
conference

proceedings

19th USENIX
Security
Symposium

Washington, DC
August 11–13, 2010

Proceedings of the 19th U
SEN

IX Security Sym
posium

W

ashington, DC
August 11–13, 2010

Sponsored by
The USENIX Association

© 2010 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. USENIX acknowledges all trademarks herein.

ISBN 978-1-931971-77-5

USENIX Association

Proceedings of the

19th USENIX Security Symposium

August 11–13, 2010
Washington, DC

Conference Organizers
Program Chair
Ian Goldberg, University of Waterloo

Program Committee
Lucas Ballard, Google, Inc.
Adam Barth, University of California, Berkeley
Steven M. Bellovin, Columbia University
Nikita Borisov, University of Illinois at Urbana-

Champaign
Bill Cheswick, AT&T Labs—Research
George Danezis, Microsoft Research
Rachna Dhamija, Harvard University
Vinod Ganapathy, Rutgers University
Tal Garfinkel, VMware and Stanford University
Jonathon Giffin, Georgia Institute of Technology
Steve Gribble, University of Washington
Alex Halderman, University of Michigan
Cynthia Irvine, Naval Postgraduate School
Somesh Jha, University of Wisconsin
Samuel King, University of Illinois at Urbana-

Champaign
Negar Kiyavash, University of Illinois at Urbana-

Champaign

David Lie, University of Toronto
Michael Locasto, George Mason University
Mohammad Mannan, University of Toronto
Niels Provos, Google, Inc.
Reiner Sailer, IBM T.J. Watson Research Center
R. Sekar, Stony Brook University
Hovav Shacham, University of California, San Diego
Micah Sherr, University of Pennsylvania
Patrick Traynor, Georgia Institute of Technology
David Wagner, University of California, Berkeley
Helen Wang, Microsoft Research
Tara Whalen, Office of the Privacy Commissioner of

Canada

Invited Talks Committee
Dan Boneh, Stanford University
Sandy Clark, University of Pennsylvania
Dan Geer, In-Q-Tel

Poster Session Chair
Patrick Traynor, Georgia Institute of Technology

The USENIX Association Staff

External Reviewers
Mansour Alsaleh
Elli Androulaki
Sruthi Bandhakavi
David Barrera
Sandeep Bhatkar
Mihai Christodorescu
Arel Cordero
Weidong Cui
Drew Davidson
Lorenzo De Carli
Brendan Dolan-Gavitt
Matt Federikson
Adrienne Felt
Murph Finnicum
Simson Garfinkel
Phillipa Gill
Xun Gong
Bill Harris

Matthew Hicks
Peter Honeyman
Amir Houmansadr
Joshua Juen
Christian Kreibich
Louis Kruger
Marc Liberatore
Lionel Litty
Jacob Lorch
Daniel Luchaup
David Maltz
Joshua Mason
Kazuhiro Minami
Prateek Mittal
David Molnar
Fabian Monrose
Tyler Moore
Alexander Moshchuk

Shishir Nagaraja
Giang Nguyen
Moheeb Abu Rajab
Wil Robertson
Nabil Schear
Jonathan Shapiro
Kapil Singh
Abhinav Srivastava
Shuo Tang
Julie Thorpe
Wietse Venema
Qiyan Wang
Scott Wolchok
Wei Xu
Fang Yu
Hang Zhao

USENIX Association 19th USENIX Security Symposium iii

19th USENIX Security Symposium
August 11–13, 2010
San Jose, CA, USA

Message from the Program Chair . vii

Wednesday, August 11

Protection Mechanisms

Adapting Software Fault Isolation to Contemporary CPU Architectures .1
David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen,
Google, Inc.

Making Linux Protection Mechanisms Egalitarian with UserFS .13
Taesoo Kim and Nickolai Zeldovich, MIT CSAIL

Capsicum: Practical Capabilities for UNIX .29
Robert N.M. Watson and Jonathan Anderson, University of Cambridge; Ben Laurie and Kris Kennaway, Google
UK Ltd.

Privacy

Structuring Protocol Implementations to Protect Sensitive Data .47
Petr Marchenko and Brad Karp, University College London

PrETP: Privacy-Preserving Electronic Toll Pricing .63
Josep Balasch, Alfredo Rial, Carmela Troncoso, Bart Preneel, Ingrid Verbauwhede, IBBT-K.U. Leuven, ESAT/
COSIC; Christophe Geuens, K.U. Leuven, ICRI

An Analysis of Private Browsing Modes in Modern Browsers .79
Gaurav Aggarwal and Elie Burzstein, Stanford University; Collin Jackson, CMU; Dan Boneh, Stanford
University

Detection of Network Attacks

BotGrep: Finding P2P Bots with Structured Graph Analysis .95
Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov, University of Illinois at
Urbana-Champaign

Fast Regular Expression Matching Using Small TCAMs for Network Intrusion Detection and
Prevention Systems . 111
Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng, and Alex X. Liu , Michigan State University

Searching the Searchers with SearchAudit .127
John P. John, University of Washington and Microsoft Research Silicon Valley; Fang Yu and Yinglian Xie,
Microsoft Research Silicon Valley; Martín Abadi, Microsoft Research Silicon Valley and University of
California, Santa Cruz; Arvind Krishnamurthy, University of Washington

iv 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium v

Thursday, August 12

Dissecting Bugs

Toward Automated Detection of Logic Vulnerabilities in Web Applications . 143
Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna, University of California,
Santa Barbara

Baaz: A System for Detecting Access Control Misconfigurations . 161
Tathagata Das, Ranjita Bhagwan, and Prasad Naldurg, Microsoft Research India

Cling: A Memory Allocator to Mitigate Dangling Pointers . 177
Periklis Akritidis, Niometrics, Singapore, and University of Cambridge, UK

Cryptography

ZKPDL: A Language-Based System for Efficient Zero-Knowledge Proofs and Electronic Cash 193
Sarah Meiklejohn, University of California, San Diego; C. Chris Erway and Alptekin Küpçü, Brown University;
Theodora Hinkle, University of Wisconsin—Madison; Anna Lysyanskaya, Brown University

P4P: Practical Large-Scale Privacy-Preserving Distributed Computation Robust against Malicious Users 207
Yitao Duan, NetEase Youdao, Beijing, China; John Canny, University of California, Berkeley; Justin Zhan,
National Center for the Protection of Financial Infrastructure, South Dakota, USA

SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events and Statistics 223
Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos, ETH Zurich, Switzerland

Internet Security

Dude, Where’s That IP? Circumventing Measurement-based IP Geolocation . 241
Phillipa Gill and Yashar Ganjali, University of Toronto; Bernard Wong, Cornell University; David Lie,
University of Toronto

Idle Port Scanning and Non-interference Analysis of Network Protocol Stacks Using Model Checking 257
Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall, University of New Mexico

Building a Dynamic Reputation System for DNS .273
Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feamster, Georgia Institute of
Technology

Real-World Security

Scantegrity II Municipal Election at Takoma Park: The First E2E Binding Governmental Election with
Ballot Privacy . 291
Richard Carback, UMBC CDL; David Chaum; Jeremy Clark, University of Waterloo; John Conway, UMBC
CDL; Aleksander Essex, University of Waterloo; Paul S. Herrnson, UMCP CAPC; Travis Mayberry, UMBC
CDL; Stefan Popoveniuc; Ronald L. Rivest and Emily Shen, MIT CSAIL; Alan T. Sherman, UMBC CDL; Poorvi
L. Vora, GW

Acoustic Side-Channel Attacks on Printers .307
Michael Backes, Saarland University and Max Planck Institute for Software Systems (MPI-SWS); Markus
Dürmuth, Sebastian Gerling, Manfred Pinkal, and Caroline Sporleder, Saarland University

Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring
System Case Study .323
Ishtiaq Rouf, University of South Carolina, Columbia; Rob Miller, Rutgers University; Hossen Mustafa and
Travis Taylor, University of South Carolina, Columbia; Sangho Oh, Rutgers University; Wenyuan Xu, University
of South Carolina, Columbia; Marco Gruteser, Wade Trappe, and Ivan Seskar, Rutgers University

Friday, August 13

Web Security

VEX: Vetting Browser Extensions for Security Vulnerabilities . 339
Sruthi Bandhakavi, Samuel T. King, P. Madhusudan, and Marianne Winslett, University of Illinois at
Urbana-Champaign

Securing Script-Based Extensibility in Web Browsers . 355
Vladan Djeric and Ashvin Goel, University of Toronto

AdJail: Practical Enforcement of Confidentiality and Integrity Policies on Web Advertisements 371
Mike Ter Louw, Karthik Thotta Ganesh, and V.N. Venkatakrishnan, University of Illinois at Chicago

Securing Systems

Realization of RF Distance Bounding .389
Kasper Bonne Rasmussen and Srdjan Capkun, ETH Zurich

The Case for Ubiquitous Transport-Level Encryption .403
Andrea Bittau and Michael Hamburg, Stanford; Mark Handley, UCL; David Mazières and Dan
Boneh, Stanford

Automatic Generation of Remediation Procedures for Malware Infections . 419
Roberto Paleari, Università degli Studi di Milano; Lorenzo Martignoni, Università degli Studi di Udine;
Emanuele Passerini, Università degli Studi di Milano; Drew Davidson and Matt Fredrikson, University of
Wisconsin; Jon Giffin, Georgia Institute of Technology; Somesh Jha, University of Wisconsin

Using Humans

Re: CAPTCHAs—Understanding CAPTCHA-Solving Services in an Economic Context 435
Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon McCoy, Geoffrey M. Voelker, and Stefan Savage,
University of California, San Diego

Chipping Away at Censorship Firewalls with User-Generated Content .463
Sam Burnett, Nick Feamster, and Santosh Vempala, Georgia Tech

Fighting Coercion Attacks in Key Generation using Skin Conductance .469
Payas Gupta and Debin Gao, Singapore Management University

Message from the Program Chair

I would like to start by thanking the USENIX Security community for making this year’s call for papers the most
successful yet. We had 207 papers originally submitted; this number was reduced to 202 after one paper was with-
drawn by the authors, three were withdrawn for double submission, and one was withdrawn for plagiarism. This
was the largest number of papers ever submitted to USENIX Security, and the program committee faced a formi-
dable task.

Each PC member reviewed between 20 and 22 papers (with the exception of David Wagner, who reviewed an
astounding 27 papers!) in multiple rounds over the course of about six weeks; many papers received four or five
reviews.

We held a two-day meeting at the University of Toronto on April 8–9 to discuss the top 76 papers. This PC meeting
ran exceptionally smoothly, and I give my utmost thanks to the members of the PC; they were the ones responsible
for such a pleasant and productive meeting. I would especially like to thank David Lie and Mohammad Mannan for
handling the logistics of the meeting and keeping us all happily fed.

By the end of the meeting, we had selected 30 papers to appear in the program—another record high for USENIX
Security. The quality of the papers was outstanding. In fact, we left 8 papers on the table that we would have been
willing to accept had there been more room in the program. This year’s acceptance rate (14.9%) is in line with the
past few years.

The USENIX Security Symposium schedule offers more than refereed papers. Dan Boneh, Sandy Clark, and Dan
Geer headed up the invited talks committee, and they have done an excellent job assembling a slate of interesting
talks. Patrick Traynor is the chair of this year’s poster session, and Carrie Gates is chairing our new rump ses-
sion. This year we decided to switch from the old WiP (work-in-progress) session to an evening rump session, with
shorter, less formal, and (hopefully) some funnier entries. Carrie has bravely agreed to preside over this experi-
ment. Thanks to Dan, Sandy, Dan, Patrick, and Carrie for their important contributions to what promises to be an
extremely interesting and fun USENIX Security program.

Of course this event could not have happened without the hard work of the USENIX organization. My great thanks
go especially to Ellie Young, Devon Shaw, Jane-Ellen Long, Anne Dickison, Casey Henderson, Tony Del Porto,
and board liaison Matt Blaze. Because USENIX takes on the task of running the conference and attending to the
details, the Program Chair and the Program Committee can concentrate on selecting the refereed papers.

Finally, I would like to thank Fabian Monrose, Dan Wallach, and Dan Boneh for convincing me to take on the role
of USENIX Security Program Chair. It has been a long process, but I am very pleased with the results.

Welcome to Washington, D.C., and the 19th USENIX Security Symposium. I hope you enjoy the event.

Ian Goldberg, University of Waterloo
Program Chair

USENIX Association 19th USENIX Security Symposium 1

Adapting Software Fault Isolation to Contemporary CPU Architectures
David Sehr Robert Muth Cliff Biffle Victor Khimenko Egor Pasko

Karl Schimpf Bennet Yee Brad Chen

{sehr,robertm,cbiffle,khim,pasko,kschimpf,bsy,bradchen}@google.com

Abstract
Software Fault Isolation (SFI) is an effective approach
to sandboxing binary code of questionable provenance,
an interesting use case for native plugins in a Web
browser. We present software fault isolation schemes for
ARM and x86-64 that provide control-flow and memory
integrity with average performance overhead of under
5% on ARM and 7% on x86-64. We believe these are the
best known SFI implementations for these architectures,
with significantly lower overhead than previous systems
for similar architectures. Our experience suggests that
these SFI implementations benefit from instruction-level
parallelism, and have particularly small impact for work-
loads that are data memory-bound, both properties that
tend to reduce the impact of our SFI systems for future
CPU implementations.

1 Introduction
As an application platform, the modern web browser has
some noteworthy strengths in such areas as portability
and access to Internet resources. It also has a number
of significant handicaps. One such handicap is compu-
tational performance. Previous work [30] demonstrated
how software fault isolation (SFI) can be used in a sys-
tem to address this gap for Intel 80386-compatible sys-
tems, with a modest performance penalty and without
compromising the safety users expect from Web-based
applications. A major limitation of that work was its
specificity to the x86, and in particular its reliance on x86
segmented memory for constraining memory references.
This paper describes and evaluates analogous designs for
two more recent instruction set implementations, ARM
and 64-bit x86, with pure software-fault isolation (SFI)
assuming the role of segmented memory.

The main contributions of this paper are as follows:
• A design for ARM SFI that provides control flow

and store sandboxing with less than 5% average
overhead,

• A design for x86-64 SFI that provides control flow
and store sandboxing with less than 7% average
overhead, and

• A quantitative analysis of these two approaches on
modern CPU implementations.

We will demonstrate that the overhead of fault isolation
using these techniques is very low, helping to make SFI
a viable approach for isolating performance critical, un-
trusted code in a web application.

1.1 Background
This work extends Google Native Client [30].1 Our
original system provides efficient sandboxing of x86-32
browser plugins through a combination of SFI and mem-
ory segmentation. We assume an execution model where
untrusted (hence sandboxed) code is multi-threaded, and
where a trusted runtime supporting OS portability and se-
curity features shares a process with the untrusted plugin
module.

The original NaCl x86-32 system relies on a set of
rules for code generation that we briefly summarize here:
• The code section is read-only and statically linked.

• The code section is conceptually divided into fixed
sized bundles of 32 bytes.

• All valid instructions are reachable by a disassem-
bly starting at a bundle beginning.

• All indirect control flow instructions are re-
placed by a multiple-instruction sequence (pseudo-
instruction) that ensures target address alignment to
a bundle boundary.

• No instructions or pseudo-instructions in the binary
crosses a bundle boundary.

All rules are checked by a verifier before a program is
executed. This verifier together with the runtime system
comprise NaCls trusted code base (TCB).

For complete details on the x86-32 system please refer
to our earlier paper [30]. That work reported an average
overhead of about 5% for control flow sandboxing, with
the bulk of the overhead being due to alignment consid-
erations. The system benefits from segmented memory
to avoid additional sandboxing overhead.

Initially we were skeptical about SFI as a replace-
ment for hardware memory segments. This was based
in part on running code from previous research [19], in-
dicating about 25% overhead for x86-32 control+store
SFI, which we considered excessive. As we continued

1We abbreviate Native Client as “NaCl” when used as an adjective.

2 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 3

our exploration of ARM SFI and sought to understand
ARM behavior relative to x86 behavior, we could not ad-
equately explain the observed performance gap between
ARM SFI at under 10% overhead with the overhead on
x86-32 in terms of instruction set differences. With fur-
ther study we understood that the prior implementations
for x86-32 may have suffered from suboptimal instruc-
tion selection and overly pessimistic alignment.

Reliable disassembly of x86 machine code figured
largely into the motivation of our previous sandbox de-
sign [30]. While the challenges for x86-64 are substan-
tially similar, it may be less clear why analogous rules
and validation are required for ARM, given the relative
simplicity of the ARM instruction encoding scheme, so
we review a few relevant considerations here. Modern
ARM implementations commonly support 16-bit Thumb
instruction encodings in addition to 32-bit ARM instruc-
tions, introducing the possibility of overlapping instruc-
tions. Also, ARM binaries commonly include a number
of features that must be considered or eliminated by our
sandbox implementation. For example, ARM binaries
commonly include read-only data embedded in the text
segment. Such data in executable memory regions must
be isolated to ensure it cannot be used to invoke system
call instructions or other instructions incompatible with
our sandboxing scheme.

Our architecture further requires the coexistence of
trusted and untrusted code and data in the same pro-
cess, for efficient interaction with the trusted runtime that
provides communications and portable interaction with
the native operating system and the web browser. As
such, indirect control flow and memory references must
be constrained to within the untrusted memory region,
achieved through sandboxing instructions.

We briefly considered using page protection as an al-
ternative to memory segments [26]. In such an ap-
proach, page-table protection would be used to prevent
the untrusted code from manipulating trusted data; SFI is
still required to enforce control-flow restrictions. Hence,
page-table protection can only avoid the overhead of data
SFI; the control-flow SFI overhead persists. Also, further
use of page protection adds an additional OS-based pro-
tection mechanism into the system, in conflict with our
requirement of portability across operating systems. This
OS interaction is complicated by the requirement for
multiple threads that transition independently between
untrusted (sandboxed) and trusted (not sandboxed) ex-
ecution. Due to the anticipated complexity and over-
head of this OS interaction and the small potential per-
formance benefit we opted against page-based protection
without attempting an implementation.

2 System Architecture
The high-level strategy for our ARM and x86-64 sand-
boxes builds on the original Native Client sandbox for
x86-32 [30], which we will call NaCl-ARM, NaCl-x86-
64, and NaCl-x86-32 respectively. The three approaches
are compared in Table 1. Both NaCl-ARM and NaCl-
x86-64 sandboxes use alignment masks on control flow
target addresses, similar to the prior NaCl-x86-32 sys-
tem. Unlike the prior system, our new designs mask
high-order address bits to limit control flow targets to a
logical zero-based virtual address range. For data ref-
erences, stores are sandboxed on both systems. Note
that reads of secret data are generally not an issue as the
address space barrier between the NaCl module and the
browser protects browser resources such as cookies.

In the absence of segment protection, our ARM and
x86-64 systems must sandbox store instructions to pre-
vent modification of trusted data, such as code addresses
on the trusted stack. Although the layout of the address
space differs between the two systems, both use a combi-
nation of masking and guard pages to keep stores within
the valid address range for untrusted data. To enable
faster memory accesses through the stack pointer, both
systems maintain the invariant that the stack pointer al-
ways holds a valid address, using guard pages at each
end to catch escapes due to both overflow/underflow and
displacement addressing.

Finally, to encourage source-code portability between
the systems, both the ARM and the x86-64 systems use
ILP32 (32-bit Int, Long, Pointer) primitive data types, as
does the previous x86-32 system. While this limits the
64-bit system to a 4GB address space, it can also improve
performance on x86-64 systems, as discussed in section
3.2.

At the level of instruction sequences and address space
layout, the ARM and x86-64 data sandboxing solutions
are very different. The ARM sandbox leverages instruc-
tion predication and some peculiar instructions that allow
for compact sandboxing sequences. In our x86-64 sys-
tem we leverage the very large address space to ensure
that most x86 addressing modes are allowed.

3 Implementation
3.1 ARM
The ARM takes many characteristics from RISC micro-
processor design. It is built around a load/store archi-
tecture, 32-bit instructions, 16 general purpose registers,
and a tendency to avoid multi-cycle instructions. It devi-
ates from the simplest RISC designs in several ways:
• condition codes that can be used to predicate most

instructions

• “Thumb-mode” 16-bit instruction extensions can
improve code density

Feature NaCl-x86-32 NaCl-ARM NaCl-x86-64
Addressable memory 1GB 1GB 4GB
Virtual base address Any 0 44GB
Data model ILP32 ILP32 ILP32
Reserved registers 0 of 8 0 of 15 1 of 16
Data address mask method None Explicit instruction Implicit in result width
Control address mask method Explicit instruction Explicit instruction Explicit instruction
Bundle size (bytes) 32 16 32
Data embedded in text segment Forbidden Permitted Forbidden
“Safe” addressing registers All sp rsp, rbp
Effect of out-of-sandbox store Trap No effect (typically) Wraps mod 4GB
Effect of out-of-sandbox jump Trap Wraps mod 1GB Wraps mod 4GB

Table 1: Feature Comparison of Native Client SFI schemes. NB: the current release of the Native Client system have changed since
the first report [30] was written, where the addressable memory size was 256MB. Other parameters are unchanged.

• relatively complex barrel shifter and addressing
modes

While the predication and shift capabilities directly ben-
efit our SFI implementation, we restrict programs to the
32-bit ARM instruction set, with no support for variable-
length Thumb and Thumb-2 encodings. While Thumb
encodings can incrementally reduce text size, most im-
portant on embedded and handheld devices, our work tar-
gets more powerful devices like notebooks, where mem-
ory footprint is less of an issue, and where the negative
performance impact of Thumb encodings is a concern.
We confirmed our choice to omit Thumb encodings with
a number of major ARM processor vendors.

Our sandbox restricts untrusted stores and control flow
to the lowest 1GB of the process virtual address space,
reserving the upper 3GB for our trusted runtime and the
operating system. As on x86-64, we do not prevent un-
trusted code from reading outside its sandbox. Isolating
faults in ARM code thus requires:
• Ensuring that untrusted code cannot execute any

forbidden instructions (e.g. undefined encodings,
raw system calls).

• Ensuring that untrusted code cannot store to mem-
ory locations above 1GB.

• Ensuring that untrusted code cannot jump to mem-
ory locations above 1GB (e.g. into the service run-
time implementation).

We achieve these goals by adapting to ARM the ap-
proach described by Wahbe et al. [28]. We make three
significant changes, which we summarize here before re-
viewing the full design in the rest of this section. First,
we reserve no registers for holding sandboxed addresses,
instead requiring that they be computed or checked in
a single instruction. Second, we ensure the integrity of
multi-instruction sandboxing pseudo-instructions with a
variation of the approach used by our earlier x86-32 sys-

tem [30], adapted to further prevent execution of embed-
ded data. Finally, we leverage the ARM’s fully predi-
cated instruction set to introduce an alternative data ad-
dress sandboxing sequence. This alternative sequence
replaces a data dependency with a control dependency,
preventing pipeline stalls and providing better overhead
on multiple-issue and out-of-order microarchitectures.

3.1.1 Code Layout and Validation
On ARM, as on x86-32, untrusted program text is sepa-
rated into fixed-length bundles, currently 16 bytes each,
or four machine instructions. All indirect control flow
must target the beginning of a bundle, enforced at run-
time with address masks detailed below. Unlike on the
x86-32, we do not need bundles to prevent overlapping
instructions, which are impossible in ARM’s 32-bit in-
struction encoding. They are necessary to prevent indi-
rect control flow from targeting the interior of pseudo-
instruction and bundle-aligned “trampoline” sequences.
The bundle structure also allows us to support data em-
bedded in the text segment, with data bundles starting
with an invalid instruction (currently bkpt 0x7777)
to prevent execution as code.

The validator uses a fall-through disassembly of the
text to identify valid instructions, noting the interior of
pseudo-instructions and data bundles are not valid con-
trol flow targets. When it encounters a direct branch,
it further confirms that the branch target is a valid in-
struction. For indirect control flow, many ARM opcodes
can cause a branch by writing r15, the program counter.
We forbid most of these instructions2 and consider only
explicit branch-to-address-in-register forms such as bx
r0 and their conditional equivalents. This restriction is
consistent with recent guidance from ARM for compiler

2We do permit the instruction bic r15, rN, MASKAlthough it
allows a single-instruction sandboxed control transfer, it can have poor
branch prediction performance.

