
Static Detection of Access Control Vulnerabilities in Web Applications

Fangqi Sun Liang Xu Zhendong Su
University of California, Davis
{fqsun, leoxu, su}@ucdavis.edu

Abstract
Access control vulnerabilities, which cause privilege es-
calations, are among the most dangerous vulnerabilities
in web applications. Unfortunately, due to the difficulty
in designing and implementing perfect access checks,
web applications often fall victim to access control at-
tacks. In contrast to traditional injection flaws, access
control vulnerabilities are application-specific, rendering
it challenging to obtain precise specifications for static
and runtime enforcement. On one hand, writing specifi-
cations manually is tedious and time-consuming, which
leads to non-existent, incomplete or erroneous specifica-
tions. On the other hand, automatic probabilistic-based
specification inference is imprecise and computationally
expensive in general.

This paper describes the first static analysis that au-
tomatically detects access control vulnerabilities in web
applications. The core of the analysis is a technique that
statically infers and enforces implicit access control as-
sumptions. Our insight is that source code implicitly doc-
uments intended accesses of each role and any successful
forced browsing to a privileged page is likely a vulner-
ability. Based on this observation, our static analysis
constructs sitemaps for different roles in a web applica-
tion, compares per-role sitemaps to find privileged pages,
and checks whether forced browsing is successful for
each privileged page. We implemented our analysis and
evaluated our tool on several real-world web applications.
The evaluation results show that our tool is scalable and
detects both known and new access control vulnerabilities
with few false positives.

1 Introduction
Web applications often restrict privileged accesses to au-
thorized users. While bringing the convenience of ac-
cessing a large amount of information and operations
from anywhere into people’s daily lives, web applications
have opened a new door for attacks and the number of
web-based attacks is on the rise. A Symantec Internet

security threat report published in April 2011 points out
that the volume of web-based attacks in 2010 increased
by 93% over the volume observed in 20091. Researchers
of web security have focused their attention on injection
vulnerability, which is the most common vulnerability in
web applications. Although not as prevalent as injection
vulnerability, access control vulnerability poses a more se-
rious threat because of exposed privileges, and has started
attracting the attention of researchers [7]. Compared with
those in traditional software, access checks in web ap-
plications are harder to get right because of the stateless
nature of the HTTP protocol. In traditional software, once
a user has passed an authentication check, the system
remembers the identity of the user until she logs out or
a timeout event happens. This is not the case for web
applications, which must parse each new HTTP request
to identify a previously logged-in user. A statistics re-
port published in 2007 states that 14.15% of the surveyed
web applications suffer from vulnerabilities of insufficient
authorization2.

Traditional injection vulnerabilities such as Cross-Site
Scripting (XSS) and SQL injection are not application-
specific and have a clear and general definition [25]: an in-
jection vulnerability exists when an untrusted input flows
into a sensitive sink without proper sanitization. To detect
injection vulnerabilities, it is sufficient to analyze indi-
vidual pages separately to examine where untrusted user
inputs can flow. In contrast, access control vulnerabilities
are application-specific, and it is necessary to examine
connections between pages.

Web application developers frequently make implicit
assumptions of allowed accesses and protect privileged
pages by hiding links to these pages from unauthorized
users. However, security by obscurity is insufficient to
prevent a determined and skilled attacker from accessing
these pages, viewing sensitive data or performing dan-
gerous operations. As an example, Business Wire used a

1http://www.symantec.com/business/threatreport
2http://projects.webappsec.org/f/wasc wass 2007.pdf



web server to store files of important trade information,
which were supposed to be accessible to registered mem-
bers only. Although the URLs to these files were hidden
in the presentation layer from unauthorized users, the
date-based URLs were highly predictable. By simply ac-
cessing these privileged files, an investment bank Lõhmus
Haavel & Viisemann profited over eight million dollars
based on the disclosed trade information3. Similarly, in
November 2010, Blooming News obtained and published
valuable financial earnings data of Disney and NetApp
to its subscribers hours before official data releases by
predicting resource locations inside secure corporate net-
works. As yet another example, accesses to the videos
of USENIX conference presentations are restricted to
USENIX members for a short period after a conference.
However, the authors of this paper were able to predict
the author-name-based URLs of the videos and download
a few videos as public users.

Researchers have proposed various static and dynamic
analysis techniques [1, 7, 10, 13] to detect violations of
application logic, including access control attacks. Unfor-
tunately, these techniques have limited effectiveness on
detecting access control vulnerabilities. Dynamic analy-
ses have difficulty finding hidden pages and determining
intended accesses for each role. Furthermore, sitemaps
covered by dynamic executions tend to be shallow and
incomplete as user inputs are usually limited. Despite that
static analyses typically have better coverage, they often
require good specifications in order to generate useful
reports, whose false positives do not overwhelm users.
In practice, deriving precise specifications is challenging,
especially when diverse authentication and access control
management schemes are in use. As manually writing
specifications is time-consuming and probabilistic-based
inference is error-prone, it is desirable to precisely in-
fer implicit assumptions on intended accesses from the
source code of applications.

In this paper, we use role to represent a unique set
of privileges that a group of users has. Most web ap-
plications have at least three types of roles: the role for
administrators, the role for normal logged-in users and
the role for public or anonymous users. Access control
checks must be performed before granting access to any
privileged resource to prevent privilege escalation attacks.
When implicit assumptions are not matched by explicit
access checks, unauthorized accesses are possible.

We propose the first role-based static analysis to detect
access control vulnerabilities with automatic inference on
implicit access control assumptions. Our key observations
are that each role represents a unique set of privileges, and
intended accesses for each role are reflected in explicit
links shown in the presentation layer of an application.
Guided by these observations, our analysis automatically

3http://www.whitehatsec.com/home/assets/WP bizlogic092407.pdf

derives specifications on privileged accesses by compar-
ing explicit links presented to different roles. It then
directly accesses privileged pages for unprivileged roles,
and examines whether these accesses are allowed to de-
tect vulnerable pages which have missing or insufficient
access checks. Our main contributions are:

• A formal definition of access control vulnerabilities
in web applications.

• The first role-based static analysis which automat-
ically detects access control vulnerabilities in web
applications with minimal manual efforts.

• An implementation of our analysis which constructs
intended per-role sitemaps. Given role-based speci-
fications, our prototype can systematically explore
feasible execution paths based on the satisfiability of
constraints.

• An evaluation of our tool on real-world web appli-
cations. Our tool works on unmodified code, and
is able to detect both new and known vulnerabili-
ties before the deployment of web applications. The
evaluation results show that our approach is scalable
and effective, with few false positives.

The rest of the paper is organized as follows. We first
use an example to illustrate the main steps of our ap-
proach (Section 2) and then present our formalization
of access control vulnerability in web applications (Sec-
tion 3). Section 4 describes our detailed algorithms. Sec-
tion 5 presents the implementation details of our static
analyzer, and Section 6 shows the effectiveness, coverage
and performance of our analyzer on real-world web appli-
cations. Finally, we survey related work (Section 7) and
conclude (Section 8).

2 Illustrative Example
Figure 1 shows a simple web application based on one
of the real-world web applications in our test suite. For
illustration, suppose that the application has two roles:
role a for administrators and role b for normal users. In
our approach, we require developers to only specify ap-
plication entry points and role-based application states,
which serve as the basis for automatically inferring the set
of privileged pages. Suppose that in the given specifica-
tions, the entry sets for both roles are identical and contain
only “index.php”, and the value of $ SESSION[“admin”]
is specified as true for role a but false for role b. As
we can see from the source code, only “functions.php”
checks accesses. This file is included via PHP inclu-
sion in both “index.php” and “user delete.php”, but not
“user add.php.” Consequently, access checks are missing
in “user add.php” but present in the other three pages.



