
Quire: Lightweight Provenance for Smart Phone Operating Systems

Michael Dietz
mdietz@rice.edu

Shashi Shekhar
shashi.shekhar@rice.edu

Yuliy Pisetsky
yuliyp@rice.edu

Anhei Shu
as43@rice.edu

Dan S. Wallach
dwallach@rice.edu

Abstract
Smartphone apps are often granted to privilege to run
with access to the network and sensitive local resources.
This makes it difficult for remote endpoints to place any
trust in the provenance of network connections originat-
ing from a user’s device. Even on the phone, different
apps with distinct privilege sets can communicate with
one another. This can allow one app to trick another
into improperly exercising its privileges (resulting in a
confused deputy attack). In Quire, we engineered two
new security mechanisms into Android to address these
issues. First, Quire tracks the call chain of on-device
IPCs, allowing an app the choice of operating with the
reduced privileges of its callers or exercising its full priv-
ilege set by acting explicitly on its own behalf. Second,
a lightweight signature scheme allows any app to create
a signed statement that can be verified by any app on
the same phone. Both of these mechanisms are reflected
in network RPCs. This allows remote systems visibility
into the state of the phone when the RPC was made. We
demonstrate the usefulness of Quire with two example
applications: an advertising service that runs advertise-
ments separately from their hosting applications, and a
remote payment system. We show that Quire’s perfor-
mance overhead is minimal.

1 Introduction

On a smartphone, applications are typically given broad
permissions to make network connections, access local
data repositories, and issue requests to other apps on the
device. For Apple’s iPhone, the only mechanism that
protects users from malicious apps is the vetting pro-
cess for an app to get into Apple’s app store. (Apple
also has the ability to remotely delete apps, although it’s
something of an emergency-only system.) However, any
iPhone app might have its own security vulnerabilities,
perhaps through a buffer overflow attack, which can give
an attacker full access to the entire phone.

The Android platform, in contrast, has no significant
vetting process before an app is posted to the Android
Market. Instead, the Android OS insulates apps from
one another and the underlying Android runtime. Ap-
plications from different authors run with different Unix
user ids, containing the damage if an application is com-
promised. (In this aspect, Android follows a design sim-
ilar to SubOS [20].) However, this does nothing to de-
fend a trusted app from being manipulated by a mali-
cious app via IPC (i.e., a confused deputy attack [18],
intent stealing/spoofing [9], or other privilege escalation
attacks [11]). Likewise, there is no mechanism to prevent
an IPC callee from misrepresenting the intentions of its
caller to a third party.

This mutual distrust arises in many mobile applica-
tions. Consider the example of a mobile advertisement
system. An application hosting an ad would rather the ad
run in a distinct process, with its own user-id, so bugs in
the ad system do not impact the hosting app. Similarly,
the ad system might not trust its host to display the ad
correctly, and must be concerned with hosts that try to
generate fake clicks to inflate their ad revenue.

To address these concerns, we introduce Quire, a low-
overhead security mechanism that provides important
context in the form of provenance and OS managed data
security to local and remote apps communicating by IPC
and RPC respectively. Quire uses two techniques to pro-
vide security to communicating applications.

First, Quire transparently annotates IPCs occurring
within the phone such that the recipient of an IPC re-
quest can observe the full call chain associated with the
request. When an application wishes to make a network
RPC, it might well connect to a raw network socket, but
it would lack credentials that we can build into the OS,
which can speak to the state of an RPC in a way that
an app cannot forge. (This contextual information can
be thought of as a generalization of the information pro-
vided by the recent HTTP Origin header [2], used by web
servers to help defeat cross-site request forgery (CSRF)

attacks.)
Second, Quire uses simple cryptographic mechanisms

to protect data moving over IPC and RPC channels.
Quire provides a mechanism for an app to tag an object
with cheap message authentication codes, using keys that
are shared with a trusted OS service. When data anno-
tated in this manner moves off the device, the OS can
verify the signature and speak to the integrity of the mes-
sage in the RPC.

Applications. Quire enables a variety of useful appli-
cations. Consider the case of in-application advertising.
A large number of free applications include advertise-
ments from services like AdMob. AdMob is presently
implemented as a library that runs in the same process
as the application hosting the ad, creating trivial oppor-
tunities for the application to spoof information to the
server, such as claiming an ad is displayed when it isn’t,
or claiming an ad was clicked when it wasn’t. In Quire,
the advertisement service runs as a separate application
and interacts with the displaying app via IPC calls. The
remote application’s server can now reliably distinguish
RPC calls coming from its trusted agent, and can fur-
ther distinguish legitimate clicks from forgeries, because
every UI event is tagged with a Message Authentication
Code(MAC) [21], for which the OS will vouch.

Consider also the case of payment services. Many
smartphone apps would like a way to sell things, lever-
aging payment services from PayPal, Google Checkout,
and other such services. We would like to enable an ap-
plication to send a payment request to a local payment
agent, who can then pass the request on to its remote
server. The payment agent must be concerned with the
main app trying to issue fraudulent payment requests, so
it needs to validate requests with the user. Similarly, the
main app might be worried about the payment agent mis-
behaving, so it wants to create unforgeable “purchase or-
ders” which the payment app cannot corrupt. All of this
can be easily accomplished with our new mechanisms.

Challenges. For Quire to be successful, we must ac-
complish a number of goals. Our design must be suffi-
ciently general to capture a variety of use cases for aug-
mented internal and remote communication. Toward that
end, we build on many concepts from Taos [38], includ-
ing its compound principals and logic of authentication
(see Section 2). Our implementation must be fast. Ev-
ery IPC call in the system must be annotated and must be
subsequently verifiable without having a significant im-
pact on throughput, latency, or battery life. (Section 3 de-
scribes Quire’s implementation, and Section 5 presents
our performance measurements.) Quire expands on re-
lated work from a variety of fields, including existing

Android research, web security, distributed authentica-
tion logics, and trusted platform measurements (see Sec-
tion 6). We expect Quire to serve as a platform for future
work in secure UI design, as a substrate for future re-
search in web browser engineering, and as starting point
for a variety of applications (see Section 7).

2 Design

Fundamentally, the design goal of Quire is to allow
apps to reason about the call-chain and data provenance
of requests, occurring on both a host platform via IPC
or on a remote server via RPC, before committing to
any security-relevant decisions. This design goal is
shared by a variety of other systems, ranging from Java’s
stack inspection [34, 35] to many newer systems that
rely on data tainting or information flow control (see,
e.g., [24, 25, 13]). In Quire, much like in stack inspec-
tion, we wish to support legacy code without much, if
any modification. However, unlike stack inspection, we
don’t want to modify the underlying system to annotate
and track every method invocation, nor would we like to
suffer the runtime costs of dynamic data tainting as in
TaintDroid [13]. We also wish to operate correctly with
apps that have natively compiled code, not just Java code
(an issue with traditional stack inspection and with Taint-
Droid). We observe that in order to accomplish these
goals, we only need to track calls across IPC boundaries,
which happen far less frequently than method invoca-
tions, and which already must pay significant overheads
for data marshaling, context switching, and copying.

Stack inspection has the property that the available
privileges at the end of a call chain represent the intersec-
tion of the privileges of every app along the chain (more
on this in Section 2.2), which is good for preventing con-
fused deputy attacks, but doesn’t solve a variety of other
problems, such as validating the integrity of individual
data items as they are passed from one app to another or
over the network. For that, we need semantics akin to
digital signatures, but we need to be much more efficient
as attaching digital signatures to all IPC calls would be
too slow (more on this in Section 2.3).