4 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 5

writers. Any such branch must be immediately preceded
by an instruction that masks the destination register. The
mask must clear the most significant two bits, restricting
branches to the low 1GB, and the four least significant
bits, restricting targets to bundle boundaries. In 32-bit
ARM, the Bit Clear (bic) instruction can clear up to
eight bits rotated to any even bit position. For example,
this pseudo-instruction implements a sandboxed branch
through r0 in eight bytes total, versus the four bytes re-
quired for an unsandboxed branch:

bic r0, r0, #0xc000000f
bx r0

As we do not trust the contents of memory, the com-
mon ARM return idiom pop {pc} cannot be used. In-
stead, the return address must be popped into a register
and masked:

pop { lr }
bic lr, lr, #0xc000000f
bx lr

Branching through LR (the link register) is still recog-
nized by the hardware as a return, so we benefit from
hardware return stack prediction. Note that these se-
quences introduce a data dependency between the bx
branch instruction and its adjacent masking instruction.
This pattern (generating an address via the ALU and im-
mediately jumping to it) is sufficiently common in ARM
code that the modern ARM implementations [3] can dis-
patch the sequence without stalling.

For stores, we check that the address is confined to the
low 1GB, with no alignment requirement. Rather than
destructively masking the address, as we do for control
flow, we use a tst instruction to verify that the most
significant bit is clear together with a predicated store:3

tst r0, #0xc0000000
streq r1, [r0, #12]

Like bic, tst uses an eight-bit immediate rotated
to any even position, so the encoding of the mask is
efficient. Using tst rather than bic here avoids a
data dependency between the guard instruction and the
store, eliminating a two-cycle address-generation stall
on Cortex-A8 that would otherwise triple the cost of
the added instruction. This illustrates the usefulness of
the ARM architecture’s fully predicated instruction set.
Some predicated SFI stores can also be synthesized in
this manner, using sequences such as tsteq/streq.
For cases where the compiler has selected a predicated
store that cannot be synthesized with tst, we revert
to a bic-based sandbox, with the consequent address-
generation stall.

3The eq condition checks the Z flag, which tst will set if the se-
lected bit is clear.

We allow only base-plus-displacement addressing
with immediate displacement. Addressing modes that
combine multiple registers to compute an effective ad-
dress are forbidden for now. Within this limitation, we
allow all types of stores, including the Store-Multiple
instruction and DMA-style stores through coprocessors,
provided the address is checked or masked. We allow the
ARM architecture’s full range of pre- and post-increment
and decrement modes. Note that since we mask only the
base address and ARM immediate displacements can be
up to ±4095 bytes, stores can access a small band of
memory outside the 1GB data region. We use guard
pages at each end of the data region to trap such ac-
cesses.4

3.1.2 Stores to the Stack
To allow optimized stores through the stack pointer, we
require that the stack pointer register (SP) always con-
tain a valid data address. To enforce this requirement,
we initialize SP with a valid address before activating
the untrusted program, with further requirements for the
two kinds of instructions that modify SP. Instructions that
update SP as a side-effect of a memory reference (for ex-
ample pop) are guaranteed to generate a fault if the mod-
ified SP is invalid, because of our guard regions at either
end of data space. Instructions that update SP directly
are sandboxed with a subsequent masking instruction, as
in:

mov SP, r1
bic SP, SP, #c0000000

This approach could someday be extended to other reg-
isters. For example, C-like languages might benefit from
a frame pointer handled in much the same way as the SP,
as we do for x86-64, while Java and C++ might addition-
ally benefit from efficient stores through this. In these
cases, we would also permit moves between any two
such data-addressing registers without requiring mask-
ing.

3.1.3 Reference Compiler
We have modified LLVM 2.6 [13] to implement our
ARM SFI design. We chose LLVM because it appeared
to allow an easier implementation of our SFI design, and
to explore its use in future cross-platform work. In prac-
tice we have also found it to produce faster ARM code
than GCC, although the details are outside the scope of
this paper. The SFI changes were restricted to the ARM
target implementation within the llc binary, and re-
quired approximately 2100 lines of code and table mod-
ifications. For the results presented in this paper we used

4The guard pages “below” the data region are actually at the top of
the address space, where the OS resides, and are not accessible from
user mode.

the compiler to generate standard Linux executables with
access to the full instruction set. This allows us to isolate
the behavior of our SFI design from that of our trusted
runtime.

3.2 x86-64
While the mechanisms of our x86-64 implementation
are mostly analogous to those of our ARM implemen-
tation, the details are very different. As with ARM, a
valid data address range is surrounded by guard regions,
and modifications to the stack pointer (rsp) and base
pointer (rbp) are masked or guarded to ensure they al-
ways contain a valid address. Our ARM approach relies
on being able to ensure that the lowest 1GB of address
space does not contain trusted code or data. Unfortu-
nately this is not possible to ensure on some 64-bit Win-
dows versions, which rules out simply using an address
mask as ARM does. Instead, our x86-64 system takes
advantage of more sophisticated addressing modes and
use a small set of “controlled” registers as the base for
most effective address computations. The system uses
the very large address space, with a 4GB range for valid
addresses surrounded by large (multiples of 4GB) un-
mapped/protected regions. In this way many common
x86 addressing modes can be used with little or no sand-
boxing.

Before we describe the details of our design, we pro-
vide some relevant background on AMD’s 64-bit exten-
sions to x86. Apart from the obvious 64-bit address
space and register width, there are a number of perfor-
mance relevant changes to the instruction set. The x86
has an established practice of using related names to
identify overlapping registers of different lengths; for ex-
ample ax refers to the lower 16-bits of the 32-bit eax. In
x86-64, general purpose registers are extended to 64-bits,
with an r replacing the e to identify the 64 vs. 32-bit reg-
isters, as in rax. x86-64 also introduces eight new gen-
eral purpose registers, as a performance enhancement,
named r8 - r15. To allow legacy instructions to use
these additional registers, x86-64 defines a set of new
prefix bytes to use for register selection. A relatively
small number of legacy instructions were dropped from
the x86-64 revision, but they tend to be rarely used in
practice.

With these details in mind, the following code genera-
tion rules are specific to our x86-64 sandbox:
• The module address space is an aligned 4GB region,

flanked above and below by protected/unmapped re-
gions of 10×4GB, to compensate for scaling (c.f.
below)

• A designated register “RZP” (currently r15) is ini-
tialized to the 4GB-aligned base address of un-
trusted memory and is read-only from untrusted
code.

• All rip update instructions must use RZP.

To ensure that rsp and rbp contain a valid data address
we use a few additional constraints:
• rbp can be modified via a copy from rsp with no

masking required.

• rsp can be modified via a copy from rbp with no
masking required.

• Other modifications to rsp and rbp must be done
with a pseudo-instruction that post-masks the ad-
dress, ensuring that it contains a valid data address.

For example, a valid rsp update sequence looks like
this:

%esp = %eax
lea (%RZP, %rsp, 1), %rsp

In this sequence the assignment5 to esp guarantees that
the top 32-bits of rsp are cleared, and the subsequent
add sets those bits to the valid base. Of course such se-
quences must always be executed in their entirety. Given
these rules, many common store instructions can be used
with little or no sandboxing required. Push, pop and
near call do not require checking because the up-
dated value of rsp is checked by the subsequent mem-
ory reference. The safety of a store that uses rsp or rbp
with a simple 32-bit displacement:

mov disp32(%rsp), %eax

follows from the validity invariant on rsp and the guard
ranges that absorb the displacement, with no masking re-
quired. The most general addressing expression for an
allowed store combines a valid base register (rsp, rbp
or RZP) with a 32-bit displacement, a 32-bit index, and
a scaling factor of 1, 2, 4, or 8. The effective address is
computed as:

basereg + indexreg * scale + disp32

For example, in this pseudo-instruction:

add $0x00abcdef, %ecx
mov %eax, disp32(%RZP, %rcx, scale)

the upper 32 bits of rcx are cleared by the arithmetic
operation on ecx. Note that any operation on ecx
will clear the top 32 bits of rcx. This required mask-
ing operation can often be combined other useful oper-
ations. Note that this general form allows generation of
addresses in a range of approximately 100GB, with the

5We have used the = operation to indicate assignment to the register
on the left hand side. There are several instructions, such as lea or
movzx that can be used to perform this assignment. Other instructions
are written using ATT syntax.

6 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 7

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

gz
ip vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip

2

tw
ol

f

Figure 1: SPEC2000 SFI Performance Overhead for the ARM
Cortex-A9.

valid 4GB range near the middle. By reserving and un-
mapping addresses outside the 4GB range we can ensure
that any dereference of an address outside the valid range
will lead to a fault. Clearly this scheme relies heavily on
the very large 64-bit address space.

Finally, note that updates to the instruction pointer
must align the address to 0 mod 32 and initialize the
top 32-bits of address from RZP as in this example us-
ing rdx:

%edx = ...
and 0xffffffe0, %edx
lea (%RZP, %rdx, 1), %rdx
jmp *%rdx

Our x86-64 SFI implementation is based on GCC
4.4.3, requiring a patch of about 2000 lines to the com-
piler, linker and assembler source. At a high level,
the changes include supporting the new call/return se-
quences, making pointers and longs 32 bits, allocating
r15 for use as RZB, and constraining address generation
to meet the above rules.

4 Evaluation
In this section we evaluate the performance of our ARM
and x86-64 SFI schemes by comparing against the rel-
evant non-SFI baselines, using C and benchmarks from
SPEC2000 INT CPU [12]. Our main analysis is based on
out-of-order CPUs, with additional measurements for in-
order systems at the end of this section. The out-of-order
systems we used for our experiments were:
• For x86-64, a 2.4GHz Intel Core 2 Quad with 8GB

of RAM, running Ubuntu Linux 8.04, and

• For ARM, a 1GHz Cortex-A9 (Nvidia Tegra T20)
with 512MB of RAM, running Ubuntu Linux 9.10.

4.1 ARM
For ARM, we compared LLVM 2.6 [13] to the same
compiler modified to support our SFI scheme. Figure 1
summarizes the ARM results, with tabular data in Ta-
ble 2. Average overhead is about 5% on the out-of-order

x86-64 SFI vs. SFI vs. ARM
SFI -m32 -m64 SFI

164.gzip 16.0 0.82 16.0 0.53
175.vpr 1.60 -5.06 1.60 6.57
176.gcc 35.1 35.1 33.0 5.31
181.mcf 1.34 1.34 -42.6 -3.65
186.crafty 29.3 -8.17 29.3 6.61
197.parser -4.07 -4.07 -20.3 10.83
253.perlbmk 34.6 26.6 34.6 9.43
254.gap -4.46 -4.46 -5.09 7.01
255.vortex 43.0 26.0 43.0 4.71
256.bzip2 21.6 4.84 21.6 5.38
300.twolf 0.80 -3.08 0.80 4.94
geomean 14.7 5.24 6.9 5.17

Table 2: SPEC2000 SFI Performance Overhead (percent). The
first column compares x86-64 SFI overhead to the “oracle”
baseline compiler.

ARM ARM SFI %inc. %pad
164.gzip 73 90 24 13
175.vpr 225 271 20 13
176.gcc 1586 1931 22 14
181.mcf 84 103 23 12
186.crafty 320 384 20 12
197.parser 219 265 21 12
253.perlbmk 812 1009 24 14
254.gap 531 636 20 11
255.vortex 720 845 17 13
256.bzip2 74 92 24 13
300.twolf 289 343 19 11

Table 3: ARM SPEC2000 text segment size in kilobytes, with
% increase and % padding instructions.

Cortex-A9, and is fairly consistent across the bench-
marks. Increases in binary size (Table 3) are compara-
ble at around 20% (generally about 10% due to align-
ment padding and 10% due to added instructions, shown
in the rightmost columns of the table). We believe the
observed overhead comes primarily from the increase in
code path length. For mcf, this benchmark is known to
be data-cache intensive [17], a case in which the addi-
tional sandboxing instructions have minimal impact, and
can sometimes be hidden by out-of-order execution on
the Cortex-A9. We see the largest slowdowns for gap,
gzip, and perlbmk. We suspect these overheads are
a combination of increased path length and instruction
cache penalties, although we do not have access to ARM
hardware performance counter data to confirm this hy-
pothesis.

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

gz
ip vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip

2

tw
ol

f

Figure 2: SPEC2000 SFI Performance Overhead for x86-64.
SFI performance is compared to the faster of -m32 and -m64
compilation.

4.2 x86-64
Our x86-64 comparisons are based on GCC 4.4.3. The
selection of a performance baseline is not straightfor-
ward. The available compilation modes for x86 are ei-
ther 32-bit (ILP32, -m32) or 64-bit (LP64, -m64). Each
represents a performance tradeoff, as demonstrated pre-
viously [15, 25]. In particular, the 32-bit compilation
model’s use of ILP32 base types means a smaller data
working set compared to standard 64-bit compilation in
GCC. On the other hand, use of the 64-bit instruction set
offers additional registers and a more efficient register-
based calling convention compared to standard 32-bit
compilation. Ideally we would compare our SFI com-
piler to a version of GCC that uses ILP32 and the 64-bit
instruction set, but without our SFI implementation. In
the absence of such a compiler, we consider a hypothet-
ical compiler that uses an oracle to automatically select
the faster of -m32 and -m64 compilation. Unless other-
wise noted all GCC compiles used the -O2 optimization
level.

Figure 2 and Table 2 provide x86-64 results, where
average SFI overhead is about 5% compared to -m32,
7% compared to -m64 and 15% compared to the ora-
cle compiler. Across the benchmarks, the distribution
is roughly bi-modal. For parser and gap, SFI per-
formance is better than either -m32 or -m64 binaries
(Table 4). These are also cases where -m64 execution
is slower than -m32, indicative of data-cache pressure,
leading us to believe that the beneficial impact additional
registers dominates SFI overhead. Three other bench-
marks (vpr, mcf and twolf) show SFI impact is less
than 2%. We believe these are memory-bound and do not
benefit significantly from the additional registers.

At the other end of the range, four benchmarks,
gcc, crafty, perlbmk and vortex show perfor-
mance overhead greater than 25%. All run as fast or
faster for -m64 than -m32, suggesting that data-cache
pressure does not dominate their performance. Gcc,
perlbmk and vortex have large text, and we sus-

-m32 -m64 SFI
164.gzip 122 106 123
175.vpr 87 81.3 82.6
176.gcc 47.3 48.0 63.9
181.mcf 59.5 105 60.3
186.crafty 60 42.6 55.1
197.parser 123 148 118
253.perlbmk 86.9 81.7 110
254.gap 60.5 60.9 57.8
255.vortex 99.2 87.4 125
256.bzip2 99.2 85.5 104
300.twolf 130 125 126

Table 4: SPEC2000 x86-64 execution times, in seconds.

-m32 -m64 SFI
164.gzip 82 85 155
175.vpr 239 244 350
176.gcc 1868 2057 3452
181.mcf 20 23 33
186.crafty 286 257 395
197.parser 243 265 510
253.perlbmk 746 835 1404
254.gap 955 1015 1641
255.vortex 643 620 993
256.bzip2 98 95 159
300.twolf 375 410 617

Table 5: SPEC2000 x86 text sizes, in kilobytes.

pect SFI code-size increase may be contributing to in-
struction cache pressure. From hardware performance
counter data, crafty shows a 26% increase in instruc-
tions retired and an increase in branch mispredicts from
2% to 8%, likely contributors to the observed SFI perfor-
mance overhead. We have also observed that perlbmk
and vortex are very sensitive to memcpy performance.
Our x86-64 experiments are using a relative simple im-
plementation of memcpy, to allow the same code to be
used with and without the SFI sandbox. In our continu-
ing work we are adapting a tuned memcpy implementa-
tion to work within our sandbox.

4.3 In-Order vs. Out-of-Order CPUs
We suspected that the overhead of our SFI scheme would
be hidden in part by CPU microarchitectures that bet-
ter exploit instruction-level parallelism. In particular,
we suspected we would be helped by the ability of out-
of-order CPUs to schedule around any bottlenecks that
SFI introduces. Fortunately, both architectures we tested
have multiple implementations, including recent prod-
ucts with in-order dispatch. To test our hypothesis, we
ran a subset of our benchmarks on in-order machines:

8 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 9

-10%

0%

10%

20%

30%

40%

50%

60%

gz
ip

m
cf

cr
af

ty

pa
rs

er

ga
p

bz
ip

2

A
dd

iti
on

al
 S

FI
 O

ve
rh

ea
d

Atom 330 v. Core 2
Cortex-A8 v. Cortex-A9

Figure 3: Additional SPEC2000 SFI overhead on in-order mi-
croarchitectures.

Core 2 Atom 330 A9 A8
164.gzip 16.0 25.1 4.4 2.6
181.mcf -42.6 -34.4 -0.2 -1.0
186.crafty 29.3 51.2 4.2 6.3
197.parser -20.3 -11.5 3.2 0.6
254.gap -5.09 42.3 3.4 7.7
256.bzip2 21.6 25.9 2.9 2.0
geomean 6.89 18.5 3.0 3.0

Table 6: Comparison of SPEC2000 overhead (percent) for in-
order vs. out-of-order microarchitecture.

• A 1.6GHz Intel Atom 330 with 2GB of RAM, run-
ning Ubuntu Linux 9.10.

• A 500MHz Cortex-A8 (Texas Instruments
OMAP3540) with 256MB of RAM, running
Ångström Linux.

The results are shown in Figure 3 and Table 6. For
our x86-64 SFI scheme, the incremental overhead can be
significantly higher on the Atom 330 compared to a Core
2 Duo. This suggests out-of-order execution can help
hide the overhead of SFI, although other factors may also
contribute, including much smaller caches on the Atom
part and the fact that GCC’s 64-bit code generation may
be biased towards the Core 2 microarchitecture. These
results should be considered preliminary, as there are a
number of optimizations for Atom that are not yet avail-
able in our compiler, including Atom-specific instruction
scheduling and better selection of no-ops. Generation of
efficient SFI code for in-order x86-64 systems is an area
of continuing work.

The story on ARM is different. While some bench-
marks (notably gap) have higher overhead, some (such
as parser) have equally reduced overhead. We were
surprised by this result, and suggest two factors to ac-
count for it. First, microarchitectural evaluation of the
Cortex-A8 [3] suggests that the instruction sequences
produced by our SFI can be issued without encountering

a hazard that would cause a pipeline stall. Second, we
suggest that the Cortex-A9, as the first widely-available
out-of-order ARM chip, might not match the maturity
and sophistication of the Core 2 Quad.

5 Discussion
Given our initial goal to impact execution time by less
than 10%, we believe these SFI designs are promising.
At this level of performance, most developers targeting
our system would do better to tune their own code rather
than worry about SFI overhead. At the same time, the
geometric mean commonly used to report SPEC results
does a poor job of capturing the system’s performance
characteristics; nobody should expect to get “average”
performance. As such we will continue our efforts to
reduce the impact of SFI for the cases with the largest
slowdowns.

Our work fulfills a prediction that the costs of SFI
would become lower over time [28]. While thoughtful
design has certainly helped minimize SFI performance
impact, our experiments also suggest how SFI has bene-
fited from trends in microarchitecture. Out-of-order ex-
ecution, multi-issue architectures, and the effective gap
between memory speed and CPU speed all contribute
to reduce the impact of the register-register instructions
used by our sandboxing schemes.

We were surprised by the low overhead of the ARM
sandbox, and that the x86-64 sandbox overhead should
be so much larger by comparison. Clever ARM in-
struction encodings definitely contributed. Our design
directly benefits from the ARM’s powerful bit-clear in-
struction and from predication on stores. It usually re-
quires one instruction per sandboxed ARM operation,
whereas the x86-64 sandbox frequently requires extra in-
structions for address calculations and adds a prefix byte
to many instructions. The regularity of the ARM instruc-
tion set and smaller bundles (16 vs. 32 bytes) also means
that less padding is required for the ARM, hence less
instruction cache pressure. The x86-64 design also in-
duces branch misprediction through our omission of the
ret instruction. By comparison the ARM design uses
the normal return idiom hence minimal impact on branch
prediction. We also note that the x86-64 systems are gen-
erally clocked at a much higher rate than the ARM sys-
tems, making the relative distance to memory a possible
factor. Unfortunately we do not have data to explore this
question thoroughly at this time.

We were initially troubled by the result that our system
improves performance for so many benchmarks com-
pared to the common -m32 compilation mode. This
clearly results from the ability of our system to leverage
features of the 64-bit instruction set. There is a sense in
which the comparison is unfair, as running a 32-bit bi-
nary on a 64-bit machine leaves a lot of resources idle.

Our results demonstrate in part the benefit of exploiting
those additional resources.

We were also surprised by the magnitude of the posi-
tive impact of ILP32 primitive types for a 64-bit binary.
For now our x86-64 design benefits from this as yet un-
exploited opportunity, although based on our experience
the community might do well to consider making ILP32
a standard option for x86-64 execution.

In our continuing work we are pursuing opportuni-
ties to reduce SFI overhead of our x86-64 system, which
we do not consider satisfactory. Our current alignment
implementation is conservative, and we have identified
a number of opportunities to reduce related padding.
We will be moving to GCC version 4.5 which has
instruction-scheduling improvements for in-order Atom
systems. In the fullness of time we look forward to devel-
oping an infrastructure for profile-guided optimization,
which should provide opportunities for both instruction
cache and branch optimizations.

6 Related Work
Our work draws directly on Native Client, a previous
system for sandboxing 32-bit x86 modules [30]. Our
scheme for optimizing stack references was informed
by an earlier system described by McCamant and Mor-
risett [18]. We were heavily influenced by the original
software fault isolation work by Wahbe, Lucco, Ander-
son and Graham [28].

Although there is a large body of published research
on software fault isolation, we are aware of no publica-
tions that specifically explore SFI for ARM or for the
64-bit extensions of the x86 instruction set. SFI for
SPARC may be the most thoroughly studied, being the
subject of the original SFI paper by Wahbe et al. [28]
and numerous subsequent studies by collaborators of
Wahbe and Lucco [2, 16, 11] and independent investi-
gators [4, 5, 8, 9, 10, 14, 22, 29]. As this work matured,
much of the community’s attention turned to a more vir-
tual machine-oriented approach to isolation, incorporat-
ing a trusted compiler or interpreter into the trusted core
of the system.

The ubiquity of the 32-bit x86 instruction set has cat-
alyzed development of a number of additional sandbox-
ing schemes. MiSFIT [23] contemplated use of software
fault isolation to constrain untrusted kernel modules [24].
Unlike our system, they relied on a trusted compiler
rather than a validator. SystemTAP and XFI [21, 7] fur-
ther contemplate x86 sandboxing schemes for kernel ex-
tension modules. McCamant and Morrisett [18, 19] stud-
ied x86 SFI towards the goals of system security and re-
ducing the performance impact of SFI.

Compared to our sandboxing schemes, CFI [1] pro-
vides finer-grained control flow integrity. Whereas our
systems only guarantee indirect control flow will target

an aligned address in the text segment, CFI can restrict
a specific control transfer to a fairly arbitrary subset of
known targets. While this more precise control is useful
in some scenarios, such as ensuring integrity of transla-
tions from higher-level languages, our use of alignment
constraints helps simplify our design and implementa-
tion. CFI also has somewhat higher average overhead
(15% on SPEC2000), not surprising since its instrumen-
tation sequences are longer than ours. XFI [7] adds
to CFI further integrity constraints such as on memory
and the stack, with additional overhead. More recently,
BGI [6] considers an innovative scheme for constrain-
ing the memory activity of device drivers, using a large
bitmap to track memory accessibility at very fine gran-
ularity. None of these projects considered the problem
of operating system portability, a key requirement of our
systems.