  <?php

  session_start();

  if (!$_SESSION[“admin”]) {

      die(“Access denied!”);

  }

  ...

  ?>

functions.php

  <?php

  include(“functions.php”);

  delete_user();

  ...

  ?>

user_delete.php   <?php

  include(“functions.php”);

  $add = “user_add.php”;

  $del = “user_delete.php”;

  echo “<a href=” . $add . “>Add User</a>”;

  echo “<a href=” . $del . “>Delete User</a>”;

  ...

  ?>

index.php

  <?php

  add_user();

  ...

  ?>

user_add.php

ba ,

aa

a

Figure 1: An Example of Access Control Vulnerability. Solid arrows represent explicit links, and dashed arrows
represent inclusion relationship between pages. Arrows correspond to edges in sitemaps and are labeled with
roles. The intended sitemap for privileged role a has four edges while the intended sitemap for role b has only
one edge.

The first step of our analysis constructs per-role
sitemaps with a worklist-based algorithm. Initially, work-
lists for both roles are [“index.php”]. While a worklist is
not empty, our analysis pops a work node from the front
of the worklist each time. Let us look at the sitemap
construction for role a first. The first analyzed node
is “index.php”. From this node, users of role a can ex-
plicitly reach both “user add.php” and “user delete.php”
via anchor tags, and “functions.php” via a file inclusion.
Thus, our analysis adds three new edges in the sitemap
and appends the newly discovered nodes to the worklist,
which is now [“user add.php”, “user delete.php”, “func-
tions.php”]. The second analyzed node is “user add.php”.
This node can not reach any nodes, and thus our anal-
ysis pops “user delete.php” and the worklist becomes
[“functions.php”]. Role a can reach “functions.php” from
“user delete.php”, and thus our analysis adds a new edge
in the sitemap. Because “functions.php” is already in
the worklist, it is not appended to the current worklist.
Finally, our analysis pops “functions.php”. This node can
not reach any nodes and our analysis stops because the
worklist is now empty. Now let us look at the sitemap
construction for role b. The first popped node is still
“index.php”. However, role b can only explicitly reach
“functions.php” via a file inclusion from this node. The
links to “user delete.php” and “user add.php” are hidden
from users of role b in “index.php” via the access check
in “functions.php”. Therefore, our analysis adds only one
new edge and stops because the worklist is now empty.
The edges of constructed per-role sitemaps are shown in
Figure 1.

The second step of our analysis infers the set of

privileged pages and attempts to access these pages di-
rectly to detect access control vulnerabilities. Com-
paring the sets of explicitly reachable nodes for role a
and role b, our analysis infers that “user add.php” and
“user delete.php” are privileged pages intended for users
of role a only. Consequently, these two pages should
have access checks to ward off users of role b. Un-
fortunately, only “user delete.php” is safeguarded and
“user add.php” is left unprotected. Therefore, a direct ac-
cess to “user delete.php” fails, whereas a direct access to
“user add.php” succeeds, indicating that “user delete.php”
is guarded and “user add.php” is vulnerable.

3 Approach Formulation
This section formulates our high-level approach. We de-
fine the notions of role, explicit link, forced browsing,
web application and access control vulnerability, and
present two assumptions we make with regard to roles
and intended accesses.

Definition 1 (Role). A role r ∈ R captures the set of
allowed accesses for all users of role r where set R denotes
roles that a web application has. Each role r represents a
distinctive set of privileges.

Assumption 1 We assume that roles in R form a lat-
tice 〈R,v〉, where v denotes the ordering relationship
between any two roles. Under this assumption, accessing
a privileged resource as an unprivileged role is considered
a privilege escalation attack. Roles at the same level of
the lattice are not ordered by v as they may represent
different sets of allowed accesses. The role for adminis-
trators is >; the role for public users is ⊥; and the role for



normal logged-in users lies in the middle of the lattice.

Definition 2 (Explicit Link). In a web application,
there exists an explicit link from page ni to a different
page n j when it is possible to jump to n j via an explicit
URL in ni, incurring no exceptions or errors. URLs might
appear in file inclusions, header redirections, HTML tags
for anchors, forms, meta refresh headers, frames, iframes,
scripts, images or links.

Definition 3 (Forced Browsing). Forced browsing is
the act of directly accessing privileged pages rather than
following explicit links in a web application. Attackers of-
ten harness brute force techniques to access hidden pages
with predictable locations. We consider forced browsing
successful when HTML pages presented to two differ-
ent roles are identical, and no redirections, exceptions or
errors occur during the page rendering process.

Definition 4 (Web Application). Let node represent
a web page. Suppose that a web application contains
k nodes. Given a user role r ∈ R, we abstract the web
application as Pr = (Sr,Qr,Er, Ir,Πr,Nr), where

• Entry set Sr contains the entry nodes to the web
application. We include index pages in all directories
in the entry set. Different roles may have different
entry sets.

• State set Qr = {qi | 0 ≤ i < k} is a set of applica-
tion states. For each node ni, an application state qi
captures critical information at that node. It might
include session values, cookie values, request pa-
rameter values, database records, variable values or
function return values.

• Explicit edge set Er = {〈ni,n j〉 | 0 ≤ i, j < k}. An
explicit edge from node ni to n j exists iff ni in state
qi contains an explicit link to n j.

• Implicit edge set Ir = {〈ni,n j〉 | 0 ≤ i, j < k}. An
implicit edge from node ni to n j exists iff forced
browsing enables one to jump to n j from ni in state
qi. Accesses via implicit edges are allowed but often
unintended.

• Navigation path set Πr = {(ni)0≤i<l | 0 < l < k∧
n0 ∈ Sr ∧ 〈ni,ni+1〉 ∈ (Er ∪ Ir)}. It consists of all
possible navigation paths for role r, including ex-
plicit edges as well as implicit edges.

• Explicitly reachable node set Nr consists of nodes
that are reachable from application entries in Sr via
explicit edges in Er. It can be easily computed with
a graph reachability analysis.

Assumption 2 For each node in a web application, if
multiple roles can reach this node on navigation paths

composed of only explicit edges, we assume that the
privilege level required to access this node is determined
by the least privileged role.

Definition 5 (Access Control Vulnerability). Let
a,b ∈ R denote two roles that can be ordered in a web
application where role b is less privileged than role a, i.e.,
b @ a. An access control vulnerability exists at node n
when:

n ∈ Na∧n /∈ Nb∧∃ πb ∈Πb (n ∈ πb)

In this definition, destination node n is a privileged
node intended to be accessible to role a but not role b. We
use n ∈ πb to denote that n is on navigation path πb. This
node is vulnerable to access control attacks when a user
of role b is able to access n via an allowed, but probably
unintended, navigation path πb.

4 Analysis Algorithm
In this section, we introduce the three major algorithms
of our approach. Section 4.1 describes how our analysis
automatically infers specifications of implicit access con-
trol assumptions and detects access control vulnerabilities
from a high-level view. Section 4.2 shows the algorithm
that we use to build per-role sitemaps. Finally, we present
the detailed link extraction algorithm in Section 4.3.

4.1 Vulnerability Detection
Figure 2 presents the vulnerability detection algorithm
which is the core of our approach. This algorithm infers
privileged nodes from the source code of a web applica-
tion and identifies nodes that are not properly protected.

