
A graphical representation for identifier structure in logs

Ariel Rabkin*, Wei Xu*, Avani Wildani†, Armando Fox*, David Patterson* and Randy Katz*

UC Berkeley* UC Santa Cruz †

Abstract

Application console logs are a ubiquitous tool for di-

agnosing system failures and anomalies. While several

techniques exist to interpret logs, describing and assess-

ing log quality remains relatively unexplored. In this

paper, we describe an abstract graphical representation

of console logs called the identifier graph and a visual-

ization based on this representation. Our representation

breaks logs into message types and identifier fields and

shows the interrelation between the two.

We describe two applications of this visualization.

We apply it to Hadoop logs from two different deploy-

ments, showing that we capture important properties of

Hadoop’s logging as well as relevant differences between

the two sites. We also apply our technique to logs from

two other systems under development. We show that our

representation helps highlight flaws in the underlying ap-

plication logging.

Index terms: Logging, log analysis, assessment, soft-

ware development, characterization.

1 Introduction

Logs are an important tool for monitoring and trou-

bleshooting computer system behavior [23, 13]. As a

result, there has been substantial work on automated log

analysis. Techniques have been proposed for highlight-

ing anomalous messages [1, 18, 20] or patterns of mes-

sages [23, 10]. Generally, these techniques are evaluated

on proprietary data sets described in fairly general terms.

Many recent papers describe the logs in question with a

handful of excerpted lines plus a few aggregate statistics

[1, 13, 20]. This is unfortunate, because it makes it hard

to reason about the relationship between log structure

and analysis quality. Many research results are based on

measurements taken at particular sites with highly cus-

tomized software environments; there is often a justifi-

able reluctance to reveal operational details. There is,

however, still a need for better ways to characterize par-

ticular logs.

Currently, there are no standard techniques to compare

different logs, including those from different sites or dif-

ferent components of the same system, or different lev-

els of logging from the same system. Nor are there good

ways to understand the overall structure of an applica-

tion’s logs in ways that help developers spot deficien-

cies. This paper outlines a new approach to characteriz-

ing and visualizing logs designed to help with these sorts

of tasks. We target two distinct groups of users: devel-

opers seeking to improve their logs and members of the

log analysis community seeking more expressive ways to

describe the content of particular logs.

Our analysis of logs centers on identifiers: variable

strings that refer to some particular object or compo-

nent in the system such as transaction or task IDs. We

describe a graph representation of the relationships be-

tween log messages, the identifier graph. As we show,

this representation captures important properties of logs

and can indicate possible improvements. This represen-

tation lends itself to easy visualization; we describe one

approach to visualizing identifier graphs.

Identifiers tie a log message to a specific entity within

the system, making them useful for both human and au-

tomated debugging: two messages sharing an identifier

are highly likely to be related. Recent work has shown

that grouping messages by identifier results in substan-

tially more precise anomaly detection [23]. As shown

in [10] and [22], finite state machines are a useful tech-

nique for interpreting logs, with messages correspond-

ing to state transitions. For systems that include multi-

ple concurrently-executing subprocesses (such as tasks

in a MapReduce framework), a separate state machine

is often necessary for each subprocess. Identifiers are

the glue that ties a message to a particular state machine.

Human readers, too, look at the set of messages corre-

sponding to a given subprocess to understand what state

it was in when it failed.

Our identifier graphs indicate how much detail a pro-

gram’s logs include about each kind of subprocess in the

system. They also indicate which log messages corre-

spond to state transitions in normal execution and which

correspond to anomalous behavior.

We focus on application console logs from complex

software systems, rather than on whole-system syslog

data. While our methodology covers both types of

logs, applications are typically maintained by a devel-

oper community that is smaller and more cohesive than

any analog for an entire system. Thus, it is often simpler

to change the logging behaviour of a single application

than enact system-wide changes.

We begin by describing the structure of this graph and

the associated visualization. We follow this in Section 3

by presenting a visual comparison of Hadoop logs from

two sites, showing that our visualization brings out inter-

esting and relevant differences. In Section 4, we describe

how we have used our visualization technique to find de-

ficiencies in application logs and to guide improvements.