The Nooks system [26] enhances operating system
kernel reliability by isolating trusted kernel code from
untrusted device driver modules using a transparent OS
layer called the Nooks Isolation Manager (NIM). Like
Native Client, NIM uses memory protection to isolate
untrusted modules. As the NIM operates in the kernel,
x86 segments are not available. The NIM instead uses a
private page table for each extension module. To change
protection domains, the NIM updates the x86 page ta-
ble base address, an operation that has the side effect
of flushing the x86 Translation Lookaside Buffer (TLB).
In this way, NIM’s use of page tables suggests an alter-
native to segment protection as used by NaCl-x86-32.
While a performance analysis of these two approaches
would likely expose interesting differences, the compar-
ison is moot on the x86 as one mechanism is available
only within the kernel and the other only outside the ker-
nel. A critical distinction between Nooks and our sand-
boxing schemes is that Nooks is designed only to pro-
tect against unintentional bugs, not abuse. In contrast,
our sandboxing schemes must be resistant to attempted
deliberate abuse, mandating our mechanisms for reliable
x86 disassembly and control flow integrity. These mech-
anisms have no analog in Nooks.

Our system uses a static validator rather than a trusted
compiler, similar to validators described for other sys-
tems [7, 18, 19, 21], applying the concept of proof-
carrying code [20]. This has the benefit of greatly re-
ducing the size of the trusted computing base [27], and
obviates the need for cryptographic signatures from the
compiler. Apart from simplifying the security implemen-
tation, this has the further benefit of opening our system
to 3rd-party tool chains.

7 Conclusion
This paper has presented practical software fault isola-
tion systems for ARM and for 64-bit x86. We believe

10 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 11

these systems demonstrate that the performance over-
head of SFI on modern CPU implementations is small
enough to make it a practical option for general purpose
use when executing untrusted native code. Our experi-
ence indicates that SFI benefits from trends in microar-
chitecture, such as out-of-order and multi-issue CPU
cores, although further optimization may be required to
avoid penalties on some recent low power in-order cores.
We further found that for data-bound workloads, mem-
ory latency can hide the impact of SFI.

Source code for Google Native Client can be found at:
http://code.google.com/p/nativeclient/.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Lig-

atti. Control-flow integrity: Principles, implemen-
tations, and applications. In Proceedings of the
12th ACM Conference on Computer and Commu-
nications Security, November 2005.

[2] A. Adl-Tabatabai, G. Langdale, S. Lucco, and
R. Wahbe. Efficient and language-independent mo-
bile programs. SIGPLAN Not., 31(5):127–136,
1996.

[3] ARM Limited. Cortex A8 technical reference
manual. http://infocenter.arm.com/
help/index.jsp?topic=com.arm.doc.
ddi0344/index.html, 2006.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In 19th ACM Symposium
on Operating Systems Principles, pages 164–177,
2003.

[5] E. Bugnion, S. Devine, K. Govil, and M. Rosen-
blum. Disco: Running commodity operating sys-
tems on scalable multiprocessors. ACM Trans-
actions on Computer Systems, 15(4):412–447,
November 1997.

[6] M. Castro, M. Costa, J. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast byte-granularity software fault isolation. In
2009 Symposium on Operating System Principles,
pages 45–58, October 2009.

[7] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. Necula. XFI: Software guards for system ad-
dress spaces. In OSDI ’06: 7th Symposium on Op-
erating Systems Design And Implementation, pages
75–88, November 2006.

[8] B. Ford. VXA: A virtual architecture for durable
compressed archives. In USENIX File and Storage
Technologies, December 2005.

[9] B. Ford and R. Cox. Vx32: Lightweight user-level
sandboxing on the x86. In 2008 USENIX Annual
Technical Conference, June 2008.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification. Addison-Wesley,
2000.

[11] S. Graham, S. Lucco, and R. Wahbe. Adaptable bi-
nary programs. In Proceedings of the 1995 USENIX
Technical Conference, 1995.

[12] J. L. Henning. SPEC CPU2000: Measuring CPU
performance in the new millennium. Computer,
33(7):28–35, 2000.

[13] C. Lattner. LLVM: An infrastructure for multi-
stage optimization. Masters Thesis, Computer Sci-
ence Department, University of Illinois, 2003.

[14] T. Lindholm and F. Yellin. The Java Virtual Ma-
chine Specification. Prentice Hall, 1999.

[15] J. Liu and Y. Wu. Performance characterization
of the 64-bit x86 architecture from compiler opti-
mizations’ perspective. In Proceedings of the In-
ternational Conference on Compiler Construction,
CC’06, 2006.

[16] S. Lucco, O. Sharp, and R. Wahbe. Omniware: A
universal substrate for web programming. In Fourth
International World Wide Web Conference, 1995.

[17] C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G.
Lowney, and R. Cohn. Profile-guided post-
link stride prefetching. In Proceedings of the
ACM International Conference on Supercomput-
ing, ICS’02, 2002.

[18] S. McCamant and G. Morrisett. Efficient, veri-
fiable binary sandboxing for a CISC architecture.
Technical Report MIT-CSAIL-TR-2005-030, MIT
Computer Science and Artificial Intelligence Labo-
ratory, 2005.

[19] S. McCamant and G. Morrisett. Evaluating SFI for
a CISC architecture. In 15th USENIX Security Sym-
posium, August 2006.

[20] G. Necula. Proof carrying code. In Principles of
Programming Languages, 1997.

[21] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Kenis-
ton, and J. Chen. Locating system problems using
dynamic instrumentation. In 2005 Ottawa Linux
Symposium, pages 49–64, July 2005.

[22] J. Richter. CLR via C#, Second Edition. Microsoft
Press, 2006.

[23] C. Small. MiSFIT: A tool for constructing safe ex-
tensible C++ systems. In Proceedings of the Third
USENIX Conference on Object-Oriented Technolo-
gies, June 1997.

[24] C. Small and M. Seltzer. VINO: An integrated
platform for operating systems and database re-
search. Technical Report TR-30-94, Harvard Uni-
versity, Division of Engineering and Applied Sci-
ences, Cambridge, MA, 1994.

[25] Sun Microsystems. Compressed OOPs in
the HotSpot JVM. http://wikis.sun.
com/display/HotSpotInternals/
CompressedOops.

[26] M. Swift, M. Annamalai, B. Bershad, and H. Levy.
Recovering device drivers. In 6th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation, December 2004.

[27] U. S. Department of Defense, Computer Security
Center. Trusted computer system evaluation crite-
ria, December 1985.

[28] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Gra-
ham. Efficient software-based fault isolation. ACM
SIGOPS Operating Systems Review, 27(5):203–
216, December 1993.

[29] C. Waldspurger. Memory resource management in
VMware ESX Server. In 5th Symposium on Oper-
ating Systems Design and Implementation, Decem-
ber 2002.

[30] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar. Native client: A sandbox for portable, un-
trusted x86 native code. In Proceedings of the 2009
IEEE Symposium on Security and Privacy, 2009.

USENIX Association 19th USENIX Security Symposium 13

Making Linux Protection Mechanisms Egalitarian with UserFS

Taesoo Kim and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

UserFS provides egalitarian OS protection mechanisms
in Linux. UserFS allows any user—not just the system
administrator—to allocate Unix user IDs, to use chroot,
and to set up firewall rules in order to confine untrusted
code. One key idea in UserFS is representing user IDs as
files in a /proc-like file system, thus allowing applica-
tions to manage user IDs like any other files, by setting
permissions and passing file descriptors over Unix do-
main sockets. UserFS addresses several challenges in
making user IDs egalitarian, including accountability, re-
source allocation, persistence, and UID reuse. We have
ported several applications to take advantage of UserFS;
by changing just tens to hundreds of lines of code, we
prevented attackers from exploiting application-level vul-
nerabilities, such as code injection or missing ACL checks
in a PHP-based wiki application. Implementing UserFS
requires minimal changes to the Linux kernel—a single
3,000-line kernel module—and incurs no performance
overhead for most operations, making it practical to de-
ploy on real systems.

1 INTRODUCTION

OS protection mechanisms are key to mediating access
to OS-managed resources, such as the file system, the
network, or other physical devices. For example, system
administrators can use Unix user IDs to ensure that dif-
ferent users cannot corrupt each other’s files; they can
set up a chroot jail to prevent a web server from access-
ing unrelated files; or they can create firewall rules to
control network access to their machine. Most operating
systems provide a range of such mechanisms that help
administrators enforce their security policies.

While these protection mechanisms can enforce the
administrator’s policy, many applications have their own
security policies for OS-managed resources. For instance,
an email client may want to execute suspicious attach-
ments in isolation, without access to the user’s files; a
networked game may want to configure a firewall to make
sure it does not receive unwanted network traffic that
may exploit a vulnerability; and a web browser may want
to precisely control what files and devices (such as a
video camera) different sites or plugins can access. Un-
fortunately, typical OS protection mechanisms are only
accessible to the administrator: an ordinary Unix user
cannot allocate a new user ID, use chroot, or change

firewall rules, forcing applications to invent their own
protection techniques like system call interposition [15],
binary rewriting [30] or analysis [13, 45], or interposing
on system accesses in a language runtime like Javascript.

This paper presents the design of UserFS, a kernel
framework that allows any application to use traditional
OS protection mechanisms on a Unix system, and a proto-
type implementation of UserFS for Linux. UserFS makes
protection mechanisms egalitarian, so that any user—not
just the system administrator—can allocate new user IDs,
set up firewall rules, and isolate processes using chroot.
By using the operating system’s own protection mecha-
nisms, applications can avoid race conditions and ambi-
guities associated with system call interposition [14, 43],
can confine existing code without having to recompile or
rewrite it in a new language, and can enforce a coherent
security policy for large applications that might span sev-
eral runtime environments, such as both Javascript and
Native Client [45], or Java and JNI code.

Allowing arbitrary users to manipulate OS protection
mechanisms through UserFS requires addressing several
challenges. First, UserFS must ensure that a malicious
user cannot exploit these mechanisms to violate another
application’s security policy, perhaps by re-using a pre-
viously allocated user ID, or by running setuid-root pro-
grams in a malicious chroot environment. Second, user
IDs are often used in Unix for accountability and auditing,
and UserFS must ensure that a system administrator can
attribute actions to users that he or she knows about, even
for processes that are running with a newly-allocated user
ID. Finally, UserFS should to be compatible with existing
applications, interfaces, and kernel components whenever
possible, to make it easy to incrementally deploy UserFS
in practical systems.

UserFS addresses these challenges with a few key ideas.
First, UserFS allows applications to allocate user IDs
that are indistinguishable from traditional user IDs man-
aged by the system administrator. This ensures that ex-
isting applications do not need to be modified to support
application-allocated protection domains, and that exist-
ing UID-based protection mechanisms like file permis-
sions can be reused. Second, UserFS maintains a shadow
generation number associated with each user ID, to make
sure that setuid executables for a given UID cannot be
used to obtain privileges once the UID has been reused by
a new application. Third, UserFS represents allocated user

1

14 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 15

IDs using files in a special file system. This makes it easy
to manipulate user IDs, much like using the /proc file
system on Linux, and applications can use file descriptor
passing to delegate privileges and implement authentica-
tion logic. Finally, UserFS uses information about what
user ID allocated what other user IDs to determine what
setuid executables can be trusted in any given chroot
environment, as will be described later.

We have implemented a prototype of UserFS for Linux
purely as a kernel module, consisting of less than 3,000
lines of code, along with user-level support libraries for C
and PHP-based applications. UserFS imposes no per-
formance overhead for most existing operations, and
only performs an additional check when running set-
uid executables. We modified several applications to en-
force security policies using UserFS, including Google’s
Chromium web browser, a PHP-based wiki application,
an FTP server, ssh-agent, and Unix commands like
bash and su, all with minimal code modifications, sug-
gesting that UserFS is easy to use. We further show that
our modified wiki is not vulnerable by design to 5 out of
6 security vulnerabilities found in that application over
the past several years.

The key contribution of this work is the first system
that allows Linux protection and isolation mechanisms to
be freely used by non-root code. This improves overall
security both by allowing applications to enforce their
policies in the OS, and by reducing the amount of code
that needs to run as root in the first place (for example to
set up chroot jails, create new user accounts, or config-
ure firewall rules).

The rest of this paper is structured as follows. Sec-
tion 2 provides more concrete examples of applications
that would benefit from access to OS protection mecha-
nisms. Section 3 describes the design of UserFS in more
detail, and Section 4 covers our prototype implementation.
We illustrate how we modified existing applications to
take advantage of UserFS in Section 5, and Section 6 eval-
uates the security and performance of UserFS. Section 7
surveys related work, Section 8 discusses the limitations
of our system, and Section 9 concludes.

2 MOTIVATION AND GOALS

The main goal of UserFS is to help applications reduce
the amount of trusted code, by allowing them to use tradi-
tionally privileged OS protection mechanisms to control
access to system resources, such as the file system and the
network. We believe this will allow many applications to
improve their security, by preventing compromises where
an attacker takes advantage of an application’s excessive
OS-level privileges. However, UserFS is not a security
panacea, and programmers will still need to think about
a wide range of other security issues from cryptography
to cross-site scripting attacks. The rest of this section

provides several motivating examples in which UserFS
can improve security.

Avoiding root privileges in existing applications.
Typical Unix systems run a large amount of code as root
in order to perform privileged operations. For example,
network services that allow user login, such as an FTP
server, sshd, or an IMAP server often run as root in or-
der to authenticate users and invoke setuid() to acquire
their privileges on login. Unfortunately, these same net-
work services are the parts of the system most exposed
to attack from external adversaries, making any bug in
their code a potential security vulnerability. While some
attempts have been made to privilege-separate network
services, such as with OpenSSH [39], it requires carefully
re-designing the application and explicitly moving state
between privileged and unprivileged components. By al-
lowing processes to explicitly manipulate Unix users as
file descriptors, and pass them between processes, UserFS
eliminates the need to run network services as the root
user, as we will show in Section 5.3.

In addition to network services, users themselves often
want to run code as root, in order to perform currently-
privileged operations. For instance, chroot can be useful
in building a complex software package that has many
dependencies, but unfortunately chroot can only be in-
voked by root. By allowing users to use a range of mech-
anisms currently reserved for the system administrator,
UserFS further reduces the need to run code as root.

Sandboxing untrusted code. Users often interact with
untrusted or partially-trusted code or data on their com-
puters. For example, users may receive attachments via
email, or download untrusted files from the web. Opening
or executing these files may exploit vulnerabilities in the
user’s system. While it’s possible for the mail client or
web browser to handle a few types of attachments (such
as HTML files) safely, in the general case opening the
document will require running a wide range of existing
applications (e.g. OpenOffice for Word files, or Adobe
Acrobat to view PDFs). These helper applications, even
if they are not malicious themselves, might perform unde-
sirable actions when viewing malicious documents, such
as a Word macro virus or a PDF file that exploits a buffer
overflow in Acrobat.

Guarding against these problems requires isolating the
suspect application from the rest of the system, while
providing a limited degree of sharing (such as initializing
Acrobat with the user’s preferences). With UserFS, the
mail client or web browser can allocate a fresh user ID
to view a suspicious file, and use firewall rules to ensure
the application does not abuse the user’s network connec-
tion (e.g. to send spam), and Section 5.2 will describe
how UserFS helps Unix users isolate partially-trusted or
untrusted applications in this manner.

2

Enforcing separation in privilege-separated applica-
tions. One approach to building high-security applica-
tions is to follow the principle of least privilege [40] by
breaking up an application into several components, each
of which has the minimum privileges necessary. For
instance, OpenSSH [39], qmail [3], and the Chromium
browser [2] follow this model, and tools exist to help
programmers privilege-separate existing applications [7].
One problem is that executing components with less privi-
leges requires either root privilege to start with (and appli-
cations that are not fully-trusted to start with are unlikely
to have root privileges), or other complex mechanisms.
With UserFS, privilege-separated applications can use
existing OS protection primitives to enforce isolation be-
tween their components, without requiring root privileges
to do so. We hope that, by making it easier to execute
code with less privileges, UserFS encourages more appli-
cations to improve their security by reducing privileges
and running as multiple components. As an example, Sec-
tion 5.4 shows how UserFS can isolate different processes
in the Chromium web browser.

Exporting OS resources in higher-level runtimes. Fi-
nally, there are many higher-level runtimes running on a
typical desktop system, such as Javascript, Flash, Native
Client [45], and Java. Applications running on top of
these runtimes often want to access underlying OS re-
sources, including the file system, the network, and local
devices such as a video camera. This currently forces the
runtimes to implement their own protection schemes, e.g.
based on file names, which can be fragile, and worse yet,
enforce different policies depending on what runtime an
application happens to use. By using UserFS, runtimes
can delegate enforcement of security checks to the OS
kernel, by allocating a fresh user ID for logical protection
domains managed by the runtime. For example, Sec-
tion 5.1 shows how UserFS can enforce security policies
for a PHP web application. In the future, we hope the
same mechanisms can be used to implement a coherent
security policy for one application across all runtimes that
it might use.

3 KERNEL INTERFACE DESIGN

To help applications reduce the amount of trusted code,
UserFS allows any application to allocate new principals;
in Unix, principals are user IDs and group IDs. An ap-
plication can then enforce its desired security policy by
first allocating new principals for its different components,
then, second, setting file permissions—i.e., read, write,
and execute privileges for principals—to match its secu-
rity policy, and finally, running its different components
under the newly-allocated principals.

A slight complication arises from the fact that, in many
Unix systems, there are a wide range of resources avail-

able to all applications by default, such as the /tmp direc-
tory or the network stack. Thus, to restrict untrusted code
from accessing resources that are accessible by default,
UserFS also allows applications to impose restrictions on
a process, in the form of chroot jails or firewall rules.
The rest of this section describes the design of the UserFS
kernel mechanisms that provide these features.

3.1 User ID allocation
The first function of UserFS is to allow any application
to allocate a new principal, in the form of a Unix user
ID. At a naı̈vely high level, allocating user IDs is easy:
pick a previously unused user ID value and return it to the
application. However, there are four technical challenges
that must be addressed in practice:

• When is it safe for a process to exercise the privi-
leges of another user ID, or to change to a different
UID? Traditional Unix provides two extremes, nei-
ther of which are sufficient for our requirements:
non-root processes can only exercise the privileges
of their current UID, and root processes can exercise
everyone’s privileges.

• How do we keep track of the resources associated
with user IDs? Traditional Unix systems largely rely
on UIDs to attribute processes to users, to implement
auditing, and to perform resource accounting, but if
users are able to create new user IDs, they may be
able to evade UID-based accounting mechanisms.

• How do we recycle user ID values? Most Unix sys-
tems and applications reserve 32 bits of space for
user ID values, and an adversary or a busy system
can quickly exhaust 232 user ID values. On the other
hand, if we recycle UIDs, we must make sure that
the previous owner of a particular UID cannot ob-
tain privileges over the new owner of the same UID
value.

• Finally, how do we keep user ID allocations persis-
tent across reboots of the kernel?

We will now describe how UserFS addresses these chal-
lenges, in turn.

3.1.1 Representing privileges

UserFS represents user IDs with files that we will call
Ufiles in a special /proc-like file system that, by conven-
tion, is mounted as /userfs. Privileges with respect to a
specific user ID can thus be represented by file descrip-
tors pointing to the appropriate Ufile. Any process that
has an open file descriptor corresponding to a Ufile can
issue a USERFS IOC SETUID ioctl on that file descriptor
to change the process’s current UID (more specifically,
euid) to the Ufile’s UID.

3

16 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 17

Aside from the special ioctl calls, file descriptors for
Ufiles behave exactly like any other Unix file descriptor.
For instance, an application can keep multiple file descrip-
tors for different user IDs open at the same time, and
switch its process UID back and forth between them. Ap-
plications can also use file descriptor passing over Unix
domain sockets to pass privileges between processes. This
can be useful in implementing user authentication or lo-
gin, by allowing an authentication daemon to accept login
requests over a Unix domain socket, and to return a file
descriptor for that user’s Ufile if the supplied credential
(e.g. password) was correct.

Finally, each Ufile under /userfs has an owner user
and group associated with it, along with user and group
permissions. These permissions control what other users
and groups can obtain the privileges of a particular UID
by opening its via path name. By default, a Ufile is owned
by the user and group IDs of the process that initially
allocated that UID, and has Unix permissions 600 (i.e.
accessible by owner, but not by group or others), allowing
the process that allocated the UID to access it initially.
A process can always access the Ufile for the process’s
current UID, regardless of the permissions on that Ufile
(this allows a process to always obtain a file descriptor for
its current UID and pass it to others via FD passing).

3.1.2 Accountability hierarchy

Ufiles help represent privileges over a particular user
ID, but to provide accountability, our system must also
be able to say what user is responsible for a particular
user ID. This is useful for accounting and auditing pur-
poses: tracking what users are using disk space, running
CPU-intensive processes, or allocating many user IDs via
UserFS, or tracking down what user tried to exploit some
vulnerability a week ago.

To provide accountability, UserFS implements a hier-
archy of user IDs. In particular, each UID has a parent
UID associated with it. The parent UID of existing Unix
users is root (0), including the parent of root itself. For
dynamically-allocated user IDs, the parent is the user ID
of the process that allocated that UID (which in turn has
its own parent UID). UserFS represents this UID hier-
archy with directories under /userfs, as illustrated in
Figure 1. For convenience, UserFS also provides sym-
bolic links for each UID under /userfs that point to the
hierarchical name of that UID, which helps the system
administrator figure out who is responsible for a particular
UID.

In addition to the USERFS IOC SETUID ioctl that was
mentioned earlier, UserFS supports three more opera-
tions. First, a process can allocate new UIDs by issuing a
USERFS IOC ALLOC ioctl on a Ufile. This allocates a new
UID as a child of the Ufile’s UID, and the value of the
newly allocated UID is returned as the result of the ioctl.

A process can also de-allocate UIDs by performing an
rmdir on the appropriate directory under /userfs. This
will recursively de-allocate that UID and all of its child
UIDs (i.e. it will work even on non-empty directories),
and kill any processes running under those UIDs, for rea-
sons we will describe shortly. Finally, a process can move
a UID in the hierarchy using rename (for example, if
one user is no longer interested in being responsible for
a particular UID, but another user is willing to provide
resources for it).

Finally, accountability information may be important
long after the UID in question has been de-allocated (e.g.
the administrator wants to know who was responsible for
a break-in attempt, but the UID in the log associated with
the attempt has been de-allocated already). To address
this problem, UserFS uses syslog to log all allocations, so
that an administrator can reconstruct who was responsible
for that UID at any point in time.

3.1.3 UID reuse

An ideal system would provide a unique identifier to ev-
ery principal that ever existed. Unfortunately, most Unix
kernel data structures and applications only allocate space
for a 32-bit user ID value, and an adversary can easily
force a system to allocate 232 user IDs. To solve this
problem, UserFS associates a 64-bit generation number
with every allocated UID1, in order to distinguish between
two principals that happen to have had the same 32-bit
UID value at different times. The kernel ensures that gen-
eration numbers are unique by always incrementing the
generation number when the UID is deallocated. How-
ever, as we just mentioned, there isn’t enough space to
store the generation number along with the user ID in
every kernel data structure. UserFS deals with this on a
case-by-case basis:

Processes. UserFS assumes that the current UID of a
process always corresponds to the latest generation num-
ber for that UID. This is enforced by killing every process
whose current UID has been deallocated.

Open Ufiles. UserFS keeps track of the generation num-
ber for each open file descriptor of a Ufile, and veri-
fies that the generation number is current before pro-
ceeding with any ioctl on that file descriptor (such as
USERFS IOC SETUID). Once a UID has been reused, the
current UID generation number is incremented, and left-
over file descriptors for the old Ufile will be unusable.
This ensures that a process that had privileges over a UID
in the past cannot exercise those privileges once the UID
is reused.

1It would take an attacker thousands of years to allocate 264 UIDs,
even at a rate of 1 million UIDs per second.

4

Path name Role
/userfs/ctl Ufile for root (UID 0).
/userfs/1001/ctl Ufile for user 1001 (parent UID 0).
/userfs/1001/5001/ctl Ufile for user 5001 (allocated by parent UID 1001).
/userfs/1001/5001/5002/ctl Ufile for user 5003 (allocated by parent UID 5001).
/userfs/1001/5003/ctl Ufile for user 5003 (allocated by parent UID 1001).
/userfs/1002/ctl Ufile for user 1002 (parent UID 0).
/userfs/5001 Symbolic link to 1001/5001.
/userfs/5002 Symbolic link to 1001/5001/5002.
/userfs/5003 Symbolic link to 1001/5003.

