ADsafety
Type-Based Verification of JavaScript Sandboxing

Joe Gibbs Politz Spiridon Aristides Eliopoulos Arjun Guha hrigam Krishnamurthi

Brown University

Abstract /’adnet.com

Web sites routinely incorporate JavaScript programs K-
from several sources into a single page. These sources Paper.com ~ reject
must be protected from one another, which requires ro-
bust sandboxing. The many entry-points of sandboxes
and the subtleties of JavaScript demand robust verifica-
tion of the actual sandbox source. We use a novel type
system for JavaScript to encode and verify sandboxing
properties. The resulting verifier is lightweight and effi-
cient, and operates on actual source. We demonstrate the
effectiveness of our technique by applying it to ADsafe,
which revealed several bugs and other weaknesses.

(widget.js)

(sandbox.js)

1 Introduction Figure 1: Web sandboxing architecture

A mashupWeb page displays content and executes

JavaScript from various untrusted sources. Facebook ap-1. A type system for general JavaScript programs,
plications, gadgets on the iGoogle homepage, and vari- with support for patterns found in sandboxing li-
ous embedded maps are the most prominent examples. brariest

By now, mashups have become ubiquitous. Indeed, web 2. 5 formal definition of safety properties for Yahoo!’s
pages that display advertisements from ad networks are ADsafe sandbox in terms of this type system; and,
also mashups, because they often employ JavaScript forg - 4 yyne hased verification of the ADsafe framework,

animations and interactivity. A survey of popular pages and descriptions of bugs and their fixes found while
shows that a large percentage of them include scripts performing the verification.

from a diverse array of external sources [41]. Unfortu-
nately, these third-party scripts run with the same privi-]
leges as trusted, first-party code served directly from th& Language-based Web Sandboxing

originating site. Hence, the trusted site is susceptible to]]
attacks by maliciously crafted third-party software. The Web browser environment provides references to ob-

This paper addresses language-based Web sandbd€CtS that implement network access, disk storage, geo-
ing systems, one of several mechanisms for securing?Cation, and other capabilities. Legitimate web applica-
mashups. Most sandboxing mechanisms have similafons use them for various reasons, but embedded wid-

high-level goals and designs, which we outline in sec-9€tS can exploit them because all JavaScript on a page
tion 2. In section 3, we review the design and implemen/Uns in the same global environment. A Web sand-
tation of sandboxes and demonstrate the need for tooROX thus attenuates or prevents access to these capa-
supported verification. Section 4 provides a detailed plarPilities, allowing pages to safely embed untrusted wid-
for _the rest of the paper. Our work makes several contri- 1gee ¢s brown.edulresearchiplt/di/adsafetyivi

butions: for our implementation, proofs, and other details.

gets. ADsafe [9], Caja [33]FBJS [13], and Browser- « a static verifier, called JSLirt,which filters out

Shield [35] arelanguage-basedandboxes that employ widgets not in a safe subset of JavaScript, and
broadly similar security mechanisms, as defined by Maf- . 3 runtime libraryadsafe.js , which implements
feis, etal. [27]: DoM wrappers and other runtime checks.

* A Web sandbox includes a static code checker thafrhese conspire to make it safe to embed untrusted wid-

filters out certain widgets that are almost certainly gets, though “safe” is not precisely defined. We will re-
unsafe. This checker is run before the widget is dey,n, to the definition of safety in section 4.

livered to the browser.

» A Web sandbox provides runtinverappersthat at-

tenuate access to thEom and other capabilities. Attenuated Capabilities Widgets should not be able

These wrappers are defined in a trusted runtime jito @rectly referepce various capabilities in the.browser
brary that is linked with the untrusted widget environment. DirectboM references are particularly
' dangerous because, from an arbitraxgym reference,

. St_atlc che_cks are necessarily conservative and cag, 5 widget can simply traverse the object graph and
reject benign programs. Web sandboxes thus SPEGhtain references to all capabilities:
ify how potentially-unsafe programs arewritten

to use dynamic safety checks. var myWindow = elt.ownerDocument.defaultView;
. myWindow.XMLHttpRequest;
This architecture is illustrated in figure 1, where an un-mywindow.localStorage:

trusted widget fronadnet.com is embedded in a page mywindow.geolocation;
from paper.com . The untrusted widget is filtered by
the static checker. If static checking passes, the widget i
rewritten to invoke the runtime library. Both the runtime :) ; ,
library and the checked, rewritten widget must be hostec the runtime library and include many dynamic checks
on a site trusted bpaper.com , and are assumed to be and patterns that need to be verified:

free of tampering. * The runtime manipulatesom references, but re-
turns them to the widget in wrappers. We must ver-
ify that all returned values are in fact wrapped, and
that the runtime cannot be tricked into returning a
directbom reference.

¥Vidgets therefore manipulaterapped bom elements
instead of direct referencesom wrappers form the bulk

Reference Monitors A Web sandbox implements a

reference monitobetween the untrusted widget and the
browser’s capabilities. Anderson’s seminal work on ref-)
erence monitors identifies their certification demands [3, * The runtime callsbom methods on behalf of the

p 10-11]: widget. Many methods, such agpendchild and
removeChild , require direcbom references as ar-
The proof of [a reference monitor's] model se- guments. We must verify that the runtime cannot be
curity requires a verification that the modeled tricked with a maliciously crafted object that mim-
reference validation mechanism is tamper re- ics thepoM interface and steals references.
sistant, is always invoked, and cannot be cir- « The runtime attachesom callbacks on behalf of
cumvented. the widget. These callbacks are invoked by the

browser with event arguments that include direct
poM references. We must verify that the runtime
appropriately wraps calls to untrusted callbacks in
the widget.

Therefore, a Web sandbox must come with a precisely
stated notion of security, and a proof that its static checks
and runtime library correctly maintain security. The end
result should be a quantified claim of safety oakmpos-

sible widgets that execute against the runtime library. * The widget has access to@wm subtree that it is
allowed to manipulate. The runtime ensures that
o the widget only manipulates elements in this sub-

3 Code-Reviewing Web Sandboxes tree. We must verify that variousom traversal

_ _ methods, such asocument.getElementByld and
Imagine we are confronted with a Web sandbox and gjement.getParent , do not allow the widget obtain

asked to ascertain its quality. One technique we might \yrappers to elements outside its subtree.
employ is a code-review. Therefore, we perform an
imaginary review of a Web sandbox, focusing on the de-
tails of ADsafe. Later, we will discuss how to (mostly)
remove people from the loop.

ADsafe, like all Web sandboxes, consists of two inter- 23gint can perform other checks that are not related to Addaf
dependent components: this paper, “JSLint” refers to JSLint with ADsafe checks leedl.

e The runtime wraps manypom functions that
are only conditionally safe. For example,
document.createElement is usually safe, unless it

is used to createacript> tag, which can load ar-

bitrary code. Similarly, the runtime may allow wid- ADSAFE : ADSAFE. get(obj, name)
gets to setssstyles, but a&ss URI-value can also dOJ_OX-SeCUre : get(obj, name)
load external code. We must verify that the argu- Caja © $v.r(S$v. ro(obj), $v.ro(name')

ments supplied to theseom functions are safe. WebSandbox : c(d. obj, d. name)

ADsafe'soom wrappers are calleBuncheswhichwrap ~ 7BJS : a12345.0bj[$FBJS. idx(name)]

collections ofHTML elements. There are twenty Bunch-
manipulating functions that are exposed to the widget— Figure 2: Similar Rewritings fosbif name]
in addition to several private helper functions—that face
all the issues enumerated above and need to be verified.
These functions cannot be verified in isolation, because . .
: . : sgntactlc checks alone cannot determine whether com-
their correctness is dependent on assumptions about th : .
. . ; puted field names are unsafe:
kinds of values they receive from widgets. These as-
sumptions are discharged by the static checks in JSLingbj["__pro" + "to__"];
and other runtime checks to avoid loopholes and CoOMy;

plexities in JavaScript's semantics.