DETECTVULS(Speca,Specb,reg)
1 Vuls← /0
2 nfa← REG2NFA(reg)
3 dfa← NFA2DFA(nfa)
4 Na← BUILDSITEMAP(Speca,dfa)
5 Nb← BUILDSITEMAP(Specb,dfa)
6 Privileged← Na \Nb
7 for each n in Privileged
8 do 〈cfga,Ra〉 ← GETCFG(n,Speca)
9 〈cfgb,Rb〉 ← GETCFG(n,Specb)

10 if SIZEOF(cfga) = SIZEOF(cfgb) and Ra = Rb
11 then Vuls← Vuls∪{n}
12 return Vuls

Figure 2: Algorithm for Vulnerability Detection.

Let Speca and Specb denote specifications for role a and
role b respectively. Initially, the set of vulnerable nodes
Vuls is empty. First, this algorithm parses the regular
expression reg, which captures HTML tags where a link
might appear, into a non-deterministic finite automaton



(NFA). Then, the algorithm transforms the NFA into a
deterministic finite automaton (DFA). Either NFA or DFA
could be used for extracting links, and we chose DFA for
its advantage on performance and the ease of FA state
management.

Throughout this paper, we assume role a is more priv-
ileged than role b. Following Definition 4, we use Na
and Nb to denote the sets of explicitly reachable nodes
for roles a and b respectively. Function BUILDSITEMAP,
whose details are shown later in Section 4.2, computes
these two sets. Relying on Assumption 2, the algorithm
infers privileged nodes that are present in Na but not in Nb
(Line 6). For the example in Section 2, Na ={“index.php”,
“user add.php”, “user delete.php”, “functions.php”} and
Nb ={“index.php”, “functions.php”}.

Access checks at privileged locations may be missing
or insufficient. This algorithm analyzes each privileged
node n twice with function GETCFG, once for role a to
create an oracle for the intended server response (Line 8),
and once for role b to emulate forced browsing (Line 9).
Given a role r and a privileged node n, GETCFG returns
a context-free grammar (CFG) cfgr and the set of page
redirections Rr.4 The obtained cfgr is an approximation
of the dynamic HTML output of node n. We observe that
when an access check succeeds, users are often granted
accesses to sensitive information or operations; otherwise,
they are redirected to another page, or presented with error
messages or login forms. In the latter case, CFG sizes of
the two roles are different because of the different HTML
outputs that are presented. Consequently, if the sizes of
the two CFGs or the two redirection sets differ, node n is
considered guarded; otherwise, n may be vulnerable (Line
11). For the privileged page “user delete.php” shown in
Figure 1, SIZEOF(cfga) 6= SIZEOF(cfgb) and Ra = Rb =
/0, indicating that the page is guarded; for the privileged
page “user add.php”, SIZEOF(cfga)= SIZEOF(cfgb) and
Ra = Rb = /0, indicating that the page is vulnerable.

4.2 Building Sitemaps
Function BUILDSITEMAP shown in Figure 3 builds a per-
role sitemap with specifications Specr for role r and the
DFA dfa. We use a worklist-based algorithm to traverse
nodes in a web application in a breath-first manner. Ini-
tially, both the visited node set Visited and the edge set Er
are empty, and the worklist WkLst is initialized with the
entry set Sr specified in Specr (Line 3).

In each iteration of the loop, function GETWORKN-
ODE pops a working node ni from the front of list WkLst
and retrieves its associated state qi from Specr (Line 5)
to find outgoing edges of this working node. Next, this
algorithm constructs a CFG that represents the possible
HTML outputs of node ni (Line 6). Besides cfgi, function

4Throughout this paper, CFG stands for context-free grammar rather
than control-flow graph.

BUILDSITEMAP(Specr,dfa)
1 Er← /0
2 Visited← /0
3 WkLst← GETENTRIES(Specr)
4 while WkLst
5 do 〈ni,qi〉 ← GETWORKNODE(WkLst,Specr)
6 〈cfgi,Ri,Fi〉 ← CONSTRUCTCFG(ni,qi)
7 Li← EXTRACTLINKS(cfgi,dfa)
8 N j← Li∪Ri∪Fi
9 for each n j in N j

10 do Er← Er ∪{〈ni,n j〉}
11 Visited← Visited∪{ni}
12 N← ACTIVE(N j)\ (Visited∪WkLst)
13 WkLst← APPEND(WkLst,N)
14 return GETNODES(Er)

Figure 3: Algorithm for Building Sitemaps.

CONSTRUCTCFG also returns the page redirection set Ri
and the file inclusion set Fi as links in these two sets also
contribute to outgoing edges in a sitemap. Then, function
EXTRACTLINKS extracts a set of matched links Li that
are present in cfgi based on dfa (Line 7). The details of
EXTRACTLINKS are presented later in Section 4.3. The
set of reachable nodes N j for ni is the union of Li, Ri and
Fi (Line 8). We conservatively include Fi in this union be-
cause included files may present sensitive information or
operations. The algorithm adds an outgoing edge 〈ni,n j〉
to the explicit edge set Er for each node n j ∈ N j (Line
10) and then adds ni to the visited node set (Line 11). To
determine which nodes to analyze, we partition nodes into
active nodes and inactive nodes, and only analyze active
ones. Active nodes may have outgoing edges in a sitemap,
whereas inactive nodes are dead ends. For example, a
PDF file is considered an inactive node, while a PHP page
is considered an active node. Finally, the algorithm adds
the newly discovered active nodes to the worklist, exclud-
ing the ones that have been visited or are already in the
worklist (Line 12, 13). The loop terminates when WkLst
becomes empty, indicating that the construction of a per-
role sitemap is complete. At this point, function BUILD-
SITEMAP returns the set of explicitly reachable nodes Nr
based on Er (Line 14). When work node ni =“index.php”
shown in Figure 1 is analyzed for role a in a loop iter-
ation, Li ={“user delete.php”, “user add.php”}, Ri = /0
and Fi ={“functions.php”}. Therefore, three new outgo-
ing edges from “index.php” are added to Ea. In contrast,
when “index.php” is analyzed for role b, Li = Ri = /0 and
Fi ={“functions.php”}. In this case, only one new edge
is added to Eb.



4.3 Link Extraction
We use C to denote a CFG, and F to denote an FA. In our
setting, a CFG represents the dynamic HTML output of a
node and an FA matches a single link-introducing HTML
tag of various forms. Let L (C) be the set of words in the
language for the CFG and L (F) be the set of words in
the language for the FA. Suppose that function SUBSTR
returns true only when w′ is a substring of w. The output
of EXTRACTLINKS on C and F is defined as follows:

EXTRACTLINKS(C,F) = { w′ | w ∈L (C) ∧
w′ ∈L (F) ∧
SUBSTR(w′,w) }

We could use a straight-forward three-step approach
to extract links. In the first step, we could use the stan-
dard CFG-reachability algorithm [20] to compute a CFG
representing the intersection of the two languages for C
and F ′, where F ′ matches HTML outputs that contain
at least one link-introducing tag. The subtle difference
between F ′ and F is that F ′ matches link-introducing tags
as well as link-irrelevant HTML outputs, while F only
matches link-introducing tags. In the second step, we
could generate all possible HTML outputs of the CFG. In
the third step, we could use an HTML parser to extract
links from the generated HTML outputs. Nevertheless,
this approach is not ideal for two reasons. The first is
that the words of a CFG can be infinite and we can only
generate a finite set of possible HTML outputs. The sec-
ond is that the generated HTML outputs are likely being
highly similar, and thus we may repetitively parse similar
HTML outputs. For better performance, we designed a
new algorithm that does not generate intermediate HTML
outputs, but directly extracts links from the CFG.