Figure 1: An overview of the files exported via UserFS in a system with two traditional Unix accounts (UID 1001 and 1002), and three dynamically-
allocated accounts (5001, 5002, and 5003). Not shown are system UIDs that would likely be present on any system (users such as bin, nobody, etc),
or directories that are implied by the ctl files. Each ctl file supports two ioctls: USERFS IOC SETUID and USERFS IOC ALLOC.

Setuid files. Setuid files are similar to a file descriptor
for a Ufile, in the sense that they can be used to gain the
privileges of a UID. To prevent a stale setuid file from
being used to start a process with the same UID in the
future, UserFS keeps track of the file owner’s UID gener-
ation number for every setuid file in that file’s extended
attributes. (Extended attributes are supported by many file
systems, including ext2, ext3, and ext4. Moreover, small
extended attributes, such as our generation number, are
often stored in the inode itself, avoiding additional seeks
in the common case.) UserFS sets the generation number
attribute when the file is marked setuid, or when its owner
changes, and checks whether the generation number is
still current when the setuid file is executed.

Non-setuid files, directories, and other resources.
UserFS does not keep track of generation numbers for the
UID owners of files, directories, system V semaphores,
and so on. The assumption is that it’s the previous UID
owner’s responsibility to get rid of any data or resources
they do not want to be accessed by the next process that
gets the same UID value. This is potentially risky, if sen-
sitive data has been left on disk by some process, but is
the best we have been able to do without changing large
parts of the kernel.

There are several ways of addressing the problem of
leftover files, which may be adopted in the future. First,
the on-disk inode could be changed to keep track of the
generation number along with the UID for each file. This
approach would require significant changes to the ker-
nel and file system, and would impose a minor runtime
performance overhead for all file accesses. Second, the
file system could be scanned to find orphaned files, much
in the same way that UserFS scans the process table to
kill processes running with a deallocated UID. This ap-
proach would make user deallocation expensive, although
it would not require modifying the file system itself. Fi-
nally, each application could run sensitive processes with
write access to only a limited set of directories, which can
be garbage-collected by the application when it deletes
the UID. Since none of the approaches are fully satis-

factory, our design leaves the problem to the application,
out of concern that imposing any performance overheads
or extensive kernel changes would preclude the use of
UserFS altogether.

3.1.4 Persistence

UserFS must maintain two pieces of persistent state. First,
UserFS must make sure that generation numbers are not
reused across reboot; otherwise an attacker could use a
setuid file to gain another application’s privileges when
a UID is reused with the same generation number. One
way to achieve this would be to keep track of the last
generation number for each UID; however this would
be costly to store. Instead, UserFS maintains generation
numbers only for allocated UIDs, and just one “next”
generation number representing all un-allocated UIDs.
UserFS increments this next generation number when any
UID is allocated or deallocated, and uses its current value
when a new UID is allocated. To ensure that generation
numbers are not reused in the case of a system crash,
UserFS synchronously increments the next generation
number on disk. As an important optimization, UserFS
batches on-disk increments in groups of 1,000 (i.e., it only
update the on-disk next generation number after 1,000
increments), and it always increments the next generation
counter by 1,000 on startup to account for possibly-lost
increments.

Second, UserFS must allow applications to keep using
the same dynamically-allocated UIDs after reboot (e.g.
if the file system contains data and/or setuid files owned
by that UID). This involves keeping track of the genera-
tion number and parent UID for every allocated UID, as
well as the owner UID and GID for the corresponding
Ufile. UserFS maintains a list of such records in a file
(/etc/userfs uid), as shown in Figure 2. The permis-
sions for the Ufile are stored as part of the owner value (if
the owner UID or GID is zero, the corresponding permis-
sions are 0, and if the owner UID or GID is non-zero, the
corresponding permissions are read-write). The genera-
tion numbers of the parent UID, owner UID, and owner

5

18 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 19

GID are not tracked; the parent UID is necessarily current
(otherwise this child would have been deallocated), and
the owner UID and GID are left up to the Ufile owner.

UserFS lazily updates this on-disk data structure; dele-
tion is implemented in-place by setting the UID value to
−1. If an application wants to rely on the Ufile being
present after reboot, it can force that Ufile’s persistent
record to be written to disk by issuing an fsync on the
Ufile’s file descriptor.

As an optimization, UserFS also allows non-persistent
UIDs to be allocated (for isolating processes that do not
store any persistent data in the file system under their
UID). To implement this, the USERFS IOC ALLOC ioctl
takes one argument that indicates whether the new UID
should be persistent or not; persistent UIDs can only be
allocated to persistent parents.

As a practical matter, UserFS partitions the 32-bit UID
space into UIDs reserved for system use (0 through 230 −
1), persistent dynamically-allocated UIDs (230 through
231 − 1), non-persistent dynamically-allocated UIDs (231

through 231+230−1), and more reserved UIDs (231+230

through 232−1). This makes it easy to determine whether
a particular UID is persistent, and avoids conflicts with
most system-allocated UIDs at either end of the UID
number space. UserFS provides modified adduser and
deluser programs that create and delete Ufiles when
they add or remove users from the system (to allow those
users to allocate new UIDs via ioctls on their Ufile), and
assumes that the system administrator will not use UIDs
in the dynamically-allocated range.

3.2 Restriction mechanisms
To prevent malicious code from accessing resources that
are accessible to everyone by default (such as /tmp or the
network), UserFS allows applications to take advantage of
existing restriction mechanisms: chroot to limit access
to the file system namespace, and firewall rules to limit
access to the network.

3.2.1 File system namespaces

To prevent processes from accessing files that are accessi-
ble by default, UserFS allows any user to invoke chroot.
There are two potential problems associated with this:
setuid programs that will behave incorrectly in a chroot
environment, and arbitrary programs attempting to escape
from a chroot jail by recursive use of chroot itself.

Setuid programs. If a setuid program runs in a chroot
environment, it can behave in unpredictable ways—for in-
stance, a setuid-root su program may read a user-supplied
/etc/passwd file and grant the caller root access be-
cause it assumed that root’s password in its version of
/etc/passwd was authentic. UserFS relies on the user
ID hierarchy to address this problem. In particular, after
user U calls chroot, UserFS will only honor setuid bits

for files owned by UIDs that are descendants of U . In
the corner case of root invoking chroot, every user is a
descendant of root, and thus every setuid program will
still be honored, as on a regular Linux system.

UserFS only keeps track of the last UID to call chroot
for a given process (inherited across fork). If one user
performs chroot inside a second user’s jail, it is the re-
sponsibility of the first user to verify that it’s creating a
chroot environment acceptable to all of its descendants.
In practice, we expect that the first user will be a descen-
dant of the second user (because he is executing inside
the second user’s jail), so this requirement will not pose
significant problems.

Escaping chroot. The Linux chroot mechanism
works by effectively maintaining a single “barrier” at
the specified root directory that prevents the process from
evaluating .. (parent directory) of that process’s root di-
rectory. A process can escape a chroot jail by obtaining
a reference (either a file descriptor or current working
directory) to a directory outside the chroot’ed hierarchy,
and using that reference to walk up the .. pointers to the
true file system root. Even if an application properly uses
chroot to confine a process, the kernel only keeps track
of one root directory pointer per process, so a malicious
process in a chroot jail could confine itself to a second
chroot jail while maintaining a handle on a directory
outside this second jail, and use that handle to escape
both jails.

To prevent this problem, UserFS enforces three rules
for chroot invoked by non-root users. First, to ensure
a process cannot maintain a current working directory
outside the chroot environment, UserFS requires that
chroot callers set their directory to the chroot target
directory ahead of time. Second, UserFS checks that a
process calling chroot has no open directory file descrip-
tors. Finally, UserFS ensures that a process cannot receive
a directory file descriptor via file descriptor passing from
outside the jail: it annotates Unix domain sockets with the
sender’s root directory (or a “prohibited” value if there
are senders with different root directories) on sendmsg,
and checks that the sender’s root directory matches the re-
cipient process root directory on recvmsg, if the message
contains a directory file descriptor.

3.2.2 Firewall rules

Ideally, we would like users to be able to run a process
with a set of firewall rules attached to it, and for those
firewall rules to apply to any child processes spawned by
that process, much in the same way that chroot applies
to all child processes. Unfortunately, this would require
changing the core Linux kernel: at the very least, it would
be necessary to track the “current firewall ruleset” for each
process. Since we wanted to implement UserFS purely

6

UID Parent UID Generation number Owner UID Owner GID

32 bits 32 bits 64 bits 32 bits 32 bits

Figure 2: Record stored by UserFS on disk for each allocated UID, totaling 24 bytes per allocated UID.

in terms of loadable kernel modules, we compromised,
and associated firewall rules with UIDs instead. The
kernel already keeps track of the UID for each process,
and propagates the UID to the children of that process,
so UserFS simply needs to ensure that firewall rules for
newly-allocated UIDs inherit the firewall rules for the
parent UID.

UserFS’s firewall system consists of rules, which form
rulesets, which are in turn associated with UIDs. At the
lowest level, rules are of the form 〈action, proto, address,
netmask, port〉. Our prototype supports two kinds of
actions, ALLOW and BLOCK, and two protocols, TCP
and UDP. The protocol, address, netmask, and port are
matched against the destination of outgoing packets or the
source of incoming packets; port value 0 matches any port.
Supporting just TCP and UDP protocols suffices because,
on Linux, a non-root process cannot open a raw socket
to send arbitrary packets that are neither TCP or UDP.
For kernels that support other protocols, such as SCTP,
UserFS’s rules could be augmented to track additional
protocols.

A ruleset is an ordered sequence of rules, used to de-
termine whether a packet should be allowed or blocked.
When checking a packet against a ruleset, UserFS finds
the earliest rule in the ruleset that matches the packet, and
uses that rule’s action to determine if the packet should
be allowed or blocked. Each ruleset contains two implicit
rules at the end, 〈ALLOW, TCP, 0.0.0.0, 0.0.0.0, 0〉 and
〈ALLOW, UDP, 0.0.0.0, 0.0.0.0, 0〉, which allow any pack-
ets by default. Each UID is associated with a ruleset, and
applications can modify that UID’s ruleset by adding or
removing rules as necessary.

One potential worry in associating rulesets with a UID
is that a malicious process can create a child UID with
less-restrictive firewall rules. To mitigate this problem,
UserFS checks not only the UID’s own firewall ruleset,
but also the rulesets of all parent UIDs, and only allows
packets if they are allowed by every ruleset in this chain.

UserFS provides a Ufile ioctl to add or remove rules
from that UID’s firewall ruleset. However, there is a slight
complication: on the one hand, we want to ensure that
a process cannot modify its own firewall ruleset, but on
the other hand, a process can always open its own Ufile.
To address this problem, UserFS allows the firewall ioctl
to be invoked only by the parent UID of a Ufile. This
ensures that a process cannot change firewall rules for
itself through its own Ufile.

4 IMPLEMENTATION

We have implemented UserFS as a kernel module for
version 2.6.31 of the Linux kernel. The UserFS kernel
module comprises a little less than 3,000 lines of code,
excluding unit tests and the user-space mount.userfs
command. UserFS relies heavily on the LSM frame-
work [44] for checking generation numbers on setuid
files (using file permission and inode setattr hooks),
for confining chroot processes (using socket sendmsg
and socket recvmsg hooks), and on netfilter for imple-
menting network filtering (using NF INET LOCAL IN and
NF INET LOCAL OUT hooks). UserFS also adds support
to allow a process to chown or chgrp files between dif-
ferent UIDs that the process has privileges over.

Because UserFS is implemented as a kernel module,
and does not modify core kernel code, it makes some
trade-offs. For example, the kernel’s versions of chown,
chgrp, and chroot are not flexible enough for UserFS
to implement its desired security policy from a kernel
module. As a workaround, UserFS provides ioctls that
implement equivalent functionality with its own secu-
rity policy. Integrating UserFS into the core kernel code
would both simplify our implementation and offer a more
coherent interface to applications.

We have also implemented helper libraries for applica-
tions using UserFS, for both C and PHP. The C library
comprises about 1,500 lines of code, including functions
to execute a program in a newly-allocated jail and under a
fresh user ID, to fork with a new UID, and to manipulate
user IDs. The C library is careful to open all Ufiles with
the O CLOEXEC flag to avoid accidentally leaking Ufile
file descriptors to other processes. The PHP library adds
about 600 more lines on top of the C library to allow PHP
applications to manipulate Ufiles.

5 APPLYING USERFS
To illustrate how UserFS would be used in practice, we
modified several applications to take advantage of UserFS,
including the Chromium web browser, the DokuWiki
web application, Unix command-line utilities, and an
FTP server. The rest of this section reports on these
applications, focusing on the changes we had to make to
each application in order to use UserFS, and the resulting
benefits from doing so.

5.1 DokuWiki
Many web applications implement their own protection
mechanisms, since they do not typically run as root, and
thus cannot allocate user IDs for each application-level

7

20 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 21

user. This can lead to vulnerabilities if the application de-
velopers make a mistake in performing security checks [9].
To show how UserFS can prevent similar problems, we
modified DokuWiki [10], a wiki application written in
PHP that supports read-protected and write-protected
pages [11] and that stores wiki pages in the server’s file
system, to enforce the protection of wiki pages using file
system permissions.

Our modified version of DokuWiki allocates a separate
UID for each wiki user, and sets Unix permissions on
wiki page files to reflect the protection of that page (we
use ACL support in the ext4 file system [19] to repre-
sent ACLs that involve multiple users). To minimize the
amount of damage that an attacker can do, our modified
version of DokuWiki executes each HTTP request in a
separate process, and allocates a new ephemeral user ID
for the initial processing of each request2. If an HTTP
request provides the correct password for a user account,
the DokuWiki PHP process handling that request can ob-
tain a file descriptor for that user’s Ufile, and change its
UID to that user, by using the UserFS PHP module. This
in turn allows a DokuWiki process to read or write wiki
pages accessible to that user. Figure 3 shows the flow of
an HTTP request in our modified DokuWiki.

One of the key parts of our modified DokuWiki is the
login mechanism, which allows the DokuWiki process
to obtain a file descriptor to a user’s Ufile if it knows
the user’s password. We implemented this mechanism
in a short C program called dokusu. dokusu accepts a
username and password on stdin, checks the username
and password against the password database, and if the
password matches, it opens the corresponding user’s Ufile
(listed in the password database) and uses file descriptor
passing to pass it back to the caller via stdout (which
the caller should have set up as a Unix domain socket).
dokusu is typically installed as a setuid program with the
administrator’s UID, and the permissions on all Ufiles
for DokuWiki users in /userfs and on the password
database are such that only the administrator can access
them. Thus, to authenticate, DokuWiki spawns dokusu,
passes it the username and password from the HTTP
request, and waits for a Ufile in response.

DokuWiki keeps a copy of the user’s password in its
HTTP cookie, which makes it easy to authenticate sub-
sequent requests. Cookies that store a session ID could
also be supported, by augmenting dokusu to keep track
of all currently valid session IDs and the corresponding
user IDs for each session, and to accept a valid session ID
as credentials for the corresponding user.

2We changed the first line of DokuWiki’s PHP files to allocate a
new ephemeral UID for each request, and to switch to that user ID. An
alternative approach would be to modify the web server to launch each
CGI script under a fresh user ID.

Making these changes to DokuWiki involved adding
approximately 80 lines of PHP code, and implementing
the 160-line dokusu program, on top of our UserFS PHP
and C libraries, respectively. These changes allow the ker-
nel to enforce DokuWiki’s security policy, and Section 6.2
shows the effectiveness of this technique.

5.2 Command-line tools
To make it easy for ordinary users to use UserFS, we
implemented a command to allocate a new user ID, called
ualloc, which simply issues USERFS IOC ALLOC on the
Ufile of the current process UID and prints the resulting
UID value. To allow users to run code with these newly
allocated UIDs, we modified su to allow users to be spec-
ified by their Ufile pathname instead of by username (in
which case su relies on Ufile permissions to check if the
caller is allowed to run as the target user, since it has no
way of authenticating UserFS users by password). These
modifications comprised approximately 300 lines of code.

With these changes, users can easily run arbitrary Unix
applications with fewer privileges. For example, if a
user wants to run a peer-to-peer file sharing program, but
wants to avoid the risk of that program sharing private
files with the rest of the world, the user can simply run
ualloc to create a fresh UID for that program, run su
/userfs/newuid/ctl to open a shell running as that
user ID, and run the file sharing program from that shell.
The file sharing program will not be able to read any of the
user’s private files (i.e., files that are not world-readable).

Users can also create processes that are isolated from
the user’s own account. For instance, ssh-agent stores
a decrypted version of the user’s SSH private key in mem-
ory. If an attacker compromises the user’s account and
finds a running ssh-agent process, the attacker can ex-
tract the key from memory by debugging ssh-agent.
To prevent this, a user can allocate a fresh user ID
with ualloc, run ssh-agent as that user ID, change
permissions on the agent’s socket so that the user can
talk to ssh-agent3, and finally change the owner of
ssh-agent’s Ufile to ssh-agent’s UID, so that the user
can no longer access it. The only thing the user can do
at this point is to communicate with ssh-agent via the
socket, or kill ssh-agent by deallocating the UID. The
user cannot access ssh-agent’s memory to extract the
key, since ssh-agent is running under a different UID,
and the user cannot gain that UID’s privileges, because it
cannot open the corresponding Ufile.

Finally, UserFS makes it easier for users to switch user
IDs. With traditional su, the user receives a new shell run-
ning under the target UID, with a new working directory,
new command history, and new environment variables.
When the user wants to switch back to their original UID,

3We had to make a two-line change to ssh-agent to support this,
since by default ssh-agent refuses connections from other UIDs.

8

httpd

UID: www-data

fork+exec

php

UID: anonymous

/dokuwiki/users
 ACL: admin – read, write

fork+exec

system call / return

/dokuwiki/pages/page1
ACL: 5009 – read, write

write page1

write page2

read HTTP request, with
alice's id/passwd

file

ioctl(ufilefd, SETUID)

dokusu

UID: admin

alice: pwA, /userfs/5009

bob: pwB, /userfs/5011

/userfs/5009/ctl
 ACL: admin – read, write

/dokuwiki/pages/page2
ACL: 5009 – read

T
im

e

sendmsg
(id/passwd)

 sendmsg
 (Ufile fd)

X

 return Ufile fd

open Ufile

 read file contents

process

Legend:

pass
HTTP request

data

UID: 5009

Figure 3: Flow of an HTTP request in our modified version of DokuWiki, showing Alice trying to write to two protected pages. Bold labels show
process names (httpd, php, and dokusu). Italic labels show process UIDs (www-data, anonymous, admin, and 5009). After reading the users file,
dokusu checks the supplied password against the stored password. In this example, Alice can modify page 1 (to which she has read-write access), but
cannot modify page 2 (to which she has read-only access). In practice, Alice’s UID would be a value between 230 and 231 − 1, instead of 5009.

they again lose their command history and environment
variables. To show how UserFS can help, we modified
su to support an option to pass the resulting Ufile back
to the caller via FD passing, instead of running a shell
under the resulting user’s UID, and likewise modified
bash to accept the Ufile FD from su (much like the de-
sign of dokusu in the previous subsection) and invoke
USERFS IOC SETUID on it. This allows the user to switch
UIDs without having to switch shell processes, improving
user convenience.

5.3 User authentication
Many network services run as root in order to authenti-
cate users and to invoke setuid to switch to that user’s
UID afterwards. Unfortunately, these network services
are also some of the most vulnerable components in a
system, since they are directly exposed to an attacker’s
inputs from the network, and if they are compromised,
the attacker gains root access. With UserFS, network
services like ftp, ssh, telnet, or IMAP mail servers can
instead run as completely unprivileged processes4, and
perform authentication and login via Unix domain sock-
ets like in DokuWiki above. (Infact, they can reuse the
su command from the previous subsection, which passes
back the authenticated user’s Ufile to the caller.) This en-

4We provide setuid-root binaries to open specific TCP ports below
1024, such as port 80 for the web server, accessible only to the web
server’s UID.

sures that if an attacker finds a vulnerability in a network
service, they get almost no privileges on the system. To
prevent an attacker from subverting subsequent connec-
tions to a compromised service, a new service process
should be forked, with a fresh non-persistent UID, for
each connection.

To show this is feasible, we modified the Linux NetKit
FTP server [22] to authenticate users using Ufile passing;
doing this required 50 lines of code, indicating that it is rel-
atively easy to make such changes to existing applications
(unlike privilege separation in the style of OpenSSH [39],
which is much more invasive). Our modified FTP server
uses the su program as its authentication agent.

5.4 Chromium browser
One application that is already broken up into many pro-
cesses is Google’s Chromium browser [2], which main-
tains a separate process for rendering each browser win-
dow, and a single browser kernel process responsible for
coordinating with the rendering processes. This architec-
ture easily lends itself to privilege separation, by isolating
each rendering process. Indeed, Chromium already tries
to do this on Windows using tokens [17], although this
does not prevent a compromised browser process from
accessing the network or world-accessible files.

With UserFS, browser processes can be isolated by
allocating a fresh non-persistent UID for each render-
ing process, chrooting the rendering process into an

9

22 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 23

empty directory, and setting up firewall rules that block
all network traffic. Making these changes to Chromium
required replacing the fork call in Chromium with a call
to a UserFS library function called ufork that performs
precisely the actions mentioned above5. All communica-
tion between the browser kernel process and the rendering
processes happens via sockets, which remain intact, while
the kernel’s protection mechanisms ensure that a compro-
mised rendering process cannot access any files, signal
any processes, or use the network.

6 EVALUATION

To evaluate UserFS, we first discuss its security, then
show how UserFS helps prevent attackers from exploit-
ing vulnerabilities in DokuWiki, and then measure the
performance overheads associated with UserFS.

6.1 Kernel security
The goal of UserFS is to allow any application to use
the kernel’s protection mechanisms. This implicitly as-
sumes that the kernel’s mechanisms are secure. While
security vulnerabilities are found in the kernel from time
to time [1], this paper does not attempt to tackle this
problem, and assumes that, for the time being, users will
continue to run applications on the Linux kernel.

Thus, we mostly focus on the security of any changes
that UserFS makes to the Linux kernel. As a first-order
measure, UserFS is relatively small—less than 3,000 lines
of code—which simplifies the job of auditing our code.
The specific mechanisms that UserFS provides that could
be misused by adversaries are the USERFS IOC SETUID
ioctl, allowing a process to switch user IDs, and the
chroot mechanism that allows non-root processes to
change their root directory.

We believe the USERFS IOC SETUID mechanism is se-
cure because it only allows a process to switch user IDs
if it has an open file descriptor to the corresponding Ufile.
By default, each standard user’s Ufile can only be opened
by that user (and by root), making it no different from the
current kernel policy. Users can change permissions on
Ufiles to allow other processes to open them, but again,
a process can only change permissions on a Ufile that
they already have access to (i.e. it was initially their UID,
or it was granted to them). Applications can potentially
make mistakes and leak privileges over a Ufile to another
process by forgetting to close a Ufile file descriptor. The
UserFS library tries to mitigate this by opening all Ufiles
with the O CLOEXEC flag.

The chroot mechanism could potentially be used re-
cursively by an adversary to escape from a chroot jail. We
believe that we have implemented sufficient safeguards

5We do not provide a more fine-grained lines of code measure for
the ufork function because it internally relies on most of the other
functions provided by the UserFS library.

against this, as described in Section 3.2.1, but we have no
formal proof of their correctness.

6.2 Application security
Assuming UserFS and the Linux kernel are secure, we
wanted to show what security benefits applications could
extract from this. To do so, we decided to check whether
any previously-reported vulnerabilities for DokuWiki
would have been prevented by our changes to enforce
the DokuWiki security policy using file system permis-
sions. We found several vulnerabilities for DokuWiki in
the past few years that allowed an attacker to compromise
DokuWiki [32–37] (as opposed to information disclosure
vulnerabilities, such as printing PHP debug information,
which might help an attacker in exploiting another attack
vector).