idgets are instead rewritten to use runtime checks that
restrict access to these fields. Figure 2 shows the rewrites
employed by various sandboxes. Some sandboxes insert
JavaScript Semantics A Web sandbox must contend these and other checks automatically, giving the illusion
with JavaScript features that hinder security: of programming in ordinary JavaScript; ADsafe is more
+ Certain JavaScript features are unsafe to use in widspartan, requiring widget authors to insert the dynamic
gets. For example, a widget can usgs to obtain checks themselves; but the principle remains the same.

window , SO it is rejected by JSLint: Web sandboxes also simulate private fields with this
f= function() { return this; } method by introducing fields and then preventing wid-
var myWindow = f(); gets from accessing them. For example, ADsafe stores

.] _ directboM references in the nodes__ field of Bunches,
We must verify that the subset of JavaScript admit-34q placklists the nodes field.

ted by the static checker does not violate the as-

sumptions of the runtime library. . .
* Many JavaScript operators and functions includeThe Reviewability of Web Sandboxes

implicit type conversions and method calls that are\ye have highlighted a plethora of issues that a Web
difficult to reason about. For example, when an op-sandhox must address, with examples from ADsafe. Al-
erator expects a string but is instead given an objectoygh ADsafe’s source follows JavaScript “best prac-
it does not signal an error. Instead, it calls the ob-tjces " the sheer number of checks and abstractions make
ject'stosting method. Itis easy to write a stateful it gjfficult to review. There are approximately) calls to
toString method that returns different strings on three kinds of runtime assertion$) type-testsj regular-
different calls. Such an object can then CircumVe”texpression based checks, astipoM method calls in
dynamic safety checks that are not carefully writ-the 1 800 Loc adsafejs library. Various ADsafe bugs
ten to avoid triggering implicit method calls. These yere found in the past and this paper presents a few more
implicit calls are avoided by carefully testing the (section 9). Note that ADsafe is a small Web sandbox
runtime types of untrusted values, using thegeof relative to larger systems like Caja.

operator. Such tests are pervasive in ADsafe. As a The Caja project asked an external review team to per-
further precaution, ADsafe tries to ensure that wid-form g code review [4]. The findings describe many low-
gets cannot defin@sting ~ andvalueof fields in |eye| details that are similar to those we discussed above.

objects. In addition, two higher-level concerns stand out:
))]) * “[Cajais] hard to review. No map states invariants
JavaScript Encapsulation JavaScript objects have no and points to where they are enforced, which hurts
notion of private fields. If object operations are not re- maintainability and security.”

stricted, a widget could access built-in prototypes (via “Documentation of TCB is necessary for reviewa-
the__proto__ field) and modify the behavior of the con- y

. . X . bility and confidence.”
tainer. Web sandboxes statically reject such expressions: i))]
These remarks identify an overarching requirement for

any review: the need for specifications so that readers can
There are various other dangerous fields that are alsboth determine whether these fit their needs and check
blacklistedand hence rejected by sandboxes. Howeverwhether these are implemented correctly.

obj.__proto__;

4 Verifying a Sandbox: Our Roadmap (20 seconds). Efficency and understandability allow for
incremental use in a tight development loop. Finally, our
Defining Safety Because humans are expensive andype system is accompanied by a soundness proof. This
error-prone, and because the code review needs to be rgroperty accomplishes the actual verification. Thus, the
peated every time the program changes, it is best to atfeatures of comprehensibility, efficiency, and soundness
tomate the review process. However, before we begitombine to make type checking an effective tool for ver-
automating anything, we need some definition of whatifying some of the properties of web sandboxes.
security means. We focus on a definition that is spe- |n order to demonstrate the effectiveness of our type-
cific to ADsafe, though the properties are similar to thepased verification approach, we use type-based argu-
goals of other web sandboxes. From correspondencgients to prove ADsafety. We mostly achieve this (sec-
with ADsafe’s author, we initially obtained the follow- tjon 8) after fixing bugs exposed by our type checker
ing list of intended properties (rewritten slightly to use (section 9). The rest of this paper presents a typed ac-
the terminology of this paper). count of untrusted widgets and the ADsafe runtime.

» The ADsafety claim is predicated on widgets pass-
ing the JSLint checker. Therefore, we need to model
JSLint’s restrictions. We do this in section 5.

Definition 1 (ADsafety) If the containing page does not
augment built-in prototypes, and all embedded widgets
pass JSLint, then:

1. widgets cannot load new code at runtime, or cause * Once we know what we can expect from JSLint,

ADsafe to load new code on their behalf; we can verify the actual reference monitor code in
2. widgets cannot affect theom outside of their des- adsafe.js using type-checking (section 7).
ignated subtree; - Before we can verifjadsafe.js , we need to ac-

count for the details of JavaScript source and model

3. widgets cannot obtain direct references nom ° c :)
the browser environment in which this code runs.

nodes; and X . b
. . Section 6 presents this additional work.
4. multiple widgets on the same page cannot commu-) : , .
nicate. We discuss extensions to verify other Web sandboxes in

section 10.
Note that the first two properties are common to sand-
boxes in general—allowing arbitrary JavaScript to load .
at runtime compromises all sandboxes’ security goals,5 Modeling Secure Sublanguages

and all sandboxes provide mediated access to the DOM , . Lo
by preventing direct access. All web sandboxes’ runtime libraries expect to exe-

We also note that the assumption about built-in pro_cute against widgets that have been statically checked

totypes is often violated in practice [14]. Nevertheless " rewritten, as shown in figure 1. These checks and
like ADsafe, we make this assumption; mitigating it is rewrites enforce Fhat w!dgets are written in a sublan-
outside our scope. Given this definition, our goal is to94@g€ of JavaScript. This sublanguage ought to be spec-

produce a (mostly) automated verification that supportdi€d explicitly. We focus here on modeling the checks
these properties. performed by JSLint, ADsafe’s static checker, which

presents an interesting challenge: there is no formal

. i i specification of the language of JavaScript programs that
Verifying Safety In this paper we perform this automa- 555 jSLint. Instead, the specification is implicit in the
tion using static types, presenting a type-based approag, jiementation of JSLint itself. In this section, we de-

for defining and verifying the invariants of ADsafe. gign g specification for JSLint-ed widgets and give con-
While one could build a custom tool to do this, we are fidence in its correctness.

able to perform our verification by extending (as dis- g 4 fraction of JSLint's static checks are related

cuss_:(_ad in section 11) a type check_er [18] intended foky Apsafe. The rest arint -like code-quality checks.

traditional type-checking of JavaScript. _JSLint also checks the staticmL of a widget. Verifying
We choose a static type system as our tool of choiC&pjs staticimL is beyond the scope of our work; we do

for several reasons. Programmers are familiar with type,q¢ giscuss it further. We instead focus on the security-

systems, and ours is mostly standard (we discuss nonisical static JavaScript checks in JSLint.

standard features in sections 5 and 7). This lessens the

burden on sandbox developers who need to understand 3Because we want a strategy that extends to other sandboges, w

what the verification is saying about their code. Sec-do not try to exploit the fact that JSLint is written in Javaft The

; i ajoler of Caja is instead written in Java, and the filters @uetiters
ond, our type system Is much more efficient than mosﬁ)r other sandboxes might be written in other languages. stia¢egy

Wh_0|e'pr09ram analyses or model checkers,_ Iead_ing 10 @e outline here avoids both getting bogged down in the deddilall
quick procedure for checking ADsafe’s runtime library these languages as well as over-reliance on JavaScrifit itse

fies the type of all other fields:

a := type identifiers
T := Num| Str| True | False | Undef | Null *a,
| RefT|Va.T |paT "arguments” : &,
| TTx..xTxT--—T "caller 8
T|L|TUT|TNT |Array(T _ : "callee” : B
I {*‘: F7|pr0to : |T7 code ‘ T, f< I*Z, .. Widget = pa.Prim U Ref "eval' £7M7
e ()
F = T| 2 | Absent "toString” : Absent,
"valueOf" : Absent