Versus information flow. A design that focuses on
IPC boundaries is necessarily less precise than dynamic
taint analysis, but it’s also incredibly flexible. We
can avoid the need to annotate code with static secu-
rity policies, as would be required in information flow-
typed systems like Jif [26]. We similarly do not need
to poly-instantiate services to ensure that each instance
only handles a single security label as in systems like
DStar/HiStar [39] or IPC Inspection [15]. Instead, in
Quire, an application which handles requests from mul-

tiple callers will pass along an object annotated with the
originator’s context when it makes downstream requests
on behalf of the original caller.

Likewise, where a dynamic tainting system like Taint-
Droid [13] would generally allow a sensitive operation,
like learning the phone’s precise GPS location, to occur,
but would forbid it from flowing to an unprivileged app;
Quire will carry the unprivileged context through to the
point where the dangerous operation is about to happen,
and will then forbid the operation. An information flow
approach is thus more likely to catch corner cases (e.g.,
where an app caches location data, so no privileged call
is ever performed), but is also more likely to have false
positives (where it must conservatively err on the side of
flagging a flow that is actually just fine). A programmer
in an information flow system would need to tag these
false positive corner cases as acceptable, whereas a pro-
grammer using Quire would need to add additional se-
curity checks to corner cases that would otherwise be al-
lowed.

2.1 Authentication logic and cryptography

In order to reason about the semantics of Quire, we
need a formal model to express what the various oper-
ations in Quire will do. Toward that end, we use the
Abadi et al. [1] (hereafter “ABLP”) logic of authentica-
tion, as used in Taos [38]. In this logic, principals make
statements, which can include various forms of quotation
(“Alice says Bob says X”) and authorization (e.g., “Al-
ice says Bob speaks for Alice”). ABLP nicely models
the behavior of cryptographic operations, where crypto-
graphic key material speaks for other principals, and we
can use this model to reason about cross-process com-
munication on a device as well as over the network.

For the remainder of the current section, we will flesh
out Quire’s IPC and RPC design in terms of ABLP and
the cryptographic mechanisms we have adopted.

2.2 IPC provenance

Android IPC background. The application separa-
tion that Android relies on to protect apps from one an-
other has an interesting side effect; whenever two appli-
cations wish to communicate they must do so via An-
droid’s Binder IPC mechanism. All cross application
communication occurs over these Binder IPC channels,
from clicks delivered from the OS to an app to requests
for sensitive resources like a users list of contacts or GPS
location. It is therefore critically important to protect
these inter-application communication channels against
attack.

Userspace
UID: 1
Call Chain: ()

Call TM(...)

EvilApp

UID: 2
Call Chain: (1)

Call LP(...)

TrustedMapper

UID: 3
Call Chain: (1,2)

VerifyCallChain(...)

LocationProvider

Operating System

Call chain: (1,2,3)

1 no GPS
2 GPS okay
3 GPS okay

PrivilegeManager

Figure 1: Defeating confused deputy attacks.

Quire IPC design. The goal of Quire’s IPC prove-
nance system is to allow endpoints that protect sensitive
resources, like a user’s fine grained GPS data or contact
information, to reason about the complete IPC call-chain
of a request for the resource before granting access to the
requesting app.

Quire realizes this goal by modifying the Android IPC
layer to automatically build calling context as an IPC
call-chain is formed. Consider a call-chain where three
principals A, B, and C, are communicating. If A calls B
who then calls C without keeping track of the call-stack,
C only knows that B initiated a request to it, not that
the call from A prompted B to make the call to C. This
loss of context can have significant security implications
in a system like Android where permissions are directly
linked to the identity of the principal requesting access to
a sensitive resource.

To address this, Quire’s design is for any given callee
to retain its caller’s call-chain and pass this to every
downstream callee. The callee will automatically have
its caller’s principal prepended to the ABLP statement.
In our above scenario, C will receive a statement “B says
A says Ok”, where Ok is an abstract token representing
that the given resource is authorized to be used. It’s now
the burden of C (or Quire’s privilege manager, operat-
ing on C’s behalf) to prove Ok. As Wallach et al. [35]
demonstrated, this is equivalent to validating that each
principal in the calling chain is individually allowed to
perform the action in question.

Confused and intentional deputies. The current An-
droid permission system ties an apps permissions to the
unique user-id it is assigned at install time. The Android
system then resolves the user-id of an app requesting ac-
cess to a sensitive resource into a permission set that de-
termines if the app’s request for the resource will suc-

ceed. This approach to permissions enables applications
that have permission to access a resource to act as both
intentional and confused deputies. The current Android
permission model assumes that all apps act as intentional
deputies, that is they resolve and check the user-id and
permission set of a calling application that triggers the
callee app to issue a request for a sensitve resource be-
fore issuing the request to the resource.

An app that protects a sensitive resource and blindly
handles requests from callees to the protected resource
is said to be acting as a confused deputy because it is
unaware that it is doing dangerous actions on behalf of
a caller who doesn’t have the necessary permissions. In
reality, app developers rarely intend to create a confused
deputy; instead, they may simply fail to consider that a
dangerous operation is in play, and thus fail to take any
precautions.

The goal of the IPC extensions in Quire are to provide
enough additional security context to prevent confused
deputy attacks while still enabling an application to act
as an intentional deputy if it chooses to do so. To defeat
confused deputy attacks, we simply check if any one of
the principals in the call chain is not privileged for the
action being taken; in these cases, permission is denied.
Figure 1 shows this in the context of an evil application,
lacking fine-grained location privileges, which is trying
to abuse the privileges of a trusted mapping program,
which happens to have that privilege. The mapping ap-
plication, never realizing that its helpful API might be a
security vulnerability, naïvely and automatically passes
along the call chain along to the location service. The
location service then uses the call chain to prove (or dis-
prove) that the request for fine-grained location show be
allowed.

As with traditional stack inspection, there will be
times that an app genuinely wishes to exercise a priv-
ilege, regardless of its caller’s lack of the same privi-
lege. Stack inspection solves this with an enablePriv-
ilege primitive that, in the ABLP logic, simply doesn’t
pass along the caller’s call stack information. The callee,
after privileges are enabled, gets only the immediate
caller’s identity. (In the example of Figure 1, the trusted
mapper would drop the evil app from the call chain, and
the location provider would only hear that the trusted
mapper application wishes to use the service.)

Our design is, in effect, an example of the “security
passing style” transformation [35], where security be-
liefs are passed explicitly as an IPC argument rather than
passed implicitly as annotations on the call stack. One
beneficial consequence of this is that a callee might well
save the statement made by its caller and reuse them at
a later time, perhaps if they queue requests for later pro-
cessing, in order to properly modulate the privilege level
of outgoing requests.

Security analysis. While apps, by default, will pass
along call chain information without modification, Quire
allows a caller to forge the identities of its antecedent
callers. They are simply strings passed along from caller
to callee. Enabling this misrepresentation would seem
to enable serious security vulnerabilities, but there is no
incentive for a caller to lie, since the addition of any an-
tecedent principals strictly reduces the privileges of the
caller. Of course, there will be circumstances when a
caller wants to take an action that will result in increased
privileges for a downstream callee. Toward that end,
Quire provides a mechanism for verifiable statements
(see Section 2.3).

In our design, we require the callee to learn the caller’s
identity in an unforgeable fashion. The callee then
prepends the “Caller says” tokens to the statement it
hears from the caller, using information that is available
as part of every Android Binder IPC, any lack of privi-
leges on the caller’s part will be properly reflected when
the privileges for the trusted operation are later evaluated.

Furthermore, our design is lightweight; we can con-
struct and propagate IPC call chains with little impact on
IPC performance (see Section 5).

2.3 Verifiable statements
Stack inspection semantics are helpful, but are not suf-
ficient for many security needs. We envision a variety
of scenarios where we will need semantics equivalent to
digital signatures, but with much better performance than
public-key cryptographic operations.