Our modified version of DokuWiki (backported to an
older version of DokuWiki that contained the above vul-
nerabilities) was able to prevent exploits of code injec-
tion [35–37], directory traversal [33], and insufficient
permission check [34] vulnerabilities (5 out of 6), but did
not prevent exploits of a cross-site request forgery vulner-
ability [32]. Although our modified version of DokuWiki
contained all of the above vulnerabilities, the vulnerable
code was running with limited privileges (either the web
server’s ephemeral per-request UID, or the UID of a spe-
cific wiki user), which prevented the attack from doing
any server-side damage.

6.3 Performance
Performance of applications running on Linux with
UserFS depends on two factors: overheads imposed
by UserFS on system calls, and overheads associated
with privilege-separating the application to make use of
UserFS. In most cases, UserFS imposes no overheads
on system calls, because the kernel executes the same
exact access control checks based on UIDs with or with-
out UserFS. One exception to this is the invocation of
setuid binaries, for which UserFS checks the generation
number of the setuid binary against the latest generation
number for that UID. Applications that are modified to
take advantage of UserFS incur two additional sources of
overhead: the cost to invoke UserFS mechanisms, such as
ioctls to allocate or change UIDs, and the cost of privilege-
separating the application into separate Unix processes.

To evaluate these three sources of overhead, we used
microbenchmarks to measure the cost of system calls af-
fected by UserFS, and we used DokuWiki to measure the
cost of privilege-separating an application with UserFS.
Figure 4 shows the results of these experiments on a
2.8GHz Intel Core i7 system with 8GB RAM running
a 64-bit Linux 2.6.31 kernel. As can be seen from the
figure, UserFS imposes minimal overheads for both user
allocation and for checking generation numbers on setuid
binaries (which is dwarfed by the cost of forking a setuid

10

Operation Time without UserFS Time with UserFS
Allocate UID — 0.022 ms
Check generation number of setuid executable 0 0.003 ms
Run sudo ls 10.943 ms 10.946 ms
Fetch page from DokuWiki 45 ms 61 ms

Figure 4: Time taken to perform several operations with and without UserFS.

program in the first place). In the case of DokuWiki, the
performance overhead of privilege separation is largely
dominated by the cost of spawning the dokusu authen-
tication agent; we expect that having a long-running au-
thentication agent that accepts requests over Unix domain
sockets would significantly reduce the cost of running
DokuWiki with UserFS. However, the costs of privilege-
separation are not specific to UserFS, and have been stud-
ied before extensively [2, 3, 5–7, 24, 26, 39].

7 RELATED WORK

The principle of least privilege [40] is generally recog-
nized as a good strategy for building secure systems, and
has been used by many applications in practice, including
qmail [3], OpenSSH [39], OKWS [24], a number of web
browsers [2, 18, 41], and others. Current Unix protection
mechanisms make it difficult for non-root applications
to follow the principle of least privilege, by not allowing
them to create less-privileged principals. This requires
developers that want less privileges to actually have more
privileges by running as root, and UserFS directly ad-
dresses this problem.

It is well-known that reasoning about the safety of a
computer system in the presence of setuid programs is
difficult [21, 27], and there are many pitfalls in imple-
menting safe setuid programs [4, 8]. At the lowest level,
UserFS does not make it any easier to write a correct
setuid program. However, we hope that UserFS makes it
possible for programs that currently run as root, including
setuid-root programs, to run under a less privileged UID
instead, mitigating the damage from any vulnerability.

Krohn argued that applications must be given mecha-
nisms to reduce their privileges [25], and ServiceOS [42]
similarly argues for support for application-level prin-
cipals in the OS kernel. Capability-based systems like
KeyKOS [6, 20], and DIFC systems like Asbestos [12]
and HiStar [46], allow users to create new protection do-
mains of their own, at the cost of requiring a new OS
kernel. Flume [26] shows how these ideas can be im-
plemented on top of a Linux kernel to avoid the cost of
re-implementing a new OS kernel, but Flume does not
allow users to apply its protection mechanisms to unmod-
ified existing applications. UserFS shows how the idea
of egalitarian protection mechanisms can be realized in
a standard Linux kernel, in a way that cleanly applies
to most existing applications, and achieves many of the
goals suggested by Krohn [25] and Wang [42].

The use of Ufile file descriptors to represent privileges
over UIDs is inspired by capability systems [28]. Unlike
traditional capability systems, which use capabilities to
control access to all resources, UserFS only uses file
descriptors to track the set of Ufiles currently held open
by a process, and to pass Ufiles between processes. Initial
access to Ufiles for opening the file descriptor, as well as
access to all other resources, is controlled by Unix file
permissions and other Unix mechanisms. One common
problem facing capability systems is revocation of access.
UserFS uses generation numbers to ensure that, once a
UID has been reused, leftover file descriptors cannot gain
access to that UID, since their generation numbers do not
match the UID’s generation number.

Although current Unix protection mechanisms are not
egalitarian, many systems have used them to achieve priv-
ilege separation, at the cost of requiring some part of their
system to run as root. For example, OKWS [24] shows
how to build a privilege-separated web server by running
a launcher as root, and Android [16] similarly uses Linux
user IDs to isolate different applications on a cell phone.
If these platforms start running increasingly more com-
plex applications inside them, those applications will not
have the benefit of running as root and creating their own
protection domains. UserFS would address this problem.

Similarly, there have been a number of tools that help
programmers privilege-separate their existing applica-
tions [5, 7, 39]. The resulting privilege-separated applica-
tions often require root privileges to actually set up protec-
tion domains, and UserFS could be used in conjunction
with these tools to run privilege-separated applications
without root access.

System call interposition [15] could, in principle, im-
plement any policy that a kernel could implement. By
relying on the kernel’s protection mechanisms, UserFS
avoids some of the pitfalls associated with system call
interposition [14] and avoids runtime overhead for most
operations. More importantly, UserFS illustrates what
interface could be used by applications to allocate and
manage their protection domains and set policies; the
same interface could be implemented by a system call
interposition system.

Bittau et al [5] propose a new kernel abstraction called
an sthread that can execute certain pieces of an applica-
tion’s code in isolation from the rest of that application.
The key contribution of sthreads was in providing a mech-
anism that has relatively low overhead for fine-grained

11

24 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 25

isolation of process memory, and that can be used by any
processes in the system. UserFS, on the other hand, pro-
vides persistent UIDs that can be used to control access to
data in the file system, and to control interactions between
multiple processes in an operating system.

The Linux kernel supports several security mechanisms
in addition to traditional user ID protection, such as
SELinux [29] and Linux-vserver [38], but none of these
mechanisms allow users to create their own protection do-
mains and use them to protect system resources like files
and devices. One protection mechanism that is available
to users on Linux is running code in a virtual machine
such as qemu. Unfortunately, this is often too coarse-
grained and heavy-weight for most applications.

Taint tracking in an operating system can be used to
implement certain application-level security policies; for
example, SubOS [23] shows how this can be implemented
on OpenBSD. Unfortunately, these mechanisms are much
more invasive and impose more runtime overhead than
UserFS, which simply exposes existing mechanisms in
the OS kernel.

The protection mechanisms in Windows differ from
those found in Unix systems. Windows protection is cen-
tered around the notion of tokens [31]. Users can create
tokens that grant almost no privileges, and this is used
by applications such as Chromium to sandbox untrusted
code [17]. However, there is no way to create tokens
with a fresh user ID (without administrative privileges to
create a new user), which makes it difficult to implement
controlled sharing of system resources (as opposed to
complete isolation in a sandbox). Windows tokens can be
passed between processes, similar to how UserFS allows
passing file descriptors for Ufiles. The Windows firewall
allows associating firewall rules with executables. UserFS
associates firewall rules with user IDs, and inherits fire-
wall rules on user ID creation, which ensures that a user
cannot escape firewall rules by creating and running a
new executable.

8 LIMITATION AND FUTURE WORK

While UserFS helps applications run code with fewer priv-
ileges, it is not a panacea. Running untrusted code on a
system often exposes a wider range of possibly-vulnerable
interfaces than if we were simply interacting with the at-
tacker over the network. For example, an attacker may
try to exploit bugs in the kernel or in other applications
running on the same machine. Nonetheless, if it is neces-
sary to run untrusted or partially-trusted applications on a
machine, UserFS helps improve security with respect to
system resources.

UserFS, much like Linux itself, currently assumes that
all file systems are always mounted on the same machine,
and does not have a plan for translating UIDs from a
file system that was originally mounted on a different

machine. One possible approach to dealing with this
problem may be to maintain a globally unique name of
each UID (perhaps a public key), and to store on each file
system a mapping table between file system UIDs and the
globally unique names for those UIDs.

When a user ID is deallocated, it may be difficult to
remove non-empty directories owned by that UID in the
file system without root’s intervention. While we have not
yet implemented a solution to this problem, we imagine a
system call or a setuid-root program that, upon request,
recursively garbage-collects files or sub-directories owned
by de-allocated UIDs from a given directory, as long as
the caller has write permission on that directory.

UserFS only protects resources managed by the oper-
ating system, such as files, processes, and devices. Web
applications often use databases to store their data, which
UserFS cannot protect directly. In the future, we hope to
explore the use of OS UIDs in a database to implement
protection of data at a finer granularity (perhaps at the
row level).

Our current prototype allocates user IDs, but does
not separately allocate group IDs. We believe it is best
to have only one kind of dynamically allocated princi-
pal, such as the 32-bit integer called the UID in UserFS.
These principals can then be used to represent either users
or groups, depending on the application’s requirements.
The GID and grouplist associated with every Unix pro-
cess could then be used to represent a process that has
the privileges of multiple principals at once. To sup-
port this, UserFS could provide a USERFS IOC ADDGROUP
ioctl, which would add the Ufile’s UID to the grouplist
of the calling process. To avoid conflicts with existing
groups, this ioctl should be only allowed for dynamically-
allocated UIDs. In terms of file permissions, we also
believe that POSIX ACLs [19] are a better alternative to
the Unix user-group-other permission bits.

UserFS relies on the kernel to support 32-bit UIDs, as
opposed to 16-bit UIDs from the original Unix design.
Linux has supported 32-bit UIDs since kernel version
2.3.39 (January 2000), but UserFS cannot support older
file systems that can only keep track of a 16-bit UID, such
as the original Minix filesystem.

Our prototype faces several limitations because it is
implemented as a loadable kernel module, and avoids
making any extensive changes to the Linux kernel. For
example, the chroot system call on Linux always rejects
calls from non-root users, requiring UserFS to provide
an alternative way of invoking chroot. Performing priv-
ileged operations in the kernel also requires UserFS to
sometimes change the current UID of the calling process.
While we believe our prototype does so safely, being able
to change permission checks inside the core kernel code
would be both simpler and more secure in the long term.

12

If UserFS was integrated into the Linux kernel, we
would hope to extend our chroot mechanism to also
allow arbitrary users to use the Linux file system names-
pace mechanism (a generalization of the mount table).
In particular, we want to allow any process to invoke
clone with the CLONE NEWNS flag to create a new names-
pace, and allow a process to change its namespace using
mount --bind if it’s running as the same UID that in-
voked clone(CLONE NEWNS), along with restrictions on
setuid binaries similar to chroot. Similar support could
also be added to allow users to manage the system V IPC
namespace (CLONE NEWIPC).

Finally, if UserFS was integrated into the Linux kernel,
we would also like to replace our firewall mechanism
with a per-process iptables firewall ruleset, inherited
by child processes across fork and clone. To specify
new firewall rules, applications would specify a new flag
to the clone system call to start the child process with
a fresh iptables ruleset. To ensure that a child cannot
escape from the parent’s firewall rules, the child’s ruleset
would be chained to the parent’s.

9 CONCLUSION

This paper presented UserFS, the first system to provide
egalitarian OS protection mechanisms for Linux. UserFS
allows any user to use existing OS protection mechanisms,
including Unix user IDs, chroot jails, and firewalls. This
both allows applications to reduce their privileges, and in
many cases avoids the need for root privileges altogether.

One key idea in UserFS is representing user IDs as
files in a /proc-like file system. This allows applications
to manage user IDs much like they would any other file,
without the need to introduce any new user ID manage-
ment mechanisms. UserFS maintains a hierarchy of user
IDs for accountability and resource revocation purposes,
but allows child user IDs in the hierarchy to be made in-
accessible to parent user IDs, in order to protect sensitive
processes like ssh-agent from outside interference. To
cope with a limited 32-bit user ID namespace, UserFS in-
troduces per-UID generation numbers that disambiguate
multiple instances of a reused 32-bit UID value. Finally,
UserFS implements security checks that make it safe to
allow non-root users to invoke chroot, without allow-
ing users to escape out of existing chroot jails or abuse
setuid executables.

An important goal of the UserFS design is compati-
bility with existing applications, interfaces, and kernel
components. Porting applications to use UserFS requires
only tens to hundreds of lines of code, and prevents attack-
ers from exploiting application-level vulnerabilities, such
as code injection or missing ACL checks in a PHP-based
wiki web application. UserFS requires minimal changes
to the Linux kernel, comprising of a single 3,000-line

kernel module, and incurs no performance overhead for
most operations.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Ramesh Chandra,
Chris Laas, and Xi Wang for providing valuable feedback
that improved this paper. This work was supported in part
by Quanta Computer. Taesoo Kim is partially supported
by the Samsung Scholarship Foundation.

REFERENCES

[1] Jeff Arnold and M. Frans Kaashoek. Ksplice: Au-
tomatic rebootless kernel updates. In Proceedings
of the ACM EuroSys Conference, Nuremberg, Ger-
many, March 2009.

[2] Adam Barth, Collin Jackson, Charles Reis, and
Google Chrome Team. The Security Architecture of
the Chromium Browser. Technical report, Google
Inc., 2008.

[3] Daniel J. Bernstein. Some thoughts on security
after ten years of qmail 1.0. In Proceedings of the
Computer Security Architecture Workshop (CSAW),
Fairfax, VA, November 2007.

[4] Matt Bishop. How to write a setuid program. ;lo-
gin: The Magazine of Usenix & Sage, 12(1):5–11,
January/February 1987.

[5] Andrea Bittau, Petr Marchenko, Mark Handley, and
Brad Karp. Wedge: Splitting applications into
reduced-privilege compartments. In Proceedings
of the 5th Symposium on Networked Systems Design
and Implementation, pages 309–322, San Francisco,
CA, April 2008.

[6] Alan C. Bomberger, A. Peri Frantz, William S.
Frantz, Ann C. Hardy, Norman Hardy, Charles R.
Landau, and Jonathan S. Shapiro. The KeyKOS
nanokernel architecture. In Proceedings of the
USENIX Workshop on Micro-Kernels and Other Ker-
nel Architectures, pages 95–112, April 1992.

[7] David Brumley and Dawn Xiaodong Song. Priv-
trans: Automatically partitioning programs for priv-
ilege separation. In Proceedings of the 13th Usenix
Security Symposium, pages 57–72, San Diego, CA,
August 2004.

[8] Hao Chen, David Wagner, and Drew Dean. Setuid
demystified. In Proceedings of the 11th Usenix
Security Symposium, San Francisco, CA, August
2002.

13

26 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 27

[9] Michael Dalton, Nickolai Zeldovich, and Christos
Kozyrakis. Nemesis: Preventing authentication and
access control vulnerabilities in web applications. In
Proceedings of the 18th Usenix Security Symposium,
pages 267–282, Montreal, Canada, August 2009.

[10] DokuWiki. http://www.dokuwiki.org/

dokuwiki.

[11] DokuWiki. Access control lists. http://www.
dokuwiki.org/acl.

[12] Petros Efstathopoulos, Maxwell Krohn, Steve Van-
DeBogart, Cliff Frey, David Ziegler, Eddie Kohler,
David Mazières, M. Frans Kaashoek, and Robert
Morris. Labels and event processes in the Asbestos
operating system. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles, pages
17–30, Brighton, UK, October 2005.

[13] Ulfar Erlingsson, Martı́n Abadi, Michael Vrable,
Mihai Budiu, and George C. Necula. XFI: software
guards for system address spaces. In Proceedings
of the 7th Symposium on Operating Systems Design
and Implementation, Seattle, WA, November 2006.

[14] Tal Garfinkel. Traps and pitfalls: Practical problems
in in system call interposition based security tools.
In Proceedings of the Network and Distributed Sys-
tems Security Symposium, February 2003.

[15] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum.
Ostia: A delegating architecture for secure system
call interposition. In Proceedings of the Network and
Distributed Systems Security Symposium, February
2004.

[16] Google, Inc. Android: Security and per-
missions. http://developer.android.com/

guide/topics/security/security.html.

[17] Google, Inc. Chromium sandbox.
http://dev.chromium.org/developers/

design-documents/sandbox.

[18] Chris Grier, Shuo Tang, and Samuel T. King. Se-
cure web browsing with the OP web browser. In
Proceedings of the IEEE Symposium on Security
and Privacy, pages 402–416, Oakland, CA, 2008.

[19] Andreas Grünbacher. POSIX access control lists on
Linux. In Proceedings of the USENIX 2003 Annual
Technical Conference, FREENIX track, pages 259–
272, San Antonio, TX, June 2003.

[20] Norman Hardy. KeyKOS architecture. ACM
SIGOPS Operating System Review, 19(4):8–25, Oc-
tober 1985.

[21] Michael A. Harrison, Walter L. Ruzzo, and Jef-
frey D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461–471, Au-
gust 1976.

[22] David A. Holland. linux-ftpd. In Linux
NetKit. ftp://ftp.uk.linux.org/pub/

linux/Networking/netkit/linux-ftpd-0.

17.tar.gz.

[23] Sotiris Ioannidis, Steven M. Bellovin, and Jonathan
Smith. Sub-operating systems: A new approach to
application security. In SIGOPS European Work-
shop, September 2002.

[24] Maxwell Krohn. Building secure high-performance
web services with OKWS. In Proceedings of
the 2004 USENIX Annual Technical Conference,
Boston, MA, June–July 2004.

[25] Maxwell Krohn, Petros Efstathopoulos, Cliff Frey,
M. Frans Kaashoek, Eddie Kohler, David Mazières,
Robert Morris, Michelle Osborne, Steve VanDeBog-
art, and David Ziegler. Make least privilege a right
(not a privilege). In Proceedings of the 10th Work-
shop on Hot Topics in Operating Systems, Santa Fe,
NM, June 2005.

[26] Maxwell Krohn, Alexander Yip, Micah Brodsky,
Natan Cliffer, M. Frans Kaashoek, Eddie Kohler,
and Robert Morris. Information flow control for
standard OS abstractions. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles,
pages 321–334, Stevenson, WA, October 2007.

[27] Tim Levin, Steven J. Padilla, and Cynthia E. Irvine.
A formal model for UNIX setuid. In Proceedings of
the 10th IEEE Symposium on Security and Privacy,
pages 73–83, Oakland, CA, May 1989.

[28] Henry M. Levy. Capability-Based Computer Sys-
tems. Digital Press, 1984.

[29] Peter Loscocco and Stephen Smalley. Integrat-
ing flexible support for security policies into the
Linux operating system. In Proceedings of the 2001
USENIX Annual Technical Conference, pages 29–
40, June 2001. FREENIX track.

[30] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 190–200,
Chicago, IL, June 2005.

14

[31] Microsoft Corp. Access tokens (windows).
http://msdn.microsoft.com/en-us/

library/aa374909%28VS.85%29.aspx.

[32] MITRE Corporation. DokuWiki cross-site request
forgery vulnerability. In Common Vulnerabilities
and Exposures (CVE) database. CVE-2010-0289.

[33] MITRE Corporation. DokuWiki directory traver-
sal vulnerability. In Common Vulnerabilities and
Exposures (CVE) database. CVE-2010-0287.

[34] MITRE Corporation. DokuWiki insufficient permis-
sion checking vulnerability. In Common Vulnera-
bilities and Exposures (CVE) database. CVE-2010-
0288.

[35] MITRE Corporation. DokuWiki php code inclu-
sion vulnerability. In Common Vulnerabilities and
Exposures (CVE) database. CVE-2009-1960.

[36] MITRE Corporation. DokuWiki php code injec-
tion vulnerability. In Common Vulnerabilities and
Exposures (CVE) database. CVE-2006-4674.

[37] MITRE Corporation. DokuWiki php code upload
vulnerability. In Common Vulnerabilities and Expo-
sures (CVE) database. CVE-2006-4675.

[38] Herbert Pötzl. Linux-VServer Technol-
ogy, 2004. http://linux-vserver.org/

Linux-VServer-Paper.

[39] Niels Provos, Markus Friedl, and Peter Honeyman.
Preventing privilege escalation. In Proceedings of
the 12th Usenix Security Symposium, Washington,
DC, August 2003.

[40] J. H. Saltzer and M. D. Schroeder. The protection
of information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308, September 1975.

[41] Helen J. Wang, Chris Grier, Alexander Moshchuk,
Samuel T. King, Piali Choudhury, and Herman Ven-
ter. The multi-principal OS construction of the
Gazelle web browser. In 18th USENIX Security
Symposium, August 2009.

[42] Helen J. Wang, Alexander Moshchuk, and Alan
Bush. Convergence of desktop and web applications
on a multi-service OS. In 4th Usenix Workshop on
Hot Topics in Security, August 2009.

[43] Robert N. M. Watson. Exploiting concurrency vul-
nerabilities in system call wrappers. In Proceedings
of the 1st USENIX Workshop on Offensive Technolo-
gies, Boston, MA, August 2007.

[44] Chris Wright, Crispin Cowan, James Morris,
Stephen Smalley, and Greg Kroah-Hartman. Linux
security modules: General security support for the
Linux kernel. In Proceedings of the 11th Usenix
Security Symposium, San Francisco, CA, August
2002.

[45] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client:
A sandbox for portable, untrusted x86 native code.
In Proceedings of the 30th IEEE Symposium on
Security and Privacy, Oakland, CA, May 2009.

[46] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie
Kohler, and David Mazières. Making information
flow explicit in HiStar. In Proceedings of the 7th
Symposium on Operating Systems Design and Imple-
mentation, pages 263–278, Seattle, WA, November
2006.

15

USENIX Association 19th USENIX Security Symposium 29

Capsicum: practical capabilities for UNIX

Robert N. M. Watson
University of Cambridge

Jonathan Anderson
University of Cambridge

Ben Laurie
Google UK Ltd.

Kris Kennaway
Google UK Ltd.

Abstract

Capsicum is a lightweight operating system capabil-
ity and sandbox framework planned for inclusion in
FreeBSD 9. Capsicum extends, rather than replaces,
UNIX APIs, providing new kernel primitives (sandboxed
capability mode and capabilities) and a userspace sand-
box API. These tools support compartmentalisation of
monolithic UNIX applications into logical applications,
an increasingly common goal supported poorly by dis-
cretionary and mandatory access control. We demon-
strate our approach by adapting core FreeBSD utilities
and Google’s Chromium web browser to use Capsicum
primitives, and compare the complexity and robustness
of Capsicum with other sandboxing techniques.

1 Introduction

Capsicum is an API that brings capabilities to UNIX. Ca-
pabilities are unforgeable tokens of authority, and have
long been the province of research operating systems
such as PSOS [16] and EROS [23]. UNIX systems have
less fine-grained access control than capability systems,
but are very widely deployed. By adding capability prim-
itives to standard UNIX APIs, Capsicum gives applica-
tion authors a realistic adoption path for one of the ideals
of OS security: least-privilege operation. We validate our
approach through an open source prototype of Capsicum
built on (and now planned for inclusion in) FreeBSD 9.

Today, many popular security-critical applications
have been decomposed into parts with different privi-
lege requirements, in order to limit the impact of a single
vulnerability by exposing only limited privileges to more
risky code. Privilege separation [17], or compartmentali-
sation, is a pattern that has been adopted for applications
such as OpenSSH, Apple’s SecurityServer, and, more re-
cently, Google’s Chromium web browser. Compartmen-
talisation is enforced using various access control tech-
niques, but only with significant programmer effort and

significant technical limitations: current OS facilities are
simply not designed for this purpose.

The access control systems in conventional (non-
capability-oriented) operating systems are Discretionary
Access Control (DAC) and Mandatory Access Control
(MAC). DAC was designed to protect users from each
other: the owner of an object (such as a file) can specify
permissions for it, which are checked by the OS when
the object is accessed. MAC was designed to enforce
system policies: system administrators specify policies
(e.g. “users cleared to Secret may not read Top Secret
documents”), which are checked via run-time hooks in-
serted into many places in the operating system’s kernel.