Figure 3: Type Language for ADsafe and Widgets The full list of blacklisted fields is in figure 4. Our type
checker signals a type error on a@-typed field ac-
cess or assignment. This mirrors the behavior of JSLint,
How is JSLint used? The ADsafe runtime makes sevWhich also rejects field accesses and assignments on
eral assumptions about the shape of values it receivedacklisted fields (e.ga['constructor] is rejected by
from widgets. These assumptions are not documenteBOth the type checker and JSLint).
precisely, but they correspond to various static checks 1he Ref tag indicates that the object is mutable. We
in JSLint. To model JSLint, we reflect these checks inUS€ & recursive typgj to indicate that all other fields,
atype calledwidget, which we define below. In sec- * May recursively contaiwidget-typed valueg. JSLint

tion 5.2 we discuss how this type relates to the behavioffi€S to ensure that objects in widgets do not have
of the JSLint implementation. toString andvalueOf properties. We model this with

a typeAbsent, which ensures these fields are not present.
Absent and &, properties are subtly differen, mod-

els fields that are intended to be inaccessible, and hence

looking them up is untypable. In contrast, the typing rule

We expect thaall variables and sub-expressioogwid- 10F Absent field lookup performs the lookup with the type

gets are typable asidget. The ADsafe runtime can thus of theproto field, WhICh we mtrodU(_:e b(_elow. Section 7.1

assume that widgets only manipulatédget-typed val- contains the details of type-checking field access.

ues. Our full type language is shown in figure 3 and in-

troduced gradually in the rest of this section. Functions Widgets can create and apply functions, so
we must widen outvidget type to admit them. Func-
tions in JavaScript are objects with an interoadiefield,

Primitives JSLint admits JavaScript's primitive val- Which we add to allowed objects:

ues, with trivial types:

5.1 Definingwidget

code: [Global U oo - - - — a,

. .. Ref * @
Prim = Num U StrU True U False @

UNull U Undef
The type of thecodefield indicates that widget-functions
We have separate types foue andFalse because they may have an arbitrary number ofidget-typed argu-
are necessary to type-cheasafejs (section 7)Prim ments and returiwidget-typed resultS. It also speci-
is an untagged union type, and our type system acfies that the type of the implicithi s-argument (written
counts for common JavaScript patterns for discriminatinside brackets) may be eith@vidget or Global. The

ing unions. We might initially assume that type Global is not a subtype of#vidget, which expresses
the underlying reason for JSLint’s rejection of all wid-
Widget = Prim gets that containhi s (see Claim 1 below). If thehi s-

annotation is omitted, the type ofi s is T.

Objects and Blacklisted Fields JSLint admits object Prototypes JSLint does not allow widgets to explic-

literals but blacklists certain field names as dangerousitly manipulate objects’ prototypes. However, since field
All other fields are allowed to contain widget values. We -))
40T binds the type variable in the typeT to the whole type,

therefore augment th&idget type to include objects. An i T Thereforep is in fact the typaNVidget,

queCt_type exp“Citly lists the names and_typgs of va_rious 5Thea-- - syntax is a literal part of the type, and means the func-
fields in an object. In addition, the special fieldpeci- tion can be applied to any number of additionatyped arguments.

lookup in JavaScript implicitly accesses the prototypes\Vidget = pa.

we specify the type of prototypes Widget: Str U Num U Null U Bool U Undef U

proto : Object U Function U . . ., Object U Function
..Ref{ *:a, proto : UBunch U Array U RegExp
UString U Number U Boolean,
* 1 Q,
The proto field enumerates several safe prototypes, but code : [Global U afa -+ - —
notably omits DOM prototypes such &gMLElement, "__nodes__" :Array(HTML)UUndef,
since widgets should not obtain direct references to the Ref{ "__star__" :Bool U Undef,
DOM. "caller” &, "callee" : &,
"eval* ,L%,“prototype" : ;’;,
Typing Private Fields In addition to explicitly black- "watch" : &, "constructor” - B,
listed field names, JSLint also blacklists all field names "_proto_" ;& runwateh' &,
that start and end with an underscore. This effectively "arguments” : &, "valueOf' : Absent,
blacklists the proto__ field, which gives direct access "toString" : Absent

to the prototype-chain, and thenodes_ and__star__

fields, whichadsafe.js uses internally to build the
Bunch abstraction. To keep our types simple, we enu-
merate these three fields instead of pattern-matching on

Figure 4: Thewidget type

field names:
safe widgets that JSLint rejec&S he type checker could
"__nodes__" :Array(HTML)UUndef, be used as a replacement for JSLint's ADsafe checks, but
"_proto_" &, these tests give us confidence that checkingvtfiiget
..Ref{ " star__ " :BoolU Undef, type corresponds to what JSLint admits in practice.
*

6 Modeling JavaScript and the Browser

;Ii—glils_tprgtogr e ?]il\(/jeIrsjg‘égpegbxge?h&;bfszg?;e?un__\/erificatio'n of a Web sgndbox must account for the id-

time uses_nodes_ and_star___as private fields. The iosyncrasies ofJavaScrlpt. Italso needsto mod_el the_run-

types specify that ADsafe stores DOM references in thet'me enwronment—pro_vlded by the browser—_m which
nodes _ field. the sandboxed code will execute. Here we discuss how
The full widget type in figure 4 is a formal specifica- we model the language and the browser.

tion of the shape of values thatsafe.js receives from

and sends to widgets. This type is central to our verifica-JavaScript Semantics We use the semantics of Guha,

tion of adsafe.js and of JSLint. et al. [17], which reduces JavaScript to a core semantics

called\ ;5. This latter language models the “essentials”

i . of JavaScript: prototype-based objects, first-class func-
5.2 widget and JSLint Correspondence tions, basic control operators, and mutation.

Though we have offered intuitive arguments for why ~Ass thus omits many of JavaScript's complexities, but
Widget corresponds to the checks in JSLint, we wouldit is accompanied by desugaringunction that maps all
like to gain confidence in its correspondence with the beJavaScript programs (idiosyncrasies included) to behav-

havior of the actual JSLint program that sites use: iorally equivalent\ ;s programs. The transformation ex-
plicates much of JavaScript's implicit semantics. Hence,

Claim 1 (Linted Widgets Are Typable) If JSLint (with we find it easier to build tools that analyze the much
ADsafe checks) accepts a widgethene and all of its smaller) ;5 language than to directly process JavaScript.
variables and sub-expressions canwielget-typed. Does desugaring faithfully map JavaScript X9s?

.) . . , Guha, et al. test their desugaring and semantics on por-
We validate this claim by testing. We use ADsafe’s sam-;q s of the Mozilla JavaScript test suite. On these
ple widgets as positive tests—widgets that should be tyfests,)\]S programs produce exactly the same output as

pable and lintable—and our own suite of negative testy,, ., scrint implementations. Hence, their work substan-
cases (widgets that should be untypable and unlmtable}iates the following two claims

Note the direction of the implication: an unlintable wid-
get may still be typable, since our type checker admits ©®The supplemental material contains examples of the differe.

{ var dom = {

eval: &, append:
setTimeout: (Widget — Widget) x Widget — Int, functi on(bunch) _) _
document: { /+: [Widget U Global|Widget x Widget - -- — Widget =/
write: 2 { //. body of append ... },
o ® comblne:
writeln: lad functi on(array)
/+: [Widget u Global]Widget x Widget--- — Widget =/
b { /I body of combine... },
b o

function (text)

/+: [Widget u Global]Widget x Widget--- — Widget =/
{ /I body of qg... },

/I ... more dom ...

Figure 5: A Fragment of the Type afindow

Claim 2 (Desugaring is Total) For all JavaScript pro-

)) Figure 6: Annotations on thgém object
gramse, desugafe] is defined.

