
Crossing the Chasm
Pitching Security Research to Mainstream

Browser Vendors

Collin Jackson
Carnegie Mellon University

Why a security feature is like a startup

<10 users ~1 million users >1 billion users

Ideas trying to cross the chasm

For every idea here there are 100 that never got any adoption

Good ideas get adopted very quickly

Two years after One year after

X-Frame-Options History Privacy

Not all ideas are so lucky...

● Browser-based identity management
○ Password generators
○ Client certs
○ PAKE

● Fine-grained sandbox architectures
○ Plugin isolation
○ Origin isolation

● Automatic clickjacking protection
○ Wait, what?

NoScript has 90m downloads!

● Less than <0.1% of active internet users

● Dumping ground for chasm-challenged features

● Fundamentally different outlook than mainstream browsers
○ Extensive user interaction
○ Highly complex behavior
○ Breaks sites... by design!

flattr.com/profile/ma1

Are browser vendors too conservative?
● Features are not free!

○ Simplicity as a selling point
○ Rely on addons for niche functionality

● Breakage is very expensive
○ Web sites slow to adapt
○ Switching costs are low

What program committees care about

● Novel
○ Not substantially similar to previous work
○ Opens new avenues of research
○ Unconstrained by conventional thinking

● Non-trivial
○ Makes clever use of advanced tools and techniques
○ Substantial work involved in system implementation

These will get you a conference paper...

 ... but they actively harm a proposal's mainstream appeal

What browser vendors care about

● Must-have
○ Replaces broken, band-aid approaches that are

nevertheless already being widely used
○ No browser wants to be the only one without it

● Easy
○ Deployable unilaterally, with little effort
○ Everyone can implement in the same way
○ Can determine if implementation is correct

● Low-risk
○ Doesn't break anything important, even in the long tail
○ Any change that's not opt-in is risky

Make your proposal a must-have
● Can always find someone who likes your idea...

○ Early adoption not a sure-fire sign of mainstream need

● Addons are a final resting place for many niche features
○ A vendor needs to be embarrassed not to have it
○ Browser vendors are like dominos

● Marketing
○ Compelling demos
○ Mainstream press
○ Large web sites who will champion it

Must-have #1: Same-origin policy

● Origin = protocol://host:port

● Full access to same origin
○ Full network access
○ Read/write DOM
○ Storage

● Limited interaction with other origins
○ Import of library resources (e.g. scripts)
○ Forms, hyperlinks

● Introduced by Netscape in 1996 in response to media
reports of cross-origin scripting attacks

How postMessage became must-have
● Allows client-side messaging between origins
● Increasingly popular web sites like Facebook build

mechanisms around hacks (fragment identifier messaging)
● Microsoft decided it was safe, implemented in IE8
● Firefox wanted HTML5 feature parity with IE
● Safari wanted HTML5 feature parity with Firefox/IE
● By the time we dropped this bomb, it was too late to stop it

How history privacy became must-have

● Compelling demos
● Real-world attacks
● Lawmakers and media

interested

 Perfect ingredients for
 competition among
 browser vendors

● Only partial solution but easy and low-risk

Make your proposal easy
Strongly preferable:

● Deployable unilaterally: doesn't require cooperation among
multiple vendors

● Web sites don't have to adopt right away
● Everyone can implement it exactly the same

Non-examples

● Taint tracking
● toStaticHTML
● DNSSEC

X-Frame-Options versus ClearClick

Strict Transport Security

Original ForceHTTPS involved

● Cookies
● User-configurable options
● Mixed content protection

Stripped down proposal to make it easer to implement

Make your proposal low-risk

● Does it break functionality?

● Does it slow things down?

● Does it interfere with getting stuff done?

● Are you making more people sad than happy?

Credit: Lauren Marin

De-risking a security proposal
Choose one:

1. Make the security opt-in
○ Huge evangelism cost
○ Yet another thing to forget to do

1. Create brand new functionality
○ Sidesteps legacy considerations
○ Adoption barrier?

2. Very thorough performance & compatibility evaluation
○ Often ~5x harder than the actual implementation
○ Some features just weren't meant to be!