Neither of these systems was designed to address the
case of a single application processing many types of in-
formation on behalf of one user. For instance, a mod-
ern web browser must parse HTML, scripting languages,
images and video from many untrusted sources, but be-
cause it acts with the full power of the user, has access to
all his or her resources (such implicit access is known as
ambient authority).

In order to protect user data from malicious JavaScript,
Flash, etc., the Chromium web browser is decomposed
into several OS processes. Some of these processes han-
dle content from untrusted sources, but their access to
user data is restricted using DAC or MAC mechanism
(the process is sandboxed).

These mechanisms vary by platform, but all require a
significant amount of programmer effort (from hundreds
of lines of code or policy to, in one case, 22,000 lines
of C++) and, sometimes, elevated privilege to bootstrap
them. Our analysis shows significant vulnerabilities in
all of these sandbox models due to inherent flaws or in-
correct use (see Section 5).

Capsicum addresses these problems by introducing
new (and complementary) security primitives to support
compartmentalisation: capability mode and capabilities.
Capsicum capabilities should not be confused with op-
erating system privileges, occasionally referred to as ca-

30 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 31

UNIX process
ambient authority

Browser process
ambient authority

Renderer process
capability mode

Renderer process
capability mode ...

Kernel

Traditional UNIX application Capsicum logical application

becomes

Figure 1: Capsicum helps applications self-compartmentalise.

pabilities in the OS literature. Capsicum capabilities are
an extension of UNIX file descriptors, and reflect rights
on specific objects, such as files or sockets. Capabilities
may be delegated from process to process in a granular
way in the same manner as other file descriptor types: via
inheritance or message-passing. Operating system priv-
ilege, on the other hand, refers to exemption from ac-
cess control or integrity properties granted to processes
(perhaps assigned via a role system), such as the right
to override DAC permissions or load kernel modules. A
fine-grained privilege policy supplements, but does not
replace, a capability system such as Capsicum. Like-
wise, DAC and MAC can be valuable components of a
system security policy, but are inadequate in addressing
the goal of application privilege separation.

We have modified several applications, including base
FreeBSD utilities and Chromium, to use Capsicum prim-
itives. No special privilege is required, and code changes
are minimal: the tcpdump utility, plagued with security
vulnerabilities in the past, can be sandboxed with Cap-
sicum in around ten lines of code, and Chromium can
have OS-supported sandboxing in just 100 lines.

In addition to being more secure and easier to use than
other sandboxing techniques, Capsicum performs well:
unlike pure capability systems where system calls neces-
sarily employ message passing, Capsicum’s capability-
aware system calls are just a few percent slower than
their UNIX counterparts, and the gzip utility incurs a
constant-time penalty of 2.4 ms for the security of a Cap-
sicum sandbox (see Section 6).

2 Capsicum design

Capsicum is designed to blend capabilities with UNIX.
This approach achieves many of the benefits of least-
privilege operation, while preserving existing UNIX
APIs and performance, and presents application authors
with an adoption path for capability-oriented design.

Capsicum extends, rather than replaces, standard
UNIX APIs by adding kernel-level primitives (a sand-
boxed capability mode, capabilities and others) and
userspace support code (libcapsicum and a capability-
aware run-time linker). Together, these extensions sup-
port application compartmentalisation, the decomposi-
tion of monolithic application code into components that
will run in independent sandboxes to form logical appli-
cations, as shown in Figure 1.

Capsicum requires application modification to exploit
new security functionality, but this may be done grad-
ually, rather than requiring a wholesale conversion to a
pure capability model. Developers can select the changes
that maximise positive security impact while minimis-
ing unacceptable performance costs; where Capsicum re-
places existing sandbox technology, a performance im-
provement may even be seen.

This model requires a number of pragmatic design
choices, not least the decision to eschew micro-kernel ar-
chitecture and migration to pure message-passing. While
applications may adopt a message-passing approach, and
indeed will need to do so to fully utilise the Capsicum
architecture, we provide “fast paths” in the form of di-
rect system call manipulation of kernel objects through
delegated file descriptors. This allows native UNIX per-
formance for file system I/O, network access, and other
critical operations, while leaving the door open to tech-
niques such as message-passing system calls for cases
where that proves desirable.

2.1 Capability mode

Capability mode is a process credential flag set by a new
system call, cap enter; once set, the flag is inherited
by all descendent processes, and cannot be cleared. Pro-
cesses in capability mode are denied access to global
namespaces such as the filesystem and PID namespaces
(see Figure 2). In addition to these namespaces, there

are several system management interfaces that must be
protected to maintain UNIX process isolation. These in-
terfaces include /dev device nodes that allow physical
memory or PCI bus access, some ioctl operations on
sockets, and management interfaces such as reboot and
kldload, which loads kernel modules.

Access to system calls in capability mode is also re-
stricted: some system calls requiring global namespace
access are unavailable, while others are constrained. For
instance, sysctl can be used to query process-local in-
formation such as address space layout, but also to moni-
tor a system’s network connections. We have constrained
sysctl by explicitly marking ≈30 of 3000 parameters
as permitted in capability mode; all others are denied.

The system calls which require constraints are
sysctl, shm open, which is permitted to create anony-
mous memory objects, but not named ones, and the
openat family of system calls. These calls already ac-
cept a file descriptor argument as the directory to per-
form the open, rename, etc. relative to; in capabil-
ity mode, they are constrained so that they can only
operate on objects “under” this descriptor. For in-
stance, if file descriptor 4 is a capability allowing ac-
cess to /lib, then openat(4, "libc.so.7") will suc-
ceed, whereas openat(4, "../etc/passwd") and
openat(4, "/etc/passwd") will not.

2.2 Capabilities

The most critical choice in adding capability support to a
UNIX system is the relationship between capabilities and
file descriptors. Some systems, such as Mach/BSD, have
maintained entirely independent notions: Mac OS X pro-
vides each task with both indexed capabilities (ports) and
file descriptors. Separating these concerns is logical, as
Mach ports have different semantics from file descrip-
tors; however, confusing results can arise for application
developers dealing with both Mach and BSD APIs, and
we wanted to reuse existing APIs as much as possible.
As a result, we chose to extend the file descriptor ab-
straction, and introduce a new file descriptor type, the
capability, to wrap and protect raw file descriptors.

File descriptors already have some properties of ca-
pabilities: they are unforgeable tokens of authority, and
can be inherited by a child process or passed between
processes that share an IPC channel. Unlike “pure” ca-
pabilities, however, they confer very broad rights: even
if a file descriptor is read-only, operations on meta-data
such as fchmod are permitted. In the Capsicum model,
we restrict these operations by wrapping the descriptor
in a capability and permitting only authorised operations
via the capability, as shown in Figure 3.

The cap new system call creates a new capability
given an existing file descriptor and a mask of rights;

if the original descriptor is a capability, the requested
rights must be a subset of the original rights. Capabil-
ity rights are checked by fget, the in-kernel code for
converting file descriptor arguments to system calls into
in-kernel references, giving us confidence that no paths
exist to access file descriptors without capability checks.
Capability file descriptors, as with most others in the sys-
tem, may be inherited across fork and exec, as well as
passed via UNIX domain sockets.

There are roughly 60 possible mask rights on each
capability, striking a balance between message-passing
(two rights: send and receive), and MAC systems (hun-
dreds of access control checks). We selected rights
to align with logical methods on file descriptors: sys-
tem calls implementing semantically identical operations
require the same rights, and some calls may require
multiple rights. For example, pread (read to mem-
ory) and preadv (read to a memory vector) both re-
quire CAP READ in a capability’s rights mask, and read

(read bytes using the file offset) requires CAP READ |

CAP SEEK in a capability’s rights mask.

Capabilities can wrap any type of file descriptor in-
cluding directories, which can then be passed as argu-
ments to openat and related system calls. The *at sys-
tem calls begin relative lookups for file operations with
the directory descriptor; we disallow some cases when
a capability is passed: absolute paths, paths contain-
ing “..” components, and AT FDCWD, which requests a
lookup relative to the current working directory. With
these constraints, directory capabilities delegate file sys-
tem namespace subsets, as shown in Figure 4. This
allows sandboxed processes to access multiple files in
a directory (such as the library path) without the per-
formance overhead or complexity of proxying each file
open via IPC to a process with ambient authority.

The “..” restriction is a conservative design, and pre-
vents a subtle problem similar to historic chroot vul-
nerabilities. A single directory capability that only en-
forces containment by preventing “..” lookup on the root
of a subtree operates correctly; however, two colluding
sandboxes (or a single sandbox with two capabilities) can
race to actively rearrange a tree so that the check always
succeeds, allowing escape from a delegated subset. It
is possible to imagine less conservative solutions, such
as preventing upward renames that could introduce ex-
ploitable cycles during lookup, or additional synchroni-
sation; these strike us as more risky tactics, and we have
selected the simplest solution, at some cost to flexibility.

Many past security extensions have composed poorly
with UNIX security leading to vulnerabilities; thus, we
disallow privilege elevation via fexecve using setuid
and setgid binaries in capability mode. This restriction
does not prevent setuid binaries from using sandboxes.

32 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 33

Namespace Description
Process ID (PID) UNIX processes are identified by unique IDs. PIDs are returned by fork and used

for signal delivery, debugging, monitoring, and status collection.
File paths UNIX files exist in a global, hierarchical namespace, which is protected by discre-

tionary and mandatory access control.
NFS file handles The NFS client and server identify files and directories on the wire using a flat,

global file handle namespace. They are also exposed to processes to support the
lock manager daemon and optimise local file access.

File system ID File system IDs supplement paths to mount points, and are used for forceable un-
mount when there is no valid path to the mount point.

Protocol addresses Protocol families use socket addresses to name local and foreign endpoints. These
exist in global namespaces, such as IPv4 addresses and ports, or the file system
namespace for local domain sockets.

Sysctl MIB The sysctl management interface uses numbered and named entries, used to get
or set system information, such as process lists and tuning parameters.

System V IPC System V IPC message queues, semaphores, and shared memory segments exist in
a flat, global integer namespace.

POSIX IPC POSIX defines similar semaphore, message queue, and shared memory APIs, with
an undefined namespace: on some systems, these are mapped into the file system;
on others they are simply a flat global namespaces.

System clocks UNIX systems provide multiple interfaces for querying and manipulating one or
more system clocks or timers.

Jails The management namespace for FreeBSD-based virtualised environments.
CPU sets A global namespace for affinity policies assigned to processes and threads.

Figure 2: Global namespaces in the FreeBSD operating kernel

2.3 Run-time environment
Even with Capsicum’s kernel primitives, creating sand-
boxes without leaking undesired resources via file de-
scriptors, memory mappings, or memory contents is dif-
ficult. libcapsicum therefore provides an API for start-
ing scrubbed sandbox processes, and explicit delega-
tion APIs to assign rights to sandboxes. libcapsicum

cuts off the sandbox’s access to global namespaces via
cap enter, but also closes file descriptors not positively
identified for delegation, and flushes the address space
via fexecve. Sandbox creation returns a UNIX domain
socket that applications can use for inter-process com-
munication (IPC) between host and sandbox; it can also
be used to grant additional rights as the sandbox runs.

3 Capsicum implementation

3.1 Kernel changes
Many system call and capability constraints are applied
at the point of implementation of kernel services, rather
than by simply filtering system calls. The advantage
of this approach is that a single constraint, such as the
blocking of access to the global file system namespace,
can be implemented in one place, namei, which is re-

sponsible for processing all path lookups. For example,
one might not have expected the fexecve call to cause
global namespace access, since it takes a file descriptor
as its argument rather than a path for the binary to exe-
cute. However, the file passed by file descriptor speci-
fies its run-time linker via a path embedded in the binary,
which the kernel will then open and execute.

Similarly, capability rights are checked by the ker-
nel function fget, which converts a numeric descriptor
into a struct file reference. We have added a new
rights argument, allowing callers to declare what ca-
pability rights are required to perform the current oper-
ation. If the file descriptor is a raw UNIX descriptor,
or wrapped by a capability with sufficient rights, the op-
eration succeeds. Otherwise, ENOTCAPABLE is returned.
Changing the signature of fget allows us to use the com-
piler to detect missed code paths, providing greater assur-
ance that all cases have been handled.

One less trivial global namespace to handle is the pro-
cess ID (PID) namespace, which is used for process cre-
ation, signalling, debugging and exit status, critical op-
erations for a logical application. Another problem for
logical applications is that libraries cannot create and
manage worker processes without interfering with pro-
cess management in the application itself—unexpected

8

10

14
...

Process file
descriptors

struct
file

struct
vnode

struct
file

struct capability

mask = READ | WRITE

struct
file

struct capability

mask = READ

...

Figure 3: Capabilities “wrap” normal file descriptors, masking the set of permitted methods.

Apache Apache
Worker 1

Apache
Worker 2

Logical Application

/
etc var

apache passwd www

site1 site2

Figure 4: Portions of the global filesystem namespace can be delegated to sandboxed processes.

SIGCHLD signals are delivered to the application, and un-
expected process IDs are returned by wait.

Process descriptors address these problems in a man-
ner similar to Mach task ports: creating a process with
pdfork returns a file descriptor to use for process man-
agement tasks, such as monitoring for exit via poll.
When the process descriptor is closed, the process is ter-
minated, providing a user experience consistent with that
of monolithic processes: when a user hits Ctrl-C, or the
application segfaults, all processes in the logical applica-
tion terminate. Termination does not occur if reference
cycles exist among processes, suggesting the need for a
new “logical application” primitive—see Section 7.

3.2 The Capsicum run-time environment

Removing access to global namespaces forces funda-
mental changes to the UNIX run-time environment.

Even the most basic UNIX operations for starting pro-
cesses and running programs have been eliminated:
fork and exec both rely on global namespaces. Respon-
sibility for launching a sandbox is shared. libcapsicum
is invoked by the application, and responsible for forking
a new process, gathering together delegated capabilities
from both the application and run-time linker, and di-
rectly executing the run-time linker, passing the sandbox
binary via a capability. ELF headers normally contain a
hard-coded path to the run-time linker to be used with the
binary. We execute the Capsicum-aware run-time linker
directly, eliminating this dependency on the global file
system namespace.

Once rtld-elf-cap is executing in the new process,
it loads and links the binary using libraries loaded via li-
brary directory capabilities set up by libcapsicum. The
main function of a program can call lcs get to deter-
mine whether it is in a sandbox, retrieve sandbox state,

34 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 35

Application
calls

libcapsicum
with fdlist to

create
sandbox

libcapsicum merges
application and rtld

fdlists, exports to shared
memory; flushes

undelegated capabilities;
calls fexecve

rtld-elf generates
library path fdlist

pdfork fexecve

rtld-elf-cap
links

application,
calls cap_main

Application
executes; queries

libcapsicum for
delegated

capabilities as
needed

libcapsicum unpacks
fdlist from shared
memory; provides

capabilities to
application on demand

LIBCAPSICUM_FDLIST
shared memory,
application fds

 LD_BINARY
 binary fd

 LD_LIBRARY_DIRS
 library fds

Figure 5: Process and components involved in creating a new libcapsicum sandbox

query creation-time delegated capabilities, and retrieve
an IPC handle so that it can process RPCs and receive
run-time delegated capabilities. This allows a single bi-
nary to execute both inside and outside of a sandbox, di-
verging behaviour based on its execution environment.
This process is illustrated in greater detail in Figure 5.

Once in execution, the application is linked against
normal C libraries and has access to much of the tradi-
tional C run-time, subject to the availability of system
calls that the run-time depends on. An IPC channel, in
the form of a UNIX domain socket, is set up automat-
ically by libcapsicum to carry RPCs and capabilities
delegated after the sandbox starts. Capsicum does not
provide or enforce the use of a specific Interface De-
scription Language (IDL), as existing compartmentalised
or privilege-separated applications have their own, of-
ten hand-coded, RPC marshalling already. Here, our
design choice differs from historic capability systems,
which universally have selected a specific IDL, such as
the Mach Interface Generator (MIG) on Mach.

libcapsicum’s fdlist (file descriptor list) abstrac-
tion allows complex, layered applications to declare ca-
pabilities to be passed into sandboxes, in effect provid-
ing a sandbox template mechanism. This avoids encod-
ing specific file descriptor numbers into the ABI between
applications and their sandbox components, a technique
used in Chromium that we felt was likely to lead to pro-
gramming errors. Of particular concern is hard-coding of
file descriptor numbers for specific purposes, when those
descriptor numbers may already have been used by other
layers of the system. Instead, application and library

components declare process-local names bound to file
descriptor numbers before creating the sandbox; match-
ing components in the sandbox can then query those
names to retrieve (possibly renumbered) file descriptors.

4 Adapting applications to use Capsicum

Adapting applications for use with sandboxing is a non-
trivial task, regardless of the framework, as it requires
analysing programs to determine their resource depen-
dencies, and adopting a distributed system programming
style in which components must use message passing or
explicit shared memory rather than relying on a common
address space for communication. In Capsicum, pro-
grammers have a choice of working directly with capa-
bility mode or using libcapsicum to create and manage
sandboxes, and each model has its merits and costs in
terms of development complexity, performance impact,
and security:

1. Modify applications to use cap enter directly in
order to convert an existing process with ambient
privilege into a capability mode process inheriting
only specific capabilities via file descriptors and vir-
tual memory mappings. This works well for ap-
plications with a simple structure like: open all re-
sources, then process them in an I/O loop, such as
programs operating in a UNIX pipeline, or interact-
ing with the network for the purposes of a single
connection. The performance overhead will typi-
cally be extremely low, as changes consist of encap-

sulating broad file descriptor rights into capabilities,
followed by entering capability mode. We illustrate
this approach with tcpdump.

2. Use cap enter to reinforce the sandboxes of ap-
plications with existing privilege separation or com-
partmentalisation. These applications have a more
complex structure, but are already aware that some
access limitations are in place, so have already been
designed with file descriptor passing in mind. Re-
fining these sandboxes can significantly improve se-
curity in the event of a vulnerability, as we show
for dhclient and Chromium; the performance and
complexity impact of these changes will be low
because the application already adopts a message
passing approach.

3. Modify the application to use the full
libcapsicum API, introducing new compart-
mentalisation or reformulating existing privilege
separation. This offers significantly stronger
protection, by virtue of flushing capability lists and
residual memory from the host environment, but at
higher development and run-time costs. Boundaries
must be identified in the application such that not
only is security improved (i.e., code processing
risky data is isolated), but so that resulting perfor-
mance is sufficiently efficient. We illustrate this
technique using modifications to gzip.

Compartmentalised application development is, of ne-
cessity, distributed application development, with soft-
ware components running in different processes and
communicating via message passing. Distributed debug-
ging is an active area of research, but commodity tools
are unsatisfying and difficult to use. While we have not
attempted to extend debuggers, such as gdb, to better
support distributed debugging, we have modified a num-
ber of FreeBSD tools to improve support for Capsicum
development, and take some comfort in the generally
synchronous nature of compartmentalised applications.

The FreeBSD procstat command inspects kernel-
related state of running processes, including file descrip-
tors, virtual memory mappings, and security credentials.
In Capsicum, these resource lists become capability lists,
representing the rights available to the process. We have
extended procstat to show new Capsicum-related in-
formation, such as capability rights masks on file de-
scriptors and a flag in process credential listings to indi-
cate capability mode. As a result, developers can directly
inspect the capabilities inherited or passed to sandboxes.

When adapting existing software to run in capability
mode, identifying capability requirements can be tricky;
often the best technique is to discover them through
dynamic analysis, identifying missing dependencies by

tracing real-world use. To this end, capability-related
failures return a new errno value, ENOTCAPABLE, dis-
tinguishing them from other failures, and system calls
such as open are blocked in namei, rather than the sys-
tem call boundary, so that paths are shown in FreeBSD’s
ktrace facility, and can be utilised in DTrace scripts.

Another common compartmentalised development
strategy is to allow the multi-process logical application
to be run as a single process for debugging purposes.
libcapsicum provides an API to query whether sand-
boxing for the current application or component is en-
abled by policy, making it easy to enable and disable
sandboxing for testing. As RPCs are generally syn-
chronous, the thread stack in the sandbox process is logi-
cally an extension of the thread stack in the host process,
which makes the distributed debugging task less fraught
than it otherwise might appear.

4.1 tcpdump

tcpdump provides an excellent example of Capsicum
primitives offering immediate wins through straight-
forward changes, but also the subtleties that arise when
compartmentalising software not written with that goal
in mind. tcpdump has a simple model: compile a pat-
tern into a BPF filter, configure a BPF device as an in-
put source, and loop writing captured packets rendered as
text. This structure lends itself to sandboxing: resources
are acquired early with ambient privilege, and later pro-
cessing depends only on held capabilities, so can execute
in capability mode. The two-line change shown in Fig-
ure 6 implements this conversion.

This significantly improves security, as historically
fragile packet-parsing code now executes with reduced
privilege. However, further analysis with the procstat
tool is required to confirm that only desired capabili-
ties are exposed. While there are few surprises, un-
constrained access to a user’s terminal connotes signif-
icant rights, such as access to key presses. A refinement,
shown in Figure 7, prevents reading stdin while still al-
lowing output. Figure 8 illustrates procstat on the re-
sulting process, including capabilities wrapping file de-
scriptors in order to narrow delegated rights.
ktrace reveals another problem, libc DNS resolver

code depends on file system access, but not until after
cap enter, leading to denied access and lost function-
ality, as shown in Figure 9.

This illustrates a subtle problem with sandboxing:
highly layered software designs often rely on on-demand
initialisation, lowering or avoiding startup costs, and
those initialisation points are scattered across many com-
ponents in system and application code. This is corrected
by switching to the lightweight resolver, which sends
DNS queries to a local daemon that performs actual res-

36 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 37

+ if (cap_enter() < 0)
+ error("cap_enter: %s", pcap_strerror(errno));

status = pcap_loop(pd, cnt, callback, pcap_userdata);

Figure 6: A two-line change adding capability mode to tcpdump: cap enter is called prior to the main libpcap

(packet capture) work loop. Access to global file system, IPC, and network namespaces is restricted.

+ if (lc_limitfd(STDIN_FILENO, CAP_FSTAT) < 0)
+ error("lc_limitfd: unable to limit STDIN_FILENO");
+ if (lc_limitfd(STDOUT_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+ error("lc_limitfd: unable to limit STDOUT_FILENO");
+ if (lc_limitfd(STDERR_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+ error("lc_limitfd: unable to limit STDERR_FILENO");

Figure 7: Using lc limitfd, tcpdump can further narrow rights delegated by inherited file descriptors, such as
limiting permitted operations on STDIN to fstat.

PID COMM FD T FLAGS CAPABILITIES PRO NAME
1268 tcpdump 0 v rw------c fs - /dev/pts/0
1268 tcpdump 1 v -w------c wr,se,fs - /dev/null
1268 tcpdump 2 v -w------c wr,se,fs - /dev/null
1268 tcpdump 3 v rw------- - - /dev/bpf

Figure 8: procstat -fC displays capabilities held by a process; FLAGS represents the file open flags, whereas
CAPABILITIES represents the capabilities rights mask. In the case of STDIN, only fstat (fs) has been granted.

1272 tcpdump CALL open(0x80092477c,O_RDONLY,<unused>0x1b6)
1272 tcpdump NAMI "/etc/resolv.conf"
1272 tcpdump RET connect -1 errno 78 Function not implemented
1272 tcpdump CALL socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP)
1272 tcpdump RET socket 4
1272 tcpdump CALL connect(0x4,0x7fffffffe080,0x10)
1272 tcpdump RET connect -1 errno 78 Function not implemented

Figure 9: ktrace reveals a problem: DNS resolution depends on file system and TCP/IP namespaces after cap enter.