Claim 3 (Desugar Commutes with Eval) For all .))
JavaScript programse, desugafevabaascrip(€)] = and ensure that the runtime library correctly guards crit-
eval, (desugafe]). ical behavior.

The Widget type specifies the shape of widget values
This testing strategy, and the simplicity of implementa-that the ADsafe runtime manipulate§idget is therefore
tion that\ ;5 enables, give us confidence that our toolsused pervasively in our verification afisafe.js . For
correctly account for JavaScript. example, consider a typical Bunch method:

Bunch.prototype.append = functi on(child) {
Modeling the Browser bom ADsafety claims that reiect.global(this);
window.eval is not applied. To validate this claim, V& ©lts = child__nodes
we markeval with & from section 5, which marks return this:
banned fields. There are manyal -like function }

in Web browsers, such amcumentwrite ; these are peop, o objects that ADsafe passes to the widget have

3'59 markedb%.] F'?_E”y’ certr(]eun fl_mctlong, such as Bunch.prototype as theirproto (see figure 4), making
setTimeout , benave likesval when given Strings as ar- nese methods accessible. Their use in the widget is con-
guments. ADsafe does need to call these functions, bul -inaq only by JSLint, so we must type-check these
it is careful to never call them with strings. In our type methods with (only) JSLint's assumptions in mind.
environment, we give them restrictive types that disallow For example, we might assume that argu-
Strl':r.'g arggments_%_ ¢ f th “of ment above should be Bunch, the implicitt hi s argu-
lgure S specifies a fragment of the typevbidow , et should also be Bunch, and it therefore returns a
which carefully specifies the type of unsafe functions iNgunch. However, JSLint does not provide such strong

the enwronmen_t._ The rem:_;umng saiem does not need guarantees. Consider this example, which passes JSLint:
to be fully specified.adsafe.js only uses a small sub-

set of thebom methods. These methods require types.]‘(’u"’:]rc(;g’ac = S?T:Bﬂjz‘;]'l‘(f‘pf’gf‘d;
The browser environment is therefore modeled wiih ’ ’ T
lines of object types (one field per line). This type envi- Here,t hi s is bound towindow , child is a number, and
ronment is essentially the specification of foreipom there are additional arguments. Therefore, we cannot as-
functions imported into JavaScript. sume thatppend has the typéBunch|Bunch — Bunch.
Instead, the most precise type we can ascribe is:
7 Verifying the Reference Monitor [Widget U Global]Widget - - —» Widget
In section 5, we discussed modeling the sublanguage ofhat is,t hi s could bewidget-typed or the type of the
widgets interacting with the sandboxing runtime. In theglobal objectGlobal, and the other arguments may have
case of ADsafe and JSLint, we built up thédget type any subtype ofwidget, which includes strings, num-
as a specification of the kinds of values that the referencbers, and other noBunch types. The runtime check
monitor,adsafe.js , can expect at runtime. In this sec- in append's body (namelyreject_global(this))isre-
tion, we discuss how we use tiddget type to model the sponsible for checking thati s is not the global object
boundary between reference monitor and widget codebefore manipulatingit. Our type checker recognizes such

checks and narrows the broader typentioget after ap-

propriate runtime checks are applied (section 7.1). If T.srrineSET ST-STRINGSET"
such checks were missing, the typetaf s would re- STk str: (str) T Ve,), fEesn--0)
mainWidget U Global, andr et urn t hi s would signal a (fi,-)t < (s1,..07
type error because#idgetUGlobal is not a subtype of the
stated return typ@idget. _ SVT-SF RINGSET ST-SrRING*
Ascribing types to functions provided by the ADsafe ¥/ € (f1,--), f & (s1,...) (hr..)" < str
runtime is therefore trivial. We give all the same type: (fi,..)" < (s1,...)” ’
[Widget U Global]Wwidget - - - — Widget ST-STRING™ EQUIV-STR
(f1,...)” <:Str Str<: ()~

The type checker we extend is not ADsafe-specific, and

requires explicit type annotations. However, since all the

annotations are identical, they are trivial to insert. Fig- Figure 7: Typing and operations on string set types

ure 6 shows a small excerpt of such annotations, which

the checker reads from comments, so programs can run

unaltered in the browser. adding new strings, and subtyping of positive and nega-
tive sets. Both kinds of string sets can also be promoted

Types for Private Functions ADsafe also has a num- to the common supertype sir, which is equivalent to
ber of private functions, which are not exposed to thethe negative string set with no entries.

widget. These functions have types with capabilities the Eduipped with string sets, we can describe the typing
widget does not have access to, suctHasiL. For ex- Of object property dereference. When the property name
ample, ADsafe specifies lanter object, which con- is a string set, we union the types of the properties that
tains functions that traverse tbewm and accumulate ar- are members of the string set, paying careful attention to
rays of bom nodes. These functions all have the type@bsent fields and prototype lookup. Figure 8 shows the
HTML — Undef, and add to an arragsuit that has ule T-Lookup, with examples shown in figure 9.

type Array(HTML). ADsafe can freely use these capa- String sets allow the type checker to avoid certain
bilities inside the library as long as it doesn't hand themnamed properties, as in the last example of figure 9,
over to the widget. Our annotations show that it doesn’twhere thereval property has the bad typ# but the

because these types are not Compatible W"ﬂtget String set type of the index excludesal® . The rule
for property update (not shown here) is similar but sim-

pler, as property update in JavaScript does not recur in-
side prototypes, and only operates on the property names

In section 5 and 6, we presented types for safe object8f the top-level object.

and for values in the browser environment. We build

upon earlier work on type systems that has been apH-Splitting A reference monitor has various runtime
plied to JavaScript [18]. In this section, we present thechecks to ensure that protected objectsam objects
non-standard portions of our type system that we use foand browser functions in ADsafe’s case—are only ma-
typing operations on objects, sensitive conditionals, andhipulated in safe and well-defined ways. For example,
some idiosyncrasies of JSLint andsafe.js . whensetTimeout s first argument is a string, rather than
a function, it exhibitsval -like behavior, which violates
ADsafety’s constraints. Thus we instead give it the type

7.1 Type System Highlights

Object Properties and String Set Types In
JavaScript, object properties (or “fields”) are merely
string indices: everv. x is just an alias foro["x"]

In addition, these strings can be computed and flowging so forces the first argument to be a function and,

through the program before they are used to 100k particular, not a string. Now consider its use:

up fields. Sandboxes thus deal with whitelists and| . function (func,)
. . . ater: uncti on (func, umeou
blacklists of property names. To model this, we enrich,”- Widget x Widget — Widget */ {

(Widget — Widget) x Widget — Num

the type language with sets of strings. For example, it (typeof func === "function”) {
("_nodes__ " ;" proto_")~ is the type of all setTimeout(func, timeout || 0);
strings except”___nodes__* and"_proto_" , and } } else { emor(); }

("x" ,"foo")T is the type of exactlyx" and“foo" .
Figure 7 shows typing rules and operations for stringBecauseADSAFE.later is exported to widgets, it can
sets. Sets support combination via unions, subtyping vianly assume th@/idget type for its arguments, including

{*} is shorthand fo{x : F,,proto : T,,code : T, f1 : F1,...}

(fl,...)Jr—(Sl,...)Jr = VfL¢(817),<f“)+ fE(fl,...>+ Zﬂfl.f:fl
(fla"')_i(slv"')—‘r = (f17"'7517"')_ fe(fla)_ Vflf?éfl
g S ¢ and Undef : T, = Null
0S| | omewse M= |)
whereS, = S — (f1,...)" whereS, = S — (f; | F; # Absent)™
field{{x}, S) = {T; | fi € SandF; = T;} Ufields, ({x}, 5) U fields,({x}, 5)
field71 U Ty, S) = fielddTy,S) Ufield{Tz,S)
field{T", 0) = 1

;Tke,: T, Y;'keg: S S <: Str Tes = field(T,, S)