In a CFG 〈V,Σ,P,S0〉, V is a finite set of variables (i.e.
non-terminals); Σ is a finite set of terminals which is the
alphabet of the language; P = {v→ rhs | v ∈ V ∧ rhs ∈
(V ∪Σ)∗} is a finite set of grammar productions; and S0 is
the start variable. In an FA 〈Q,Σ′,q0,δ ,Q f 〉, Q is a finite,
non-empty set of states; Σ′ is the input alphabet; q0 ∈ Q
is the start state; δ : Q× Σ→ Q is the state-transition
relation; and Q f ⊆ Q is the set of final states.

Figure 4 shows our link extraction algorithm where
function EXTRACTLINKS is the entry point. We use set
VQW to store 〈v,q,w〉 tuples where v represents a CFG
variable, q is an FA state and w is a partially matched link
string. Completely matched links are stored in set Words.
To begin with, this algorithm walks the CFG with the start
CFG symbol S0, the start FA state q0, and the empty string
which represents the terminals that have been partially
matched (Line 38).

Function WALKTERMINAL is the only function that
advances an FA state q to a new state q′ based on the FA
transition function δ and an input character t (Line 1). If

WALKTERMINAL(t,q,w)
1 q′← δ (q, t)
2 if q′ = q0
3 then return 〈q0, “” 〉
4 w′← APPEND(w, t)
5 if q′ ∈ Q f
6 then Words←Words∪{w′}
7 w′ = “”
8 return 〈q′,w′〉

WALKVAR(v,q,w)
10 VQW← VQW ∪{〈v,q,w〉}
11 RHS← PRODUCTIONS(v,P)
12 if ISSIGMA(RHS) or RHS = /0
13 then return {〈q,w〉}
14 QW← /0
15 for each rhs in RHS
16 do if ISEPSILON(rhs)
17 then QW← QW ∪{〈q,w〉}
18 else QW← QW ∪WALKSYMBOLS(rhs,q,w)
19 return QW

WALKSYMBOL(s,QW)
21 Result← /0
22 for each 〈q,w〉 in QW
23 do if ISTERMINAL(s)
24 then QW ′←{WALKTERMINAL(s,q,w)}
25 else if 〈s,q,w〉 ∈ VQW
26 then QW ′←{〈q,w〉}
27 else QW ′←WALKVAR(s,q,w)
28 Result← Result∪QW ′

29 return Result

WALKSYMBOLS(rhs = [γ],q,w)
31 QW←{〈q,w〉}
32 for each si in [γ]
33 do QW←WALKSYMBOL(si,QW)
34 return QW

EXTRACTLINKS(cfg = 〈V,Σ,P,S0〉, fa = 〈Q,Σ′,q0,δ ,Q f 〉)
36 VQW← /0
37 Words← /0
38 WALKVAR(S0,q0, “” )
39 return VALID(Words)

Figure 4: Algorithm for Link Extraction.
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q′ is the FA start state q0, which indicates a mismatch,
the algorithm clears the partially matched terminals and
returns (Line 3); otherwise, it appends t to w (Line 4) and
examines q′ again (Line 5). If q′ is a final FA state in Q f ,
the algorithm adds the completely matched link to Words
(Line 6) and resets w′ to the empty string. In this way, we
filter out noises that are irrelevant to links in the CFG and
only keep track of link-introducing HTML outputs.

Recursive function WALKVAR walks the grammar pro-
ductions of variable v under an FA state q and a partially
matched word w. Function PRODUCTIONS retrieves the
set of productions which have v as the left-hand-side vari-
able from the CFG production set P, and returns the set of
right-hand sides RHS (Line 11). The different elements
in RHS indicate how the dynamic HTML output might
diverge for v. Function ISSIGMA checks whether a set is
equivalent to the CFG alphabet Σ. A link of value Σ∗ can
point to any file in the application and therefore should
be discarded. If RHS forms the alphabet or the empty
set, the function returns the pair of unchanged q and w
in a set (Line 13); otherwise, it walks the elements in set
RHS one by one. In each loop iteration, if a right-hand
side rhs has no symbols, the HTML output remains the
same (Line 17); otherwise, the algorithm searches the set
of new possible outcomes QW ′ with a call to function
WALKSYMBOLS (Line 18).

Recursive function WALKSYMBOLS walks the sym-
bols in list [γ] in order. Consequently, links in the CFG
are matched in the order of their appearances in a possible
HTML output. Here [γ] = (si)

∗∧ si ∈ (V ∪Σ), represent-
ing a sequence of right-hand-side symbols. For each
symbol si in the list, the algorithm transitions the set of
possible outcomes to a new set (Line 33).

Recursive function WALKSYMBOL walks a right-hand-
side symbol s under each possible outcome 〈q,w〉. In each
loop iteration, the algorithm first examines the symbol
s (Line 23). If s is a terminal, the FA state is determin-
istically advanced via function WALKTERMINAL (Line
24). Otherwise, if the symbol is a variable, this algorithm
recursively calls function WALKVAR for s (Line 27) when
v is associated with a new q or a new w. The use of set
VQW ensures the termination of the algorithm. This al-
gorithm stops when all reachable grammar productions

have been explored at least once. A concrete example of
how this algorithm works is given in Section 5.2.2.

5 Implementation
As PHP is one of the most popular programming lan-
guages for web applications, we implemented our ap-
proach by extending Wassermann and Minamide’s PHP
string analyzer [21, 30], which is written in OCaml. The
original PHP string analyzer was developed to detect in-
jection vulnerabilities in web applications, and it analyzes
individual pages in isolation and explores all execution
paths. To detect access control vulnerabilities, we mod-
ified the string analyzer to build per-role sitemaps and
examine connections between different pages. In par-
ticular, we introduced the concept of role into the static
analyzer, added new specification rules for application
states and entry sets, and strategically explored paths
based on branch feasibilities. To explore only feasible
execution paths, we keep track of both arithmetic con-
straints and string constraints. For arithmetic constraints,
the analyzer consults a Satisfiability Modulo Theories
(SMT) solver Z3 [8]; for string constraints, it consults a
custom-built string constraint solver. Furthermore, we de-
signed and implemented the algorithm shown in Figure 4
to efficiently extract explicit links from CFGs, added sup-
port for 176 built-in PHP functions, and modified both the
specification lexer and parser to support specifications for
the values of integers, floating-point numbers and strings.

Figure 5 shows our system architecture. A web appli-
cation can have multiple roles, and our analysis compares
a pair of ordered roles each time. Initially, the DFA con-
structor transforms the given regular expression reg into
a DFA. The detection of access control vulnerabilities is
carried out in two major steps. First, the sitemap builder
explores the given web application based on parsed speci-
fications and the DFA. Second, the reachable nodes com-
parator infers what privileged nodes are, and the vulnera-
bility detector performs forced browsing to detect nodes
that are vulnerable to access control attacks.

5.1 Specification Rules
In our analysis, specifications are parsed with a lexer and
a parser. For each role r, we only require developers to
specify the entry set Sr and the set of critical application



states Qr. Multiple roles can share the same set of en-
try points. Either index pages or active pages with no
incoming edges can be entry nodes. Index pages often
have conventional names such as “index.php” and “in-
dex.html”, and can be easily identified with a file scan;
active pages with no incoming edges can be specified as
entry nodes by developers. The types of application states
that we support are listed in Definition 4. The state values
that can be specified include abstract types and concrete
values of built-in PHP types, and string values that can
be represented by a regular expression. For function in-
vocations, we allow developers to pinpoint an invocation
by specifying the filename and line number where the in-
vocation occurs. This is especially useful when function
invocations return different values at different call sites.