Definition. A verifiable statement is a 3-tuple
[P,M, A(M)P] where P is the principal that said message
M, and A(M)P is an authentication token that can be
used by the Authority Manager OS service to verify P
said M. In ABLP, this tuple represents the statement “P
says M.”

In order to operate without requiring slow public-key
cryptographic operations, we have two main choices. We
could adopt some sort of central registry of statements,
perhaps managed inside the kernel. This would require a
context switch every time a new statement is made, and
it would also require the kernel to store these statements
in a cache with some sort of timeout strategy to avoid a
memory use explosion.

The alternative is to adopt a symmetric-key cryp-
tographic mechanism, such as message authentication
codes (MAC). MAC functions, like HMAC-SHA1, run
several orders of magnitude faster than digital signature
functions like DSA, but MAC functions require a shared
key between the generator and verifier of a MAC. To
avoid an N2 key explosion, we must have every appli-
cation share a key with a central, trusted authority man-

ager. As such, any app can produce a statement “App
says M”, purely by computing a MAC with its secret
key. However, for a second app to verify it, it must send
the statement to the authority manager. If the authority
manager says the MAC is valid, then the second app will
believe the veracity of the statement.

There are two benefits of the MAC design over the
kernel statement registry. First, it requires no context
switches when statements are generated. Context switch-
ing is only necessary when a statement is verified, which
we expect to happen far less often. Second, the MAC
design requires no kernel-level caching strategy. Instead,
signed statements are just another element in the mar-
shaled data being passed via IPC. The memory used for
them will be reclaimed whenever the rest of the message
buffer is reclaimed. Consequently, there is no risk that
an older MAC statement will become unverifiable due to
cache eviction.

2.4 RPC attestations
When moving from on-device IPCs to Internet RPCs,
some of the properties that we rely on to secure on-device
communication disappear. Most notably, the receiver of
a call can no longer open a channel to talk to the author-
ity manager, even if they did trust it1. To combat this,
Quire’s design requires an additional “network provider”
system service, which can speak over the network, on be-
half of statements made on the phone. This will require it
to speak with a cryptographic secret that is not available
to any applications on the system.

One method for getting such a secret key is to have
the phone manufacturer embed a signed X.509 certifi-
cate, along with the corresponding private key, in trusted
storage which is only accessible to the OS kernel. This
certificate can be used to establish a client-authenticated
TLS connection to a remote service, with the remote
server using the presence of the client certificate, as en-
dorsed by a trusted certification authority, to provide con-
fidence that it is really communicating with the Quire
phone’s operating system, rather than an application at-
tempting to impersonate the OS. With this attestation-
carrying encrypted channel in place, RPCs can then carry
a serialized form of the same statements passed along in
Quire IPCs, including both call chains and signed state-
ments, with the network provider trusted to speak on be-
half of the activity inside the phone.

All of this can be transmitted in a variety of ways,
such as a new HTTP header. Regular Quire applica-
tions would be able to speak through this channel, but
the new HTTP headers, with their security-relevant con-

1Like it or not, with NATs, firewalls, and other such impediments
to bi-directional connectivity, we can only reliably assume that a phone
can make outbound TCP connections, not receive inbound ones.

textual information, would not be accessible to or forge-
able by the applications making RPCs. (Quire RPCs are
analogous to the HTTP origin header [2], generated by
modern web browsers, but Quire RPCs carry the full call
chain as well as any MAC statements, giving significant
additional context to the RPC server.)

The strength of this security context information is
limited by the ability of the device and the OS to pro-
tect the key material. If a malicious application can
extract the private key, then it would be able to send
messages with arbitrary claims about the provenance of
the request. This leads us inevitably to techniques from
the field of trusted platform measurement (TPM), where
stored cryptographic key material is rendered unavailable
unless the kernel was properly validated when it booted.
TPM chips are common in many of today’s laptops and
could well be installed in future smartphones.

Even without TPM hardware, Android phones gen-
erally prohibit applications from running with full root
privileges, allowing the kernel to protect its data from
malicious apps. Of course, there may well always be se-
curity vulnerabilities in trusted applications. These could
be exploited by malicious apps to amplify their privi-
leges; they’re also exploited by tools that allow users
to “root” their phones, typically to work around carrier-
instituted restrictions such as forbidding phones from
freely relaying cellular data services as WiFi hotspots.
Once a user has “rooted” an Android phone, apps can
then request “super user” privileges, which if granted
would allow the generation of arbitrary signed state-
ments.

While this is far from ideal, we note that Google and
other Android vendors are already strongly incentivized
to fix these security holes, and that most users will never
go to the trouble of rooting their phones. Consequently,
an RPC server can treat the additional context informa-
tion provided by Quire as a useful signal for fraud pre-
vention, but other server-side mechanisms (e.g., anomaly
detection) will remain a valuable part of any overall de-
sign.

Privacy. An interesting concern arises with our design:
Every RPC call made from Quire uses the unique pub-
lic key assigned to that phone. Presumably, the public
key certificate would contain a variety of identifying in-
formation, thus making every RPC personally identify
the owner of the phone. This may well be desirable
in some circumstances, notably allowing web services
with Android applications acting as frontends to com-
pletely eliminate any need for username/password di-
alogs. However, it’s clearly undesirable in other cases.
To address this very issue, the Trusted Computing Group
has designed what it calls “direct anonymous attesta-

tion”2, using cryptographic group signatures to allow the
caller to prove that it knows one of a large group of re-
lated private keys without saying anything about which
one [8]. This will make it impossible to correlate multi-
ple connections from the same phone. A production im-
plementation of Quire could certainly switch from TLS
client-auth to some form of anonymous attestation with-
out a significant performance impact.

An interesting challenge, for future work, is being able
to switch from anonymous attestation, in the default case,
to classical client-authentication, in cases where it might
be desirable. One notable challenge of this would be
working around users who will click affirmatively on any
“okay / cancel” dialog that’s presented to them without
ever bothering to read it. Perhaps this could be finessed
with an Android privilege that is requested at the time
an application is installed. Unprivileged apps can only
make anonymous attestations, while more trusted apps
can make attestations that uniquely identify the specific
user/phone.

2.5 Drawbacks and circumvention

The design of Quiremakes no attempt to prevent a mali-
cious deputy from circumventing the security constructs
introduced in Quire. For example a malicious attacker
could create two collaborating applications, one with in-
ternet permission and one with GPS permission, to cir-
cumvent Chinese Wall-style policies [5] that might re-
quire that the GPS provider never deliver GPS informa-
tion to an app with internet permission. Such malicious
interactions can be detected and averted by systems like
TaintDroid [13] and XManDroid [6]. We are primarily
concerned with preventing benign applications from act-
ing as confused deputies while still enabling apps to ex-
ercise their full permission sets as intentional deputies
when needed.

3 Implementation

Quire is implemented as a set of extensions to the exist-
ing Android Java runtime libraries and Binder IPC sys-
tem. The authority manager and network provider are
trusted components and therefore implemented as OS
level services while our modified Android interface def-
inition language code generator provides IPC stub code
that allows applications to propagate and adopt an IPC
call-stack. The result, which is implemented in around
1300 lines of Java and C++ code, is an extension to
the existing Android OS that provides locally verifi-
able statements, IPC provenance, and authenticated RPC

2http://www.zurich.ibm.com/security/daa/

for Quire-aware applications and backward compatibil-
ity for existing Android applications.

3.1 On- and off-phone principals
The Android architecture sandboxes applications such
that apps from different sources run as different Unix
users. Standard Android features also allow us to resolve
user-ids into human-readable names and permission sets,
based on the applications’ origins. Based on these fea-
tures, the prototype Quire implementation defines prin-
cipals as the tuple of a user-id and process-id. We include
the process-id component to allow the recipient of an IPC
method call to stipulate policies that force the process-id
of a communication partner to remain unchanged across
a series of calls. (This feature is largely ignored in the
applications we have implemented for testing and evalu-
ation purposes, but it might be useful later.)