T-LOOKUP
I'F el efl t Tres ()
Figure 8: Typing object lookup
Object TypeT, | String TypeS | fieldgT,, S) |
{proto : Null, » : Bool,"x" : Num} (x)t Num
{proto : Null,x : Bool,"x" : Num} (o) Num U Bool U Undef
{proto : Object, x : Num} (“toString”)T NumU — Str
{proto : Object, * : Num, "toString" : Absent} ("tostring”)T — Str
{proto: Null,x : Str,"x" : Num,"y" :Bool,"eval" : &} (veval")~ Str U Num U Bool U Undef
{proto: Null, : Str,"x" : Num,"y" :Bool,"eval" : &} | ("eva")T untypable

Figure 9: Examples of property lookup usifiglds

func . A traditional type checker would thus conclude need for these refactorings does not reflect a weakness
thatfunc has typewidget everywhere inater . Because in ADsafe. Rather, they are programming patterns that
Widget includesStr, the invocation oetTimeout would we cannot verify with our type system. To gain confi-
yield a type error—even though this is precisely what thedence that we didn’t change ADsafe’s behavior, we run
conditional inlater is avoiding! ADsafe’s sample widgets against our refactored version
If-splitting is the name for a collection of techniques of ADsafe, and they behave as expected. We describe
that address this problem [39]. Our particular solutionthese refactorings below:
uses a refinement of this idea, called flow typing [18],
which complements type-checking with flow analysis. o ygitional
The analysis informs the type checker that due to th
typeof check, uses ofunc in thethen-branch of the
conditional can in fact beefined from the largewid-
get type of Str U Num U ... to the function type that
setTimeout requires.

reject_name Checks ADsafe uses
ereject_name to check accesses and updates to object
properties inadsafe.js . If-splitting uses these checks
to narrow string set types and type-check object property
references. However, ADsafe does not wget_name
in every case. For example, it uses a regular expression
to parsebom queries, and uses the result to look up
7.2 Required Refactorings object properties. Because our type system makes
conservative assumptions about regular expressions, it
Our type system cannot type check the ADsafe runtimevould erroneously indicate that a blacklisted field may
as-is; we need to make some simple refactorings. Thée accessed. Thus, we add callsdect_name so the

type system can prove that the accesses and assignmefts ADsafety Redux
are safe.

Sections 5 and 7 gave the details of our strategy for mod-
Inlined rej ect gl obal Checks Most Bunch methods eling JSLint and verifyingadsafe.js . In this section,
start by assertingsject_globall thi s), which ensures W€ combine these results and relate it to the original def-
that thi s is Widget-typed in the rest of the method. inition of ADsafety (definitiqn 1). The use of a type sys-
Our type system cannot account for such non-local sidetem allows us to make straightforward, type-based argu-
effects, but once we inlinesject_global , if-splitting ~ Ments of safety for the components of ADsafe.

is able to refine types appropriately (for instance, in the The Iemmas beIovy formally reason aboyt type-
Bunch. prototype.append example early in this section). checked widgets. Claim 1 (section 5.2) establishes that

linted widgets are in fact typable. Thereforee do not
need to type-check widgetdVidget programmers can
continue to use JSLint and do not need to know about
our type checker. However, given the benefits of unifor-
mity provided by a type checker over ad hoc methods

mekeabl eTagName ADsafe’s whitelist of saf®eom ele-
ments is defined as a dictionary:

var makeableTagName =

'div true, "o true, "b" true, ...} _ \ / ! (
{. N. _ rue p_ rue rue I like JSLint (section 9 details one exploit that resulted
This dictionary omits an entry forscript” . The from such an ad hoc approach), programmers may be

document.createElement DOM method creates new well served to use our type checker instead.

nodes. We ensure thadcript> tags are not created by

typing it as follows: Type Soundness Most type systems come with a

document.createElement : ("script')" — HTML soundness theorem that is stateghagyress(well-typed
) o ~ programs do not error) amteservatior(well-typed pro-

ADsafe uses its tag whitelist before calling grams do not violate their types).
document.createElement We do not attempt to establish progress. Establishing
i f (makeableTagName[tagName] === true) { it would require many more refactorings in the ADsafe

document.createElement(tagName); runtime, and many lintable widgets would be untypable.
} Because runtime errors are perfectly acceptable (they
Our type checker cannot account for this check. We in-halt execution before something bad happens), we re-
stead refactor the whitelist (a trick noted elsewhere [29]) Jax some of the typing rules in an existing type sys-
var makeableTagName = tem [18]—which does exhibit progress—to instead allow

{ "div': "divt, "p™ "p", "b™ "b", ok some JavaScript errors (e.g., applying non-function val-
The type of these strings ataiv')T, (p*)+ (")+, ~ uesor looking up fields ofull). We do still need an “un-
etc., SO thatmakeableTagNameftagName] has type typed progress” theorem that states that our JavaScript

("div* ,"p" ,"b" ,...)*. Since this finite set of strings semantics fully models all error cases. This theorem is
excludes'script' , it now matches the argument type Provided by Guha, et al. [17]. _ _
of createElement . We restate and prove preservation for the extensions

to Guha et al.'s type system, which is applicableatb
. o JavaScript program’sStated formally:

7.3 Cheating and Unverifiable Code vascript prog y
A complex body of code like the ADsafe runtime cannot Lemma 1 (Type Preservation) If, for an expressior,
be type-checked from scratch in one sitting. We therelypeT’, environment” and abstract heap,

fore found it convenient to augment the type system with 1. | o,

a cheat construct that asc_:rib(_as a_given type to an ex- o S:TFe:T,and

pression without descending into it. We could thus use
cheat when we encountered an uninteresting type error . o))
and wanted to make progress. Our goal, of course, waen there exists &’ with £’ - 0" andX’; I' - e’ - T..

to ultimately remove evergheat from the program. o q . oon 6 des the ab
We were unable to remove tweoeat s, leaving eleven OUr assumed environment (section 6) provides the ab-

unverified source lines in the 1,800 LOC ADsafe run- stra_ct_heapi and abstract enwron_meﬁ‘t ‘_Nh'Ch model
time. We can, in fact, ascribe interesting types to thesdl€ initial state of the browses, Given this lemma, we
functions, but checking them is beyond the power of ourcan .make type-base.d statements about the combination
type system. The details may not be of interest to the’ Widgets ancidsafe.js

general reader, but the web content contains the full body 7ror the formal proof, see Guha et al. [18] and the supplerhenta
of unverified code and a discussion of its types. material on the web.

3. oge = o'e;

10

Theorem 1 (ADsafety) For all widgetsp, if ADSAFE.go("AD_", function (dom, lib) {

1. all subexpressions pfare Widget-typable, var myWindow, fakeNode, fakeBunch, realBunch;
2. adsafe.js istypable, fakeNode = {
3. adsafe.js runs beforep, and appendChild: functi on(elt) {
. . myWindow = elt.ownerDocument.defaultView;
4. op — o'p’ (single-step reduction), 1,
then at every step/, p’ also has the typwidget. Lz?t’:‘:me:n;?il""’

This theorem says that for all widgetswhose subex- b
pressions ar&vidget-typed, if adsafe.js type-checks fakeBunch = {"__ nodes__ ": [fakeNodel]};
and runs in the browser environment,can take any Bunch = dom.tag(s")
. . . realBunch = dom.tag("p");
number of steps and still have theidget type. Since _ fakeBunchvalue = realBunch.value:
types are preserved, two further key lemmas hold during takeBunch.value("™): // calls phony appendChild

execution:
myWindow.alert("hacked");

Lemma 2 (Widgets cannot load new code at runtime)
For all widgetse, if all variables and sub-expressions of
e are Widget-typed, there does not load new code. Figure 10: Exploiting JSLint

By section 6,eval -like functions are@-typed, hence
cannot be referenced by widgets or by the ADsafe runyy,
time. Furthermore, functions that ordyal when given
strings, such asetTimeout , have restricted types that
disallowstring -typed arguments. Therefore, neither the
widget nor the ADsafe runtime can load new codell 9 Bugs Found in ADsafe

idgets cannot communicate This claim is false;
section 9 presents a counterexample.