Optionally, developers can explicitly specify a set of
privileged nodes. In contrast to implicit navigation paths
which involve forced browsing, explicit navigation paths
are often tested more thoroughly. However, it is still pos-
sible that an allowed access to a sensitive node via an
explicit navigation path of an unprivileged role is unau-
thorized, violating Assumption 2. In this case, when an
unprivileged user can explicitly navigate to a privileged
node, we would have false negatives. To solve this prob-
lem, we allow developers to explicitly specify privileged
nodes. Such a node may be vulnerable to access control
attacks even if it is explicitly accessible for both roles.

5.2 Sitemap Builder
The sitemap builder has two components: the context-free
grammar constructor and the link extractor. With these
two components, our analysis constructs a CFG for each
explicitly reachable node, and extracts links embedded in
the CFG to find outgoing edges of the node.

5.2.1 Context-Free Grammar Constructor

For each web page, our analyzer first parses the page
into an Abstract Syntax Tree (AST), and then transforms
the AST into an Intermediate Representation (IR), dis-
tinguishing every variable occurrence. Interested readers
can refer to Wassermann’s work [30] for more details.

To build a per-role CFG, our analyzer explores the IR
only when necessary by predicting branch feasibilities
with an inter-procedural path-sensitive analysis. It ana-
lyzes statements in the IR in a top-down manner, updating
path conditions for both string constraints and arithmetic
constraints. For arithmetic constraints, our analyzer re-
sorts to the integrated Z3 to check the satisfiability of
constraints; for string constraints, it feeds possible values
of string variables and their aliases to our string constraint
solver in exchange of answers. Our prototype string con-
straint solver supports string constraints which may con-
tain multiple variables, regular expressions, equality and
inequality operators, and checks on string lengths. We
tried to solve string constraints with HAMPI [15], but

function checkUser ( ) {
if ( !isset ($_SESSION ["validUser" ] )

| | $_SESSION ["validUser" ] != true ) {
header ("Location: login.php" ) ;

}
}
checkUser ( ) ;
sensitiveOperation ( ) ;

Figure 6: An Example of Path Exploration.

it does not support multiple string variables yet. When
constraints of a conditional is unsolvable, the analyzer
explores both branches, updating path conditions for both
the true branch and the false branch. For each function
call, our analyzer first checks its calling context and then
explores the function only when the context is new. Next,
it propagates constraints on the arguments and related
global variables of the function call. The IR exploration
terminates when all possible branches have redirections or
exits, indicating that none of the unexplored branches are
feasible. In our implementation, we do not consider differ-
ent contexts of page accesses and assume the parameters
of HTTP requests to be Σ∗ unless specified. In this way,
we analyze each page only once, making our analyzer
scalable at the expense of obtaining over-approximations
of outgoing edges.

Finding the targets of PHP includes is a non-trivial task.
It requires value resolution of possible string variables
that are used for filename construction. Furthermore, it
is necessary to find the directories that a PHP include file
may reside in. When resolving PHP include paths, the
following steps are performed in order:

• The include path in the configuration of a PHP
application is checked first;

• If no matching file is found under include path,
the directory of the calling script is checked;

• If no matching file is found in the directory of
the calling script, the current working directory is
checked;

• If no matching file is found in the current working
directory, the inclusion finally fails.

We illustrate our basic exploration strategy with a sim-
ple example shown in Figure 6 based on one of the web ap-
plications that we have analyzed. Function checkUser
checks whether an access should be allowed for a given
user. Function SensitiveOperation will only be
executed when the user has passed the access check. Sup-
pose that $ SESSION[“validUser”] is a critical applica-
tion state which determines the privileges of a role, and
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Figure 7: A Deterministic Finite Automaton Example.

its value should be specified as true for role a and false
for role b. Our analyzer explores the statements of the
IR in order. Besides function definitions, the first state-
ment it encounters is the function call checkUser().
Therefore, it retrieves the corresponding function body
and continues from the first statement in the function. Be-
cause the first statement is an if statement, the analyzer
attempts to solve the satisfiability of constraints to deter-
mine branch feasibilities. If the given role is b, only the
true branch is feasible. As the true branch has a header
redirection, the analyzer stops exploring the statements
after this function call. Otherwise, when the role is a, only
the false branch is feasible, and the analyzer continues ex-
ploring the statements after this function call, and eventu-
ally reaches function call SensitiveOperation().

Path sensitivity prevents us from exploring infeasible
paths. For example, suppose we have predicate $x > 1 in
the current path condition when the exploration reaches
an if statement, the branch target of which depends on a
conditional $x < 0. To determine the feasibilities of the
two possible branches, our analyzer sends two queries
to Z3. The first query appends the new constraint to the
existing path condition, while the second query appends
the negation of the new constraint to the existing path
condition. Z3 will conclude that ($x > 1 ∧ $x < 0) is un-
satisfiable, but ($x > 1 ∧ ¬($x < 0)) is satisfiable. Thus,
only the false branch is feasible and our analyzer will not
explore the infeasible true branch of the if statement.

5.2.2 Link Extractor

Our link extractor extracts links to different web pages
within a given web application. Since we are interested in
constructing sitemaps, our link extractor filters links that
point to pages outside of the application. We did not reuse
the implementation from the previous work [30], which
is based on the standard graph-reachability algorithm, but
instead implemented the new link extraction algorithm
shown in Figure 4 to eliminate the need of computing
intermediate HTML outputs. As an example, Figure 7

shows an FA which matches anchor, form, frame and
iframe tags in HTML outputs based on a simple regular
expression:

/<([Aa]
|[Ff][Oo][Rr][Mm]
|[Ii]?[Ff][Rr][Aa][Mm][Ee]

)\s[ˆ>]*>/

We only show state-advancing edges in Figure 7 and omit
state-resetting edges. In this FA, the start state q0 = 1
and the final state set Q f = {8}. For any FA state, a
state-resetting edge directs the current FA state back to
the start FA state on input characters other than the ones
shown on the state-advancing edges. We use the following
simplified PHP code taken from one of our test subjects
to show how our link extractor works.

echo "<div><a href="
. $lang
. ".php>Anchor</a></div>" ;

The above PHP code dynamically generates a link de-
pending on the value of variable $lang, which has three
possible candidates: “english”, “spanish” and “french”.
For this code, a CFG with five variables and seven gram-
mar productions will be generated:

S0→ S1S2

S1→ “<div><a href=”
S2→ S3S4

S3→ “english” | “spanish” | “french”
S4→ “.php>Anchor</a></div>”