While principals defined by user-id/process-id tuples
are sufficient for the identification of an application on
the phone, they are meaningless to a remote service.
However, the Android system requires all applications
to be signed by their developers. The public key used
for signing the application can be used as part of the
identity of the application. Quire therefore resolves the
user-id/process-id tuples used in IPC call-chains into an
externally meaningful string consisting of the marshaled
chain of application names and public keys when RPC
communication is invoked to move data off the phone.
This lazy resolution of IPC principals allows Quire to re-
duce the memory footprint of statements when perform-
ing IPC calls at the cost of extra effort when RPCs are
performed.

3.2 Authority management
The Authority Manager discussed in Section 2 is imple-
mented as a system service that runs within the operating
system’s reserved user-id space. The interface exposed
by the service allows userspace applications to request
a shared secret, submit a statement for verification, or
request the resolution of the principal included in a state-
ment into an externally meaningful form.

When an application requests a key from the authority
manager, the Authority Manager maintains a table map-
ping user-id / process-id tuples to the key. It is important
to note that a subsequent request from the same applica-
tion will prompt the Authority Manager to create a new
key for the calling application and replace the previous
stored key in the lookup table. This prevents attacks that
might try to exploit the reuse of user-ids and process-ids
as applications come and go over time. Needless to say,
the Authority Manager is a system service that must be
trusted and separated from other apps.

3.3 Verifiable statements

Section 2.3 introduced the idea of attaching an OS veri-
fiable statement to an object in order to allow principals
later in a call-chain to verify the authenticity and integrity
of a received object.

Our implementation of this abstract concept involves
a parcelable statement object that consists of a principal
identifier as well as an authentication token. When this
statement object is attached to a parcelable object, the an-
notated object contains all the information necessary for
the Authority Manager service to validate the authentica-
tion token contained within the statement. Therefore the
annotated object can be sent over Android’s IPC chan-
nels and later delivered to the Quire Authority Manger
for verification by the OS.

Quire’s verifiable statement implementation estab-
lishes the authenticity of message with HMAC-SHA1,
which proved to be exceptionally efficient for our needs,
while still providing the authentication and integrity se-
mantics required by Quire.

Even with HMAC-SHA1, speed still matters. In prac-
tice, doing HMAC-SHA1 in pure Java was still slow
enough to be an issue. We resolved this by using a native
C implementation from OpenSSL and exposing it to Java
code as a Dalvik VM intrinsic function, rather than a JNI
native method. This eliminated unnecessary copying and
runs at full native speed (see Section 5.2.1).

3.4 Code generator

The key to the stack inspection semantics that Quire pro-
vides is an extension to the Android Interface Definition
Language (AIDL) code generator. This piece of software
is responsible for taking in a generalized interface defini-
tion and creating stub and proxy code to facilitate Binder
IPC communication over the interface as defined in the
AIDL file.

The Quire code generator differs from the stock An-
droid code generator in that it adds directives to the mar-
shaling and unmarshaling phase of the stubs that pulls
the call-chain context from the calling app and attaches
it to the outgoing IPC message for the callee to retrieve.
These directives allow for the “quoting” semantics that
form the basis of a stack inspection based policy system.

Our prototype implementation of the Quire AIDL
code generator requires that an application developer
specify that an AIDL method become “Quire aware”
by defining the method with a reserved auth flag in the
AIDL input file. This flag informs the Quire code gen-
erator to produce additional proxy and stub code for the
given method that enables the propagation and delivery
of the call-chain context to the specified method. A pro-
duction implementation would pass this information im-

plicitly on all IPC calls.
In addition to enabling quoting semantics, the mod-

ified code generator also exposes helper functions that
wrap the generation (and storage) of a shared secret with
the OS Authority Manager and the creation and trans-
mission of a verifiable statement to a communicating IPC
endpoint.

4 Applications

We built two different applications to demonstrate the
benefits of Quire’s infrastructure.

4.1 Click fraud prevention

Current Android-based advertising systems, such as Ad-
Mob, are deployed as a library that an app includes as
part of its distribution. So far as the Android OS is con-
cerned, the app and its ads are operating within single do-
main, indistinguishable from one another. Furthermore,
because advertisement services need to report their ac-
tivity to a network service, any ad-supported app must
request network privileges, even if the app, by itself,
doesn’t need them.

From a security perspective, mashing these two dis-
tinct security domains together into a single app creates
a variety of problems. In addition to requiring network-
access privileges, the lack of isolation between the adver-
tisement code and its host creates all kinds of opportuni-
ties for fraud. The hosting app might modify the adver-
tisement library to generate fake clicks and real revenue.

This sort of click fraud is also a serious issue on the
web, and it’s typically addressed by placing the adver-
tisements within an iframe, creating a separate protec-
tion domain and providing some mutual protection. To
achieve something similar with Quire, we needed to ex-
tend Android’s UI layer and leverage Quire’s features to
authenticate indirect messages, such as UI events, dele-
gated from the parent app to the child advertisement app.

Design challenges. Fundamentally, our design re-
quires two separate apps to be stacked (see Figure 2),
with the primary application on top, and opening a trans-
parent hole through which the subordinate advertising
application can be seen by the user. This immediately
raises two challenges. First, how can the advertising app
know that it’s actually visible to the user, versus being
obscured by the application? And second, how can the
advertising app know that the clicks and other UI events
it receives were legitimately generated by the user, versus
being synthesized or replayed by the primary application.

Ad

Buy! Cool! Stuff!

Sample App

(transparent, so ad is visible)

Figure 2: The host and advertisement apps.

Stacking the apps. This was straightforward to im-
plement. The hosting application implements a translu-
cent theme (Theme.Translucent), making the background
activity visible. When an activity containing an ad-
vertisement is started or resumed, we modified the ac-
tivity launch logic system to ensure that the advertise-
ment activity is placed below the associated host activ-
ities. When a user event is delivered to the AppFrame
view, it sends the event along with the current location of
AppFrame in the window to the an advertisement event
service. This allows our prototype to correctly display
the two apps together.

Visibility. Android allows an app to continue running,
even when it’s not on the screen. Assuming our ad ser-
vice is built around payments per click, rather than per
view, we’re primarily interested in knowing, at the mo-
ment that a click occurred, that the advertisement was
actually visible. Android 2.3 added a new feature where
motion events contain an “obscured” flag that tells us
precisely the necessary information. The only challenge
is knowing that the MotionEvent we received was legiti-
mate and fresh.

Verifying events. With our stacked app design, motion
events are delivered to the host app, on top of the stack.
The host app then recognizes when an event occurs in the
advertisement’s region and passes the event along. To
complicate matters, Android 2.3 reengineered the event
system to lower the latency, a feature desired by game
designers. Events are now transmitted through shared
memory buffers, below the Java layer.

In our design, we leverage Quire’s signed statements.

Userspace

Delegate(e)

Sample App

VerifyMAC(e)

Ad View App

Operating System

kEM “E.M.”

Auth Manager

ClickEvent e = {
 Time t
 Position x,y
 ... }
MACkEM(e)

Event Manager

Figure 3: Secure event delivery from host app to adver-
tisement app.

We modified the event system to augment every Mo-
tionEvent (as many as 60 per second) with one of our
MAC-based signatures. This means we don’t have to
worry about tampering or other corruption in the event
system. Instead, once an event arrives at the advertise-
ment app, it first validates the statement, then validates
that it’s not obscured, and finally validates the timestamp
in the event, to make sure the click is fresh. This process
is summarized in Figure 3.