Opt-in security

X-Secure-Me-Harder: yes!
● Extremely popular approach! X-Frame-Options, X-Content-

Type-Options, Strict-Transport-Security, etc.
● Header bloat problem

How many opt-in features had an impact on the world?
● Trickling down from the PayPals and Twitters
● Long tail takes many years

Alternative policy delivery mechanisms
● Host-meta
● New HTML tags/attributes
● Content Security Policy

New platforms

Web Sockets

On-by-default security? Yikes.

● Things fail mysteriously, and more often than you'd think

● Failures are (usually) not attacks

● For every bug filed, how many users just give up or switch
browsers?

How securing Gmail ruined my Korean
class

● Get a website to host your SWF
http://victim.com/attack.swf

● User logs in to victim.com

● Get user to visit
http://attack.com/

● Embed the SWF and hijack the session
<embed src="http://victim.com/attack.swf"/>

Another on-by-default fail: OCSP

● Validating certificate takes >1sec for 10% of HTTPS
requests

● Adds to initial page load time dramatically when dependent
scripts, images, etc. are on other hostnames

● Must-have, yet high-risk. Browsers don't enforce
● Defeating OCSP with the number 3

Compatibility Evaluation Failures

"I checked the Alexa top 100"

"I changed the plugin security policy and I played
a YouTube video"
"I went to 10 websites and only 2 of them broke"

Better ideas

● Deep crawl
○ Get beyond login pages
○ Execute JavaScript (Kudzu)

● Client-side measurement
○ Google Chrome User Metrics
○ Firefox Test Pilot

● Ad networks
○ Flash Player ads
○ Iframe ads

What a real evaluation looks like

Content Sniffing Algorithm

● Searched the entire Google crawl index for
common mime type mismatches;
eliminated unused sniffing rules

● QA team visited the top 500 sites and
tested extensively while logged in

● Google Chrome user metrics study found
less than 0.004% compatibility impact

If you don't have the Google index...

Alexa top 100,000

If you don't have your own browser...

Sometimes the answer is "no"

● Only showed links as visited if you visited
from the current site

● Perfect protection from attack, but at what cost?

Compatibility numbers aren't good?

An unlikely savior...

Frame navigation

Mixed content

Origin contamination

Taking one for the team

Dangers of chasm thinking

Should researchers bother with

nice-to-have,
difficult,

risky
ideas?

Yes!

but...

Let your idea be hacked apart

● Don't expect the final solution to resemble the original form
○ Rebranded
○ User interface changed/removed
○ Unnecessary complexity dropped

● The best ideas are easily tweaked and repurposed

● Sometimes just a problem statement is a contribution

● Celebrate indirect impact!

Perspectives

● Firefox addon topped out at ~10,000 users
● Crossed the chasm in another form:

~100,000,000 Chrome users benefiting from HTTPS
monitoring

MashupOS

● Never went anywhere in original form
● Key ideas survived

○ postMessage(message, targetOrigin)
○ text/html-sandboxed MIME type

● Gazelle may find a similar fate

What you can do right now to help

● Analyze existing new proposals in standardization
● Catch problems before legacy concerns creep in
● WebRTC - direct network communication between web

clients
● Component Model - lets you construct your DOM out of

mutually distrusting components with security boundaries
between them

● ECMAScript 6 - have untrusted JavaScript run in your page
● Content Security Policy - protect the developer from

themselves
● Web Intents - allow one web application to invoke another

The time to get involved is now!

Show up!

● Meet the decision-makers
○ Many are in this room!
○ Many Mozilla meetings are open

● Join mailing lists
○ WHATWG
○ W3C public-web-security
○ IETF WebRTC
○ IETF Web Security Working Group

● Write code!
○ Firefox, Google Chrome, and most of Safari are open

source
○ Nothing says "implement me now" like a patch ready for

approval

collin.jackson@sv.cmu.edu
http://websec.sv.cmu.edu/

Controversial things I just said

● NoScript is a niche browser... not the browser of the future

● Program committees actively harm good ideas

● OCSP is risky

● Taint tracking is hard

● SafeHistory is undeployable

● Breaking web sockets for 6 months was not a mistake

● You should crash Mozilla team meetings