In this CFG, V = {S0,S1,S2,S3,S4} and S0 is the start
symbol. Note that S3 has three associated grammar pro-
ductions separated by bars. For the algorithm in Fig-
ure 4, the link extraction starts with function call WALK-
VAR(S0,1,“”) (Line 38). Since S0 maps to only one pro-
duction, RHS = {[S1S2]} (Line 11) and our algorithm
issues WALKSYMBOLS([S1S2],1,“”) (Line 18). Then, it



examines the symbols in list [S1S2] (Line 32) in order to
derive the set of possible outcomes QW , the initial value
of which is {〈1,“”〉} (Line 31). Our algorithm sees that
the first symbol S1 is a variable and thus issues WALK-
VAR(S1,1,“”) (Line 27). For S1, RHS ={“<div><a
href=”} (Line 11), and the algorithm issues WALKSYM-
BOLS(“<div><a href=”,1,“”) (Line 18). Now our algo-
rithm examines these terminals in order with function
WALKTERMINAL. The first character is ‘<’, thus the
algorithm transits the FA state from 1 to 2 along a state-
advancing edge in Figure 7, and appends ‘<’ to w which
is now “<”. The second character is ‘d’, thus the algo-
rithm resets the FA state to the start state 1, and clears the
matched terminals in w. The third character is ‘i’, thus
the algorithm stays at the FA start state 1, and w is still
the empty string. Our algorithm continues like this and
by the time it gets to variable S3, the FA is in state 7 with
w =“<a href=”. For S3, RHS ={“english”, “spanish”,
“french”} (Line 11), and our algorithm walks these three
elements one by one (Line 15). There are three possible
outcomes, and thus the return value QW of WALKSYM-
BOLS(S3,7,“< a href=”) is {〈7, “<a href=english”〉,〈 7,
“<a href=spanish”〉,〈7, “<a href=french”〉} (Line 19).
Our algorithm continues until all the seven grammar
rules have been explored. Upon termination, it returns
{“english.php”, “spanish.php”, “french.php”} (Line 39).

5.3 Vulnerability Detector
When the construction of per-role sitemaps is complete,
our analyzer compares the two reachable node sets to infer
privileged nodes. As HTML outputs presented to differ-
ent roles are usually different, the set of privileged nodes
is not empty in most cases. After obtaining the set of
privileged nodes, our analyzer uses the same context-free
grammar constructor again to approximate the outcomes
of forced browsing. Finally, it compares derived redi-
rection sets and the sizes of CFGs to determine whether
forced browsing attemps are successful.

Even when forced browsing is successful, it is possible
that the corresponding page does not contain any sensi-
tive information or operations and is therefore considered
safe. We observed that some pages used as file inclusions
only contain function and class definitions. Such pages
normally serve as inclusion files and are safe on their own.
When the automatic vulnerability detection is over, we
identify such safe pages with manual analysis, report them
as false positives, and then mark the remaining pages as
potentially vulnerable pages.

6 Empirical Evaluation
To evaluate the effectiveness and performance of our ap-
proach, we tested our tool on seven real-world PHP appli-
cations, two of which have patched versions. We picked
these applications because they have reported vulnerabil-
ities, which include injection vulnerabilities as well as

Subject Files LOC

PHP HTML

SCARF 25 1,318 0
Events Lister 37 2,076 544
PHP Calendars 67 1,350 0
PHPoll 93 2,571 0
PHP iCalendar 183 8,276 0
AWCM 668 12,942 5,106
YaPiG 134 4,801 1,271

Table 1: Statistics on Evaluation Subjects.

access control vulnerabilities. The test subjects include
both traditional web applications and Web 2.0 applica-
tions which use AJAX for client-server communications.
The source code of all these PHP applications is publicly
available. For each of the test subjects, we provide a spec-
ification file of at most ten lines. We ran all the tests on a
PC with a quad-core CPU (2.40GHz) and 4 GB of RAM.

Our tool supports multiple roles and each role should
have a set of distinctive application states. Typically, the
administrator role has the most privileges; the normal user
role has necessary privileges for common user operations;
and the public user role has the least privileges. Although
our tool can detect access control violations for any two
roles, we chose to detect access control violations between
administrators and normal users for two reasons. First, the
operations and information that administrators can access
are of greater importance than those that normal users can
access. Second, it is often difficult for attackers to legally
obtain administrator accounts, but easy to obtain normal
user accounts.

Table 1 shows the total number of files as well as the
lines of code for each web application. For the two web
applications that have patched versions, we only list the
statistics for the patched versions in the table. The lines
of code in each application are counted for both PHP
and HTML, excluding comments and empty lines. Our
analysis translates HTML code into equivalent PHP echo
statements.

6.1 Analysis Results
Table 2 shows the analysis results for the nine web appli-
cations. Note that we include two versions of SCARF and
AWCM for vulnerability analysis. Columns “Vulnerable”
and “FP” denote the numbers of detected true vulnerabili-
ties and manually confirmed false positives respectively.
Column “Guarded” shows the number of privileged pages
that are protected by access checks. The last four columns
show numbers of explicitly reachable nodes and explicit
edges in per-role sitemaps.

In summary, our tool found eight different access con-
trol vulnerabilities, four of which are previously unknown.



Project Privileged Vulnerable FP Guarded Admin Normal

Node Edge Node Edge

SCARF 4 1 0 3 19 149 15 69
SCARF (patched) 4 0 0 4 19 149 15 69
Events Lister 2.03 9 2 2 5 23 113 14 26
PHP Calendars 3 1 0 2 19 35 19 30
PHPoll v0.97 beta 3 3 0 0 21 63 19 58
PHP iCalendar v1.1 1 0 0 1 51 292 50 292
AWCM v2.1 47 1 0 46 176 2,634 129 2,438
AWCM v2.2 final 47 0 0 47 180 2,851 133 2,612
YaPiG 0.95 11 0 0 11 54 260 44 154

Table 2: Vulnerability Analysis Results.

It only has two false positives and correctly reports 119
guarded pages as not vulnerable. We manually confirmed
all vulnerabilities and false positives on deployed web
applications. In addition, the by-products of our analysis,
the generated per-role sitemaps, provide high-level views
of the test subjects and can be useful for understanding or
modifying the structures of these web applications.

6.1.1 SCARF

SCARF is the Standford Conference And Research Fo-
rum. A critical access control checks whether the value
of $ SESSION[“privilege”] equals “admin” in functions
is admin and require admin.

Our tool detected a previously reported vulnerability
(CVE-2006-5909). In this application, only users of role a
are supposed to edit the configuration of the application in
page “generaloptions.php”. However, there is no access
check for this edit privilege. Although the link is hid-
den from users of role b, they could still access and edit
the configuration which affects the whole system. Our
tool correctly reported the other three privileged pages
“addsession.php”, “editpaper.php” and “editsession.php”
as guarded. Even if users of role b know the locations
of these pages, forced browsing would fail because of
the presence of access checks in these pages. The lat-
est version of SCARF fixed the vulnerability, and this is
reflected in the vulnerability analysis result for SCARF
(patched).

6.1.2 Events Lister

Events Lister is a PHP application that allows users
to manage their events. Function checkUser im-
plements an access control by checking whether
$ SESSION[“validUser”] equals true.

Our tool found a new vulnerability in this application
as well as a previously known one (CVE-2009-3168). We
discovered that page “admin/setup.php” has no access
checks and allows users of role b to repeatedly insert test
events into the database of the application. It is even pos-

sible to create new tables in the database if none exists yet.
The known vulnerability in page “admin/user add.php”
permits users of role b to add new users into the system.
This privilege should only belong to users of role a. We
consider the other two reports on privileged pages “ad-
min/recover.php” and “admin/form.php” false positives.
Page “admin/recover.php” allows users of role b to re-
set an administrator’s password by sending a new pass-
word to the administrator’s email address. Since only the
administrator has access to her own email address, the
password reset action does not pose any serious threats.
Page “admin/form.php” contains an HTML form which
is included in other container pages. On its own, this page
does not expose any privileged operations or information,
and is therefore considered safe. The notion of “safe” is
sometimes a subjective matter. In a manual case study of
another web application, we found that public users can
view the list of all registered users with forced browsing.
Such a list is also available for normal users and one can
easily register for a normal user account. Consequently,
it is unclear to us if the implicit access to the list of regis-
tered users is intended. As such, we would rather report
such cases to developers for them to decide.