Section 5 describes related work. We conclude with an

assessment of how broadly applicable this style of anal-

ysis is and with a summary of our results.

We have applied our analysis to four sets of logs, from

three separate applications, Hadoop [12], SCADS [3],

and Chukwa [2]. Hadoop is a mature open-source sys-

tems with extensive logging. SCADS and Chukwa are

less-polished systems, still in development. We present a

summary of these log sources in Table 1.

2 Graphical Representations of Logs

We begin by introducing some terminology, based on

that used in [23]. A log message is a specific string (gen-

erally a single line) printed to a log file by the execution

of some log statement in a program. The messages from

a given statement are all instances of a message type.

Log messages often include identifiers, strings that act as

names for some particular object or component in a pro-

gram or system, usually drawn from a large set. Exam-

ple identifiers include IP addresses, memory locations,

or device names. Identifiers belong to identifier classes,

which are sets of identifiers that name objects of the same

type. The set of IP addresses is an identifier class.

Our visualizations capture a number of properties of

an application’s logging. Some of these properties are

“static”, essentially the same from execution to execu-

tion. Others are “dynamic”, depending strongly on par-

ticular executions. We begin by describing how we de-

pict static properties of logs.

2.1 Visualizing static properties

Every message of a given type has the same set of vari-

able fields. As a result, there is a fixed relation between

message type and the set of identifier classes referenced

by messages of that type. The graph of this relation is the

identifier graph. Every identifier class and message type

corresponds to a graph node. There is an edge between

the nodes corresponding to an identifier class and a mes-

sage type if the messages of that type include identifiers

of that class. Edges are undirected.

We add additional graph edges to represent sub-

sumption relations. One identifier class subsumes

another if the connection between elements of

the two can be inferred from the identifier strings

themselves. For instance, the URL identifier

http://example.com/page subsumes the

host name identifier example.com. In the case of

Hadoop, a MapReduce Task ID includes within it the ID

of the job that spawned that task. Subsumption of this

sort is a semantic property of identifiers and detecting

it may require program-specific knowledge, as the

Hadoop example shows. The level of semantic insight

required is generally quite limited: the only requirement

is to understand which substrings in an identifier are

themselves identifiers.

In drawing the graph, we use shape to distinguish

nodes corresponding to identifier classes (hexagons)

from those corresponding to message types (boxes).

Identifier class names can be plotted directly on the

graph. In both our sample logs and the supercomputer

logs examined in [16], average message size ranged from

100 to 250 bytes. As a result, plotting the complete mes-

sage template tends to result in hard-to-read graphs. In-

stead, we number each message type and use these num-

bers to label graph nodes. Separately, our visualizer out-

puts a numbered list of message templates.

Some message types do not include identifiers. Plot-

ting these on the graph conveys little information, since

these nodes would have no edges to other nodes. We

therefore omit these singleton message types from the

graphs. We do, however, include them in the textual out-

put produced alongside.

Figure 1 is an example log. In that sample, each mes-

sage has a unique message type. The ID of that type

is prefixed to each line. Figure 2 is the corresponding

graph. Subsumption relations are marked with dashes.

Producing this graph requires some way to group mes-

sages by statement and to group identifiers by class. A

number of machine learning techniques have been pro-

posed for this grouping [20, 1, 14, 15, 10, 9]. As an al-

ternative to machine learning, Xu et al. [23] use program

analysis to generate parsers for matching particular state-

ments. We have used our visualization in combination

2

Hadoop JT at M45 Hadoop at Berkeley SCADS Chukwa (old/new)

Purpose MapReduce MapReduce Scalable storage Log collection

Bytes 121 M 20 M 222 K 29 K / 23 K

Messages 685 K 107 K 1607 429/ 248

Identifier types 5 8 7 4/ 4

Message Types 55 51 41 41/33

Table 1: Our sample logs

1: JobTracker: Adding task ’attempt_200911091331_0010_m_000002_0’ to

tip task_200911091331_0010_m_000002, for tracker tracker_r25

2: JobInProgress: Choosing data-local task task_200911091331_0010_m_000002

3: JobInProgress: Task ’attempt_200911091331_0010_m_000002_0’ has

completed task_200911091331_0010_m_000002 successfully.

