
Toward Secure Embedded Web Interfaces

Baptiste Gourdin
LSV ENS-Cachan

gourdin@lsv.ens-cachan.fr

Chinmay Soman
Stanford University

cpsoman@stanford.edu

Hristo Bojinov
Stanford University

hristo@cs.stanford.edu

Elie Bursztein
Stanford University

elie@cs.stanford.edu

Abstract
We address the challenge of building secure embedded
web interfaces by proposing WebDroid: the first frame-
work specifically dedicated to this purpose. Our design
extends the Android Framework, and enables developers
to create easily secure web interfaces for their applica-
tions. To motivate our work, we perform an in-depth study
of the security of web interfaces embedded in consumer
electronics devices, uncover significant vulnerabilities in
all the devices examined, and categorize the vulnerabili-
ties. We demonstrate how our framework’s security mech-
anisms prevent embedded applications from suffering the
vulnerabilities exposed by our audit. Finally we evaluate
the efficiency of our framework in terms of performance
and security.

1 Introduction

Virtually all network-capable devices, including sim-
ple consumer electronics such as printers and photo
frames, ship with an embedded web interface for easy
configuration. The ubiquity of web interfaces can be
explained by two key factors. For end users, they are easy
to use because the interaction takes place in a familiar
environment: the web browser. For device manufacturers,
providing a web-based interface is cheaper than develop-
ing and maintaining custom software and installers.

Though web interfaces are clearly an effective solution
from a usability perspective, considerable expertise is
required to make them secure [50]. Our first security
audit of embedded web interfaces ([7]) provided the
initial impetus for our work. To underscore the impact of
these earlier results, we point out that compromising a
networked device can be used as a stepping stone towards
compromising the local network [45]. For example,
compromising a photo frame in an office building
can lead to an infection of a Web browser connecting

to the photo frame. The infection can subsequently
spread to the entire local network, and also result in
privacy breaches [8]. For instance a router web interface
can be exploited to steal remotely the WiFi WPA key
and gain access to the entire network. Mitigating the
threats posed by embedded devices, including routers,
is becoming a critical task, as pointed out repeatedly in
recent work [7, 45, 19, 27]. In the absence of a reference
framework for building embedded web interfaces
each vendor is forced to develop its own stack, which
usually leads to security problems. This work takes the
initial studies a step further and proposes a solution
that uniformly addresses all of the known sources of
vulnerabilities in embedded web applications.

We have chosen to build our reference implementation
as an Android application for several reasons. First,
Android has quickly become the premier open embedded
operating system on the market, shipping not only on
tens of millions of smart-phones every year, but also on
specialized devices such as the Nook e-book reader by
Barnes&Noble. Second, Android’s de facto bias towards
the ARM architecture makes the operating system
suitable for embedding in other consumer devices such
as cameras, photo frames, and media hubs. Third, the
security architecture adopted by Android is particularly
well-suited for embedded single-user devices as it casts
the system security question into one of effectively
isolating concurrent, possibly vulnerable applications.

Our main contribution in this paper, WebDroid [16], is
the first open-source web framework specifically designed
for building secure embedded web interfaces:

• WebDroid is designed, implemented and evaluated
based on the knowledge we gained by auditing more
than 30 web embedded devices’ web interfaces over
the two last years, and the more that 50 vulnerabili-
ties we discovered on these devices.

1



• WebDroid is a novel composition of security design
principles and techniques with a simple and intuitive
configuration interface where most of the security
mechanisms are enabled by default—including lo-
cation and network address restrictions, as well as
server-side CSP and frame-busting.

• WebDroid also features application-wide authen-
tication that ensures that every embedded web
application will have a secure login and logout
mechanism which is resistant to attacks, including
brute-forcing and session hijacking.

Similar to previous work done on building secure web
servers (e.g., the OKWS server [29]), our framework
separates the core web server components from the
applications to protect against low level attacks. Unlike
previous systems however, our framework also mitigates
all of the known application-level attacks including XSS
(Cross-Site Scripting) [13], CSRF (Cross Site Request
Forgery) [50], SQL injection [50] and Clickjacking [44].

The remainder of the paper is organized as follows: in
Section 2 we briefly go through the background necessary
to understand this work. In Section 3 we present and
categorize the vulnerabilities we found during our audit
work. Section 4 develops the threat model that we address
with our system design depicted in Section 5. In Sec-
tion 6 we highlight the main defense mechanisms that are
employed in our implementation. Section 7 presents the
user interface for managing web applications. Section 9
discusses two application case studies and describes how
WebDroid security mechanisms help to mitigate vulnera-
bilities. In Section 10 we provide a summary of relevant
related work, and Section 11 concludes the paper.

2 Background

The embedded device market is growing rapidly. For
example, in the 4th quarter of 2008, 7 million digital
photo frames were sold, almost 50% more than in the 4th
quarter of 2007. Similarly, analysts forecast that by 2012,
12 million Network Attached Storage (NAS) devices
will be sold each year. At the current pace, devices with
embedded web servers will outnumber traditional web
servers in less than 2 years; Netcraft reported that there
are roughly 40 millions active web servers on the Internet
in June 2009 [35].

In order to differentiate their products from those of
their competitors, vendors are constantly adding novel
features to their products, such as BitTorrent support in
NAS devices.

As the number of features increases, a need for a
powerful management interface on the device rapidly
arises. To offer this in an intuitive, convenient, and
cost effective way, vendors have started to embed web
interfaces in their products. While the most well known
use of these web interface is to configure network
equipments such as WiFi access points and routers,
many other embedded devices include web interfaces.
For instance digital photo frames are an excellent
example of this expansion of features and need for a rich
configuration interface. Thus, it is safe to say that web
interfaces have become the norm in managing embedded
devices.

Our audit uncovered abundant examples of features
that were hastily implemented and vulnerable to web at-
tacks. For example the Flickr integration in digital photo
frames led to XSS attacks. What is especially trouble-
some is the fact that we found CSRF exploits in managed
network switches aimed for datacenter use. Attacks on
such devices could allow remote users to reboot them and
effectively DoS an entire company intranet in one step.

Figure 1: The web interface embedded into a Samsung
photo frame.

Figure 1 is a screenshot of the interface embedded in
a high-end Samsung photo frame. This interface allows
the user to control the frame’s display remotely, add an
Internet photo feed to be displayed on the frame, and
to find out various statistics. Although at first sight this
interface looks perfectly designed, we found out that in
reality it is completely flawed: for example, it is possible
to bypass the authentication process to view photos and
it is possible to inject an exploit via a CSRF and XSS
vulnerability that allows to extract photos and send them
to a remote server.

2



3 Embedded Web Application Security:
State of the Art

Over the last two years we audited the web interfaces
for more than 30 embedded devices. In this section we
report our audit results and discuss the insights we gained
from them. These results and insights are later used to
justify and guide the design of our framework security
features. Note that although we discussed some of the
vulnerabilities we found in a previous publication [8], this
is the first time that the complete audit results are reported
and discussed.