At this point, the local advertising application can now
be satisfied that the click was legitimate and that the ad
was visible when the click occurred and it can communi-
cate that fact over the Internet, unspoofably, with Quire’s
RPC service.

All said and done, we added around 500 lines of Java
code for modifying the activity launch process, plus a
modest amount of C code to generate the signatures.
While our implementation does not deal with every pos-
sible scenario (e.g., changes in orientation, killing of the
advertisement app due to low memory, and other such
things) it still demonstrates the feasibility of hosting of
advertisement in separate processes and defeating click
fraud attacks.

4.2 PayBuddy

To demonstrate the usefulness of Quire for RPCs, we
implemented a micropayment application called Pay-
Buddy: a standalone Android application which exposes
an activity to other applications on the device to allow
those applications to request payments.

This is a scenario which requires a high degree of co-
operation between many parties, but at the same time in-
volves a high degree of mutual distrust. The user may
not trust the application not to steal his banking infor-

Userspace
MAC Key: kA
PurchaseOrder po {
 Cost c
 Payee p ...}
MACkA(po)

ExampleApp

MAC Key: kPB

RPCPayBuddy.com(...)

PayBuddy

Operating System

kA “ExampleApp”

kPB “PayBuddy”

Auth Manager

“ExampleApp says ...”
“PayBuddy says ...”

Net Provider

PayBuddy.com

Figure 4: Message flow in the PayBuddy system.

mation, while the application may not trust the user to
faithfully make the required payment. Similarly, the ap-
plication may not trust that the PayBuddy application on
the phone is legitimate, while the PayBuddy application
may not trust that the user has been accurately notified of
the proper amount to be charged. Finally, the service side
of PayBuddy may not trust that the legitimate PayBuddy
application is the application that is submitting the pay-
ment request. We designed PayBuddy to consider all of
these sources of distrust.

To demonstrate how PayBuddy works, consider the
example shown in Figure 4. Application ExampleApp
wishes to allow the user to make an in-app purchase.
To do this, ExampleApp creates and serializes a pur-
chase order object and signs it with its MAC key kA.
It then sends the signed object to the PayBuddy appli-
cation, which can then prompt the user to confirm their
intent to make the payment. After this, PayBuddy passes
the purchase order along to the operating system’s Net-
work Provider. At this point, the Network Provider can
verify the signature on the purchase order, and also that
the request came from the PayBuddy application. It then
sends the request to the PayBuddy.com server over a
client-authenticated HTTPS connection. The contents of
ExampleApp’s purchase order are included in an HTTP
header, as is the call chain (“ExampleApp, PayBuddy”).

At the end of this, PayBuddy.com knows the follow-
ing:

• The request came from a particular device with a
given certificate.

• The purchase order originated from ExampleApp

and was not tampered with by the PayBuddy appli-
cation.

• The PayBuddy application approved the request
(which means that the user gave their explicit con-
sent to the purchase order).

At the end of this, if PayBuddy.com accepts the trans-
action, it can take whatever action accompanies the suc-
cessful payment (e.g., returning a transaction ID that
ExampleApp might send to its home server in order to
download a new level for a game).

Security analysis. Our design has several curious
properties. Most notably, the ExampleApp and the Pay-
Buddy app are mutually distrusting of each other.

The PayBuddy app doesn’t trust the payment request
to be legitimate, so it can present an “okay/cancel” dialog
to the user. In that dialog, it can include the cost as well
as the ExampleApp name, which it received through the
Quire call chain. Since ExampleApp is the direct caller,
its name cannot be forged. The PayBuddy app will only
communicate with the PayBuddy.com server if the user
approves the transaction.

Similarly, ExampleApp has only a limited amount of
trust in the PayBuddy app. By signing its purchase or-
der, and including a unique order number of some sort,
a compromised PayBuddy app cannot modify or replay
the message. Because the OS’s net provider is trusted to
speak on behalf of both the ExampleApp and the Pay-
Buddy app, the remote PayBuddy.com server gets am-
ple context to understand what happened on the phone
and deal with cases where a user later tries to repudiate a
payment.

Lastly, the user’s PayBuddy credentials are never vis-
ible to ExampleApp in any way. Once the PayBuddy
app is bound, at install time, to the user’s matching ac-
count on PayBuddy.com, there will be no subsequent
username/password dialogs. All the user will see is an
okay/cancel dialog. This will reduce the number of user-
name/password dialogs that the user sees in normal us-
age, which will make entering username and password
an exceptional situation. Once users are accustomed to
this, they may be more likely to react with skepticism
when presented with a phishing attack that demands their
PayBuddy credentials. (A phishing attack that’s com-
pletely faithful to the proper PayBuddy user interface
would only present an okay/cancel dialog, which yields
no useful information for the attacker.)

Google’s in-app billing. After we implemented Pay-
Buddy, Google released their own micropayment sys-
tem. Their system leverages a private key shared be-
tween Google and each application developer to enable

the on-phone application to verify that confirmations are
coming from Google’s Market servers. However, unlike
PayBuddy, the messages from the Market application to
the server do not contain OS-signed statements from the
requesting application and the Market app. If the Market
app were tampered by an attacker, this could allow for a
variety of compromises that Quire would defeat.

Also, while Google’s in-app billing is built on Google-
specific infrastructure, like its Market app, Quire’s de-
sign provides general-purpose infrastructure that can be
used by PayBuddy or any other app.

One last difference: PayBuddy returns a transaction
ID to the app which requested payment. The app must
then make a new RPC to the payment server or to its
own server to validate the transaction ID against the orig-
inal request. Google returns a statement that is digitally
signed by the Market server which can be verified by
a public key that would be embedded within the app.
Google’s approach avoids an additional network round
trip, but they recommend code obfuscation and other
measures to protect the app from external tampering3.

5 Performance evaluation

5.1 Experimental methodology

All of our experiments were performed on the standard
Android developer phone, the Nexus One, which has a
1GHz ARM core (a Qualcomm QSD 8250), 512MB of
RAM, and 512MB of internal Flash storage. We con-
ducted our experiments with the phone displaying the
home screen and running the normal set of applications
that spawn at start up. We replaced the default “live wall-
paper” with a static image to eliminate its background
CPU load.

All of our benchmarks are measured using the An-
droid Open Source Project’s (AOSP) Android 2.3 (“Gin-
gerbread”) as pulled from the AOSP repository on De-
cember 21st, 2010. Quire is implemented as a series
of patches to this code base. We used an unmodified
Gingerbread build for “control” measurements and com-
pared that to a build with our Quire features enabled for
“experimental” measurements.

5.2 Microbenchmarks

5.2.1 Signed statements

Our first micro benchmark of Quiremeasures the cost of
creating and verifying statements of varying sizes. To do
this, we had an application generate random byte arrays

3http://developer.android.com/guide/market/billing/billing_best_
practices.html

0 1000 2000 3000 4000 5000 6000 7000 8000
payload (bytes)

0

200

400

600

800

1000

1200

1400

tim
e

(µ
s)

Statement Verification
Statement Creation

Figure 5: Statement creation and verification time vs
payload size.

of varying sizes from 10 bytes to 8000 bytes and mea-
sured the time to create 1000 signatures of the data, fol-
lowed by 1000 verifications of the signature. Each set of
measured signatures and verifications was preceded by a
priming run to remove any first-run effects. We then took
an average of the middle 8 out of 10 such runs for each
size. The large number of runs is due to variance intro-
duced by garbage collection within the Authority Man-
ager. Even with this large number of runs, we could not
fully account for this, leading to some jitter in the mea-
sured performance of statement verification.