Lemma 3 (Widgets do not obtain DOM references) We have implemented the type system presented in this
For all widgetse, if all variables and sub-expressions of paper, and applied it to the ADsafe source. The imple-
e are Widget-typed, there does not obtain direcboM mentation is about 3,000 LOC, and takes 20 seconds to
references. checkadsafe.js (mainly due to the presence of recur-
sive types). In some cases, type-checking failed due to
the weakness of the type checker; these issues are dis-
cussed in section 7.2. The other failures, however, rep-
resent genuine errors in ADsafe that were present in the
production system. The same applies to instances where
JSLint and our typed model of it failed to conform. All
the errors listed below have been reported, acknowledged
by the author, and fixed.

The type ofboM objects is not subsumed by tidédget
type. All functions in the ADsafe runtime have the type:

[Widget U Global]Widget - - - — Widget

Thus, functions in the ADsafe runtime do not lea&m
references, as long as they are only applietividget-
typed values. Since all subexpressions of the widget
areWidget-typed, all values that passes to the ADsafe
runtime arewidget-typed. By the same argumentgan- Missing Static Checks JSLint inadvertently allowed

not directly manipulat@om references either. B widgets to include underscores in quoted field names. In
particular, the following expression was deemed safe:
Widgets can only manipulate their DOM subtree faeBunch = { " _nodes_ ™ [fakeNode] };

We cannot prove this claim with our tools. JSLint o . . .
enforces this property by also verifying the static A malicious widget could then create an object with an
HTML of widgets; it ensures that all elememps appendChid method, and trick the ADsafe runtime into

are prefixed with the widget'sb. The wrapper for invoking it with a direct reference to asrML element,
document.getElementByld ensures that the widgeb which is enough to obtaiwindow and violate ADsafety:
is a prefix of the elemenb. Verifying JSLINt'SHTML fakeNode = {
checks is beyond the scope of this work. appendChild: functi on(elt) {
In addition’ the wrapper fOIEIement.parentNode myWindow = elt.ownerDocument.defaultView;
checks to see if the current element is the root of the wids, }
get'sbom subtree. It is not clear if our type checker can
express this property without further extensions. The full exploit is in figure 10.

11

ADSAFE.go("AD_", function (dom, lib) { check, to ensure that widgets do not programmatically

var called = fal se; load external resources Vi s
var obj =
"toStriJng":{ function() { Bunch.prototype.style = functi on(hame, value) {
if (called) { i f (lurllitest(value)) { // regex match?
return "url(evil.xml#exp)";) error();
}
el se { o
called = true; L
return "dummy"; . . .
} . dmmy Thus, the following widget code would signal an error:
) } someBunch.style("background"”,
b _ "url(http://evil.com/image.jpg)");
dom.append(dom.tag("div"));
dom.q("div").style("MozBinding", o); The bug is that ifvalue is an object instead of a
b string, the regular-expressiaest method will invoke
<l-- evil.xml --> value.toString()
<2xml version="1.0"?> A malicious widget can construct an object with a
<bindings><binding id="exp"> statefultostring method that passes the test when first
<|mpIementat|0n><constructor> | d d b | | .
document.write("hacked") applied, and su sequently returr_1$ a maliciogs. In
</constructor></implementation> Firefox, we can use such an object to loadxan re-
</binding></bindings> sourcé that contains arbitrary JavaScript (figure 11).
We ascribe types to JavaScript's built-ins to prevent
Figure 11: Firefox-specific Exploit for ADsafe implicit type conversions. Therefore, we require the ar-
gument ofRegexp.test to have typestr. However, since
Bunch.prototype.style can be invoked by widgets, its

This bug manifested as a discrepancy between ouyPe isWidget x Widget — Widget, and thus the type of

model of JSLint as a type checker and the real JSLintf’a';J_?, |st:Nidget. ixed by addi _
Recall from section 5 that all expressions in widgets, ' > Pug was fixed by adding a neswing_check
must have typewidget (defined in figure 4). For function to ADsafe, which is now called i8 functions.
' All these functions are not otherwise exploitable, but a

" d ": [fakeNod to type asWidget, the L)
f ;)r:joesesT ﬁ[ealldemou:,l riave typAr?;F;/<HTML>SUndef missing check would cause unexpected behavior. The
— — ~_ fixed code is typable.

However[fakeNode] has typewidget, which signals the

error.
JSLint similarly allowed__proto_ " and other fields Counterexamples to Non-Interference Finally, a
to appear in widgets. We did not investigate whether theytype error inBunch.prototype.getStyle helped us gen-

can be exploited as above, but setting them causes unagrate a counterexample to ADsafe’s claim of widget non-
ticipated behavior. Fixing JSLint was simple once ourinterference (definition 1, part 4). Thetstyle method
type checker found the error. (An alternative solutionis available to widgets, so its type must bédget —
would be to use our type system as a replacement fowidget. The following code is the essencegefstyle

JSLint.) We note that when the ADsafe option of JSLint g nch prototype. getstyle = function (name) {

was first announcetlits author offered: var sty;
reject_global(t hi s);
If [a malicious client] produces no errors when sty = window.getComputedStyle(this._node_);
linted with the ADsafe option, then | will buy) return sty[namej;

you a plate of shrimp.

_)) The bug above is thatme is unchecked, so it may index
After this error report, he confirmed, “I do believe that | arbitrary fields, such as proto__

owe you a plate of shrimp”.
y P P someBunch.getStyle("__proto__");

Missing Runtime Checks Many functions This gives the widget a reference to the prototype of the
in adsafe.js incorrectly assumed that they Drowser'scssstyleDeclaration objects. Thus the re-
were applied to primitive strings. For example, turn type of the body is nawidget, yielding a type error.

Bunch.prototype.style began with the following A widget cannot exploit this bug in isolation. How-
ever, it can replace built-in methods ©§s style objects

8tech.groups.yahoo.com/group/caplet/message/
44 %https://developer.mozilla.org/en/XBL

12

and interfere with the operation of the hosting page andype system’s features onto existing static checks, the
other widgets that manipulate styles in JavaScript. sandbox designer can work with the type system to guar-
This bug was fixed by adding mject_name check antee safety constructively from the start. Tweaks and
that is now used in this and other methods. Despiteextensions to the type system are certainly possible—for
the fix, ADsafe still cannot enforce non-interference,example, one may want to design a sandboxing frame-
since widgets can reference and affect properties of othework that forbids applying non-function values and look-

shared built-ins: ing up fields ofnull, which the current type system al-
var ar = [[; lows (section 8). . _
arr.concat.channel = "shared data™ ADsafe shares many programming patterns with other

Th thor of ADsaf inted out the ab | (yVeb sandboxes (section 3), but doesn’t cover the full
€ author of ALsafe pointed out th€ above example an ange of their features. We outline some of the exten-
retracted the claim of non-interference.

sions that could be used to verify them here:

Prior Exploits Before and during our implementation, Reasoning About Strings Our type system lets pro-

other exploits were found in ADsafe and reported [27- - ;
. rammers reason about finite sets of strings and use these
29]. We have run our type checker on the explonableg 9

sets to lookup fields in objects. To verify Caja, we would
code, and our tools catch the bugs and report type €I eed to reason about string patterns. For example, Caja

uses the field nametbo'+ * w_ " to store a flag that
Fixing Bugs and Tolerating Changes Eachofourbug determines if the fieldoo" is writable.

reports resulted in several changes to the source, which

we tracked. In ition h han fe.j . .
e tracked additio to_ these cha gadsa_e IS . Abstracting Runtime Tests Our type system accounts
also underwent non-security related refactorings durmq o . .
or inlined runtime checks, but requires some refactor-

the course of this work. Despite not providing its author. : .
i . ings when these checks are abstracted into predicates.
our type checker, we were easily able to continue type-) . .
' -Larger sandboxes, like Caja, have more predicates, so
checking the code after these changes. One change in- ; . . :
. refactoring them all would be infeasible. We could in-
volved adding a humber of nesunch methods to extend . : .
. . . stead use ideas from occurrence typing [39], which ac-
theAPl. Keeping up-to-date was a simple task, since all . :
; ... counts for user-defined predicates.
the newsunch methods could be quickly annotated with
thewidget type and checked. In short, our type checker

has shown robustness in the face of program edits. ~ Modeling the Browser Environment ADsafe wraps a
small subset of theom ApI and we manually check that

this subset is appropriately typed in the initial type envi-
10 Beyond ADsafe ronment. This ggprgach d)(/)eyspnot scaleto a sa);pdbox that
wraps more of theowm. If the type environment were
instead derived from the C+BoM implementation, we
Se(f/'\/ould have significantly greater confidence in our envi-
ronmental assumptions.