3.1 Audit coverage

The eight categories of devices we tested are: lights-out
management (LOM) interfaces (these typically allow the
administrator to power cycle a PC or control network ac-
cess, bypassing the OS), NAS (used for shared storage
accessible via Ethernet), photo frames (we focused on
“smart” frames with network connectivity), routers/access
points (probably the most familiar browser-managed class
of consumer device), IP cameras (with video feeds that
can be accessed over the network), IP phones (especially
those with a web-based management interface), switches
(“managed switches” that expose some configuration op-
tions), and printers (the larger ones usually have a HTTP-
based interface used to configure a variety of functions,
including access via e-mail). The eight device categories
spanned seventeen brands: Table 1 shows which types
of devices were tested for each brand. As one can see
we did test devices from vendors specialized in one type
of product such as Buffalo, and from vendors that have a
wide range of products such as D-link.

3.2 Vulnerability classes

XSS. As a warm-up we started by testing for Type 2
(stored) cross-site scripting (XSS) vulnerabilities [13],
which are common in web applications. Most devices
are vulnerable, including those that perform some input
checking. For example, the TrendNet switch ensures that
its system location field does not contain spaces, but does
not prevent attacks of the form:

loc");document.write("<script/src=
’http://evil.com/a.js’></sc"+"ript>.

XSS attacks are particularly dangerous on embedded
devices because they are the first step toward a persistent
reverse XCS, as discussed below.

CSRF. Cross-site request forgery [50] enables an attacker
to compromise a device by using an external web site as
a stepping stone for intranet infiltration. On embedded
devices it can also be used as a direct vector of attack as it
allows the attacker to reboot critical network equipments
such as switches, IP phones and routers. Finally we used
CSRF as a way to inject Type 2 (stored) XSS and reverse
XCS [9] payloads.

File security. For each device, we checked whether it was
possible to read or inject arbitrary files. Some devices,
such as the Samsung photo frame, allow the attacker
to read protected files without being authenticated. On
this device, even when the Web interface was protected
by a password, it was still possible to access the photos
stored in memory by using a specially crafted URL. On
other devices, the Web interface could be compromised
by abusing the log file.

User authentication. Most devices have a default pass-
word or no password at all. Additionally, most devices
authenticate users in cleartext (i.e. without HTTPS). This
was even true for several security cameras, which is sur-
prising given that they are intended to securely monitor
private spaces. We even found that some NAS and photo
frames do not properly enforce the authentication mecha-
nism and it is possible to access the user content (i.e. pho-
tos) without being traced in the logs. Similarly, nothing is
done at the network level to prevent session hijacking as
the traffic is in clear and the cookies are sent over HTTPS.
Finally as far as we can tell not a single device implements
a password policy or an anti-brute force defense.

Clickjacking attacks. Clickjacking attacks [18] are the
most recent, and most overlooked attack vectors as all
devices were vulnerable to them. While at first sight this
does not appear to be a big issue, it turns out that being
able clickjack an embedded interface gives a lot of lever-
age to the attacker. For example basic Clickjacking can
be used to reboot devices, erase their content and in the
case of routers, enable guest network access. Advanced
Clickjacking [49] as demonstrated by Paul Stone at Black-
Hat Europe 2010 allows the attacker to steal the router
WPA key or the NAS password.

Deviceattacker User

Altermate
Channels Web

Injecton Storage Reflexion

Figure 2: Overview of an XCS attack.

3



Brand Camera LOM NAS Phone Photo Frame Printer Router Switch
Allied X
Buffalo X X
Belkin X
D-Link X X X
Dell X
eStarling X
HP X
IBM X
Intel X
Kodak X
LaCie X
Linksys X X X X
Netgear X X
SMS networks X
Panasonic X
QNAP X
Samsung X
SMC X
TrendNet X X
ZyXEL X

Table 1: List of devices by brand.

XCS. A Cross-Channel Scripting attack [9] comprises
two steps, as shown in Figure 2. In the first step the
attacker uses a non-web communication channel such as
FTP or SNMP to store malicious JavaScript code on the
server. In the second step, the malicious content is sent
to the victim via the Web interface. XCS vulnerabilities
are prevalent in embedded devices since they typically
expose multiple services beyond HTTP. XCS bugs often
affect the interaction between two specific protocols only
(such as the combination of HTTP and BitTorrent), which
can make them harder to detect.

Reverse XCS. In a Reverse XCS attack the web interface
is used to attack another service on the device. We
primarily use reverse XCS attacks to exfiltrate data that is
protected by an access control mechanism.

We did not look for SQL injections [21], as it was un-
likely that the audited devices would contain a SQL server.
However we still consider SQL injection attack to be a
potential threat and therefore our framework has security
mechanisms in place to mitigate them. Finally, while in
some cases we found weaknesses in the networking stack
(for example: predictable Initial Sequenced Numbers),
we do not discuss that topic here.

3.3 Tools used
The audit of each device was done in three phases. First,
we performed a general assessment using NMap [31] and
Nessus [42]. Next, we tested the web management inter-
face using Firefox and several of its extensions: Firebug
[20], Tamper Data [26], and Edit Cookies [51]. We used
a custom tool for CSRF analysis. In the third phase we
tested for XCS using hand written scripts and command
line tools such as smbclient.

3.4 Audit results
Table 2 summarizes which classes of vulnerabilities
were found for each type of device. We use the
symbol �when one device is vulnerable to this class of
attacks and �when multiples devices in the class are
vulnerable. The second column from the left indicates
the number of devices tested in that category. We sur-
vey the most interesting vulnerabilities in the next section.

Table 2 shows that the NAS category exhibits the
most vulnerabilities, which can be expected given the
complexity of these devices. We were surprised by the
large number of vulnerabilities in photo frames, which
are relatively simple devices.

4



Type # Devices XSS CSRF XCS RXCS File Auth
LOM 3 � � � �
NAS 5 � � � � � �
Photo frame 3 � � � � � �
Router 8 � � � � �
IP camera 3 � � �
IP phone 1 � � � �
Switch 4 � � � �
Printer 1 � � � �

Table 2: Vulnerability classes by device type.

A possible explanation is that vendors rushed to market
in order to grab market share with new features. Indeed, in
the Kodak photo frame, half the Web interface is protected
against XSS while the other half is completely vulnerable.
IP cameras and routers are more mature, and therefore
tend to have a better security. Table 2 also shows that
even enterprise-grade devices such as switches, printers,
and LOM are vulnerable to a variety of attacks, which
is a concern as they are usually deployed into sensitive
environments such as server rooms.

4 Threat Model

Our audit showed that embedded web management inter-
faces pose a serious security threat and are currently one
of the weakest links in home and office networks. In this
section we formalize our attacker model and the security
objectives that our framework aims at achieving.