The results in Figure 5 show that statement creation
carries a minimal fixed overhead of 20 microseconds
with an additional cost of 15 microseconds per kilobyte.
Statement verification, on the other hand, has a much
higher cost: 556 microseconds fixed and an additional
96 microseconds per kilobyte. This larger cost is primar-
ily due to the context switch and attendant copying over-
head required to ask the Authority Manager to perform
the verification. However, with statement verification be-
ing a much less frequent occurrence than statement gen-
eration, these performance numbers are well within our
performance targets.

5.2.2 IPC call-chain tracking

Our next micro-benchmark measures the additional cost
of tracking the call chain for an IPC that otherwise per-
forms no computation. We implemented a service with
a pair of methods, of which one uses the Quire IPC ex-
tensions and one does not. These methods both allow us
to pass a byte array of arbitrary size to them. We then
measured the total round trip time needed to make each
of these calls. These results are intended to demonstrate
the slowdown introduced by the Quire IPC extensions in
the worst case of a round trip null operation that takes no

0 1000 2000 3000 4000 5000 6000
payload (bytes)

0

200

400

600

800

1000
tim

e
(µ

s)

Quire
Stock Android

Figure 6: Roundtrip single step IPC time vs payload size.

0 2 4 6 8 10
call chain length

0

1000

2000

3000

4000

5000

tim
e

(µ
s)

Quire
Stock Android
Difference

Figure 7: Roundtrip IPC time vs call chain length.

action on the receiving end of the IPC method call.
We discarded performance timings for the first IPC

call of each run to remove any noise that could have been
caused by previous activity on the system. The results in
Figure 6 were obtained by performing 10 runs of 100 tri-
als each at each size point, with sizes ranging from 0 to
6336 bytes in 64-byte increments.

These results show that the overhead of tracking the
call chain for one hop is around 70 microseconds, which
is a 21% slowdown in the worst case of doing no-op calls.

We also measured the effect of adding more hops into
the call chain. This was done by having a chain of iden-
tical services implementing a service similar to "trace
route". The payload for each method call was a single
integer, representing the number of hops remaining.

The results in Figure 7 show that the overhead of track-
ing the call chain is under 100 microseconds per hop,
which is a 20-25% slowdown in the worst case of calls
which perform no additional work. Even for a call chain
of 10 applications, the overhead is just 1 millisecond,

which is a slowdown which is well below what would
be noticed by a user.

5.2.3 RPC communication

Statement Depth Time (µs)
1 770
2 1045
4 1912
8 4576

Table 1: IPC principal to RPC principal resolution time.

The next microbenchmark we performed was deter-
mining the cost of converting from an IPC call-chain into
a serialized form that is meaningful to a remote service.
This includes the IPC overhead in asking the system ser-
vices to perform this conversion.

We found that, even for very long statement chains (of
8 distinct applications), the extra cost of this computation
is a few milliseconds, which is insignificant compared to
the other costs associated with setting up and maintain-
ing a TLS network connection. From this, we conclude
that Quire RPCs introduce no meaningful overhead be-
yond the costs already present in conducting RPCs over
cryptographically secure connections.

5.3 HTTPS RPC benchmark
To understand the impact of using Quire for calls to re-
mote servers, we performed some simple RPCs using
both Quire and a regular HTTPS connection. We called
a simple echo service that returned a parameter that was
provided to it. This allowed us to easily measure the ef-
fect of payload size on latency. We ran these tests on
a small LAN with a single wireless router and server
plugged into this router, and using the phone’s WiFi an-
tenna for connectivity. Each data point is the mean of 10
runs of 100 trials each, with the highest and lowest times
thrown out prior to taking the mean to remove anomalies.

The results in Figure 8 show that Quire adds an ad-
ditional overhead which averages around 6 ms, with a
maximum of 13.5 ms, and getting smaller as the payload
size increases. This extra latency is small enough that it’s
irrelevant in the face of the latencies experienced across
typical cellular Internet connections. From this we can
conclude that the overhead of Quire for network RPC is
practically insignificant.

5.4 Analysis
Our micro-benchmarks demonstrate that adding call-
chain tracking can be done without a significant perfor-

0 1000 2000 3000 4000 5000 6000 7000 8000
payload (bytes)

0

10

20

30

40

50

60
ro

un
dt

rip
 la

te
nc

y
(m

s)
Quire
plain https
added latency

Figure 8: Network RPC latency in milliseconds.

mance penalty above and beyond that of performing stan-
dard Android IPCs. Additionally, our RPC benchmarks
show that the addition of Quire does not cause a signifi-
cant slowdown relative to standard TLS-encrypted com-
munications as the RPC latency is dominated by the rela-
tively slow speed of an internet connection vs. on-device
communication.

These micro-benchmarks, while useful for demon-
strating the small scale impact of Quire, do not provide
valuable context as to the impact Quiremight have on the
Android user experience. However, our prototype adver-
tisement service requires each click on the system to be
annotated and signed and its performance shines a light
on the full system impact of Quire. We tested the im-
pact of Quire on touch event throughput by using the
advertisement system discussed in Section 4 to sign and
verify every click flowing from the OS through a host
app to a simple advertisement app. We observed that the
touch event throughput (which is artificially capped at
60 events per second by the Android OS) remained un-
changed even when we chose to verify every touch event.
This is obviously not a standard use case (as it simulates
a user spamming 60 clicks per second on an advertise-
ment), however even in this worst case scenario Quire
does not affect the user experience of the device.

6 Related work

6.1 Smart phone platform security
As mobile phone hardware and software increase in com-
plexity the security of the code running on a mobile de-
vices has become a major concern.

The Kirin system [14] and Security-by-Contract [12]
focus on enforcing install time application permissions
within the Android OS and .NET framework respec-
tively. These approaches to mobile phone security allow

a user to protect themselves by enforcing blanket restric-
tions on what applications may be installed or what in-
stalled applications may do, but do little to protect the
user from applications that collaborate to leak data or
protect applications from one another.

Saint [29] extends the functionality of the Kirin sys-
tem to allow for runtime inspection of the full system
permission state before launching a given application.
Apex [28] presents another solution for the same prob-
lem where the user is responsible for defining run-time
constraints on top of the existing Android permission
system. Both of these approaches allow users to specify
static policies to shield themselves from malicious ap-
plications, but don’t allow apps to make dynamic policy
decisions.

CRePE [10] presents a solution that attempts to artifi-
cially restrict an application’s permissions based on envi-
ronmental constraints such as location, noise, and time-
of-day. While CRePE considers contextual information
to apply dynamic policy decisions, it does not attempt to
address privilege escalation attacks.

6.1.1 Privilege escalation

XManDroid [6] presents a solution for privilege es-
calation and collusion by restricting communication at
runtime between applications where the communication
could open a path leading to dangerous information flows
based on Chinese Wall-style policies [5] (e.g., forbidding
communication between an application with GPS privi-
leges and an application with Internet access). While this
does protect against some privilege escalation attacks,
and allows for enforcing a more flexible range of poli-
cies, applications may launch denial of service attacks on
other applications (e.g., connecting to an application and
thus preventing it from using its full set of permissions)
and it does not allow the flexibility for an application to
regain privileges which they lost due to communicating
with other applications.

In concurrent work to our own, Felt et al. present a
solution to what they term “permission re-delegation” at-
tacks against deputies on the Android system [15]. With
their “IPC inspection” system, apps that receive IPC re-
quests are poly-instantiated based on the privileges of
their callers, ensuring that the callee has no greater priv-
ileges than the caller. IPC inspection addresses the same
confused deputy attack as Quire’s “security passing” IPC
annotations, however the approaches differ in how inten-
tional deputies are handled. With IPC inspection, the
OS strictly ensures that callees have reduced privileges.
They have no mechanism for a callee to deliberately of-
fer a safe interface to an otherwise dangerous primitive.
Unlike Quire, however, IPC inspection doesn’t require
apps to be recompiled or any other modifications to be

made to how apps make IPC requests.