PID COMM FD T FLAGS CAPABILITIES PRO NAME
18988 dhclient 0 v rw------- - - /dev/null
18988 dhclient 1 v rw------- - - /dev/null
18988 dhclient 2 v rw------- - - /dev/null
18988 dhclient 3 s rw------- - UDD /var/run/logpriv
18988 dhclient 5 s rw------- - ?
18988 dhclient 6 p rw------- - - -
18988 dhclient 7 v -w------- - - /var/db/dhclient.leas
18988 dhclient 8 v rw------- - - /dev/bpf
18988 dhclient 9 s rw------- - IP? 0.0.0.0:0 0.0.0.0:0

Figure 10: Capabilities held by dhclient before Capsicum changes: several unnecessary rights are present.

olution, addressing both file system and network address
namespace concerns. Despite these limitations, this ex-
ample of capability mode and capability APIs shows that
even minor code changes can lead to dramatic security
improvements, especially for a critical application with a
long history of security problems.

4.2 dhclient

FreeBSD ships the OpenBSD DHCP client, which in-
cludes privilege separation support. On BSD systems,
the DHCP client must run with privilege to open BPF
descriptors, create raw sockets, and configure network
interfaces. This creates an appealing target for attackers:
network code exposed to a complex packet format while
running with root privilege. The DHCP client is afforded
only weak tools to constrain operation: it starts as the
root user, opens the resources its unprivileged compo-
nent will require (raw socket, BPF descriptor, lease con-
figuration file), forks a process to continue privileged ac-
tivities (such as network configuration), and then con-
fines the parent process using chroot and the setuid

family of system calls. Despite hardening of the BPF
ioctl interface to prevent reattachment to another in-
terface or reprogramming the filter, this confinement is
weak; chroot limits only file system access, and switch-
ing credentials offers poor protection against weak or in-
correctly configured DAC protections on the sysctl and
PID namespaces.

Through a similar two-line change to that in tcpdump,
we can reinforce (or, through a larger change, replace)
existing sandboxing with capability mode. This instantly
denies access to the previously exposed global names-
paces, while permitting continued use of held file de-
scriptors. As there has been no explicit flush of address
space, memory, or file descriptors, it is important to ana-
lyze what capabilities have been leaked into the sandbox,
the key limitation to this approach. Figure 10 shows a
procstat -fC analysis of the file descriptor array.

The existing dhclient code has done an effective job
at eliminating directory access, but continues to allow the
sandbox direct rights to submit arbitrary log messages to
syslogd, modify the lease database, and a raw socket on
which a broad variety of operations could be performed.
The last of these is of particular interest due to ioctl;
although dhclient has given up system privilege, many
network socket ioctls are defined, allowing access to
system information. These are blocked in Capsicum’s
capability mode.

It is easy to imagine extending existing privilege sep-
aration in dhclient to use the Capsicum capability fa-
cility to further constrain file descriptors inherited in the
sandbox environment, for example, by limiting use of
the IP raw socket to send and recv, disallowing ioctl.

Use of the libcapsicum API would require more sig-
nificant code changes, but as dhclient already adopts a
message passing structure to communicate with its com-
ponents, it would be relatively straight forward, offer-
ing better protection against capability and memory leak-
age. Further migration to message passing would pre-
vent arbitrary log messages or direct unformatted writes
to dhclient.leases.em by constraining syntax.

4.3 gzip

The gzip command line tool presents an interesting tar-
get for conversion for several reasons: it implements
risky compression/decompression routines that have suf-
fered past vulnerabilities, it contains no existing com-
partmentalisation, and it executes with ambient user
(rather than system) privileges. Historic UNIX sandbox-
ing techniques, such as chroot and ephemeral UIDs are
a poor match because of their privilege requirement, but
also because (unlike with dhclient), there’s no expecta-
tion that a single sandbox exist—many gzip sessions
can run independently for many different users, and there
can be no assumption that placing them in the same sand-
box provides the desired security properties.

The first step is to identify natural fault lines in the ap-
plication: for example, code that requires ambient priv-
ilege (due to opening files or building network connec-
tions), and code that performs more risky activities, such
as parsing data and managing buffers. In gzip, this split
is immediately obvious: the main run loop of the ap-
plication processes command line arguments, identifies
streams and objects to perform processing on and send
results to, and then feeds them to compress routines that
accept input and output file descriptors. This suggests a
partitioning in which pairs of descriptors are submitted to
a sandbox for processing after the ambient privilege pro-
cess opens them and performs initial header handling.

We modified gzip to use libcapsicum, intercept-
ing three core functions and optionally proxying them
using RPCs to a sandbox based on policy queried from
libcapsicum, as shown in Figure 11. Each RPC passes
two capabilities, for input and output, to the sandbox, as
well as miscellaneous fields such as returned size, orig-
inal filename, and modification time. By limiting capa-
bility rights to a combination of CAP READ, CAP WRITE,
and CAP SEEK, a tightly constrained sandbox is created,
preventing access to any other files in the file system, or
other globally named resources, in the event a vulnera-
bility in compression code is exploited.

These changes add 409 lines (about 16%) to the size of
the gzip source code, largely to marshal and un-marshal
RPCs. In adapting gzip, we were initially surprised to
see a performance improvement; investigation of this un-
likely result revealed that we had failed to propagate the

38 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 39

Function RPC Description
gz compress PROXIED GZ COMPRESS zlib-based compression
gz uncompress PROXIED GZ UNCOMPRESS zlib-based decompression
unbzip2 PROXIED UNBZIP2 bzip2-based decompression

Figure 11: Three gzip functions are proxied via RPC to the sandbox

compression level (a global variable) into the sandbox,
leading to the incorrect algorithm selection. This serves
as reminder that code not originally written for decompo-
sition requires careful analysis. Oversights such as this
one are not caught by the compiler: the variable was cor-
rectly defined in both processes, but never propagated.

Compartmentalisation of gzip raises an important de-
sign question when working with capability mode: the
changes were small, but non-trivial: is there a better
way to apply sandboxing to applications most frequently
used in pipelines? Seaborn has suggested one possi-
bility: a Principle of Least Authority Shell (PLASH),
in which the shell runs with ambient privilege and
pipeline components are placed in sandboxes by the
shell [21]. We have begun to explore this approach on
Capsicum, but observe that the design tension exists here
as well: gzip’s non-pipeline mode performs a number of
application-specific operations requiring ambient privi-
lege, and logic like this may be equally (if not more)
awkward if placed in the shell. On the other hand, when
operating purely in a pipeline, the PLASH approach of-
fers the possibility of near-zero application modification.

Another area we are exploring is library self-
compartmentalisation. With this approach, library code
sandboxes portions of itself transparently to the host ap-
plication. This approach motivated a number of our de-
sign choices, especially as relates to the process model:
masking SIGCHLD delivery to the parent when using pro-
cess descriptors allows libraries to avoid disturbing ap-
plication state. This approach would allow video codec
libraries to sandbox portions of themselves while exe-
cuting in an unmodified web browser. However, library
APIs are often not crafted for sandbox-friendliness: one
reason we placed separation in gzip rather than libz is
that gzip provided internal APIs based on file descrip-
tors, whereas libz provided APIs based on buffers. For-
warding capabilities offers full UNIX I/O performance,
whereas the cost of performing RPCs to transfer buffers
between processes scales with file size. Likewise, his-
toric vulnerabilities in libjpeg have largely centred on
callbacks to applications rather than existing in isolation
in the library; such callback interfaces require significant
changes to run in an RPC environment.

4.4 Chromium
Google’s Chromium web browser uses a multi-process
architecture similar to a Capsicum logical application to
improve robustness [18]. In this model, each tab is as-
sociated with a renderer process that performs the risky
and complex task of rendering page contents through
page parsing, image rendering, and JavaScript execution.
More recent work on Chromium has integrated sandbox-
ing techniques to improve resilience to malicious attacks
rather than occasional instability; this has been done in
various ways on different supported operating systems,
as we will discuss in detail in Section 5.

The FreeBSD port of Chromium did not include sand-
boxing, and the sandboxing facilities provided as part of
the similar Linux and Mac OS X ports bear little resem-
blance to Capsicum. However, the existing compartmen-
talisation meant that several critical tasks had already
been performed:

• Chromium assumes that processes can be converted
into sandboxes that limit new object access

• Certain services were already forwarded to render-
ers, such as font loading via passed file descriptors

• Shared memory is used to transfer output between
renderers and the web browser

• Chromium contains RPC marshalling and passing
code in all the required places

The only significant Capsicum change to the FreeBSD
port of Chromium was to switch from System V shared
memory (permitted in Linux sandboxes) to the POSIX
shared memory code used in the Mac OS X port
(capability-oriented and permitted in Capsicum’s capa-
bility mode). Approximately 100 additional lines of code
were required to introduce calls to lc limitfd to limit
access to file descriptors inherited by and passed to sand-
box processes, such as Chromium data pak files, stdio,
and /dev/random, font files, and to call cap enter.
This compares favourably with the 4.3 million lines of
code in the Chromium source tree, but would not have
been possible without existing sandbox support in the de-
sign. We believe it should be possible, without a signif-
icantly larger number of lines of code, to explore using
the libcapsicum API directly.

Operating system Model Line count Description
Windows ACLs 22,350 Windows ACLs and SIDs
Linux chroot 605 setuid root helper sandboxes renderer
Mac OS X Seatbelt 560 Path-based MAC sandbox
Linux SELinux 200 Restricted sandbox type enforcement domain
Linux seccomp 11,301 seccomp and userspace syscall wrapper
FreeBSD Capsicum 100 Capsicum sandboxing using cap enter

Figure 12: Sandboxing mechanisms employed by Chromium.

5 Comparison of sandboxing technologies

We now compare Capsicum to existing sandbox mecha-
nisms. Chromium provides an ideal context for this com-
parison, as it employs six sandboxing technologies (see
Figure 12). Of these, the two are DAC-based, two MAC-
based and two capability-based.

5.1 Windows ACLs and SIDs
On Windows, Chromium uses DAC to create sand-
boxes [18]. The unsuitability of inter-user protections for
the intra-user context is demonstrated well: the model
is both incomplete and unwieldy. Chromium uses Ac-
cess Control Lists (ACLs) and Security Identifiers (SIDs)
to sandbox renderers on Windows. Chromium creates a
modified, reduced privilege, SID, which does not appear
in the ACL of any object in the system, in effect running
the renderer as an anonymous user.

However, objects which do not support ACLs are not
protected by the sandbox. In some cases, additional pre-
cautions can be used, such as an alternate, invisible desk-
top to protect the user’s GUI environment. However, un-
protected objects include FAT filesystems on USB sticks
and TCP/IP sockets: a sandbox cannot read user files di-
rectly, but it may be able to communicate with any server
on the Internet or use a configured VPN! USB sticks
present a significant concern, as they are frequently used
for file sharing, backup, and protection from malware.

Many legitimate system calls are also denied to the
sandboxed process. These calls are forwarded by the
sandbox to a trusted process responsible for filtering and
serving them. This forwarding comprises most of the
22,000 lines of code in the Windows sandbox module.

5.2 Linux chroot
Chromium’s suid sandbox on Linux also attempts to
create a privilege-free sandbox using legacy OS access
control; the result is similarly porous, with the additional
risk that OS privilege is required to create a sandbox.

In this model, access to the filesystem is limited to a
directory via chroot: the directory becomes the sand-

box’s virtual root directory. Access to other namespaces,
including System V shared memory (where the user’s
X window server can be contacted) and network access,
is unconstrained, and great care must be taken to avoid
leaking resources when entering the sandbox.

Furthermore, initiating chroot requires a setuid bi-
nary: a program that runs with full system privilege.
While comparable to Capsicum’s capability mode in
terms of intent, this model suffers significant sandboxing
weakness (for example, permitting full access to the Sys-
tem V shared memory as well as all operations on passed
file descriptors), and comes at the cost of an additional
setuid-root binary that runs with system privilege.

5.3 MAC OS X Seatbelt
On Mac OS X, Chromium uses a MAC-based framework
for creating sandboxes. This allows Chromium to create
a stronger sandbox than is possible with DAC, but the
rights that are granted to render processes are still very
broad, and security policy must be specified separately
from the code that relies on it.

The Mac OS X Seatbelt sandbox system allows pro-
cesses to be constrained according to a LISP-based pol-
icy language [1]. It uses the MAC Framework [27] to
check application activities; Chromium uses three poli-
cies for different components, allowing access to filesys-
tem elements such as font directories while restricting
access to the global namespace.

Like other techniques, resources are acquired before
constraints are imposed, so care must be taken to avoid
leaking resources into the sandbox. Fine-grained filesys-
tem constraints are possible, but other namespaces such
as POSIX shared memory, are an all-or-nothing affair.
The Seatbelt-based sandbox model is less verbose than
other approaches, but like all MAC systems, security pol-
icy must be expressed separately from code. This can
lead to inconsistencies and vulnerabilities.

5.4 SELinux
Chromium’s MAC approach on Linux uses an SELinux
Type Enforcement policy [12]. SELinux can be used

40 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 41

for very fine-grained rights assignment, but in practice,
broad rights are conferred because fine-grained Type En-
forcement policies are difficult to write and maintain.
The requirement that an administrator be involved in
defining new policy and applying new types to the file
system is a significant inflexibility: application policies
cannot adapt dynamically, as system privilege is required
to reformulate policy and relabel objects.

The Fedora reference policy for Chromium creates a
single SELinux dynamic domain, chrome sandbox t,
which is shared by all sandboxes, risking potential in-
terference between sandboxes. This domain is assigned
broad rights, such as the ability to read all files in /etc

and access to the terminal device. These broad policies
are easier to craft than fine-grained ones, reducing the
impact of the dual-coding problem, but are much less ef-
fective, allowing leakage between sandboxes and broad
access to resources outside of the sandbox.

In contrast, Capsicum eliminates dual-coding by com-
bining security policy with code in the application. This
approach has benefits and drawbacks: while bugs can’t
arise due to potential inconsistency between policy and
code, there is no longer an easily accessible specification
of policy to which static analysis can be applied. This
reinforces our belief that systems such as Type Enforce-
ment and Capsicum are potentially complementary, serv-
ing differing niches in system security.

5.5 Linux seccomp

Linux provides an optionally-compiled capability mode-
like facility called seccomp. Processes in seccomp

mode are denied access to all system calls except read,
write, and exit. At face value, this seems promis-
ing, but as OS infrastructure to support applications us-
ing seccomp is minimal, application writers must go to
significant effort to use it.

In order to allow other system calls, Chromium
constructs a process in which one thread executes in
seccomp mode, and another “trusted” thread sharing
the same address space has normal system call access.
Chromium rewrites glibc and other library system call
vectors to forward system calls to the trusted thread,
where they are filtered in order to prevent access to inap-
propriate shared memory objects, opening files for write,
etc. However, this default policy is, itself, quite weak, as
read of any file system object is permitted.

The Chromium seccomp sandbox contains over a
thousand lines of hand-crafted assembly to set up sand-
boxing, implement system call forwarding, and craft a
basic security policy. Such code is a risky proposition:
difficult to write and maintain, with any bugs likely lead-
ing to security vulnerabilities. The Capsicum approach
is similar to that of seccomp, but by offering a richer set

of services to sandboxes, as well as more granular dele-
gation via capabilities, it is easier to use correctly.

6 Performance evaluation

Typical operating system security benchmarking is tar-
geted at illustrating zero or near-zero overhead in the
hopes of selling general applicability of the resulting
technology. Our thrust is slightly different: we know
that application authors who have already begun to adopt
compartmentalisation are willing to accept significant
overheads for mixed security return. Our goal is there-
fore to accomplish comparable performance with signif-
icantly improved security.

We evaluate performance in two ways: first, a set
of micro-benchmarks establishing the overhead intro-
duced by Capsicum’s capability mode and capability
primitives. As we are unable to measure any notice-
able performance change in our adapted UNIX applica-
tions (tcpdump and dhclient) due to the extremely low
cost of entering capability mode from an existing pro-
cess, we then turn our attention to the performance of
our libcapsicum-enhanced gzip.

All performance measurements have been performed
on an 8-core Intel Xeon E5320 system running at
1.86GHz with 4GB of RAM, running either an unmod-
ified FreeBSD 8-STABLE distribution synchronised to
revision 201781 (2010-01-08) from the FreeBSD Sub-
version repository, or a synchronised 8-STABLE distri-
bution with our capability enhancements.

6.1 System call performance
First, we consider system call performance through
micro-benchmarking. Figure 13 summarises these re-
sults for various system calls on unmodified FreeBSD,
and related capability operations in Capsicum. Fig-
ure 14 contains a table of benchmark timings. All micro-
benchmarks were run by performing the target operation
in a tight loop over an interval of at least 10 seconds,
repeating for 10 iterations. Differences were computed
using Student’s t-test at 95% confidence.

Our first concern is with the performance of capabil-
ity creation, as compared to raw object creation and the
closest UNIX operation, dup. We observe moderate, but
expected, performance overheads for capability wrap-
ping of existing file descriptors: the cap new syscall is
50.7% ± 0.08% slower than dup, or 539 ± 0.8ns slower
in absolute terms.

Next, we consider the overhead of capability “un-
wrapping”, which occurs on every descriptor operation.
We compare the cost of some simple operations on raw
file descriptors, to the same operations on a capability-
wrapped version of the same file descriptor: writing a

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

du
p

ca
p_

ne
w

sh
m

fd
ca

p_
ne

w
_s

hm
fd

fs
ta

t_
sh

m
fd

fs
ta

t_
ca

p_
sh

m
fd

w
rit

e
ca

p_
w

rit
e

re
ad

_1
ca

p_
re

ad
_1

re
ad

_1
00

00
ca

p_
re

ad
_1

00
00

ge
tu

id
ch

ro
ot

se
tu

id
ca

p_
en

te
r

Ti
m

e/
sy

sc
al

l (
us

)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

fo
rk

vf
or

k

pd
fo

rk

fo
rk

_e
xe

c

vf
or

k_
ex

ec

pd
fo

rk
_e

xe
c

pi
ng

po
ng

sa
nd

bo
x

Ti
m

e/
sy

sc
al

l (
us

)

Figure 13: Capsicum system call performance compared to standard UNIX calls.

single byte to /dev/null, reading a single byte from
/dev/zero; reading 10000 bytes from /dev/zero; and
performing an fstat call on a shared memory file de-
scriptor. In all cases we observe a small overhead of
about 0.06µs when operating on the capability-wrapped
file descriptor. This has the largest relative performance
impact on fstat (since it does not perform I/O, simply
inspecting descriptor state, it should thus experience the
highest overhead of any system call which requires un-
wrapping). Even in this case the overhead is relatively
low: 10.2% ± 0.5%.

6.2 Sandbox creation

Capsicum supports ways to create a sandbox: directly in-
voking cap enter to convert an existing process into a
sandbox, inheriting all current capability lists and mem-
ory contents, and the libcapsicum sandbox API, which
creates a new process with a flushed capability list.
cap enter performs similarly to chroot, used by

many existing compartmentalised applications to restrict
file system access. However, cap enter out-performs
setuid as it does not need to modify resource limits.
As most sandboxes chroot and set the UID, entering a
capability mode sandbox is roughly twice as fast as a tra-
ditional UNIX sandbox. This suggests that the overhead
of adding capability mode support to an application with
existing compartmentalisation will be negligible, and re-
placing existing sandboxing with cap enter may even
marginally improve performance.

Creating a new sandbox process and replacing its ad-
dress space using execve is an expensive operation.
Micro-benchmarks indicate that the cost of fork is three
orders of magnitude greater than manipulating the pro-
cess credential, and adding execve or even a single in-

stance of message passing increases that cost further.
We also found that additional dynamically linked li-
brary dependencies (libcapsicum and its dependency
on libsbuf) impose an additional 9% cost to the fork
syscall, presumably due to the additional virtual mem-
ory mappings being copied to the child process. This
overhead is not present on vfork which we plan to use
in libcapsicum in the future. Creating, exchanging an
RPC with, and destroying a single sandbox (the “sand-
box” label in Figure 13(b)) has a cost of about 1.5ms,
significantly higher than its subset components.

6.3 gzip performance

While the performance cost of cap enter is negli-
gible compared to other activity, the cost of multi-
process sandbox creation (already taken by dhclient

and Chromium due to existing sandboxing) is significant.
To measure the cost of process sandbox creation, we

timed gzip compressing files of various sizes. Since the
additional overheads of sandbox creation are purely at
startup, we expect to see a constant-time overhead to the
capability-enhanced version of gzip, with identical lin-
ear scaling of compression performance with input file
size. Files were pre-generated on a memory disk by read-
ing a constant-entropy data source: /dev/zero for per-
fectly compressible data, /dev/random for perfectly in-
compressible data, and base 64-encoded /dev/random

for a moderate high entropy data source, with about 24%
compression after gzipping. Using a data source with ap-
proximately constant entropy per bit minimises variation
in overall gzip performance due to changes in compres-
sor performance as files of different sizes are sampled.
The list of files was piped to xargs -n 1 gzip -c

> /dev/null, which sequentially invokes a new gzip

42 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 43

Benchmark Time/operation Difference % difference
dup 1.061 ± 0.000µs - -
cap new 1.600 ± 0.001µs 0.539 ± 0.001µs 50.7% ± 0.08%
shmfd 2.385 ± 0.000µs - -
cap new shmfd 4.159 ± 0.007µs 1.77 ± 0.004µs 74.4% ± 0.181%

fstat shmfd 0.532 ± 0.001µs - -
fstat cap shmfd 0.586 ± 0.004µs 0.054 ± 0.003µs 10.2% ± 0.506%

read 1 0.640 ± 0.000µs - -
cap read 1 0.697 ± 0.001µs 0.057 ± 0.001µs 8.93% ± 0.143%

read 10000 1.534 ± 0.000µs - -
cap read 10000 1.601 ± 0.003µs 0.067 ± 0.002µs 4.40% ± 0.139%

write 0.576 ± 0.000µs - -
cap write 0.634 ± 0.002µs 0.058 ± 0.001µs 10.0% ± 0.241%

cap enter 1.220 ± 0.000µs - -
getuid 0.353 ± 0.001µs −0.867 ± 0.001µs −71.0% ± 0.067%
chroot 1.214 ± 0.000µs −0.006 ± 0.000µs −0.458% ± 0.023%
setuid 1.390 ± 0.001µs 0.170 ± 0.001µs 14.0% ± 0.054%

fork 268.934 ± 0.319µs - -
vfork 44.548 ± 0.067µs −224.3 ± 0.217µs −83.4% ± 0.081%
pdfork 259.359 ± 0.118µs −9.58 ± 0.324µs −3.56% ± 0.120%
pingpong 309.387 ± 1.588µs 40.5 ± 1.08µs 15.0% ± 0.400%

fork exec 811.993 ± 2.849µs - -
vfork exec 585.830 ± 1.635µs −226.2 ± 2.183µs −27.9% ± 0.269%
pdfork exec 862.823 ± 0.554µs 50.8 ± 2.83µs 6.26% ± 0.348%
sandbox 1509.258 ± 3.016µs 697.3 ± 2.78µs 85.9% ± 0.339%

Figure 14: Micro-benchmark results for various system calls and functions, grouped by category.

compression process with a single file argument, and dis-
cards the compressed output. Sufficiently many input
files were generated to provide at least 10 seconds of re-
peated gzip invocations, and the overall run-time mea-
sured. I/O overhead was minimised by staging files on
a memory disk. The use of xargs to repeatedly invoke
gzip provides a tight loop that minimising the time be-
tween xargs’ successive vfork and exec calls of gzip.
Each measurement was repeated 5 times and averaged.

Benchmarking gzip shows high initial overhead,
when compressing single-byte files, but also that the ap-
proach in which file descriptors are wrapped in capabil-
ities and delegated rather than using pure message pass-
ing, leads to asymptotically identical behaviour as file
size increases and run-time cost are dominated by com-
pression workload, which is unaffected by Capsicum.
We find that the overhead of launching a sandboxed gzip
is 2.37 ± 0.01 ms, independent of the type of compres-
sion stream. For many workloads, this one-off perfor-
mance cost is negligible, or can be amortised by passing
multiple files to the same gzip invocation.