4.1 Attacker model

In this paper, we are concerned with securing embedded
web interfaces from malicious attackers. Inspired by the
threat model of [6] we are using the ”web attacker” con-
cept with slightly more powerfully attacker as we allow
the attacker to interact directly with the web framework
like in the active attacker model. Accordingly our attacker
model is defined as follows: we assume an honest user
employs a standard web browser to view and interact with
the embedded web interface content. Our malicious web
attacker attempts to disrupt this interaction or steal sen-
sitive information such as a WPA key. Typically, a web
attacker can attempt to do this in two ways: by trying
to exploit directly a vulnerability in the web interface,
or by placing malicious content (e.g. JavaScript) in the
user’s browser and modifying the state of the browser,
interfering with the honest session. We allow the attacker
to attempt to directly attack the web framework in any
way he likes; in particular, we assume that the attacker
will attempt to DDOS the web server, find buffer overflow

exploits or brute force the authentication. Finally, we also
assume that the attacker will be able to manipulate any
non-encrypted session to his advantage.

4.2 Security objectives
Based on our audit evaluation and the attacker model
described above we now formalize what security objec-
tives our framework aims at achieving. These goals fall
into four distinct umbrella objectives that cover all of the
known attacks against a web interface.

Enforcing access control. The first goal of our frame-
work is to ensure that only the right principals have access
to the right data. Access control enforcement needs to be
enforced at multiple levels. First, at the network level, our
framework needs to ensure that the web interface is only
available in the right physical or network location and to
the right clients. At the application level, it means that
the framework needs to ensure that every web resource
is properly protected and that the attacker can not brute-
force user passwords. Finally, at the user level it also
means that the framework offers to the user the ability to
declare whether a specific client is allowed to access a
given web application.

Protecting session state. Protecting session state ensures
that once a session is established with the framework,
only the authenticated user is accessing the session. At
the network level, protecting the session state implies
preventing man in the middle attacks by enforcing the
use of SSL. At the HTTP level, protecting the session
means protecting the session cookies from being leaked
over HTTP (as in the Sidejacking attack) or being read
via JavaScript (XSS).

Deflecting direct web attacks. Deflecting direct web
attacks requires that our framework is not vulnerable to
buffer overflow or at least that the privileges gained in case
of successful exploitation are limited. At the application
level, the framework must be able to mitigate XSS [13],
and SQL injection attacks [21].

5



Preventing web browser attacks. In order to prevent
web browser attacks, the framework has to work with the
browser to ensure that the attacker cannot include in a web
site a piece of code (such as an iframe or JavaScript) that
can abuse the trust relation between the browser and the
web interface. These attacks are instances of the confused
deputy problem [6]. They include CSRF and Clickjacking
attacks.

5 System Overview

In this section we discuss the design principles behind our
framework, provide an overview of how the framework
works and describe how a web request is checked and
processed.

5.1 Design principles
To address the threat model presented in the previous sec-
tion, our framework is architected around the following
four principles:

Secure by default. The team in charge of building an
embedded web interface is usually not security savvy
and is likely to make mistakes. To cope with this lack
of knowledge our framework is designed to be secure
by default, which means that every security feature and
check is in place and it is up to the developers to make
them less restrictive or turn them off. For instance, our
default CSP [14] (content security policy) only allows
content from self, which means that no external content
will be allowed to load from a page in the web interface.
Similarly the framework uses whitelists for input filtering:
by default only a restricted set of characters is allowed
in URL parameters and POST variables, and it is up to
the developer to relax this whitelist if needed. As a final
example, the framework injects JavaScript frame-busting
code and the X-Frame-Option header in all the pages
in order to prevent Clickjacking attacks. In the unlikely
situation where the interface needs to be embedded in
another webpage, the developer must turn the defense
mechanism off.

Defense in depth. Since there is no universal fix for many
types of attacks, including XSS, CSRF, and Clickjacking,
our framework follows the defense in depth principle and
implements all the known techniques to try and mitigate
each threat as much as possible. We perform filtering and
security checks at input, during processing, and during
output.

Least privilege. Following the OKWS design [29], we
implement the least privilege principle by leveraging the
Android architecture. Each application and the frame-
work have separate user IDs and sets of permissions; this

guarantees that if the framework or one of the applica-
tions is compromised, the attacker will not take complete
ownership of the data. For instance by taking over the
framework one does not gain access to the phone contacts
list used by one of the applications: our framework only
has the network privilege. Note that the application de-
veloper must modularize his or her application to fully
benefit from the least privilege design. Product features
that can significantly modify device functionality, such
as by executing a firmware upgrade, need to receive spe-
cial consideration as well perhaps resulting in additional
backend checks performed in advance.

User consent. Our last design principle is ”user consent
as permission”: we let the user make the final decisions
about key security policies. For example, when a new
web client wants to access one of the phone web applica-
tions, it is up to the user to allow this or not because only
she knows if this request is legitimate. Similarly, when
the user installs a new web application, she is asked if
she wants to be prompted for approval each time a client
connects to that application. Finally, at install time we
also provide the user with a summary of the security fea-
tures that have been disabled. The user can then decide if
the presented security profile is acceptable or not. While
users can generally not be relied on for ensuring system
security, we implement the user consent principle in or-
der to catch potential security issues that clearly defeat
common sense.

5.2 Server architecture
As shown in Figure 3, the framework is composed of four
blocks and architected like the iptables firewall with a
series of security checks performed at input time, and
another series during output.

The Dispatcher is responsible for forwarding an HTTP
request to the desired application. The forwarding
decision is based on the unique port number assigned to
every application. Separating applications by port number
allows greater granularity for doing data encryption
which is specific to every application. In addition to
forwarding, the Dispatcher is also responsible for policy
based enforcement of security mechanisms.

The Configuration Manager handles per-application
tuning of the security policies. When an application
is first registered with the web server, all the security
mechanisms are turned on by default. The administrator
can then enable or disable individual mechanisms using
the configuration interface. The resulting configuration
is captured in a database and made available to the
Dispatcher for policy enforcement.

6



Pre-processing

Dispatcher

Filtering
- Ip
- Network 
- Location
- Input (xss)

- URL Scan

Alert system

Session check Post-processing - S-CSP
- CSRF

Headers addition

Cookie check

- cookie path
- origin/referer

Dispatcher

Configuration 
manager

App1

Applications

App2 App n..

Client

Figure 3: Overview of the framework design showing
the interaction of the different web server components
(dispatcher, applications, and alert system) involved in
the processing a client request.

The Alert System is used to control how the adminis-
trator is to be notified for different events. For instance,
the administrator may want to be explicitly alerted for
every new client connection. The Alert System also
handles notifications caused by malicious web requests
as detected by the Dispatcher. Notifications can either
be passive or active depending on whether they need
approval from the administrator.