Figure 1: Sample of Hadoop JobTracker log, edited for clarity

!

"#$%

&''()*'

+

,

-./

Figure 2: Example message graph corresponding to log

shown in Figure 1.

with the parser generator developed by Xu et al. This

produced usable graphs, however, identifier labels had to

be adjusted by hand, since the automatically generated

ones were unwieldy.

Not all identifiers are equally useful. For example, we

have found that local files and IP addresses are often used

by programs in several different contexts, sometimes re-

ferring to unrelated entities, making these identifiers less

helpful for interpreting the log structure. As a result,

we generally configure our visualization to ignore these

identifier classes.

2.2 Dynamic properties

Above, we defined the basic structure of our graphs.

Here, we discuss how we indicate additional information

about frequency and ubiquity of messages. This infor-

mation is “dynamic,” since it depends on the particular

execution of the program being logged.

We use pen thickness to convey the relative frequency

of a given message type or identifier class. As the mes-

sage or identifier associated with a node becomes more

common, we use thicker lines to render its boundary. It

often happens that the frequency of different messages

and identifiers in a given log varies by several orders of

magnitude. To avoid drowning out large relative distinc-

tions in less-frequent nodes, we apply a form of gamma

correction. Let k be the number of instances of a given

message type or identifier and let max be the most-

frequent such instance. Then line thickness is propor-

tional to (k

max
)
γ

. We find that gamma values between

0.5 and 0.75 work well. On color displays, we shift node

color from blue to red, in proportion to line thickness.

Not all identifiers appear in equivalent sets of mes-

sages. For instance, all Hadoop Task IDs are associated

with a “task start”, but some are associated with “normal

completion” and others with error conditions. To cap-

ture this distinction, we introduce a function we call the

ubiquity of a message type for an identifier class. The

ubiquity is the fraction of identifiers of that class associ-

ated with the given message type. So if every identifier of

class C is associated with a message of a given type, that

message type would have a ubiquity of 1 for class C. And

if only a handful of C-identifiers were associated with a

message type, its ubiquity would be low. This ubiquity

function is effectively the inverse document frequency,

where each identifier is a term, and each message is a

3

document.

Ubiquity conveys how anomalous a given message is

relative to the occurrence rate of the associated identifier;

it is unrelated to the overall frequency of that message

type. If a given error message appears many times, al-

ways referring to a single identifier out of a large class,

that message would be very common but have low ubiq-

uity. For visualization purposes, we indicate ubiquity by

making edge weights proportional to ubiquity: heavier

lines connect ubiquitous messages with the associated

identifier class.

Sometimes, an identifier conceptually related to a

given log message will be found in a previous or subse-

quent log message. It would be possible to add additional

graph edges between messages based on their proximity

in the log and in time. However, such connections are

often spurious, particularly in highly concurrent systems.

Combining our technique with probabilistic detection of

message relations is left as future work.

2.3 Analysis

As discussed in the introduction and observed in [10, 22],

application logs often have the structure of a set of con-

current state machines, with a state machine for each pro-

gram component; messages are logged on state transi-

tions. Our identifier graph is approximately the dual of

these state machine graphs: transitions in the state ma-

chine (messages) become nodes in the identifier graph.

States in the state machine correspond to edges in the

identifier graph, since each edge indicates that the state

machine (identifier node) could be in a particular state

(message node). Our representation goes farther, how-

ever, since it incorporates the messages that correspond

to transitions in multiple linked state machines.

The connectedness of the graph corresponds to the

complexity of the underlying logging. A log message

describing an interaction between components will ap-

pear on the graph as a node with multiple edges. The

number of messages linked to an identifier indicates how

much detail the logging gives about the activities of that

kind of entity (the number of state machine states, per-

haps). The number of identifier classes gives a sense how

many different aspects of program behavior the logging

records.

3 Characterizing and comparing logs

In the introduction, we set two goals: characterizing the

logs from a program and finding omissions or weak-

nesses. In this section, we describe how our graphs

achieve the first of those goals: characterizing logs in

ways that facilitate comparison.

