as legitimate;
else
classify m as mClass;
end if
end for

Algorithm 1: New Algorithm for Email Classification

A description of the cluster-based algorithm is shown
in Algorithm 1. This algorithm maintains sets of sender
and recipient clusters, assembled from structural similar-
ity, as defined in Equation (4). A sender/recipient of an
incoming email is added to the sender/recipient cluster
that is most similar to it, provided that their similarity ex-
ceeds a given threshold 7. Thus, 7 defines the minimum
similarity a sender/recipient must have with a cluster to

be assigned to it. Varying 7 allows us to create more
or less tightly knit clusters. If no similar cluster can be
found, a new single-user cluster is created.

The sets of sender and recipient clusters are updated
at each new email arrival. Recall that to determine the
cluster of a previous classified user we first remove the
user from its current cluster and then assess its similarity
to each existing cluster. Thus, single-user clusters tend to
be reduced as more emails are processed, except possibly
for users that appear only very sporadically.

A probability of sending/receiving spam messages is
assigned to each sender/recipient cluster. We refer to this
measure as the cluster spam probability. We calculate the
spam probability of a sender/recipient cluster as the av-
erage spam probability of its elements, which, in turn, is
estimated from the frequency of spams sent/received by
each of them in the past. Therefore, our scheme uses the
result of the email classification performed by the aux-
iliary algorithm on each arriving email m (mClass in
Algorithm 1) to continuously update cluster spam prob-
abilities.

Let us define the probability of a message m being sent
by a spammer, Ps(m), as the probability of its sender’s
cluster send a spam. Similarly, let the probability of
an email m being addressed to users that receive spam,
P.(m), as the average spam probability of all of its re-
cipients’ clusters. Our algorithm uses P;(m) and P,.(m)
to compute a number that expresses the chance of email
m being spam. We call this number the spam rank of
email m, denoted by SR(m). The idea is that emails
with large values of Ps(m) and P,.(m) should have large
spam ranks and thus should be classified as spam mes-
sages. Similarly, emails with small values of Ps(m) and
P,.(m) should receive low spam rank and be classified as
legitimate email.

Spam >
b=t s -
z N gl =
at N ar
@
e 70C SR(m)
- Legitimate

Py(m) P,(m)
Figure 2: Spam Rank Computation and Email Classifi-
cation for the Cluster-based Algorithm.

Figure 2 shows a graphical representation of the com-
putation of the spam rank for a message. We first nor-
malize the probabilities Ps(m) and P,.(m) by a factor of
V/2, so that the diagonal of the square region defined in
the bi-dimensional space is equal to 1 (see Figure 2-left).
Each email m is represented as a point in this square. The
spam rank of m, SR(m), is then defined as the length of
the segment starting at the origin (0,0) and ending at the
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projection of m on the diagonal of the square (see Fig-
ure 2-right). With these definitions the spam rank varies
between 0 and 1.

The spam rank SR(m) is then used to classify m as
follows: if it is greater than a given threshold w, e.g. w >
0.5, the email is classified as spam; if it is smaller than
1 — w, it is classified as legitimate email. Otherwise, we
can not precisely classify the message, and we rely on the
initial classification provided by the auxiliary algorithm.
The parameter w can be tuned to determine the precision
of our classification. Graphically, emails are classified
according to the marked regions shown in Figure 2-left.
The two identical triangles represent the regions where
our algorithm is able to classify emails as either spam
(upper right) or legitimate email (lower left).

4 Experimental Results

In this section we describe our experimental results. We
first present the most relevant details of our workload,
followed by the quantitative results of our approach.

4.1 Workload

Our email workload consists of anonymized and sani-
tized SMTP logs of incoming emails to a large univer-
sity in Brazil, with around 22,000 students. The server
handles all emails coming from domains outside the uni-
versity, sent to students, faculty and staff with email ad-
dresses under the university’s domain name *.

The central email server runs Exim email soft-
ware [10], the AMaViS virus scanner [1] and the Trend-
micro Vscan anti-virus tool [17]. A set of pre-acceptance
spam filters (e.g. black lists, DNS reversal) blocks about
50% of the total traffic received by the server.