Finally, the framework also provides an API for effi-
ciently implementing web applications. The core func-
tionality includes methods to handle HTTP requests and
generate the response. It also provides handlers with
build in security mechanisms for content generation such
as HTML components, CSS, JavaScript, JSON etc. For
instance, the HTML, XML and JSON handlers provide pa-
rameterized functions required to escape dynamic content
before being added to the rendered page. In addition, the
framework provides methods for allowing applications to
construct HTTPOnly or secure cookies.

5.3 Request processing

As depicted in Figure 3 a new web request goes through
a series of input security checks and processing, and is
subsequently forwarded to the actual application. The
response generated is subjected to another iteration of
checks and processing before being sent to the client.
If any check fails then the processing is aborted and a
notification is sent via the Alert System.

The pre-processing step performs two rounds of
security checks. First, the origin of the request is
compared to the client restriction policy in order to block
queries coming from unwanted sources. Second, the
HTTP query is validated through regular expression
whitelists. The corresponding web application is then
identified (based on the port number) and the session and
CSRF tokens validation checks can be done.

After validation, the request is sent to the web appli-
cation which generates a page using our framework and
sends it back to the web server. Before reaching the
network, the response is passed through post-processing
security mechanisms like S-CSP and CSRF token gener-
ation. This usually results in the inclusion of additional
headers and modification of certain HTML elements. The
result is then returned to the client.

6 Security Mechanisms

A broad range of mechanisms and best practices have
been developed over the last few years to counter the
most severe web security problems. It is clear that no sin-
gle technique or framework will make a web application
secure. In addition, expecting developers to understand
and deploy all of these mechanisms on their own is unreal-
istic. Table 3 maps the mechanisms that we embed in our
secure web server implementation against the threats they
are designed to mitigate. We now describe each security
mechanism and provide further references. Note that in
many scenarios we depend on a correct browser imple-
mentation for security capabilities. Wherever possible,
we use additional mechanisms that can add security even
if the browser is not up-to-date or compliant.

HTTPOnly cookies. Many XSS vulnerabilities can be
mitigated by reducing the amount of damage an injected
script can inflict. HTTPOnly cookies [33] achieve this
by restricting cookie values to be accessible by the server
only, and not by any scripts running within a page. In
practice, most cookies used in web application logic are
inherently friendly to this concept, and this is why we
have chosen to build it in. (HTTPOnly cookies are not
implemented by Android HttpCookie.)

7



Category Access control Session Direct attack Browser attack
Defense/Threat Bypass Pass guess MITM Hijack XSS SQLi XCS RXCS CSRF Clickjack
HTTP only cookie X X X
Server side input filtering X X X
CSP X X
S-CSP X X
CSRF random token X X
Origin header verification X X
X-FRAME-OPTION X
JS frame-busting code X
SSL X X
HSTS X X
Secure cookie X
Parametrized queries X
URL scanning
Application-wide auth X
Password policy X
Anti brute-force X
Restrict network/location X X X X X X X X X X
DOS protection

Table 3: Threats and corresponding security mechanisms

Server-side input filtering. Even though filtering or
whitelisting of user input can fail if implemented incor-
rectly [3, 2, 1], it is still very important to sanitize user
data before web pages are rendered with it. Input filtering
can prevent scripting exploits as well as SQL injections.
When applied to data coming from other embedded ser-
vices, input filtering can also prevent many XCS attacks.

CSP (Content Security Policy). Pages rendered by the
typical embedded web application have little need to con-
tact external web sites. Correspondingly our server is con-
figured to offer restrictive CSP [14] directives to browsers,
limiting the impact of any injected code in the page.

S-CSP (Server-side Content Security Policy). For
browsers that do not support CSP, we introduce Server-
side CSP. While rendering a particular site, the server
looks at the CSP directives present in the header (or the
policy-uri) and modifies the HTML code accordingly. In-
stead of standard input filtering, the changes are based on
the custom policies defined by the administrator: such as
valid hosts for the different HTML elements, use of inline-
scripts, eval functionality usage and so on. Its novelty lies
in the fact that the resulting HTML page as received by
the browser automatically becomes CSP compliant. In
addition to filtering, S-CSP can also support reporting of
CSP violations via ’report-uri’ directive which ordinarily
is not possible for incompatible browsers.

X-Frame-Options. Clickjacking is a serious emerging
threat which is best handled by preventing web site fram-
ing. Since embedded web applications are usually not

designed with mash-up scenarios in mind, setting the
option to DENY is a good default configuration.

JavaScript frame-busting. Not all browsers support the
X-Frame-Options header, and therefore our framework
automatically includes frame-busting code in JavaScript.
The particular piece of code we use is as simple as possi-
ble and has been vetted for vulnerabilities typically found
in such implementations [44].

Random anti-CSRF token. Cross-site request forgery
is another web application attack which is easy to prevent,
but often not addressed in embedded settings. Our frame-
work automatically injects random challenge tokens in
links and forms pointing back at the web application, and
checks the tokens on page access [39].

Origin header verification. Along with checking CSRF
tokens, we make sure that for requests that supply any
parameters (either POST or GET) and include the Ori-
gin [5] or Referer header, the origin/referer values are
as expected. We do this as a basic measure to prevent
cross-site attacks. When the Referer header is available,
we also check for cross-application attacks, making sure
that each application is only accessed through its entry
pages.

SSL. Securing network communications often ends up
being a low-priority item for application developers, and
this is why our web server uses HTTPS exclusively by
default, with a persistent self-signed certificate created
during device initialization.

8



HSTS (HTTP Strict Transport Security) and Secure
cookies. In addition to supporting SSL out of the box,
our server implements the HSTS standard [22] and re-
quests that all incoming connections be over SSL, which
prevents several passive and active network attacks [23].
Moreover, browser cookies are created with the Secure
attribute, preventing the browser from leaking them to the
network in plaintext.

Parametrized rendering and queries. Android already
supports parametrized SQLlite queries [52] and we en-
courage developers to make use of this facility. We have
also added the ability to parametrize dynamic HTML ren-
dering, in which case escaping of the output is performed
automatically.

URL scanning. Incoming HTTP requests are sani-
tized by applying filtering similar to that offered by the
URLScan tool in Microsoft IIS [34]. Our filter is config-
ured to restrict both the URL and query parts of a request,
while changes by the web application developer are al-
lowed if necessary. URLScan is most useful in preventing
web application vulnerabilities due to incorrect or incom-
plete parsing of request data.

Application-wide authentication, password policy,
and password anti-bruteforcing. Recognizing that user
authentication is often a weak spot for web applications,
we have implemented user authentication as part of the
web server, freeing the developers from the need to im-
plement secure user session tracking. In addition, the
password strength policy can be changed according to
requirements, and a mechanism to prevent (or severely
slow down) brute-force attacks is always enabled.

Network restrictions. Most embedded web servers have
a relatively constrained network access profile: either the
device should serve requests only when connected to a
specific network or WiFi SSID, or the hosts requesting
service might match a profile, such as a specific IP or
MAC address. This feature, while easily accessible, can
not be configured by default due to the differences in
individual application environments.