!

"#$%&'&#$()*&+

'&#$(

,

!,

-

.

!/

0

!!
1

2

!3

3

4

5)67&*+89:%;(

<99+=>9

?#@

Figure 3: Hadoop DataNode logs in M45 cluster

Hadoop is an open-source implementation of MapRe-

duce and the Google File System architecture [4, 7]. We

looked at logs from two different Hadoop deployments:

a 15-node Hadoop cluster at our institution and the 4000-

node “M45” cluster operated by Yahoo!, inc and used by

academics at many different institutions. We show how

our visualization brings out important characteristics of

Hadoop’s logging in a workload-independent way, while

also highlighting interesting and relevant differences be-

tween the two sites.

Hadoop is a large, mature, well-engineered system

with extensive logging. Hadoop logs are identifier-

rich, and most identifiers are easily identified lexically.

For instance, all job IDs match the regular expres-

sion job [0-9]+ [0-9]+. Other identifiers are sim-

ilar, consisting of a sigil specifying the identifier class,

followed by several numeric fields, separated by un-

derscores. Hadoop’s identifiers make heavy use of

subsumption— task a b is a task required by job a,

and attempt a b c is an attempt by a particular node

to perform task task a b.

Figure 3 shows the identifier graph for a Hadoop

DataNode in the M45 cluster. (DataNodes are the worker

nodes for the HDFS filesystem.) This graph illustrates

several ways that the identifier graph characterizes logs.

One message type, number 2, is both commonly occur-

ring and ubiquitous for blocks. These messages are block

verification reports, which automatically generated peri-

odically for every block, making them both ubiquitous

and common. More interestingly, no other message type

is particularly common or ubiquitous: all other message

types are both rare (boxes drawn with thin blue lines) and

also not ubiquitous (lines to “Block” drawn thin). This

is a clue that we are seeing verification reports for blocks

without having seen either a read or a write for them.

4

!

"#$

%&'(

)*

*+

,,

)! *!

*)

-.

!*

).

*/

0112341

,)

-!

)5

*,

*-

)-

)/

,*

-+

*6

)6 !.

!,

!- !5

+!

+*

**

*

7#'18&32

9&:(

.*

+.

Figure 4: Hadoop JobTracker logs in M45 cluster.

Given a complete log going back to the initial start-up of

the DataNode, we would expect block creation messages

to also be ubiquitous for block IDs.

Some blocks are associated with an identified DFS

client, the external process reading or writing a block.

These DFSClient IDs sometimes include within them the

name of a task attempt, allowing the read or write to be

associated back to a task and a job via subsumption rela-

tions. The figure compactly expresses the fact that block

reads can be tied back to a MapReduce job.

Figure 4 shows the graph for the JobTracker in the

M45 cluster. (JobTrackers are the master nodes for

Hadoop MapReduce.) A few relevant conclusions can

be drawn: Message type 9 is substantially the most fre-

quent. It lists each host and rack holding a copy of the in-

put for a given task. Substantially more message classes

refer to Jobs as compared to tasks or attempts. Inspect-

ing the list of messages (not shown here) shows that these

job-related messages refer to recoverable errors in a sub-

mitted job.

Figure 5 is the equivalent graph of JobTracker logs

from our cluster at Berkeley. Again, the most common

message type is the one linking tasks to their input lo-

cations. However, the combination of different Hadoop

versions and different operational circumstances leads to

our Berkeley cluster having a different spectrum of er-

ror messages. A smaller range of job-related errors is

seen. At Berkeley, errors sometimes come from the un-

derlying filesystem layer, resulting in errors referencing

Blocks and DFSClients. Note that, due to a deficiency in

the Hadoop logs, no messages indicate the job associated

with these errors.

!

"#$

%&'(

)*

+,,-./,
)0

1!

11

2

3

)4

5

!6

)1

!3

!2

!4

30

!*

)!1)

)6

7-8#9-:;

*

4

6

<#',=&.-

7&8(

36

)3

10

1*

>?#8(

*1

*4
**

15

@ABC?D-=,

*!