The messages not rejected by the pre-acceptance tests
are directed to Spam-Assassin [16]. Spam-Assassin is a
popular spam filtering software that detects spam mes-
sages based on a changing set of user-defined rules.
These rules assign scores to each email received, based
on the presence in the subject or in the email body of
one or more pre-categorized keywords. Spam-Assassin
also uses other rules based on message size and encod-
ing. Highly ranked messages according to these criteria
are flagged as spam.

We analyze a log collected from 01/02/2004 to
01/10/2004. Our logs store the header of each email (i.e.
containing sender, recipients, size , date, etc.) that passes
the pre-acceptance filters, along with the results of the
tests performed by Spam-Assassin and the virus scan-
ners. We also have the full body of the messages that
were classified as spam by Spam-Assassin. Table 1 sum-
marizes our workload.

Measure Non-Spam | Spam Aggregate
# of emails 168,352 153,494 | 321,846
Size of emails 7.5 GB 0.8 GB 8.3 GB

# of distinct senders 12,738 15,325 22,809

# of distinct recipients | 23,849 25,383 34,065

Table 1: Summary of the Workload

By visually inspecting the list of sender user names >

in the spam component of our workload, we found that
a large number of them corresponded to a random se-
quence of characters, suggesting that spammers tend to
change user names as an evasion technique. Therefore,
for the experiments presented below we identified the
sender of a message by his/her domain 3 while recipients
were identified by their full address.

4.2 C(lassification Results

25 10
2 ] =)
@ 157 - 6 =
% 10 X‘}/ Clusters - 4 g
3 5 Beta CV ———| , 8
0 0

0 02 04 06 08 1
T

Figure 3: Number of Email User Clusters and Beta CV
Vs. T.

The results shown in this section were obtained
through the simulation of the algorithm proposed in this
paper over the set of messages in our logs. The im-
plementation of the simulator makes use of an inverted
list [20] approach for storing information about senders,
recipients and clusters that is effective both in terms of
memory and processing time. The classification rate of
the simulations were both higher than the peak rate ob-
served over the workload collection time [12].

The number and quality of the clusters generated
through our similarity measure are the direct result of the
chosen value for the threshold 7 (see Section 3). In order
to determine the best parameter value the simulation was
executed several times for varying 7.

Figure 3 shows how the beta CV (Coefficient of Vari-
ation) for the clusters and the number of clusters vs. 7.
Beta CV denotes the intra CV/inter CV for the clusters.
Whereas the intra CV measures the coefficient of varia-
tion for the similarities intra-cluster, the inter CV mea-
sure the similarities between different clusters. Thus,
beta CV is a measure of the quality of the clusters gen-
erated. The more stable the beta CV the better quality in
terms of the grouping obtained [13]. There is one clear
point of stability in the curve at 7 = 0.5 (Figure 3(a)).
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Moreover, the number of clusters generated also stabi-
lize at 7 = 0.5 (Figure 3(b)). This is the value we adopt
for the remaining of the paper. Although other values
of 7, above 0.5 would also be appropriate, the value of
7 = 0.5 results in a large number of non unitary clusters,
allowing us to evaluate the benefits of the clustering of
senders and recipients.

Our approach is motivated by two hypothesis. First,
contact lists of email users provide an effective means
for identifying them. Second, messages can be more ac-
curately classified as spam or not based on the probabil-
ities of sending/receiving spams of the cluster that their
sender/recipients belong to.
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Figure 4: Spam Senders Identification Stabilization

In order to show that contact lists provide an effec-
tive user identification, we analyze how sender/recipient
vectorial representations change over time, as new mes-
sages arrive in the system. In this analysis, we consider a
warm-up period containing a certain fraction of the mes-
sages, during which sender/recipients are updated. We
define s/ as the vectorial representation of sender i at
a point in time when it had sent m% of its own mes-
sages (m is larger than the warm-up period). We use
the similarity between the representations of sender ¢ in
two points in time, spaced by a certain fraction ¢ of mes-
sages sent, as a measure of how stable the sender iden-
tification is over “period” t. We then analyze how this
similarity, given by cos(s7, s™ ") evolves as the step
t increases. Figure 4(a) shows average similarity mea-
sures for the senders in the spam traffic, varying the step
from 1% to 100%, for different warm-up periods. Fig-
ure 4(b) shows the corresponding measures of coefficient
of variation (CV). Note that, as expected, when there is
no warm-up period (“No Warming”), fluctuations in the
early messages dominate and stabilization is not reached
by the end of our workload. In other words, a larger
set of messages would be required for stabilization to be
reached. As the warm-up period increases, stabilization
is reached with a smaller number of messages. In partic-
ular, when we consider only the last 25% of the messages
for each sender (“Warming of 75%”), sender representa-