Location restrictions. Similar to network restrictions,
the server can be configured to operate only when the
device is at specific physical locations, minimizing the
opportunities for an attacker to access and potentially
compromise the system.

DDoS. While distributed denial-of-service (DDoS) pro-
tection is difficult, we believe that much can be done to
mitigate such threats. For most applications, maintaining
local service is of top priority, and so we throttle HTTP
requests such that those coming from the local network
always have a guaranteed level of service. Of course, this
can not prevent lower-level network DDoS attacks: these

have to be taken care of separately, outside of the web
server.

7 User interface

This section briefly describes the user interface required
for basic administration of the web server and security
policy management. In the following description, we refer
to the owner of the smart phone or embedded device as
the Admin user.

7.1 Configuration management

Figure 4: Main web server configuration interface.

This interface is used to control the server settings
across all the applications. As shown in Figure 4, it pro-
vides the ability to disable each web application. It also
displays the web server overall statistics such as the num-
ber of active application and the number of active connec-
tions session.

Web server logs. Accessible from the menu options,
the logged events such as failures, new connections and
configuration changes can be visualized.

Settings. From this interface, the Admin overrides some
security features in order to enforce certain mechanisms
for all applications, irrespective of their individual config-
uration.

9



Figure 5: Web application configuration interface, al-
lowing per-application customizations (secure settings
highlighted in green).

7.2 Configuration per web application

This interface enables the Admin user to control some
web application parameters such as the port number, the
application name, and its password or tune the security
policy for every application. As shown in Figure 5, it dis-
plays the name, path, security level and status information
along with the currently enabled security mechanisms.
Since all the mechanisms are turned on by default, policy
administration is not strictly necessary. However, this
allows flexibility in the framework that can be useful in
special circumstances. For instance, the Admin user may
wish to disable the heavy S-CSP mechanism in the case
of a restricted set of trusted users. The different function-
alities provided by the interface are described below.

Alarm system configuration. Each new client connec-
tion request can be monitored by setting the alarm noti-
fication level to one of the three possibilities: Disabled,
Passive, or Approval. Both Passive and Approval notifi-
cations alert the administrator about the new connection.
Approval mode has the additional feature of requiring the
Admin user to grant access before proceeding.

Network and location restriction. The web server can
restrict clients connecting based on the network properties
(serving WiFi or 3G only for example) or based on the
current location such as home or office.

Domain whitelist. The Admin can define a list of do-
mains that are allowed in the CSP policy by writing a
comma separated list of domains/IP addresses. If this

<WebServerConf>
<WebApp>
<path>com.android.websms</path>
<Enabled>1</Enabled>
<CSRF>1</CSRF>
<HttpOnlyCookie>1</HttpOnlyCookie>
<XFrame>1</XFrame>
</WebApp>
</WebServerConf>

Figure 6: Web server configuration sample

field is empty, the web server will enforce the restrictive
’allow self’ policy and block all other sources.

IP whitelist. The Admin user can explicitly allow access
for a specific set of trusted hosts by adding a comma-
separated list of IP addresses. For a new connection re-
quest, if the source IP is in this list then access is permitted
regardless of the restrictions described above.

7.3 Configuration without the UI

For embedded devices without a display to access the
configuration interface, the web server can be configured
through an XML file present in the application package
as a raw resource. With this file, the web server adminis-
trator can enforce security mechanisms for specific web
applications or disable all web application that do not
respect some requirements. The web server configura-
tion can also be done after installation by modifying the
SQLite database on the device.

8 Implementation

In this section we describe how our system is imple-
mented and how Android applications interact with
it. Our system consists of two main components: the
Dispatcher (a web server that processes and routes
requests to applications) and our framework API that
Android applications can access.

The Dispatcher works as an Android background
service. As a starting block we used the Tornado
open-source web server that we hardened and mod-
ified to work with our framework. The web server
follows the least privilege principle, and runs with
the minimal permissions set needed to handle HTTP
communications: android.permission.INTERNET.
To be allowed to expose a web interface, an appli-
cation requests a new permission that we created
called com.android.webserver.WEB APPLICATION.
This novel permission is more restrictive than an-
droid.permission.INTERNET and only allows the

10



mountWebContent("websms",
Home.class);

mountWebContent("websms/send",
SendSMS.class);

mountWebContent("websms/view",
SMSHistory.class);

mountWebContent("websms/theme.css",
RawRessource.class,
RawRessource.CSS,
R.raw.hello);

Figure 7: WebSMS code used to declare the exposed web
interface.

application to serve web requests via the dispatcher.

At launch time the Dispatcher browses the list of in-
stalled applications for new ones requesting the web ap-
plication permission. By retrieving the ContentProvider
associated to the framework, it queries the security con-
figuration. Following the consent as permission principle
we prompt the user every time a new web application
wants to register. When an application set the same URL
path than another one, the registration is discarded and a
possible malicious application warning is displayed to the
user.

The framework API is a Java library that handles com-
munications between the web server and the web appli-
cation (which run as separate processes). It also provides
a set of classes that help generating web content. Simi-
larly to many modern web framework (i.e. Rails), every
web page need to registered it web path through a func-
tion call, in our case this function is mountWebContent.
This function bind a path to a java class entry point. For
example our WebSMS web application register 4 web
pages: 3 HTML pages and 1 CSS stylesheet (Figure
7). Note the use of the RawRessource.class which al-
lows developer to expose directly raw data to the web
such as CCS files. Our framework provides a set of
classes to help building HTML pages, or handling other
resources request such as pictures, CSS stylesheets or
JavaScript libraries. The java classes Home, SendSMS
and SMSHistory extends the framework class HTML-
Page which provides various methods to add dynamic
content to the pages. In particular the HTMLPage class
has the method appendHTMLContent(content,
String[] vars) that allows to programmatically ap-
pend content to the page. Text variables are represented
by $ which are substituted by the corresponding var string
after it is filtered to prevent XSS. While the authors can
bypass the filtering process if they want by default it is
in place. Similarly, the HTMLPage class ensures that
the data passed to the application is properly sanitized
and that parametrized SQL queries are used in order to
prevent SQL injection.

When an HTTP request is received, it goes through all
pre-processing security mechanisms and is dispatched to
the corresponding web application. The framework API
embeds an Android ContentProvider used by the web
server to query pages. HTTP headers, body and security
tokens are added to the query and then transmitted to the
web application. Using the framework API, the web page
is build and send back as answer to the query. This one is
finally checked by all post-process security mechanisms
and send back to the web client.

9 Case Studies

In this section we present two case studies that demon-
strate how our framework effectively mitigates web
vulnerabilities. We describe the applications we built,
their attack surface, how the framework protects them,
and finally show that when using off-the-shelf security
scanners the framework is indeed able to mitigate the
vulnerabilities found in the apps.