Our security type system is capable of verifying useful
properties about JavaScript programs in general.
tions 5, 6, and 7 present carefully craftgghesthat we
ascribe to the browser API aradisafe.js , and use to
model widget programs. Proving these types hold over

the ADsafe runtime library and JSLint-ed widgets guar-11 Related Work

antees robust sandboxing properties for ADsafe.

Verifications for other sandboxes would require the de-Verifying JavaScript Web Sandboxes ADsafe [9],
sign of newtypes to accurately model checked, rewritten BrowserShield [35], Caja [33], andBJs [13] are
programs and their interface to the sandbox, but not necarchetypal Web sandboxes that use static and dynamic
essarily a newiype systemindeed, our type-based strat- checks to safely host untrusted widgets. However, the se-

egy provides a concrete roadmap for sandbox designergnantics of JavaScript and the browser environment con-
spire to make JavaScript sandboxing difficult [17, 26].

Maffeis et al. [27] use their JavaScript semantics to
develop a miniature sandboxing system and prove it cor-
the sandbox and untrusted code: and Pect. Armed with the insight gained by their semantics

’ ’ _and proofs, they find bugs irBJs and ADsafe (which
3. check that the body of the sandbox adheres to thi§e also catch). However, they do not mechanically ver-
interface by type-checking. ify the JavaScript code in these sandboxes. They also for-

In particular, developers afewsandboxes should be malize capability safety and prove that a Caja-like sub-
aware of this strategy. Rather than trying to retrofit theset is capability safe [30]. However, they do not verify

1. Formally specify the language of widgets using a
type system;

13

the Caja runtime or the actual Caja subset. In contrasfjows, although we do use it to discover that ADsafe fails
we verify the source code of the ADsafe runtime and acto enforce a desirable information flow propertsex’s
count for ADsafe’s static checks. authors acknowledge that it is unsound, and Chugh et al.

Taly, et al. [38] develop a flow analysis to find bugs do not provide a proof of soundness for their flow analy-
in the ADsafe runtime (that we also catch). They sim-sis. Our type system and analysis are proven sound.
plify the analysis by modeling ECMAScript 5 strict Other static analyses for JavaScript [16, 21, 22] are not
mode, which is not fully implemented in any current Web specifically designed to encode and check security.
browser. In contrast, ADsafe is designed to run on cur-

rent browsers, and thus supports older and more permis-

sive versions of JavaScript. We use the semantics an@yPe Systems Our t_ype checker i_s _based on that of
tools of Guha, et al. [17], which does not limit itself to Guha, et al. [18]. Theirs has a restrictive type system for

the strict mode, so we find new bugs in the ADsafe run-CPI€Cts that we fully replace to type check ADsafe. We
time. In addition, Taly, et al. use a simplified model of &S0 add simple extensions to théiow typingsystem
JSLint. In contrast, we provide a detailed, type-theoretid® &ccount for additional kinds of runtime checks em-

account of JSLint, and also test it. We can thus find Seployed by ADsafe. Their paper surveys other JavaScript
curity bugs in JSLint as well. type systems [2,19] that can type-check other patterns

Lightweight Self-Protecting JavaScript [31,34] is a but_ ha_/e not been useq to verify security-critical code,
unique sandbox that does not transform or validate widVich is lthe C?O"_"I %ffth's paper. Our tre%tment of ob-
gets. It instead solely uses reference monitors to wra Fets Is aiso derived from ML-ART [36], but acco_unts
capabilities. These are modeled as security automatd?" JavaScript features and patterns such as function ob-

but the model ignores the semantics of JavaScript. IASCtS: Prototypes, and objects as dictionaries.
contrast, this paper and the aforementioned works are

founded on detailed JavaScript semantics. Language-Based Security Schneider et al. [37] sur-
Yu, et al. [40] use JavaScript sandboxing techniquesey the design and type-based verification of language-
to enforce various security policies on untrusted codepgsed security systems. JavaScript Web sandboxes are
Their semantic model, CoreScript, simplifies them inlined reference monitors [12]. Guha, et al. [17] offer a
and scripting language. CoreScript cannot be used t@ype-based strategy to verify these, but their approach—
mechanically verify the JavaScript implementation of awhich depends on building a custom type rule around
Web sandbox, which is what we present in this paper. each check in the reference monitor—does not scale to
a program of the size of ADsafe. Furthermore, their
Modeling the Web Browser There are formal mod- custom rules essentially hand-code if-splitting, which we
els of Web browsers that are tailored to model whole-obtain directly from the underlying type system.
browser security properties [1, 6]. These do not model Cappos, et al. [7] present a layered approach to build-
JavaScript's semantics in any detail and are therefore oling language sandboxes that prevents bugs in higher lay-
thogonal to semantic models of JavaScript [17, 26] thakers from breaking the abstractions and assurances pro-
are used to reason about language-based Web sandboxeigled by lower layers. They use this approach to build a
In particular, ADsafe’s stated security goals are lim-new sandbox for Python, whereas we verify an existing,
ited to statements about JavaScript and ke (sec- third-party JavaScript sandbox. However, our verifica-
tion 4). Therefore, we do not require a comprehensiveion techniques could easily be used from the onset to
Web-browser model. build a new sandbox that is secure by construction.

Static_Anegsis of JavaScript G_ateKeeper_ [15] uses a IFrames IFrames are widely used for widget isola-
combination o.f program a”"’_"YS'S and runtlm_e ch(_-:-cks t%ion. However, JavaScript that runs in an IFrame can still
apply and verify security policies on JavaScript widgets. pen windows, communicate with servers, and perform

GateKeeper's program analysis is designed to mode ther operations that a Web sandbox disallows. Further-
more complex properqes of untrusted code than we a.dfnore inter-frame communication is difficult when de-

dress by modeling JSLint. However, the soundness of 'tgired' there are proposals to enhance IFrames to make
static analysis is proven relative to only a restricted sub- '

) communication easier and more secure [20]. Language-
language of JavaScript, whereass handles the full lan- L . :
. : . ndboxing i mewh rthogonal in i

guage. In addition, they do not demonstrate the validit pased sandboxing is somewhat orthogonal in scope, is

. . Ymore flexible, and does not require changes to browsers.
of their run-time checks.

Chugh et al. [8] andveEx [5] use program analy-
sis to detect possibly malicious information flows in Runtime Security Analysis of JavaScript There are
JavaScript. Our type system cannot specify informatiorvarious means to secure widgets that do not employ

14

language-based security. Some systems rely on mod- Usenix Conference on Web Application Develop-
ified browsers, additional client software, or proxy ment (WebAppsp010.

servers [10, 11, 23-25, 32, 40]. Some of these propose al-

ternative Web programming APIs that are designed to be[7] J. Cappos, A. Dadgar, J. Rasley, J. Samuel,
secure. Language-based sandboxing has the advantage |. Beschastnikh, C. Barsan, A. Krishnamurthy, and

of working with today’s browsers and deployment meth- ~ T. Anderson. Retaining Sandbox Containment De-
ods, but our verification ideas could potentially apply to spite Bugs in Privileged Memory-Safe Code. In
the design of some of these systems, too. ACM Conference on Computer and Communica-
tions Security (CC$R010.