Figure 5: Hadoop JobTracker logs at Berkeley.

Our tool caches the mapping from message template

to message type IDs across different invocations. Mes-

sages in Figures 4 and 5 with the same templates will

have the same ID numbers. This means that numbering

will generally not be consecutive in any particular graph.

4 Improving Logs

In this section, we discuss our experiences using visual-

izations to guide improvements to the logging of two dif-

ferent systems under development, SCADS and Chukwa.

Log statements are often added to programs to isolate

specific problems or to trace particular activities in some

component. As a result, context and information not di-

rectly needed for the task at hand is not reliably included.

This naturally leads to programs that output a hodge-

podge of logs of varying quality that may not deliver a

clear message when a portion of the complete system

fails. There is seldom a systematic design of a system’s

logging, and there is usually no attempt to harmonize the

overall structure of the logging after development is com-

pleted [23]. Identifiers are often added, after the fact, as

developers find that they would be helpful [10].

We focus on three specific problems with logging.

Sometimes, identifiers that would have been useful are

not logged. In other cases, the same entity is identified in

two different ways. Also, sometimes the same identifier

is used ambiguously, to label two different entities.

Our graph-based visualization highlights all three

kinds of defects. A node with insufficient identifiers will

be missing edges that the semantics of the program in-

dicate should exist. A node that has no identifiers will

5

appear as a singleton, a single point with no graph edges.

If entities are identified inconsistently and no messages

relate the different naming schemes, then messages de-

scribing the same entity will be unconnected in the graph.

Ambiguous usage will show up as unexpected ratios of

messages to identifiers, visible as anomalous ubiquity ra-

tios.

4.1 SCADS

SCADS, the Scalable Consistency-Adjustable Data

Store, is an ongoing research project developing a low-

latency data store with performance-safe queries [3].

SCADS includes both a distributed key-value store and

the Director, a centralized controller responsible for

making data placement decisions and for starting and

stopping storage nodes in response to workload. We ob-

tained console logs from the SCADS Director, produced

during various experiments. The SCADS logs have sig-

nificant structure. Each high-level Director action trig-

gers a series of log messages, as the action is initiated

and completed. Each Director action, in turn, triggers

a series of low-level actions, each with start and finish

messages.

Figure 6 shows the identifier graph for a sample

SCADS log. There are a handful of identifier types, each

corresponding to a system action (effectively, a transac-

tion or operation ID.) For each type of action, there is

a fixed set of associated messages. Each message type

is ubiquitous for its associated identifier class. In other

words, every action of a given type has the same set of

messages associated with it. Low-level actions have just

a start and stop message; each type of higher-level ac-

tions has several message types associated with it. No

observed message types indicate anomalous events.

Our analysis helped us find a subtle ambiguity in the

SCADS logs. For each type of action, we had expected

proportional numbers of messages and identifiers. There

should be one start and stop for each action. Instead,

we found that sometimes there were several times more

messages associated with a given action type than unique

action identifiers. On the visualization, this mismatch

shows up as a difference in node color and boundary

thickness between the identifier type and associated mes-

sage types in a graph component.

Inspecting some of the unusually common statements

helped us spot the problem: an ambiguity in how ac-

tions were named. High- and low-level actions were

both identified by the hosts and data items in question.

This information is insufficient to uniquely identify an

action. More than one action might involve the same

participating hosts and the same data. As a result, there

will sometimes be identical messages corresponding to

distinct actions. This naming approach would frustrate

!

"#$%&'()#*"+,

-!

-.

-/

--

-0

-1

"#,+2#*"+,

.-

..

./

.1

.3

-4

'+$5

-3
.6

"#,+2#7()(

.4
.8

9#):+;#<(=9#

.0
.!

,#"9#)>+

6-

60

64

6.

6166

"#,+2#

68

Figure 6: SCADS identifier graph. Larger connected

components are high-level actions, smaller components

are low-level.

several kinds of log analysis: it makes it impossible to

compute metrics like average task run time unambigu-

ously from the logs. The SCADS developers confirmed

this as a bug, and they intend to add time-stamps or some

other additional disambiguating information to their ac-

tion identifiers. Note that a per-message timestamp is

insufficient here, because several concurrent actions can

take place with the same participants.