tion remains, on average, very stable with CV approach-
ing zero. Similar patterns were observed for legitimate
e-mail senders as well as legitimate and spam recipients.

(a) Bin size = 0.10

(b) Bin size = 0.25

Figure 5: Number of Spam Messages by Varying Mes-
sage Spam Probabilities for Different Bin Sizes.

Next, we investigate whether the second hypothesis
hold. We plot, in figure 5, the fraction of spam mes-
sages in our workload for different values of Pg(m) and
P,.(m) grouped based on a discretization of the full space
represented in the plot. This space is subdivided into
smaller squares of the same size called bins, the darker
the gray scale the greater the number of spams in each
bin. Clearly, spam and legitimate messages are located
on the top-right and bottom-left regions of the spectrum
as we have hypothesized in Section 3. There is, however,
an intermediate region in the middle where we cannot
satisfactorily determine the classification. This is why it
becomes necessary to vary w. One should adjust w based
on the level of confidence it has on the auxiliary algo-
rithm.

Figure 5 shows that messages addressed to recipients
that have high P,.(m) tend to be spam more frequently
than messages with the same value of Ps(m). Analo-
gously, messages with low Ps(m) have higher probabil-
ity of being legitimate messages.

100 = 100 =

80 80

60 60

40 40

Messages (%)
Messages (%)

20 20
In Accordance with the Auxiliary —+—
0 Total Classified ——— 0

05 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
® ®

In Accordance with the Auxiliary
Total Classified -

(a) Legitimate (b) Spam

Figure 6: Messages Classified in Accordance With to the
Auxiliary Algorithm and the Total Number of Messages
Classified by Varying w

Because our algorithm makes use of an auxiliary spam
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detection algorithm - e.g. SpamAssassin. Therefore, we
need to evaluate how frequently we maintain the same
classification as such an algorithm. Figure 6 shows the
the percentage of messages that received the same clas-
sification and the total number of classified messages in
our simulation by varying w, considering only messages
classified by the auxiliary as legitimate (Figure 6(a)) and
spam (Figure 6(b)). The difference between these curves
is the set of messages that were classified differently
from the original classification.

Figures 6 also shows that, considering the sets of mes-
sages originally classified as legitimate and as spam, our
algorithm is capable of classifying a larger number of
messages from the former than from the latter. More-
over, we are slightly more conservative in the classifica-
tion of legitimate emails than spams. We conjecture that
both phenomena stem from the fact that the rules used by
Spam Assassin tend to favor the detection of legitimate
messages.

In another experiment, we simulated a different algo-
rithm that also makes use of historical information pro-
vided by an auxiliary spam detector described in [19].
The main differences are that it uses historical informa-
tion of each sender separately and it does not use recipi-
ents information. We built a simulator for this algorithm
and executed it against our data set. The results show that
it was able to classify 85.11% of the messages in accor-
dance with the auxiliary algorithm, while our approach
classify more than 95% with w = 0.85.

We believe that the differences between the original
classification and the classification proposed for high w
values generally are due to misclassifications by the aux-
iliary algorithm. In our data set we have access to the
full body of the messages that were originally classified
as spam. We were able to evaluate a fraction of the total
amount of false positives (messages that the auxiliary al-
gorithm classify as spam and our algorithm classify as le-
gitimate) that were generated by the auxiliary algorithm.
This is important since the cost of false positives is usu-
ally believed higher than the cost of false negatives [7].

Algorithm % of Misclassifications
Auxiliary 60.33%
Our approach 39.67%

Table 2: Possible False Positives Generated by the Ap-
proaches Studied.