6.1.2 Dynamic taint analysis on Android

The TaintDroid [13] and ParanoidAndroid [30] projects
present dynamic taint analysis techniques to preventing
runtime attacks and data leakage. These projects attempt
to tag objects with metadata in order to track information
flow and enable policies based on the path that data has
taken through the system. TaintDroid’s approach to in-
formation flow control is to restrict the transmission of
tainted data to a remote server by monitoring the out-
bound network connections made from the device and
disallowing tainted data to flow along the outbound chan-
nels. The goal of Quire differs from that of taint analysis
in that Quire is focused on providing provenance infor-
mation and preventing the access of sensitive data, rather
than in restricting where data may flow.

The low level approaches used to tag data also differ
between the projects. TaintDroid enforces its taint propa-
gation semantics by instrumenting an application’s DEX
bytecode to tag every variable, pointer, and IPC mes-
sage that flows through the system with a taint value. In
contrast, Quire’s approach requires only the IPC subsys-
tem be modified with no reliance on instrumented code,
therefore Quire can work with applications that use na-
tive libraries and avoid the overhead imparted by instru-
menting code to propagate taint values.

6.2 Decentralized information flow control

A branch of the information flow control space focuses
on how to provide taint tracking in the presence of mutu-
ally distrusting applications and no centralized authority.
Meyer’s and Liskov’s work on decentralized information
flow control (DIFC) systems [25, 27] was the first at-
tempt to solve this problem. Systems like DEFCon [23]
and Asbestos [33] use DIFC mechanisms to dynamically
apply security labels and track the taint of events mov-
ing through a distributed system. These projects and
Quire are similar in that they both rely on process iso-
lation and communication via message passing channels
that label data. However, DEFCon cannot provide its se-
curity guarantees in the presence of deep copying of data
while Quire can survive in an environment where deep
copying is allowed since Quire defines policy based on
the call chain and ignores the data contained within the
messages forming the call chain. Asbestos avoids the
deep copy problems of DEFCon by tagging data at the
IPC level. While Asbestos and Quire use a similar ap-
proach to data tagging, the tags are used for very dif-
ferent purposes. Asbestos aims to prevent data leaks by
enabling an application to tag its data and disallow a re-
cipient application from leaking information that it re-

ceived over an IPC channel while Quire attempts to pre-
emptively disallow data from being leaked by protecting
the resource itself, rather than allowing the resource to
be accessed then blocking leakage at the taint sink.

6.3 Operating system security

Communication in Quire is closely related to the mech-
anisms used in Taos [38]. Both systems intend to pro-
vide provenance to down stream callees in a communi-
cation chain, however Taos uses expensive digital signa-
tures to secure its communication channels while Quire
uses quoting and inexpensive MACs to accomplish the
same task. This notion of substituting inexpensive cryp-
tographic operations for expensive digital signatures was
also considered as an optimization in practical Byzantine
fault tolerance (PBFT) [7] for situations where network
latency is low and the additional message transmissions
are outweighed by the cost of expensive RSA signatures.

6.4 Trusted platform management

Our use of a central authority for the authentication
of statements within Quire shares some similarities
with projects in the trusted platform management space.
Terra [16] and vTPM [4] both use virtual machines as
the mechanism for enabling trusted computing. The ar-
chitecture of multiple segregated guest operating systems
running on top of a virtual machine manager is similar to
the Android design of multiple segregated users running
on top of a common OS. However, these approaches both
focus on establishing the user’s trust in the environment
rather than trust between applications running within the
system.

6.5 Web security

Many of the problems of provenance and application
separation addressed in Quire are directly related to
the challenge of enforcing the same origin policy from
within the web browser. Google’s Chrome browser [3,
31] presents one solution where origin content is segre-
gated into distinct processes. Microsoft’s Gazelle [36]
project takes this idea a step further and builds up
hardware-isolated protection domains in order to protect
principals from one another. MashupOS [19] goes even
further and builds OS level mechanisms for separating
principals while still allowing for mashups.

All of these approaches are more interested in protect-
ing principals from each other than in building up the
communication mechanism between principals. Quire
gets application separation for free by virtue of Android’s
process model, and focuses on the expanding the capa-

bilities of the communication mechanism used between
applications on the phone and the outside world.

6.6 Remote procedure calls
For an overview of some of the challenges and threats
surrounding authenticated RPC, see Weigold et al. [37].
There are many other systems which would allow for se-
cure remote procedure calls from mobile devices. Ker-
beros [22] is one solution, but it involves placing too
much trust in the ticket granting server (the phone man-
ufacturers or network providers, in our case). Another
potential is OAuth [17], where services delegate rights to
one another, perhaps even within the phone. This seems
unlikely to work in practice, although individual Quire
applications could have OAuth relationships with exter-
nal services and could provide services internally to other
applications on the phone.

7 Future work

We see Quire as a platform for conducting a variety of
interesting security research around smartphones.

Usable and secure UI design. The IPC extensions
Quire introduces to the Android operating system can
be used as a building block in the design and imple-
mentation of a secure user interface. We have already
demonstrated how the system can efficiently sign every
UI event, allowing for these events to be shared and dele-
gated safely. This existing application could be extended
to attest to the full state of the screen when a security crit-
ical action, such as an OAuth accept/deny dialog, occurs
and prevent UI spoofing attacks.

Secure login. Any opportunity to eliminate the need
for username/password dialogs from the experience of a
smartphone user would appear to be a huge win, particu-
larly because it’s much harder for phones to display tra-
ditional trusted path signals, such as modifications to the
chrome of a web browser. Instead, we can leverage the
low-level client-authenticated RPC channels to achieve
high-level single-sign-on goals. Our PayBuddy applica-
tion demonstrated the possibility of building single-sign-
on systems within Quire. Extending this to work with
multiple CAs or to integrate with OpenID / OAuth ser-
vices would seem to be a fruitful avenue to pursue.

Web browsers. While Quire is targeted at the needs of
smartphone applications, there is a clear relationship be-
tween these and the needs of web applications in modern
browsers. Extensions to Quire could have ramifications
on how code plugins (native code or otherwise) interact

with one another and with the rest of the Web. Exten-
sions to Quire could also form a substrate for building
a new generation of browsers with smaller trusted com-
puting bases, where the elements that compose a web
page are separated from one another. This contrasts with
Chrome [31], where each web page runs as a monolithic
entity. Our Quire work could lead to infrastructure sim-
ilar, in some respects, to Gazelle [36], which separates
the principals running in a given web page, but lacks our
proposed provenance system or sharing mechanisms.

An interesting challenge is to harmonize the differ-
ences between web pages, which increasingly operate as
applications with long-term state and the need for ad-
ditional security privileges, and applications (on smart-
phones or on desktop computers), where the principle
of least privilege [32] is seemingly violated by running
every application with the full privileges of the user,
whether or not this is necessary or desirable.

8 Conclusion

In this paper we presented Quire, a set of extensions to
the Android operating system that enable applications to
propagate call chain context to downstream callees and
to authenticate the origin of data that they receive in-
directly. These extensions allow applications to defend
themselves against confused deputy attacks on their pub-
lic interfaces and enable mutually untrusting apps to ver-
ify the authenticity of incoming requests with the OS.
When remote communication is needed, our RPC sub-
system allows the operating system to embed attestations
about message origins and the IPC call chain into the re-
quest. This allows remote servers to make policy deci-
sions based on these attestation.

We implemented the Quire design as a backwards-
compatible extension to the Android operating system
that allows existing Android applications to co-exist with
applications that make use of Quire’s services.

We evaluated our implementation of the Quire design
by measuring our modifications to Android’s Binder IPC
system with a series of microbenchmarks. We also im-
plemented two applications which use these extensions
to provide click fraud prevention and in-app micropay-
ments.