Acknowledgments [8] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner.
We thank Douglas Crockford for discussions, open- ~ Staged information flow for JavaScript. ARCM
mindedness, and insightful feedback (and the promise ~ SIGPLAN Conference on Programming Language
of certain crustaceans); Mark S. Miller for enlighten- Design and Implementatio@009.

ing discussions; Matthias Felleisen, Andrew Ferguson,
and David Wagner for numerous helpful comments that
helped us understand weaknesses in exposition; the NSF

for financial support; and StackOverflow, as well as .
: : i . “[10] A. Dewald, T. Holz, and F. C. Freiling. ADSand-
Claudiu Saftoiu (our lower-latency version of StackOver box: Sanboxing JavaScript to fight Malicious Web-

flow), for unflagging attention to detail. sites. InSymposium On Applied Computing (SAC)

9] D. Crockford. ADSafe. www.adsafe.org
2011.

2010.
References
[11] M. Dhawan and V. Ganapathy. Analyzing in-

[1] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and formation flow in JavaScript-based browser exten-

D. Song. Towards a Formal Foundation of Web sions. InComputer Security Applications Confer-

Security. InNIEEE Computer Security Foundations ence 2009.

Symposiun2010.

o [12] U. Erlingsson.The Inlined Reference Monitor Ap-

[2] C. Anderson, P. Giannini, and S. Drossopoulou. proach to Security Policy EnforcemeifthD thesis,

Towards type inference for JavaScript. FEu- Cornell University, 2003.

ropean Conference on Object-Oriented Program-

ming, 2005. [13] Facebook. FBJS, 201http://developers.

[3] J. P. Anderson. Computer Security Technology ~ 2c€P00k.com/docs/fbjs/

glanntin% Stgdy. Tecr;nicaoll F:/Ieport ESD'IF;'73;'51'[14] M. Finifter, J. Weinberger, and A. Barth. Prevent-
eputy Tor Lommand an anagement Systems, ing Capability Leaks in Secure JavaScript Subsets.

HQ Electronic Systems Division (AFSC), L. G. e -
In N k D -
Handscom Field, Bedford, Massachusetts 01730, n Network and Distributed System Security Sym

osium 2010.
October 1972. posium
[4] 1. Awad, T. Close, A. Felt, C. Jackson [15] S. Guarnieri and B. Livshits. GATEKEEPER:
B. Laurie. E Lee K.-P. Lee. D.-S. Hopwood, Mostly static enforcement of security and reliabil-
3 Nagra, E Sachs M. Samuel M. Sta3,/ ity policies for JavaScript code. IISENIX Secu-

and D. Wagner. Caja external security re- rity Symposium (SSYMJ009.

view. Technical report, Google Inc., 2008.
http://google-caja.googlecode.
com/files/Caja_External_Security
Review_v2.pdf

[16] A. Guha, S. Krishnamurthi, and T. Jim. Static anal-
ysis for Ajax intrusion detection. limternational
World Wide Web Conferenc2009.

M. Winslett. VEX: Vetting browser extensions for Essence of JavaScript. European Conference on
security vulnerabilities. IRUSENIX Security Sym- Object-Oriented Programming@010.
osium 2010.
PoSIM [18] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing
[6] A.Bohannon and B. C. Pierce. Featherweight Fire- Local Control and State Using Flow Analysis. In
fox: Formalizing the Core of a Web Browser. In European Symposium on Programmi2@11.

15

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

P. Heidegger and P. Thiemann.
for dynamically-typed, object-based languages:
Strong updates for JavaScript. ACM SIGPLAN
International Workshop on Foundations of Object-
Oriented Language<009.

(33]

C. Jackson and H. J. Wang. Subspace: Secure
Cross-Domain Communication for Web Mashups.
In International World Wide Web Conference
2007.

S. H. Jensen, A. Mgller, and P. Thiemann. Type
analysis for JavaScript. Ilinternational Static
Analysis Symposiur2009.

S. H. Jensen, A. Mgller, and P. Thiemann. Interpro-
cedural analysis with lazy propagation. Imerna-
tional Static Analysis Symposiy2010.

T. Jim, N. Swamy, and M. Hicks. BEEP: Browser-
enforced embedded policies. limternational
World Wide Web Conferenc2007.

E. Kiciman and B. Livshits. AjaxScope: A platform
for remotely monitoring the client-side behavior of
web 2.0 applications. I8ymposium on Operating
System Principle2007.

M. T. Louw, K. T. Ganesh, and V. Venkatakrish-
nan. AdJail: Practical enforcement of confidential-

ity and integrity policies on Web advertisements. In [37]

USENIX Security Symposium (SSYR010.

S. Maffeis, J. Mitchell, and A. Taly. An Operational
Semantics for JavaScript. KSIAN Symposium on
Programming Languages and Systepeges 307—

325, 2008.

S. Maffeis, J. C. Mitchell, and A. Taly. Isolating
JavaScript with Filters, Rewriting, and Wrappers.
In European Symposium on Research in Computer
Security (ESORICSP009.

S. Maffeis, J. C. Mitchell, and A. Taly. Run-
time enforcement of secure javascript subsets. In
W2SP’'09 |IEEE, 2009.

S. Maffeis, J. C. Mitchell, and A. Taly. Object Ca- [40]

pabilities and Isolation of Untrusted Web Applica-
tions. INIEEE Symposium on Security and Privacy
IEEE, 2010.

S. Maffeis, J. C. Mitchell, and A. Taly. Object capa- [41]

bilities and isolation of untrusted Web applications.
In IEEE Symposium on Security and Priva2910.

J. Magazinius, P. H. Phung, and D. Sands. Safe
Wrappers and Sane Policies for Self Protecting
JavaScript. I'OWASP AppSec Resear2010.

16

(34]

(35]

(36]

(38]

9] S. Tobin-Hochstadt and M. Felleisen.

Recency type$32] L. Meyerovich and B. Livshits. Conscript: Spec-

ifying and enforcing fine-grained security policies
for javascript in the browser. [fFEEE Symposium
on Security and Privagy2010.

M. S. Miller, M. Samuel, B. Laurie, |. Awad,

and M. Stay. Caja: Safe active content
in sanitized JavaScript. Technical report,
Google Inc., 2008. http://google-

caja.googlecode.com/files/caja-spec-
-2008-06-07.pdf

P. H. Phung, D. Sands, and A. Chudnov.
Lightweight self-protecting JavaScript. IACM
Symposium on Information, Computer and Com-
munications Security2009.

C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. BrowserShield: Vulnerability-Driven
Filtering of Dynamic HTML. InSymposium on Op-
erating Systems Design and ImplementatRG06.

D. Rémy. Programming objects with ML-ART, an
extension to ML with abstract and record types.
In M. Hagiya and J. Mitchell, editorsTheoreti-
cal Aspects of Computer Softwarelume 789 of
Springer Lecture Notes in Computer Sciermages
321-346. Springer Berlin / Heidelberg, 1994.

F. B. Schneider, G. Morrisett, and R. Harper. A
Language-Based Approach to Security. In R. Wil-
helm, editorInformatics volume 2000 ofSpringer
Lecture Notes in Computer Scienpages 86—101.
Springer Berlin / Heidelberg, 2001.

A. Taly, U. Erlingsson, M. S. Miller, J. C. Mitchell,
and J. Nagra. Automated analysis of security-
critical JavaScript APIs. IHEEE Symposium on
Security and Privacy2011.

The De-
sign and Implementation of Typed Scheme. In
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (PORLpages 395—
406, 2008.

D. Yu, A. Chander, N. Islam, and I. Serikov.
Javascript instrumentation for browser security. In
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Language2007.

C. Yue and H. Wang. Characterizing Insecure
JavaScript Practices on the Web. liternational
World Wide Web Conferenc2009.