To study the effectiveness of our the system we built
two sample applications that take advantages of the
phone’s capabilities to provide useful services: the first
one, WebSMS, is used for reading and sending SMS from
the browser; the second one, WebMedia, provides a con-
venient web interface to browse and display the photos
and videos stored on the smartphone. We argue that these
two applications—while limited—are good case studies
of what developers might want to built in order to leverage
a device’s capabilities in the form of web applications.

9.1 Applications

WebSMS. When loaded in a client browser, the user can
choose to view the current SMS inbox or send a new one.
For the second choice, the application displays a list of
contacts fetched from the phone’s directory along with a
search box. Clicking on a particular contact allows to send
a SMS directly from the browser. The SMS content is
sent by the browser to the application via a POST request
that contains the contact ID.

WebMedia. This application displays a gallery of photos
and videos stored on the Android device (Figure 8). When
a thumbnail is clicked, a full size view of the media file
is displayed. The application provides a convenient way
to display photos and videos to friends and family on a
big screen. In addition, this application enables seamless
sharing of content with trusted users (friends or family).

11



Figure 8: The WebMedia embedded web application.

9.2 Attack surfaces

Without framework support, the web applications suffer
from multiple vulnerabilities. In the WebSMS application,
the contact search can be a vector for reflected XSS or
SQL injection. Also, the capacity to send message and
view their contents afterward can lead to a stored XSS in
the sending and in the receiving phone. The WebMedia
application is vulnerable to CSRF attacks as well. The
XSS attack allows the attacker to steal private information
as the contact list of the sent and received SMS contents.
A CSRF can be conducted to send SMS on behalf of
the user, which can lead to embarrassing situations or
financial loss. In extreme cases, if the phone is used as
a trusted device to authorize sensitive operations such as
bank transfers, then the combination of XSS and CSRF
attacks will allow a malicious user to bypass this security
mechanism and conduct fraudulent operations.

9.3 Security evaluation

In order to evaluate whether our framework is able to
mitigate the attacks against our vulnerable applications
we have run the web scanners Skipfish and Nexpose
against our applications with the framework defense
mechanisms off and then on. When the framework
defenses are turned off, both Skipfish and Nexpose
detected reflected XSS and stored XSS vulnerabilities in
the WebSMS application. When the framework defenses
are turned on, no vulnerabilities are reported. Note that
neither scanner reported the CSRF vulnerabilities.

m
illi

se
co

nd
s

0

5

10

15

20

25

Concurent connections
0 10 20 30 40 50 60 70 80 90 100 110 120 130

Without security features
With security feature 

Figure 9: Average number of request per second with and
without security features enabled.

This limited experiment shows that our framework can
help effectively and transparently mitigate vulnerabilities
that may exist in embedded web interfaces even though
it can not completely replace good coding practices and
careful code review.

9.4 Performance evaluation
While as stated earlier performance should not be the
focus of a mobile web framework, we still ran a basic
performance evaluation using the Apache benchmark
tool to evaluate the impact of enabling security features
on WebDroid performance. To reflect as accurately as
possible real world usage, we ran these benchmarks over
WiFi with WebDroid on a standard HTC Desire phone
with Android 2.3. We were not able to test over 3G as IP
are not routable.

WebDroid performance in term of requests per second
for the WebSMS application when the number of simul-
taneous connections increase is reported in figure 9. The
figure 10 depicts how fast WebDroid is able to process
each request as the number of simultaneous connections
increase. As visible in the diagrams, WebDroid take be-
tween a 10% to 30% performance hits when the security
features are turned one depending on the number of simul-
taneous connections. On average WebDroid performance
take a 20% hit when the security features are enabled.
While this performance hit might not be acceptable for a
regular website, for an embedded interface we argue that
it is acceptable as even when there are 128 simultaneous
connections, WebDroid is able to serve every request in
less than 80 ms which is below what is the optimal user
tolerance time: 100ms [37].

12



m
illi

se
co

nd
s

−20

0

20

40

60

80

Concurent connections
0 10 20 30 40 50 60 70 80 90 100 110 120 130

Without security features
With security feature 

Figure 10: Average time to process a request with and
without security features enabled.

10 Related Work

Browser defenses. Mozilla Foundation’s Content Secu-
rity Policy (CSP) [14] proposal allows a site to specify
restrictions on content served from the site, including
which external resources the content can load. The CSP
policy is specified as an HTTP header in each HTTP
response. For example, the CSP header

X-Content-Security-Policy: allow self

prevents the content from loading any external resources
or executing inline scripts. Replacing “allow self”
with “allow whitelist” allows external resources from
the given whitelist. Another system, SiteFirewall [9],
takes a similar approach but also allows persistent
browser-side policy storage (via cookies or other, more
secure objects). SiteFirewall is capable of blocking
some types of XCS attacks from being completed.
The system uses a browser extension that acts as a
firewall between vulnerable, internal web sites, and
those accessed by the user on the open Internet. A third
proposal called SOMA [38] implements a mutual consent
policy on cross-origin links. That is, both the embedding
and the embedded content must agree to the action
being initiated. As with CSP, SOMA is implemented
as a content-specific policy rather than a global site
policy. Finally Content Restrictions [32] is another
approach to defining content control policies on web sites.

Frameworks. Generic web frameworks, such as Ruby
on rails [41] and Django, implement numerous features
such as built-in CSRF defenses that help developers to
build secure web interfaces more easily. However this
kind of generic framework is very heavy and therefore
not suitable for being used in embedded devices. We are
not currently aware of any framework specially designed
for embedded devices. Additionally, while designed with
security in mind, these frameworks do not make secure
web application design intuitive for the developer.

In contrast, we strive for a secure by default system
where a developer has to do little if anything in order to
build a secure web application.

Web servers. At the process level, flow control en-
forcement such as the one presented in Histar [54], As-
bestos [11] and Flume [30] can be used to achieve some
of our goals such as document sanitization. The Android
OS [15] capability model can also be extended to enforce
network restrictions. As far as we know, none of the
lightweight web servers like Tornado [12] were built with
the objective of enforcing security principles. Previous
work on security centric web servers such as [29] were
only designed to mitigate low level attacks by enforcing
privilege separation. None of them offered a framework
to mitigate web vulnerabilities.

Other related work. The log injection attack, a simple
form of XCS, has been known for several years [47],
most notably in the context of web servers resolving
client hostnames. Recently, CSRF and XSS attacks have
attracted much attention, including work on various
defense techniques [6]. NAS security has been a topic for
discussion since the early days of networked storage [10].

IP telephony security has also been scrutinized. How-
ever this has only been done for specific protocols, not
for complete systems [48]. Most other work in web
security[13, 24, 4, 17, 25, 28, 43, 32, 36, 40, 53, 46] has
focused on web servers on the open Internet, as opposed
to devices on private intranets, which are the topic of this
work.