The statement graph also illustrates a second prob-

lem with the SCADS logs. Even though there is a well-

defined correspondence between high- and low-level ac-

tions, the logs do not reflect this. No messages link low-

and high-level actions. In our taxonomy above, this qual-

ifies as an absence of expected identifiers. This is prob-

lematic because if an unexpected low-level action ap-

pears in the logs, there is no straightforward way to find

out what high-level task spawned it. Likewise, there is

no convenient way to see which low-level actions were

spawned by a given high-level task. The SCADS devel-

opers hope to fix this problem in their next release by

explicitly logging the dependence between a low-level

action and the high-level action that caused it.

4.2 Chukwa

Chukwa is an open source log collection and process-

ing framework, currently in production use at several

sites [2]. It is a fairly substantial distributed system

and produces its own console logs describing what data

sources are being monitored and the flow of data through

6

the system. In Chukwa, data is produced by system com-

ponents called adaptors. Like many open-source efforts,

Chukwa is the work of several developers, each of whom

instrumented the portion of the system they were work-

ing on. As a result, Chukwa’s logging uses several dif-

ferent schemes for referring to adaptors. In some places,

adaptors are referred to by an ID string, and in other

places by their functional description. In the first version

of Chukwa we looked at, the mapping between these two

naming styles was never explicitly recorded: there was

no way, given the logs, to know the function of an adap-

tor, given the ID.

!"#$%&'()

*+

,-

!"#$%&'.)/01'2$%2&3

-4

567

-,

,+
-8

9:'/#"()

Figure 7: Chukwa identifier graph before improvement

We obtained logs from a standard Chukwa test case

and applied our analysis. The logs had several types of

identifiers but never recorded the relationships between

them. We show the statement graph in Figure 7. In addi-

tion, the logs included a large number of singleton mes-

sages, i.e. messages that lack any sort of identifier. These

singletons have been omitted in Figures 7 and 8, but they

are listed in the textual output produced by our analysis

tool.

In the case of Chukwa, we were able to go beyond

merely spotting problems in the logging and submitted

patches to fix them. Improving the Chukwa logs required

several changes. We added identifiers to several state-

ments that previously omitted them. Chukwa uses HTTP

Post requests to send data; a new identifier type, “Post”,

was added to help group together messages involved in

sending a specific bundle of data across the network. A

new message was added to link together adaptor descrip-

tions and IDs. We removed a number of obsolete state-

ments. The Chukwa developers agreed that recording

!

"#$%&'()*

+,

-.

-/
-0

"#$%&'(1*234(5%&5'6

+0

7'3&

+!

/8

9:;

+<

Figure 8: Chukwa identifier graph after improvement

thread IDs no longer made sense, and the log statement

printing them was removed.

Running the same test scenario after the improvements

to logging resulted in the statement graph shown in Fig-

ure 8. The visualization highlights the fact that the set

of identifiers in the logs has been changed. The revised

logging breaks into two clear halves: some messages are

about the life-cycles of adaptors (data collection), while

others are about sending data across the network. This

split structure accurately reflects the design of Chukwa.

The two halves are indeed separate, with a data buffer as

their sole connection.

It is now possible to follow the life-cycle of an adaptor,

whereas previously the initial parameters were not visi-

bly connected to the ID. This makes debugging adaptor

problems significantly easier. More log messages are in

the same component of the graph as URLs: instead of

simply logging the beginning and end of a data trans-

fer, the revised logging records additional details, such

as the number of chunks of data being sent. This makes

it easier for developers to tie transmission errors back to

a particular receiving host and to understand the behavior

of the retry-and-failover code in Chukwa. The changes

received emphatic and enthusiastic responses from the

Chukwa development community, and they have been in-

corporated into the latest release.

5 Related work

We summarize three areas of related work: efforts to

characterize logs, efforts to visualize logs, and efforts to

help developers produce more useful logs.

7

Surprisingly few papers have set out, as a primary

goal, to describe actual real-world log data. One notable

effort in this regard is [16].