Each of the possible messages classified by the auxil-
iary as spam and by our algorithm as legitimate was man-
ually evaluated by three people, in order to determine
whether such a message was indeed spam. Table 2 sum-
marizes the results for w = 0.85, 879 messages (0.27%
of the total messages) were manually analyzed. Our al-

gorithm was correct in more 60% of the cases.

Due to the cost of manually classifying messages we
can not afford to classify all of the messages categorized
as spam by the auxiliary algorithm. However, we eval-
uate a randomly chosen fraction of the messages clas-
sified as spam by the auxiliary and by our algorithm,
which represents the total data with a confidence interval
of 99% [18]. With w = 0.85, we found that 15% of the
total messages are in this group and we analyzed manu-
ally a sample of 3.50% (1,708 emails) of them. We found
that 99.9% of the analyzed messages were correctly clas-
sified, showing the high precision of our classification.

Moreover, only 0.11% of the total of messages clas-
sified as legitimate by the auxiliary were found to be
spam by our approach. Consequently, the total number
of messages correctly moved from spam class to legiti-
mate class is 47% greater than the number of messages
moved from legitimate class to spam class by our algo-
rithm. Moreover, we emphasize that we can not deter-
mine the quality of the classification for the messages
classified as legitimate by the auxiliary algorithm since
we do not have access to the full body of those messages.

5 Related Work

Several previous studies have focused on reducing the
impact of spam email traffic. The approaches to reduce
spam can be categorized into pre-acceptance and post-
acceptance methods, based on whether they detect spam
before or after accepting messages. Examples of pre-
acceptance methods are server authentication [8, 4] and
accountability [6]. Post-acceptance methods are mostly
based on information available in the body of the mes-
sages and include Bayesian filters [15] and collaborative
filtering [22].

Recent papers have focused on spam combat tech-
niques based on characteristics of graph models of email
traffic [5, 9]. In [5] a graph is created to represent the
email traffic captured in the mailbox of individual users.
The clustering coefficient of each of these components is
used to classify messages as spam or legitimate. The re-
sults show that 53% of the messages were precisely clas-
sified using the proposed approach. In [9] the authors
propose to detect machines that behave as spam senders
by analyzing a border flow graph of sender and recipi-
ent machines. In contrast to these studies, we propose
to use a structural similarity between email senders and
recipients to group them into clusters and use the cluster
historical information to improve spam detection. More-
over, unlike [5], our approach runs on the ISP level.

None of the existing spam filtering mechanisms are in-
fallible [19, 7]. Their main handicap are false positives
and wrong mail classification. In addition, filters must be
continuously updated to capture the multitude of mecha-
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nism constantly introduced by spammers to avoid filter-
ing actions. The algorithm presented in this paper aims
at improving the effectiveness of spam filtering mecha-
nisms, by reducing false positives and by providing in-
formation to tune their collection of rules.

6 Conclusions and Future Work

In this paper we proposed a new algorithm to improve
spam detection based on the structural similarity between
contact lists of email users. The idea is that contact
lists, integrated over a suitable amount of time, are much
more stable identifiers of email users than user names,
domains or message contents, which can all be made to
vary quickly and widely. The major drawback of our ap-
proach is that our algorithm can only group users based
on their structural similarity, but has no way of determin-
ing by itself if such vector clusters correspond to spam
or legitimate email. Thus it must work in tandem with
an original classifier. Given this information we have
shown that we can successfully separate spam and legit-
imate email users and that this structural inference can
improve the quality of other spam detection algorithms.

Specifically we have implemented a simulator based
on data collected from the main SMTP server for a ma-
jor university in Brazil that uses SpamAssassin. We have
shown that our algorithm can be tuned to produce clas-
sifications similar to those of the original classifier al-
gorithm and that, for a certain set of parameters, is was
capable of correcting false positives.

As future work, we intend to: (i) explore aging mech-
anisms to update the vectorial identification of senders
and recipients over time, and (ii) study the robustness of
our approach against different auxiliary classifiers.
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Notes

LOnly the emails addressed to two out of over 100 university sub-
domains (i.e., departments, research labs, research groups) do not pass
through the central server.

2The part before @ in email addresses.

3The part after @ of an email address
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