11 Conclusion

We present WebDroid the first web application framework
that is explicitly designed for embedded applications, with
a particular emphasis on secure web application design.
We motivate our work with extensive results from audits
carried out over the last two years on a broad range of em-
bedded web servers. We evaluate WebDroid performance
and show that despite the fact that that performance take
a 20% hit when we all the security features are activated,
WebDroid remains sufficiently fast for its purpose. Finally
as a case study we build two sample web applications.

Acknowledgment

We thank Samuel King and anonymous reviewers for
their comments and suggestions. This work was partially
supported by the National Science Foundation, the Air
Force Office of Scientific Research, and the Office of
Naval Research.

13



References

[1] Minded security research labs: Http pa-
rameter pollution a new web attack cate-
gory (not just a new buzzword :p). Web
http://blog.mindedsecurity.com/
2009/05/http-parameter-pollution-
new-web-attack.html, 2009. 8

[2] Minded security research labs: A twitter domxss,
a wrong fix and something more. Web
http://blog.mindedsecurity.com/
2010/09/twitter-domxss-wrong-fix-
and-something.html, 2010. 8

[3] Minded security research labs: Bypassing
csrf protections with clickjacking and http
parameter pollution. Web http://blog.
andlabs.org/2010/03/bypassing-
csrf-protections-with.html, 2010. 8

[4] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner: Com-
posing static and dynamic analysis to validate san-
itization in web applications. In IEEE Symposium
on Security and Privacy, 2008. 13

[5] A. Barth, C. Jackson, and I. Hickson. The http origin
header. web http://tools.ietf.org/id/
draft-abarth-origin-03.html, 2009. 8

[6] A. Barth, C. Jackson, and J. Mitchell. Robust de-
fenses for cross-site request forgery. In proceedings
of ACM CCS ’08, 2008. 5, 6, 13

[7] H. Bojinov, E. Bursztein, and D. Boneh. Embedded
Management Interfaces: Emerging Massive Inse-
curity. In Blackhat USA, July 2009. Invited talk.
1

[8] H. Bojinov, E. Bursztein, and D. Boneh. XCS: cross
channel scripting and its impact on web applications.
In CCS ’09: Proceedings of the 16th ACM confer-
ence on Computer and communications security,
pages 420–431. ACM, 2009. 1, 3

[9] H. Bojinov, E. Bursztein, and D. Boneh. Xcs: Cross
channel scripting and its impact on web applications.
In CCS 2009: 16th ACM Conference on Computer
and Communications Security, Nov 2009. 3, 4, 13

[10] Cifs security consideration update, 1997.
http://www.jalix.org/ressources/
reseaux/nfs-samba/˜cifs/CIFS-
Security-Considerations.txt. 13

[11] P. Efstathopoulos, M. Krohn, S. VanDeBogart,
C. Frey, D. Ziegler, E. Kohler, D. Mazieres,
F. Kaashoek, and R. Morris. Labels and event pro-
cesses in the asbestos operating system. In Proceed-
ings of the twentieth ACM symposium on Operating
systems principles, pages 17–30. ACM, 2005. 13

[12] Facebook. Tornado web server. Web
http://developers.facebook.com/
news.php?blog=1&story=301, 2009. 13

[13] S. Fogie, J. Grossman, R. Hansen, A. Rager, and
P. Petkov. XSS Exploits: Cross Site Scripting Attacks
and Defense. Syngress, 2007. 2, 3, 5, 13

[14] M. Foundation. Content security policy, 2009.
wiki.mozilla.org/Security/CSP/
Spec. 6, 8, 13

[15] Google. Android os. Web http://www.
android.com/, 2008. 13

[16] B. Gourdin. Webdroid: Google code project.
http://code.google.com/p/android-
secure-web-server/. 1

[17] O. Hallaraker and G. Vigna. Detecting malicious
javascript code in mozilla. In Proceedings of the
IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS), 2005. 13

[18] R. Hansen. Clickjacking. ha.ckers.org/
blog/20080915/clickjacking. 3

[19] C. Heffner. How to hack millions of routers. In
Blackhat USA, 2010. 1

[20] J. Hewitt and R. Campbell. Firebug 1.3.3, 2009.
http://getfirebug.com/. 4

[21] T. Holz, S. Marechal, and F. Raynal. New threats
and attacks on the world wide web. Security &
Privacy, IEEE, 4(2):72–75, March-April 2006. 4, 5

[22] Http strict transport security (HSTS), 2011. http:
//http://bit.ly/lwqdlu. 9

[23] C. Jackson and A. Barth. Forcehttps: Protecting
high-security web sites from network attacks. In
Proceedings of the 17th International World Wide
Web Conference (WWW2008), 2008. 9

[24] T. Jim, N. Swamy, and M. Hicks. Defeating script
injection attacks with browser-enforced embedded
policies. In in proc. of 16th International World
Wide Web Conference, 2007. 13

14

http://blog.mindedsecurity.com/2009/05/http-parameter-pollution-new-web-attack.html
http://blog.mindedsecurity.com/2009/05/http-parameter-pollution-new-web-attack.html
http://blog.mindedsecurity.com/2009/05/http-parameter-pollution-new-web-attack.html
http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html
http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html
http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html
http://blog.andlabs.org/2010/03/bypassing-csrf-protections-with.html
http://blog.andlabs.org/2010/03/bypassing-csrf-protections-with.html
http://blog.andlabs.org/2010/03/bypassing-csrf-protections-with.html
http://tools.ietf.org/id/draft-abarth-origin-03.html
http://tools.ietf.org/id/draft-abarth-origin-03.html
http://www.jalix.org/ressources/reseaux/nfs-samba/~cifs/CIFS-Security-Considerations.txt
http://www.jalix.org/ressources/reseaux/nfs-samba/~cifs/CIFS-Security-Considerations.txt
http://www.jalix.org/ressources/reseaux/nfs-samba/~cifs/CIFS-Security-Considerations.txt
http://developers.facebook.com/news.php?blog=1&story=301
http://developers.facebook.com/news.php?blog=1&story=301
wiki.mozilla.org/Security/CSP/Spec
wiki.mozilla.org/Security/CSP/Spec
http://www.android.com/
http://www.android.com/
http://code.google.com/p/ android-secure-web-server/
http://code.google.com/p/ android-secure-web-server/
ha.ckers.org/blog/20080915/clickjacking
ha.ckers.org/blog/20080915/clickjacking
http://getfirebug.com/
http://http://bit.ly/lwqdlu
http://http://bit.ly/lwqdlu


[25] N. Jovanovic, C. Kruegel, and E. Kirda. Precise
alias analysis for static detection of web application
vulnerabilities. In Proceedings of the Workshop on
Programming Languages and Analysis for Security
(PLAS), 2006. 13

[26] A. Judson. Tamper data 10.1.0, 2008. http://
tamperdata.mozdev.org/. 4

[27] S. Kamkar. mapxss: Accurate geolocation via router
exploitation. http://samy.pl/mapxss/, Jan-
uary 2010. 1