Visualizing logs is a natural solution to understand-

ing the immense quantity of seemingly disconnected log

messages that a typical application produces. Guzdial

et al. [11] motivated the log visualization in 1994, out-

lining a list of theoretical benefits from displaying log

information with a focus on noticing temporal correla-

tions. In [20], Stearley describes the Sisyphus toolkit for

log analysis, which includes an interactive log browser

for examining the clustered results. Mielog [21] and

SEESOFT [8] use visualization for compact data repre-

sentation, allowing the user to quickly scan a large log for

aberrations and line-similarities. Log lines are identified

by message type but there is no broad sense of correla-

tion between message types.

Our work is distinct because we show that we can

make useful assessments of log quality without using

message adjacency, which is unreliable in logs from

highly concurrent system.

Web logs have particularly benefited from visualiza-

tion. Webviz [17] provides a user-filterable interface for

examining the connections between webpag accesses.

Like us, they use a node-edge model and convey infor-

mation in line thicknesis, but their goal is to track ac-

cess patterns. A three-dimensional variant of web access

tracking is presented by Chi et al..

In this paper, we seek not merely to describe and vi-

sualize logs, but to advise developers on how to improve

them. We are aware of two other papers on this topic.

Cinque et al. [6] argue that logs should contain a start/end

pair for each interaction between system components.

Our approach is compatible with this policy but does not

require it. Their criterion effectively says that for every

identified interaction, there should be a start and a stop

message, each ubiquitous for the interaction class. The

SCADS example above shows how our visualization can

highlight violations of this policy.

Another proscriptive paper is by Salfner et al. [19].

The authors offer a number of rules intended to make

logs more convenient for automated analysis, such as re-

quiring timestamps on every message, structuring mes-

sages as a set of key-value pairs, and categorizing state-

ments hierarchically. Regardless of how useful these

constraints on logging would be for administrators and

analysis developers, they are burdensome for application

developers and have had limited uptake.

6 Conclusion

Logging in many applications exists primarily to help de-

bug during development rather than to spot operational

problems. As a result, application logs may lack in-

formation that would have been very valuable in track-

ing down problems in production. Our identifier graph

representation illustrates both how much information is

recorded about each entity in a system and how these

entities are related. Thus, our graph helps developers

reason about their logging and spot gaps. It also helps

developers compare the overall logging structure of dif-

ferent applications or different configurations of the same

application.

This paper has described an of abstract representation

for application console logs, the identifier graph. We

have argued that these graphs helps developers spot sev-

eral related classes of deficiencies in logs: identifiers that

are absent, inconsistent, or ambiguous. Each of these de-

fects implies a relationship between system entities that

was determinable at runtime, but which was not recorded

in the logs and which cannot be easily reconstructed af-

terwards. We have given examples of these deficiencies

in several real systems.

Our current graph construction is fairly simple. We

expect that more sophisticated models can enhance the

results presented here. In particular, some cases of am-

biguity and inconsistency might be resolved using times-

tamps, an approach we hope to explore in the future.

The approach taken in this paper has been to con-

struct an abstract graphical representation of application

logs and to assess the logs by analyzing and reasoning

about the model. We believe that this approach is more

broadly applicable. Analyzing and characterizing graphs

is a well-developed field, and representing logs in this

way lets us reuse a great deal of theory and many exist-

ing tools. We expect that this characterization framework

will enable others to create more useful logs as well as

better, more informed log analyses.

Acknowledgements

This research was supported by California MICRO, Cal-

ifornia Discovery and the following Berkeley RAD Lab

sponsors: Sun Microsystems, Google, Microsoft, Ama-

zon, Cisco, Cloudera, eBay, Facebook, Fujitsu, HP, Intel,

NetApp, SAP, VMware, and Yahoo!.

We thank Peter Alvaro, Michael Armbrust, Peter

Bodik, Rean Griffith, and Beth Trushkowsky for com-

menting on drafts of this paper.

References

[1] M. Aharon, G. Barash, I. Cohen, and E. Mordechai. One

graph is worth a thousand logs: Uncovering hidden struc-

tures in massive system event logs. In European Confer-

ence on Machine Learning and Principles and Practice

8

of Knowledge Discovery in Databases, Bled, Slovenia,

September 2009.