6.1.3 PHP Calendars

PHP Calendars is an online calendar management system.
It protects privileged pages in the application by check-
ing whether $ SESSION[“admin”] equals “yes” in page
“admin/access.php”.

Our tool detected a known vulnerability (CVE-2010-
0380) in page “install.php” of this application. The
README file in this application warns administrators to
delete this page after installation, but does not check if
the file has indeed been deleted. If “install.php” exists in
a deployed application, any users of role b could modify
the configuration of the application by directly accessing
this page. Because there is an explicit link to this page,
we manually added this page to the privileged node set in
the specification file. The other two privileged pages “ad-



min/import.php” and “powerfeed.php” are not vulnerable.
Note that Na is not necessarily a superset of Nb. In this
application, |Na|= |Nb|, but Na 6= Nb.

6.1.4 PHPoll

PHPoll is an online poll system where only users
of role a can pass access checks by providing
correct values of $ COOKIE[$string cook login] and
$ COOKIE[$string cook password]. Note that the
cookie-based access controls are safe in this case because
unauthorized users have no knowledge of valid cookie
values.

Our tool detected three new access control vulnera-
bilities in this application and we manually confirmed
them on a deployed application of PHPoll. All three
pages have no access checks. The first page “modi-
fica configurazione.php” allows users of role b to modify
login IDs and passwords, truncate the configuration table,
and insert new entries into the configuration table of the
application. The second page “modifica votanti.php” lets
users of role b delete votes or update polls stored in the
MySQL database. The third page “modifica band.php”
does not prevent users of role b from reading, updating,
or deleting poll results from the database with POST re-
quests. These access control vulnerabilities pose serious
threats to the security of the application, yet they have not
been reported to the best of our knowledge.

6.1.5 PHP iCalendar

PHP iCalendar is another calendar application which
displays calendar information to users. The only
privileged page is “admin.php”, and it is guarded
by an access check which examines the value of
$HTTP SESSION VARS[“phpical loggedin”].

This application does not have any access control vul-
nerabilities. As Table 2 shows, users of role a can reach
51 pages which include “admin.php”, while users of role
b can only reach 50 pages which exclude “admin.php”.

6.1.6 AWCM

AWCM (AR Web Content Manage system) differ-
entiates role a from role b by determining whether
$ SESSION[“awcm cp”] equals “yes” in a PHP include
file “control/common.php”.

Our tool detected a previously known vulnerabil-
ity (CVE-2010-1066) in “control/db backup.php” which
dumps all the database information onto a web page. The
cause of this access control vulnerability is that “con-
trol/db backup.php” includes “common.php” instead of
“control/common.php”. Since access checks are only
present in “control/common.php” but not “common.php”,
page “control/db backup.php” is not guarded and can be
accessed via forced browsing. Most pages in the “control”
directory are intended for administrators only and our tool
detected 47 privileged nodes in total. Our tool correctly

recognized the access checks in the other 46 privileged
pages and only reported “control/db backup.php” to be
vulnerable. The latest version of AWCM fixed the vulner-
ability, and this is reflected in the analysis result shown
in Table 2. Although this application is AJAX-heavy, our
tool covered nearly 80% of the active nodes, indicating
that a majority of the links appear in PHP and HTML
code which can be well handled with our tool.

6.1.7 YaPiG

YaPiG (Yet Another PHP Image Gallery) validates pass-
words and determines the privilege level of users with an
access check in function check admin login.

An interesting thing about YaPiG is that all the five
unreachable pages result from an uncovered execution
path. In our implementation, we assume that an HTTP
parameter $v could have any values. Therefore, our tool
infers that function call isset($v) returns true even if
v is undefined. When a conditional depends on such a
function call, the false branch is left unexplored. Our im-
plementation does not yet support the specification of an
optional value, which can either be defined or undefined.

6.2 Performance Evaluation
In our evaluation, we collect links that point to files within
an application, excluding those that point to CSS files
which are of no interest to us. Currently, we treat PHP,
HTML and XML files to be active nodes and analyze them
to extract links. A page can contain links to both active
nodes and inactive nodes. Although inactive nodes do not
provide sensitive operations, they may contain sensitive
information and therefore should also be checked.

Table 3 shows the coverage and performance of our
tool. Column “Entry” shows the number of specified en-
try nodes for each application. Column “Active” lists the
number of all active nodes. Column “Orphan” lists the
number of specified orphan nodes which are non-entry
active nodes with no incoming edges. Column “Cover-
age” lists the coverage of our tool on active nodes in an
application, excluding orphan nodes. We list the aver-
age numbers of variables and grammar productions of
all CFGs for each web application. Note that the num-
bers are counted on CFGs that have been simplified with
grammar-reachability analysis. The last column shows
the total analysis time spent for each application in terms
of seconds.

Active nodes may have outgoing edges and may not
have any incoming edges. An active node with no incom-
ing edges can be optionally specified as either an entry
node or an orphan node. When it is specified as an entry
node, it is analyzed in the sitemap construction process
to find outgoing edges; when it is specified as an orphan
node, which indicates that this node should be outside
any sitemaps, it is excluded from the coverage calcula-
tion; when it is unspecified, it may affect the coverage



Project Nodes Context-Free Grammar Coverage Time (s)
Entry Active Orphan Variables Productions

SCARF 1 19 0 158 719 100.00% 6.02
SCARF (patched) 1 19 0 159 719 100.00% 6.01
Events Lister v2.03 4 23 5 100 2,083 100.00% 3.84
PHP Calendars 3 15 0 48 255 80.00% 5.09
PHPoll v0.97 beta 5 21 6 115 224 100.00% 4.26
PHP iCalendar v1.1 2 52 2 811 4,774 90.38% 760.62
AWCM v2.1 17 208 22 410 422 79.33% 89.48
AWCM v2.2 final 16 209 14 451 484 79.90% 108.51
YaPiG 0.95 7 59 3 332 532 91.53% 208.38

Table 3: Coverage and Performance Results.

Project
Time (s)

Admin Normal Forced
Sitemap Sitemap Browsing

SCARF 3.15 1.70 1.15
Events Lister 2.29 1.00 0.53
PHP Calendars 1.81 1.67 1.61
PHPoll 2.39 1.54 0.33
PHP iCalendar 371.28 370.85 18.46
AWCM 55.36 49.11 3.85
YaPiG 85.59 44.91 77.86

Table 4: Analysis Time.

result. Let Active, Orphan and Reachable denote the sets
of all active nodes, specified orphan nodes and explicitly
reachable nodes respectively. We calculate the coverage
as:

Coverage =
|Reachable|

|Active|− |Orphan|
In our evaluation, we conservatively identify orphan
nodes with a simple manual analysis and the obtained
orphan sets may be incomplete, especially for large and
complex applications. Therefore, the real coverages of our
analysis might be better than the ones shown in the table
because uncovered nodes might indeed be unreachable.

Our static analyzer achieved good coverage of active
nodes: 100% for four applications, about 90% for two,
and about 80% for the remaining three. The total analy-
sis time listed in Table 3 demonstrates that our approach
is scalable. For the smaller test applications SCARF,
Events Lister, PHP Calendars and PHPoll, our tool fin-
ished within seven seconds; for the largest test application
AWCM, our tool took less than two minutes to analyze
the active nodes in the whole application. The analysis
time for iCalendar is the longest because of the inlining of
dynamic PHP files and the complexity of PHP code. As
can be seen in Table 3, the number of grammar produc-

tions for PHP iCalendar is also the largest. We show the
break down of analysis time in Table 4. Columns “Admin
Sitemap” and “Normal Sitemap” list the time spent on
constructing the sitemaps for roles a and b respectively.
Column “Forced Browsing” shows the time spent on de-
tecting access control vulnerabilities via forced brows-
ing. It is obvious from the data in the table that building
sitemaps consumes the majority of the analysis time.