[28] E. Kirda, C. Kruegel, G. Vigna, , and N. Jovanovic.
Noxes: A client-side solution for mitigating cross-
site scripting attacks. In In Proceedings of the 21st
ACM Symposium on Applied Computing (SAC), Se-
curity Track, 2006. 13

[29] M. Krohn. Building secure high-performance web
services with OKWS. In Proceedings of the annual
conference on USENIX Annual Technical Confer-
ence, page 15. USENIX Association, 2004. 2, 6,
13

[30] M. Krohn, A. Yip, M. Brodsky, N. Cliffer,
M. Kaashoek, E. Kohler, and R. Morris. Information
flow control for standard os abstractions. In Pro-
ceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, pages 321–334.
ACM, 2007. 13

[31] G. F. Lyon. Nmap Network Scanning: The Official
Nmap Project Guide to Network Discovery and Se-
curity Scanning, volume 978-0470170779. Nmap
Project, 2007. 4

[32] G. Markham. Content restrictions, 2007.
www.gerv.net/security/content-
restrictions/. 13

[33] Microsoft. Mitigating cross-site scripting with http-
only cookies. Web http://msdn.microsoft.
com/en-us/library/ms533046.aspx,
2009. 7

[34] Microsoft. Urlscan 3.1. Web http://www.iis.
net/download/urlscan, 2011. 9

[35] Netcraft. Totals for active servers across all
domains. Website http://news.netcraft.
com/archives/2009/06/17/june_2009_
web_server_survey.html, Jun 2009. 2

[36] A. Nguyen-Tuong, S. Guarnieri, D. Greene,
J. Shirley, and D. Evans. Automatically hardening
web applications using precise tainting. In In Pro-
ceedings of the 20th IFIP International Information
Security Conference, 2005. 13

[37] J. Nielsen’s. Response times: The 3 important
limits. http://www.useit.com/papers/
responsetime.html. 12

[38] T. Oda, G. Wurster, P. van Oorschot, and A. So-
mayaji. Soma: mutual approval for included content
in web pages. In ACM CCS’08, pages 89–98, 2008.
13

[39] P. Petefish, E. Sheridan, and D. Wichers. Cross-site
request forgery (csrf) prevention cheat sheet.
web http://www.owasp.org/index.php/
Cross-Site_Request_Forgery_(CSRF)
_Prevention_Cheat_Sheet, 2010. 8

[40] T. Pietraszek and C. V. Berghe. Defending against in-
jection attacks through context-sensitive string eval-
uation. In Recent Advances in Intrusion Detection
(RAID), 2005. 13

[41] Ruby on rails. http://rubyonrails.org/.
13

[42] R. Rogers. Nessus Network Auditing, Second Edi-
tion, volume 978-1597492089. Syngress, 2008. 4

[43] RSnake. Xss (cross site scripting) cheat sheet for
filter evasion. http://ha.ckers.org/xss.
html. 13

[44] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jack-
son. Busting frame busting: a study of clickjacking
vulnerabilities at popular sites. In in IEEE Oakland
Web 2.0 Security and Privacy (W2SP 2010), 2010.
2, 8

[45] G. Rydstedt, B. Gourdin, E. Bursztein, and
D. Boneh. Framing attacks on smartphones,
dumb routers and social sites: Tap-jacking, geo-
localization and framing leak attacks. In Woot, 2001.
1

[46] P. Saxena and D. Song. Document structure in-
tegrity: A robust basis for cross-site scripting de-
fense. In proceedings of NDSS’08, 2008. 13

[47] Log injection attack and defense, 2007. http://
bit.ly/kbMebK. 13

[48] Basic vulnerability issues for sip security, 2005.
http://download.securelogix.com/
library/SIP_Security030105.pdf. 13

[49] P. Stone. Next generation clickjack-
ing. media.blackhat.com/bh-eu-
10/presentations/Stone/BlackHat-
EU-2010-Stone-Next-\Generation-
Clickjacking-slides.pdf, 2010. 3

15

http://tamperdata.mozdev.org/
http://tamperdata.mozdev.org/
http://samy.pl/mapxss/
www.gerv.net/security/content-restrictions/
www.gerv.net/security/content-restrictions/
http://msdn.microsoft.com/en-us/library/ms533046.aspx
http://msdn.microsoft.com/en-us/library/ms533046.aspx
http://www.iis.net/download/urlscan
http://www.iis.net/download/urlscan
http://news.netcraft.com/archives/2009/06/17/june_2009_web_server_survey.html
http://news.netcraft.com/archives/2009/06/17/june_2009_web_server_survey.html
http://news.netcraft.com/archives/2009/06/17/june_2009_web_server_survey.html
http://www.useit.com/papers/responsetime.html
http://www.useit.com/papers/responsetime.html
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://rubyonrails.org/
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://bit.ly/kbMebK
http://bit.ly/kbMebK
http://download.securelogix.com/library/SIP_Security030105.pdf
http://download.securelogix.com/library/SIP_Security030105.pdf
media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next- \ Generation-Clickjacking-slides.pdf
media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next- \ Generation-Clickjacking-slides.pdf
media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next- \ Generation-Clickjacking-slides.pdf
media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next- \ Generation-Clickjacking-slides.pdf


[50] D. Stuttard and M. Pinto. The Web Application
Hacker’s Handbook: Discovering and Exploiting
Security Flaws, volume 978-0470170779. Wiley,
2007. 1, 2, 3

[51] B. Walther. Edit cookies 0.2.2.1, 2007.
https://addons.mozilla.org/en-
US/firefox/addon/4510. 4

[52] D. Wichers. Sql injection prevention cheat sheet.
web http://www.owasp.org/index.php/
SQL_Injection_Prevention_Cheat_
Sheet, 2011. 9

[53] Y. Xie and A. Aiken. Static detection of security
vulnerabilities in scripting languages. In In Pro-
ceedings of the USENIX Security Symposium, 2006.
13

[54] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
histar. In 7th Symposium on Operating Systems
Design and Implementation, 2006. 13

16

https://addons.mozilla.org/en-US/firefox/addon/4510
https://addons.mozilla.org/en-US/firefox/addon/4510
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

	1 Introduction
	2 Background
	3 Embedded Web Application Security: State of the Art
	3.1 Audit coverage
	3.2 Vulnerability classes
	3.3 Tools used
	3.4 Audit results

	4 Threat Model
	4.1 Attacker model
	4.2 Security objectives

	5 System Overview
	5.1 Design principles
	5.2 Server architecture
	5.3 Request processing

	6 Security Mechanisms
	7 User interface
	7.1 Configuration management
	7.2 Configuration per web application
	7.3 Configuration without the UI

	8 Implementation
	9 Case Studies
	9.1 Applications
	9.2 Attack surfaces
	9.3 Security evaluation
	9.4 Performance evaluation

	10 Related Work
	11 Conclusion