[2] Apache Software Foundation. Chukwa. http://

hadoop.apache.org/chukwa/, November 2009.

[3] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,

B. Trushkowsky, J. Trutna, and H. Oh. SCADS: Scale-

Independent Storage for Social Computing Applications.

In Fourth Conference on Innovative Data Systems Re-

search, Asilomar, CA, January 2009.

[4] D. Borthakur. HDFS Architecture. http:

//hadoop.apache.org/common/docs/r0.

20.0/hdfs_design.html, April 2009.

[5] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and

M. Yang. Chukwa, a large-scale monitoring system. In

First Workshop on Cloud Computing and its Applications

(CCA ’08), Chicago, IL, 2008.

[6] M. Cinque, D. Cotroneo, and A. Pecchia. A logging

approach for effective dependability evaluation of com-

plex systems. In Proceedings of the 2009 Second Inter-

national Conference on Dependability, Athens/Glyfada,

Greece, 2009. IEEE.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. Communications of the

ACM, Volume 51(Issue 1):107–113, 2008.

[8] S. Eick, M. Nelson, and J. Schmidt. Graphical analy-

sis of computer log files. Communications of the ACM,

37(12):50–56, 1994.

[9] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt

to shovels: Fully automatic tool generation from ad hoc

data. In Proceedings of the 35th Annual Symposium on

Principles of Programming Languages, January 2008.

[10] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly

detection in distributed systems through unstructured log

analysis. In Proceedings of the 2009 Ninth IEEE Inter-

national Conference on Data Mining (ICDM’09), Wash-

ington, DC, 2009.

[11] M. Guzdial, P. Santos, A. Badre, S. Hudson, and M. Gray.

Analyzing and visualizing log files: A computational sci-

ence of usability. In HCI Consortium Workshop, 1994.

[12] Hadoop. http://hadoop.apache.org/.

[13] W. Jiang, C. Hu, S. Pasupathy, A. Kanevsky, Z. Li,

and Y. Zhou. Understanding Customer Problem Trou-

bleshooting from Storage System Logs. In 7th USENIX

Conference on File and Storage Technologies (FAST ’09),

San Francisco, CA, February 2009.

[14] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. An

automated approach for abstracting execution logs to ex-

ecution events. Journal of Software Maintenance and

Evolution: Research and Practice, pages 249–267, 2008.

[15] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios.

Clustering event logs using iterative partitioning. In Pro-

ceedings of the 15th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, 2009.

[16] A. Oliner and J. Stearley. What supercomputers say: A

study of five system logs. In Dependible Systems and

Networks, 2007.

[17] J. Pitkow and K. Bharat. WEBVIZ: A tool for World-

Wide Web access log analysis. Comunicación, 1996.

[18] S. Sabato, E. Yom-Tov, and A. Tsherniak. Analyzing

system logs: A new view of what’s important. In Second

Workshop on Tackling Computer Systems Problems with

Machine Learning Techniques (SysML ’07), Cambridge,

MA, 2007.

[19] F. Salfner, S. Tschirpke, and M. Malek. Comprehen-

sive Logfiles for Autonomic Systems. In International

Parallel and Distributed Processing Symposium (IPDPS

2004), April 2004.

[20] J. Stearley. Towards informatic analysis of syslogs. Pro-

ceedings of the 2004 IEEE International Conference on

Cluster Computing, 2004.

[21] T. Takada and H. Koike. Mielog: A highly interactive

visual log browser using information visualization and

statistical analysis. In Proc. USENIX Conf. on System

Administration, pages 133–144. Citeseer, 2002.

[22] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and

P. Narasimhan. SALSA: Analyzing Logs as StAte Ma-

chines. In First USENIX Workshop on Analysis of System

Logs (WASL ’08), San Diego, CA, December 2008.

[23] W. Xu, L. Huang, M. Jordan, D. Patterson, and A. Fox.

Detecting Large-Scale System Problems by Mining Con-

sole Logs. In 22nd ACM Symposium on Operating Sys-

tems Principles (SOSP), 2009.

9