6.3 Discussions
As we mentioned earlier, our prototype did not find all
kinds of links in web applications. The major reason is
that our prototype did not identify all the links generated
by JavaScript code or HTML templates, or those con-
structed with unresolvable string variables. Extracting
links from JavaScript code is especially challenging be-
cause of the dynamic features of the JavaScript language.
Our prototype works better on traditional web applica-
tions than AJAX-heavy ones. Incorporating JavaScript
analysis could possibly improve the coverage. Further-
more, our test applications may not be representative of
general web applications.

What a node represents determines the granularity of
the analysis. Our prototype treats a web page as a node,
but the general approach still applies when the granularity
is refined to functionalities within a page. Performing
the analysis at a refined granularity would be especially
useful for complex web pages which contain multiple
functionalities within a single page. The techniques pro-
posed by Halfond et al. [12] could be used to identify
important parameters in web applications to distinguish
functionalities. Because a privilege is often granted with
a set of atomic database operations, advancing the gran-
ularity to the level of database operations might be too
fine-grained.

Our prototype does not handle all object-oriented fea-
tures in PHP. This prevents us from parsing some PHP
pages in large PHP applications. We leave it as future
work to enhance our static analyzer for additional object-



oriented features of the PHP language.
The current implementation of the string constraint

solver is rudimentary. For either unsolvable constraints
or non-determinism in a conditional, we conservatively
explore both branches. This might lead to false negatives
when infeasible paths for a less privileged role are ex-
plored. For access checks that involve non-determinism,
such as password-based authentication and CSRF pro-
tection that uses random tokens, we rely on role-based
specifications to determine which execution paths to ex-
plore. Non-determinism affects path explorations but not
link extractions. Furthermore, when Assumption 2 does
not hold, we would also have false negatives introduced
by explicit accesses to privileged nodes.

Our tool generated false positives. Even when access
checks are missing in hidden pages, these pages may not
contain any sensitive information or operations and are
therefore safe to access for any role in the application. We
manually examined the analysis results and marked such
safe pages as false positives.

7 Related Work
In this section, we discuss the most relevant work, includ-
ing specification inference, workflow violation detection,
privilege separation based on user roles, language-based
approaches to secure web applications, and program anal-
ysis for web security.

The capability of automated tools in detecting vulnera-
bilities or bugs can only be as good as the specifications
given to them. Since manually writing specifications is
tedious, time-consuming and error-prone, a wide range
of techniques have been proposed to automatically infer
specifications from the source code of programs. For in-
trusion detection, Wagner and Dean [28] apply static anal-
ysis to derive a model of normal application behavior as an
oracle. Based on the observation that bugs are deviant be-
havior [9], researchers have proposed probabilistic-based
approaches [16, 26] to infer specifications from applica-
tions. However, without taking into account of roles in
web applications, it is difficult to infer privileged pages
which are only intended for a group of users.

Recently, workflow violations have attracted the in-
terests of researchers. Nemesis [7] uses dynamic infor-
mation flow tracking to detect authentication and access
control vulnerabilities in web applications. It requires
developers to specify access control lists for resources.
Similarly, Hallé et al. [13] proposed a runtime enforce-
ment mechanism to only allow navigations that conform
to a state machine model specified by developers. Re-
searchers have proposed various techniques to automat-
ically infer correct workflows. Swaddler [6] first learns
internal states of web applications, and then detects ab-
normal state violations at critical points. Targeting the
detection of Ajax intrusion attacks, Guha et al. [11] lever-
age static analysis on client-side JavaScript code to infer

expected server-side behavior. To detect multi-module
vulnerabilities, MiMoSA [1] takes into account the in-
teractions of different web pages. However, it is not
always easy to distinguish an intended path from an unin-
tended one because of flexible navigation paths that web
applications allow. Its follow-up work Waler [10] uses
a combination of dynamic analysis and symbolic model
checking to first infer invariants from dynamic program
executions, and then report violations of the invariants as
logic vulnerabilities. From a high-level view, the likely
invariants that Waler generates with heuristics are subject
to errors. Furthermore, the inferred invariants may not
always hold due to the limited coverage of dynamic anal-
ysis. Access control vulnerabilities can be considered a
special case of workflow vulnerabilities where cross-role
workflow assumptions are violated. Cross-role compar-
isons allow us to precisely reason about privileged pages
in most cases.

To reduce least-privilege incompatibilities, researchers
distinguish different user roles and separate privileges
based on different roles. Aiming at identifying dependen-
cies on admin privileges in traditional software appli-
cations, Chen et al. [4] run applications without admin
privileges and collect dynamic execution traces. We take
a step further and use roles to represent sets of privileges
in web applications. In our setting, roles form a lattice and
its height is not limited. To reduce developer’s burden on
securing web applications, the CLAMP project [23] pre-
vents leakage of sensitive information by restricting the
flows of user data and isolating the authentication module
of an application. While they also minimize developers’
effort, they secure web applications by modifying appli-
cation code at critical points. Web application vulnerabil-
ity scanners can also automatically detect access control
vulnerabilities. However, they often build shallow and
incomplete sitemaps, missing deep and invisible pages
that are only accessible when valid form data are submit-
ted. This undermines the capabilities of web scanners in
both discovering privileged nodes as well as successfully
performing forced browsing with valid form data.

Previous work has proposed language-based ap-
proaches to secure web applications in a principled way.
SIF [5] accepts specifications either as program annota-
tions at compile time, or as user requirements at run time
to guarantee confidentiality and integrity with informa-
tion flow analysis. Recently, Krishnamurthy et al. [17]
presented an object-capability language for fine-grained
privilege separation for web applications. Unfortunately,
theses language-based approaches do not apply to the
large set of legacy code that is not written in the newly
designed languages.

In the past few years, researchers have focused their
attention on detecting injection vulnerabilities in web ap-
plications with both static analysis [18, 19, 25, 27, 29, 30,



31, 32] and dynamic analysis [2, 3, 22, 24]. Similar to our
static analyzer, Pixy [14] is also a static analyzer built to
analyze PHP applications. It takes advantage of taint anal-
ysis to detect injection vulnerabilities with specifications
on taint sources and sinks. Its implementation hinders it
from scaling to large applications as Pixy has no support
for include resolution and object-oriented features.

8 Conclusions
Developers should enforce access controls throughout
web applications for every privileged page. This paper
proposes a novel approach to detect access control vul-
nerabilities in web applications with minimal manual ef-
fort. Based on the observation that sitemaps presented
to different roles are not identical, our analysis first au-
tomatically infers the set of privileged pages from the
source code of a web application, and then detects access
control vulnerabilities via forced browsing. We added
support for role-based specification rules, and integrated
constraint-solving capabilities with our static analyzer to
systematically explore program paths. Our tool is able
to achieve good coverage and scale to real-world applica-
tions. The evaluation results demonstrate that it is capable
of detecting both unknown and known access control vul-
nerabilities in unmodified web applications with only a
few lines of specifications. For future work, we plan to
support additional language features of PHP, enhance the
string constraint solver, and scale the analysis to larger
web applications.
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