We see Quire as a first step towards enabling more se-
cure mobile operating systems and applications. With the
Quire security primitives in place we can begin building
a more secure UI system and improving login on mobile
devices.

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. D. Plotkin. A
calculus for access control in distributed systems. ACM

Transactions on Programming Languages and Systems,
15(4):706–734, Sept. 1993.

[2] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses
for cross-site request forgery. In 15th ACM Conference
on Computer and Communications Security (CCS ’08),
Alexandria, VA, Oct. 2008.

[3] A. Barth, C. Jackson, and C. Reis. The secu-
rity architecture of the Chromium browser. Techni-
cal Report, http://www.adambarth.com/papers/2008/barth-
jackson-reis.pdf, 2008.

[4] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer,
and L. van Doorn. vTPM: virtualizing the trusted plat-
form module. In 15th Usenix Security Symposium, Van-
couver, B.C., Aug. 2006.

[5] D. F. C. Brewer and M. J. Nash. The Chinese wall secu-
rity policy. In Proceedings of the 1989 IEEE Symposium
on Security and Privacy, pages 206–214, Oakland, Cali-
fornia, May 1989.

[6] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-
R. Sadeghi. XManDroid: A new Android evolution
to mitigate privilege escalation attacks. Technical Re-
port TR-2011-04, Technische Universität Darmstadt, Apr.
2011. http://www.trust.informatik.tu-darmstadt.de/fileadmin/
user_upload/Group_TRUST/PubsPDF/xmandroid.pdf.

[7] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance and proactive recovery. ACM Transactions on Com-
puter Systems (TOCS), 20(4):398–461, 2002.

[8] D. Chaum and E. Van Heyst. Group signatures. In
Proceedings of the 10th Annual International Conference
on Theory and Application of Cryptographic Techniques
(EUROCRYPT ‘91), pages 257–265, Berlin, Heidelberg,
1991.

[9] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. An-
alyzing inter-application communication in Android. In
Proceedings of the 9th International Conference on Mo-
bile Systems, Applications, and Services (MobiSys 2011),
June 2011.

[10] M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE:
Context-related policy enforcement for Android. In Pro-
ceedings of the Thirteen Information Security Conference
(ISC ’10), Boca Raton, FL, Oct. 2010.

[11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy.
Privilege Escalation Attacks on Android. In Proceedings
of the 13th Information Security Conference (ISC ’10),
Oct. 2010.

[12] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts,
F. Piessens, I. Siahaan, and D. Vanoverberghe. Security-
by-contract on the .NET platform. Information Security
Technical Report, 13(1):25–32, 2008.

[13] W. Enck, P. Gilbert, C. Byung-gon, L. P. Cox, J. Jung,
P. McDaniel, and S. A. N. TaintDroid: An information-
flow tracking system for realtime privacy monitoring on
smartphones. In Proceeding of the 9th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’10), pages 393–408, 2010.

[14] W. Enck, M. Ongtang, and P. McDaniel. On lightweight
mobile phone application certification. In 16th ACM Con-
ference on Computer and Communications Security (CCS
’09), Chicago, IL, Nov. 2009.

[15] A. P. Felt, H. J. Wang, A. Moshchuck, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and defenses.
In 20th Usenix Security Symposium, San Fansisco, CA,
Aug. 2011.

[16] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In Proceedings of the 19th Sympo-
sium on Operating System Principles (SOSP ’03), Bolton
Landing, NY, Oct. 2003.

[17] E. Hammer-Lahav, D. Recordon, and D. Hardt. The
OAuth 2.0 Protocol. http://tools.ietf.org/html/draft-ietf-
oauth-v2-10, 2010.

[18] N. Hardy. The confused deputy. ACM Operating Systems
Review, 22(4):36–38, Oct. 1988.

[19] J. Howell, C. Jackson, H. J. Wang, and X. Fan. Mashu-
pOS: Operating system abstractions for client mashups.
In Proceedings of the 11th USENIX Workshop on Hot
Topics in Operating Systems (HotOS ’07), pages 1–7,
2007.

[20] S. Ioannidis, S. M. Bellovin, and J. Smith. Sub-operating
systems: A new approach to application security. In
SIGOPS European Workshop, Sept. 2002.

[21] B. Kaliski and M. Robshaw. Message authentication with
md5. CryptoBytes, 1:5–8, 1995.

[22] J. T. Kohl and C. Neuman. The Kerberos network authen-
tication service (V5). http://www.ietf.org/rfc/rfc1510.txt,
Sept. 1993.

[23] M. Migliavacca, I. Papagiannis, D. M. Eyers, B. Shand,
J. Bacon, and P. Pietzuch. DEFCON: high-performance
event processing with information security. In Proceed-
ings of the 2010 USENIX Annual Technical Conference,
Boston, MA, June 2010.

[24] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL ’99), pages 228–241, 1999.

[25] A. C. Myers and B. Liskov. A decentralized model for in-
formation flow control. ACM SIGOPS Operating Systems
Review, 31(5):129–142, 1997.

[26] A. C. Myers and B. Liskov. Complete, safe information
flow with decentralized labels. In Proceedings of the 1998
IEEE Symposium on Security and Privacy, pages 186–
197, Oakland, California, May 1998.

[27] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 9(4):410–
442, 2000.

[28] M. Nauman, S. Khan, and X. Zhang. Apex: extending
Android permission model and enforcement with user-
defined runtime constraints. In Proceedings of the 5th
ACM Symposium on Information, Computer and Commu-
nications Security, pages 328–332, 2010.

[29] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel.
Semantically rich application-centric security in Android.
In Proceedings of the 25th Annual Computer Security Ap-
plications Conference (ACSAC ’09), Honolulu, HI, Dec.
2009.

[30] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: Zero-day protection for smart-
phones using the cloud. In Annual Computer Security
Applications Conference (ACSAC ’10), Austin, TX, Dec.
2010.

[31] C. Reis, A. Barth, and C. Pizano. Browser security:
lessons from Google Chrome. Communications of the
ACM, 52(8):45–49, 2009.

[32] J. H. Saltzer and M. D. Schroeder. The protection of in-
formation in computer systems. Proceedings of the IEEE,
63(9):1278–1308, Sept. 1975.

[33] S. VanDeBogart, P. Efstathopoulos, E. Kohler, M. Krohn,
C. Frey, D. Ziegler, F. Kaashoek, R. Morris, and D. Maz-
ières. Labels and event processes in the Asbestos oper-
ating system. ACM Transactions on Computer Systems
(TOCS), 25(4), Dec. 2007.

[34] D. S. Wallach and E. W. Felten. Understanding Java stack
inspection. In Proceedings of the 1998 IEEE Symposium
on Security and Privacy, pages 52–63, Oakland, Califor-
nia, May 1998.

[35] D. S. Wallach, E. W. Felten, and A. W. Appel. The se-
curity architecture formerly known as stack inspection: A
security mechanism for language-based systems. ACM
Transactions on Software Engineering and Methodology,
9(4):341–378, Oct. 2000.

[36] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choud-
hury, and H. Venter. The multi-principal OS construction
of the Gazelle web browser. In Proceedings of the 18th
USENIX Security Symposium, 2009.

[37] T. Weigold, T. Kramp, and M. Baentsch. Remote client
authentication. IEEE Security & Privacy, 6(4):36–43,
July 2008.

[38] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au-
thentication in the Taos operating system. ACM Transac-
tions on Computer Systems (TOCS), 12(1):3–32, 1994.

[39] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Secur-
ing distributed systems with information flow control. In
Proceedings of the 5th Symposium on Networked Systems
Design and Implementation (NSDI ’08), San Francisco,
CA, Apr. 2008.