7 Future work

Capsicum provides an effective platform for capability
work on UNIX platforms. However, further research and

development are required to bring this project to fruition.
We believe further refinement of the Capsicum prim-

itives would be useful. Performance could be improved
for sandbox creation, perhaps employing an Capsicum-
centric version of the S-thread primitive proposed by Bit-
tau. Further, a “logical application” OS construct might

 0.001

 0.01

 0.1

 1

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B 1K 2K 4K 8k

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

Ti
m

e/
gz

ip
 in

vo
ca

tio
n

(s
ec

)

File size

Capabilities gzip
Standard gzip

Figure 15: Run time per gzip invocation against random
data, with varying file sizes; performance of the two ver-
sions come within 5% of one another at around a 512K.

improve termination properties.
Another area for research is in integrating user in-

terfaces and OS security; Shapiro has proposed that
capability-centered window systems are a natural ex-
tension to capability operating systems. Improving the
mapping of application security constructs into OS sand-
boxes would also significantly improve the security of
Chromium, which currently does not consistently assign
web security domains to sandboxes. It is in the con-
text of windowing systems that we have found capability
delegation most valuable: by driving delegation with UI
behaviors, such as Powerboxes (file dialogues running
with ambient authority) and drag-and-drop, Capsicum
can support gesture-based access control research.

Finally, it is clear that the single largest problem
with Capsicum and other privilege separation approaches
is programmability: converting local development into
de facto distributed development adds significant com-
plexity to code authoring, debugging, and maintenance.
Likewise, aligning security separation with application
separation is a key challenge: how does the programmer
identify and implement compartmentalisations that offer
real security benefits, and determine that they’ve done
so correctly? Further research in these areas is critical
if systems such as Capsicum are to be used to mitigate
security vulnerabilities through process-based compart-
mentalisation on a large scale.

8 Related work

In 1975, Saltzer and Schroeder documented a vocabulary
for operating system security based on on-going work
on MULTICS [19]. They described the concepts of ca-
pabilities and access control lists, and observed that in
practice, systems combine the two approaches in order
to offer a blend of control and performance. Thirty-five
years of research have explored these and other security
concepts, but the themes remain topical.

8.1 Discretionary and Mandatory Access
Control

The principle of discretionary access control (DAC) is
that users control protections on objects they own. While
DAC remains relevant in multi-user server environments,
the advent of personal computers and mobile phones has
revealed its weakness: on a single-user computer, all
eggs are in one basket. Section 5.1 demonstrates the dif-
ficulty of using DAC for malicious code containment.

Mandatory access control systemically enforce poli-
cies representing the interests of system implementers
and administrators. Information flow policies tag sub-
jects and objects in the system with confidentiality
and integrity labels—fixed rules prevent reads or writes

that allowing information leakage. Multi-Level Secu-
rity (MLS), formalised as Bell-LaPadula (BLP), protects
confidential information from unauthorised release [3].
MLS’s logical dual, the Biba integrity policy, imple-
ments a similar scheme protecting integrity, and can be
used to protect Trusted Computing Bases (TCBs) [4].

MAC policies are robust against the problem of con-
fused deputies, authorised individuals or processes who
can be tricked into revealing confidential information. In
practice, however, these policies are highly inflexible, re-
quiring administrative intervention to change, which pre-
cludes browsers creating isolated and ephemeral sand-
boxes “on demand” for each web site that is visited.

Type Enforcement (TE) in LOCK [20] and, later,
SELinux [12] and SEBSD [25], offers greater flexibil-
ity by allowing arbitrary labels to be assigned to sub-
jects (domains) and objects (types), and a set of rules
to control their interactions. As demonstrated in Sec-
tion 5.4, requiring administrative intervention and the
lack of a facility for ephemeral sandboxes limits appli-
cability for applications such as Chromium: policy, by
design, cannot be modified by users or software authors.
Extreme granularity of control is under-exploited, or per-
haps even discourages, highly granular protection—for
example, the Chromium SELinux policy conflates dif-
ferent sandboxes allowing undesirable interference.

8.2 Capability systems, micro-kernels, and
compartmentalisation

The development of capability systems has been tied to
mandatory access control since conception, as capabil-
ities were considered the primitive of choice for media-
tion in trusted systems. Neumann et al’s Provably Secure
Operating System (PSOS) [16], and successor LOCK,
propose a tight integration of the two models, with the
later refinement that MAC allows revocation of capabili-
ties in order to enforce the *-property [20].

Despite experimental hardware such as Wilkes’ CAP
computer [28], the eventual dominance of general-
purpose virtual memory as the nearest approximation
of hardware capabilities lead to exploration of object-
capability systems and micro-kernel design. Systems
such as Mach [2], and later L4 [11], epitomise this ap-
proach, exploring successively greater extraction of his-
toric kernel components into separate tasks. Trusted
operating system research built on this trend through
projects blending mandatory access control with micro-
kernels, such as Trusted Mach [6], DTMach [22] and
FLASK [24]. Micro-kernels have, however, been largely
rejected by commodity OS vendors in favour of higher-
performance monolithic kernels.

MAC has spread, without the benefits of micro-kernel-
enforced reference monitors, to commodity UNIX sys-

44 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 45

tems in the form of SELinux [12]. Operating system ca-
pabilities, another key security element to micro-kernel
systems, have not seen wide deployment; however, re-
search has continued in the form of EROS [23] (now
CapROS), inspired by KEYKOS [9].

OpenSSH privilege separation [17] and Privman [10]
rekindled interest in micro-kernel-like compartmentali-
sation projects, such as the Chromium web browser [18]
and Capsicum’s logical applications. In fact, large ap-
plication suites compare formidably with the size and
complexity of monolithic kernels: the FreeBSD kernel is
composed of 3.8 million lines of C, whereas Chromium
and WebKit come to a total of 4.1 million lines of
C++. How best to decompose monolithic applications re-
mains an open research question; Bittau’s Wedge offers a
promising avenue of research in automated identification
of software boundaries through dynamic analysis [5].

Seaborn and Hand have explored application com-
partmentalisation on UNIX through capability-centric
Plash [21], and Xen [15], respectively. Plash offers an
intriguing blend of UNIX semantics with capability se-
curity by providing POSIX APIs over capabilities, but
is forced to rely on the same weak UNIX primitives
analysed in Section 5. Supporting Plash on stronger
Capsicum foundations would offer greater application
compatibility to Capsicum users. Hand’s approach suf-
fers from similar issues to seccomp, in that the run-
time environment for sandboxes is functionality-poor.
Garfinkel’s Ostia [7] also considers a delegation-centric
approach, but focuses on providing sandboxing as an ex-
tension, rather than a core OS facility.

A final branch of capability-centric research is capa-
bility programming languages. Java and the JVM have
offered a vision of capability-oriented programming: a
language run-time in which references and byte code ver-
ification don’t just provide implementation hiding, but
also allow application structure to be mapped directly to
protection policies [8]. More specific capability-oriented
efforts are E [13], the foundation for Capdesk and the
DARPA Browser [26], and Caja, a capability subset of
the JavaScript language [14].

9 Conclusion

We have described Capsicum, a practical capabilities ex-
tension to the POSIX API, and a prototype based on
FreeBSD, planned for inclusion in FreeBSD 9.0. Our
goal has been to address the needs of application au-
thors who are already experimenting with sandboxing,
but find themselves building on sand when it comes to
effective containment techniques. We have discussed
our design choices, contrasting approaches from research
capability systems, as well as commodity access con-
trol and sandboxing technologies, but ultimately leading

to a new approach. Capsicum lends itself to adoption
by blending immediate security improvements to cur-
rent applications with the long-term prospects of a more
capability-oriented future. We illustrate this through
adaptations of widely-used applications, from the sim-
ple gzip to Google’s highly-complex Chromium web
browser, showing how firm OS foundations make the job
of application writers easier. Finally, security and perfor-
mance analyses show that improved security is not with-
out cost, but that the point we have selected on a spec-
trum of possible designs improves on the state of the art.

10 Acknowledgments

The authors wish to gratefully acknowledge our spon-
sors, including Google, Inc, the Rothermere Founda-
tion, and the Natural Sciences and Engineering Research
Council of Canada. We would further like to thank Mark
Seaborn, Andrew Moore, Joseph Bonneau, Saar Drimer,
Bjoern Zeeb, Andrew Lewis, Heradon Douglas, Steve
Bellovin, and our anonymous reviewers for helpful feed-
back on our APIs, prototype, and paper, and Sprewell for
his contributions to the Chromium FreeBSD port.

11 Availability

Capsicum, as well as our extensions to the Chromium
web browser are available under a BSD license; more
information may be found at:

http://www.cl.cam.ac.uk/research/security/capsicum/

A technical report with additional details is forthcoming.

References
[1] The Chromium Project: Design Documents: OS X

Sandboxing Design. http://dev.chromium.org/
developers/design-documents/sandbox/
osx-sandboxing-design.

[2] ACETTA, M. J., BARON, R., BOLOWSKY, W., GOLUB, D.,
RASHID, R., TEVANIAN, A., AND YOUNG, M. Mach: a new
kernel foundation for unix development. In Proceedings of the
USENIX 1986 Summer Conference (July 1986), pp. 93–112.

[3] BELL, D. E., AND LAPADULA, L. J. Secure computer systems:
Mathematical foundations. Tech. Rep. 2547, MITRE Corp.,
March 1973.

[4] BIBA, K. J. Integrity considerations for secure computer sys-
tems. Tech. rep., MITRE Corp., April 1977.

[5] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND KARP, B.
Wedge: Splitting Applications into Reduced-Privilege Compart-
ments. In Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation (2008), pp. 309–
322.

[6] BRANSTAD, M., AND LANDAUER, J. Assurance for the Trusted
Mach operating system. Computer Assurance, 1989. COMPASS
’89, ’Systems Integrity, Software Safety and Process Security’,
Proceedings of the Fourth Annual Conference on (1989), 103–
108.

[7] GARFINKEL, T., PFA, B., AND ROSENBLUM, M. Ostia: A del-
egating architecture for secure system call interposition. In Proc.
Internet Society 2003 (2003).

[8] GONG, L., MUELLER, M., PRAFULLCHANDRA, H., AND
SCHEMERS, R. Going Beyond the Sandbox: An Overview of
the New Security Architecture in the Java Development Kit 1.2.
In Proceedings of the USENIX Symposium on Internet Technolo-
gies and Systems.

[9] HARDY, N. KeyKOS architecture. SIGOPS Operating Systems
Review 19, 4 (Oct 1985).

[10] KILPATRICK, D. Privman: A Library for Partitioning Applica-
tions. In Proceedings of USENIX Annual Technical Conference
(2003), pp. 273–284.

[11] LIEDTKE, J. On microkernel construction. In Proceedings of the
15th ACM Symposium on Operating System Principles (SOSP-
15) (Copper Mountain Resort, CO, Dec. 1995).

[12] LOSCOCCO, P., AND SMALLEY, S. Integrating flexible support
for security policies into the Linux operating system. Proceedings
of the FREENIX Track: 2001 USENIX Annual Technical Confer-
ence table of contents (2001), 29–42.

[13] MILLER, M. S. The e language. http://www.erights.
org/.

[14] MILLER, M. S., SAMUEL, M., LAURIE, B., AWAD, I., AND
STAY, M. Caja: Safe active content in sanitized javascript,
May 2008. http://google-caja.googlecode.com/
files/caja-spec-2008-06-07.pdf.

[15] MURRAY, D. G., AND HAND, S. Privilege Separation Made
Easy. In Proceedings of the ACM SIGOPS European Workshop
on System Security (EUROSEC) (2008), pp. 40–46.

[16] NEUMANN, P. G., BOYER, R. S., GEIERTAG, R. J., LEVITT,
K. N., AND ROBINSON, L. A provably secure operating system:
The system, its applications, and proofs, second edition. Tech.
Rep. Report CSL-116, Computer Science Laboratory, SRI Inter-
national, May 1980.

[17] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing
Privilege Escalation. In Proceedings of the 12th USENIX Security
Symposium (2003).

[18] REIS, C., AND GRIBBLE, S. D. Isolating web programs in mod-
ern browser architectures. In EuroSys ’09: Proceedings of the
4th ACM European conference on Computer systems (New York,
NY, USA, 2009), ACM, pp. 219–232.

[19] SALTZER, J. H., AND SCHROEDER, M. D. The protection of in-
formation in computer systems. In Communications of the ACM
(July 1974), vol. 17.

[20] SAMI SAYDJARI, O. Lock: an historical perspective. In Pro-
ceeedings of the 18th Annual Computer Security Applications
Conference (2002), IEEE Computer Society.

[21] SEABORN, M. Plash: tools for practical least privilege, 2010.
http://plash.beasts.org/.

[22] SEBES, E. J. Overview of the architecture of Distributed Trusted
Mach. Proceedings of the USENIX Mach Symposium: November
(1991), 20–22.

[23] SHAPIRO, J., SMITH, J., AND FARBER, D. EROS: a fast capa-
bility system. SOSP ’99: Proceedings of the seventeenth ACM
symposium on Operating systems principles (Dec 1999).

[24] SPENCER, R., SMALLEY, S., LOSCOCCO, P., HIBLER, M.,
ANDERSON, D., AND LEPREAU, J. The Flask Security Archi-
tecture: System Support for Diverse Security Policies. In Proc.
8th USENIX Security Symposium (August 1999).

[25] VANCE, C., AND WATSON, R. Security Enhanced BSD. Net-
work Associates Laboratories (2003).

[26] WAGNER, D., AND TRIBBLE, D. A security analysis
of the combex darpabrowser architecture, March 2002.
http://www.combex.com/papers/darpa-review/
security-review.pdf.

[27] WATSON, R., FELDMAN, B., MIGUS, A., AND VANCE, C. De-
sign and Implementation of the TrustedBSD MAC Framework.
In Proc. Third DARPA Information Survivability Conference and
Exhibition (DISCEX), IEEE (April 2003).

[28] WILKES, M. V., AND NEEDHAM, R. M. The Cambridge CAP
computer and its operating system (Operating and programming
systems series). Elsevier North-Holland, Inc., Amsterdam, The
Netherlands, 1979.

USENIX Association 19th USENIX Security Symposium 47

Structuring Protocol Implementations to Protect Sensitive Data

Petr Marchenko and Brad Karp
University College London, Gower Street, London WC1E 6BT, UK

{p.marchenko,bkarp}@cs.ucl.ac.uk

Abstract
In a bid to limit the harm caused by ubiquitous remotely
exploitable software vulnerabilities, the computer sys-
tems security community has proposed primitives to al-
low execution of application code with reduced privilege.
In this paper, we identify and address the vital and largely
unexamined problem of how to structure implementa-
tions of cryptographic protocols to protect sensitive data
despite exploits. As evidence that this problem is poorly
understood, we first identify two attacks that lead to
disclosure of sensitive data in two published state-of-
the-art designs for exploit-resistant cryptographic proto-
col implementations: privilege-separated OpenSSH, and
the HiStar/DStar DIFC-based SSL web server. We then
describe how to structure protocol implementations on
UNIX- and DIFC-based systems to defend against these
two attacks and protect sensitive information from dis-
closure. We demonstrate the practicality and generality
of this approach by applying it to protect sensitive data
in the implementations of both the server and client sides
of OpenSSH and of the OpenSSL library.

1 Introduction
Cryptographic protocols are entrusted to preserve the in-
tegrity and secrecy of sensitive data as it traverses a net-
work. While these protocols incorporate strong mecha-
nisms to defend against in-network eavesdropping and
modification of data in transit, such protocols function
in today’s distributed systems only as imperfect, human-
written software. Clearly, the desired outcome for secure
system designers implementing a secure data transfer
protocol like SSH [13] or SSL/TLS [4] is end-to-end in-
tegrity and secrecy for sensitive data, despite not only in-
network threats, but also threats that may arise from the
behavior of the protocol implementation(s) at the ends of
the wire. The dismal past two decades of remotely ex-
ploitable vulnerabilities in software deployed widely on
network-attached hosts are thus real cause for alarm—
even if the abstract design of a cryptographic protocol is
correct, the protocol’s very implementation is a worry-
ingly weak link in achieving end-to-end security goals.

In the quest for a lasting end-to-end defense for sen-
sitive data against disclosure or corruption by a remote
attacker, whatever vulnerabilities and exploits come to
light in the future, the systems research community has

in recent years sought to put the venerable principle of

least privilege [10] into better practice in the software
running on network-connected servers. This design tenet
dictates that the programmer should partition his code
into compartments, each of which executes a portion of
the program with minimal privilege necessary to carry
out its function. Here, privilege corresponds to access
rights for system resources: to read or write the filesys-
tem, memory, or network, to invoke a system call, &c.

In the context of exploitable vulnerabilities and sensitive
information, least privilege amounts to designing an ap-
plication with the expectation that exploits will occur, but
limiting the harm that they may cause by restricting the
actions that an attacker may take post-exploit.

Early work [5, 9] explored how to minimize priv-
ilege on compartments instantiated as standard UNIX
processes. More recently, the community has devoted
considerable effort to providing various operating system
primitives intended to make it easier for programmers to
adhere to the principle of least privilege. These primitives
range from operating system support for decentralized
information flow control (DIFC) [6, 12, 14, 15], which
limits the privileges of any compartment exposed to sen-
sitive information, to process-like primitives that lessen
the likelihood of accidental propagation of privileges be-
tween compartments against the programmer’s intent [2].

While these results all represent important advances
over the prior state of the art, we believe that proposals
to date for new primitives to encourage programmers’
adherence to least privilege largely ignore a central, vi-
tal question: how should a programmer structure code

and limit privilege to prevent disclosure or corruption of

sensitive data by an attacker who can exploit a vulner-

ability? Regardless of the primitives used, this daunting
question looms. To their credit, the proposers of these
primitives present examples of how to structure applica-
tion code to use them. But these examples are typically
offered as existential evidence that the primitives them-
selves are useful; no guidance or principles are offered
for how one may structure an application’s code to use
the primitives and robustly provide the desired end-to-
end secrecy and/or integrity guarantees.

Moreover, the structures of these example applica-
tions are complex, as they are typically split into many
compartments. To wit, the OKWS web server spreads

48 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 49

its code among at least 5 compartments (processes) [5],
the sthread-partitioned Apache/SSL web server consists
of 9 compartments (sthreads and callgates) [2], and the
HiStar/DStar-labeled Apache/SSL web server consists
of 7 compartments (processes) [15]. Each application’s
many compartments are configured with different privi-
leges and labels, respectively, and interconnected in com-
plex patterns. Structuring code to use these primitives ap-
pears difficult. Indeed, as we show in Section 3, even
highly security-conscious programmers using state-of-
the-art techniques [9, 15] have not adequately considered
how to defend cryptographic protocol implementations
from exploit-based attacks.

In this paper, we offer a practical improvement over
the status quo: principles to guide programmers in struc-
turing cryptographic protocol implementations so as to
robustly protect sensitive user data end-to-end, including
in cases where a remote attacker exploits untrusted ap-
plication code. Our contributions include:
• We define two general classes of attack on cryp-

tographic protocol implementations: session key dis-

closure attacks and oracle attacks. We demonstrate
that two state-of-the-art cryptographic protocol imple-
mentations, one in privilege-separated OpenSSH [9]
and the other in a DIFC-labeled Apache/SSL web
server [15], are vulnerable to these attacks.

• We provide protocol-agnostic principles for structur-
ing cryptographic protocol implementations to protect
sensitive data against disclosure and corruption when
an exploitable vulnerability is present in code that pro-
cesses network input.

• As evidence of the practicality and generality of these
principles, we present restructured implementations of
the OpenSSH server and client and of the OpenSSL
library that limit privilege so as to protect users’ sen-
sitive data from an adversary who can remotely ex-
ploit the implementation. This restructured OpenSSL
library can act as a drop-in replacement for the stock
library, bringing robustness against these attacks to a
wide range of SSL-enabled applications.

2 Background
We now summarize the state of the art in protecting sen-
sitive data in network server software. The two main ap-
proaches in use are privilege separation and decentral-
ized information flow control (DIFC).

2.1 Privilege Separation with Processes
In a monolithic application, in which all code executes
in a single compartment (under UNIX or Linux, a pro-
cess), all instructions execute with full privilege. Thus,
an exploit of a vulnerability may result in disclosure of
sensitive data, and more generally, grants the full privi-
lege held by the application to any code injected by the

attacker. Privilege separation [9] has proven effective in
mitigating these threats. This technique follows from the
observation that an application need not execute individ-
ual operations with the union of all privileges needed
by all operations during the application’s entire lifetime.
Many vulnerability-prone operations, such as parsing, do
not require access to sensitive information or the filesys-
tem. If we partition a monolithic application into com-
partments and restrict some compartments’ privileges, an
exploit in an unprivileged compartment will not be able
to disclose or corrupt sensitive information to which it
does not have access. Code that runs in privileged com-
partments, however, must be carefully audited to protect
the sensitive data it can access.

The privilege-separated OpenSSH server [9] divides
the server’s code into separate standard UNIX/Linux
processes. This partitioning includes a network-facing
unprivileged process that performs key exchange and au-
thentication protocols, and a privileged monitor process
running as root that exports an interface to the unpriv-
ileged process to allow invocation of privileged opera-
tions, such as signing with the server’s private key, veri-
fying user credentials, &c.

This structure is intended to deny the attacker execu-
tion of code with root privilege on the server; the at-
tacker only interacts directly with the unprivileged pro-
cess. Provos et al. state that “programming errors occur-
ring in the unprivileged parts can no longer be abused to
gain unauthorized privileges” [9]. This claim holds be-
cause the unprivileged process executes with restricted
file system access (enforced with a chroot system
call), and with unused user and group IDs of nobody,
which prevent it from tampering with other processes.

The SELinux security extensions to Linux [7], which
post-date Provos et al.’s work, allow enforcement of flex-
ible mandatory access control policies specified by a sys-
tem administrator. These policies support finer-grained
restriction of a process’s privileges than under stock
Linux, primarily by checking system call invocations in
the kernel against a per-process access control list. We
employ these extensions in our cryptographic protocol
implementations for OpenSSH and OpenSSL.

2.2 DIFC
Decentralized information flow control (DIFC), as im-
plemented in the research prototype operating systems
Asbestos [12] and HiStar [14], and retrofitted to Linux in
Flume [6], offers a different approach to limiting privi-
lege within applications. In these systems, a programmer
expresses an information flow policy by labeling data ac-
cording to its sensitivity level. Should an unprivileged
compartment access data labeled as sensitive, it becomes
tainted, and at run-time, the operating system prevents
it from communicating with compartments tainted with

Figure 1: HiStar-labeled SSL web server. We omit SSLd’s and netd’s
labels in the interest of brevity.

lower levels of sensitivity, or with the network or con-
sole. This way, an unprivileged compartment cannot con-
vey sensitive data out of the application. To allow output,
trusted compartments perform privileged operations on
sensitive data: they own sensitive labels, and are thus al-
lowed by the operating system to declassify sensitive in-
formation, stripping it of its sensitivity label(s).

Building on these DIFC primitives, Zeldovich et

al. present a state-of-the-art privilege-separated SSL web
server [15], shown in slightly simplified form in Figure 1.
Ovals represent code: shaded ovals are trusted, privileged
compartments, while white ovals are untrusted compart-
ments. A dashed arrow between compartments A and B

indicates that A may invoke an operation in B with argu-
ments and retrieve the result. Boxes represent sensitive
data. A solid arrow from data to a compartment denotes
that the compartment may read that data; an arrow in the
reverse direction denotes write access. Circles annotating
data items and compartments indicate labels; in the latter
case, a compartment is tainted with the label in question.
Finally, a label within a star denotes that a compartment
owns that label (and may declassify data labeled with it).

The HiStar-labeled SSL web server is partitioned into
several untrusted compartments to limit the effect of
a compromise of any single one. The major compart-
ments are per-connection SSLd, per-connection httpd,
and shared RSAd daemons. SSLd handles a client’s SSL
connection and performs key exchange, server authenti-
cation, encryption and decryption. httpd processes clear-
text HTTP requests; it uses SSLd to decrypt requests and
encrypt replies. httpd can obtain ownership of a user’s
label by authenticating with the trusted authd daemon.
Label ownership allows httpd to read the user’s data and
declassify it for transfer over the network. The trusted
netd serves as a barrier between the application and the
network. It passes only declassified data (with no label)
to the network.

3 Attacks on Protocol Implementations
The designers of cryptographic protocols like SSH and
SSL aim to provide end-to-end confidentiality and in-
tegrity for users’ data transferred during a session. When
applied correctly, both privilege separation and DIFC can
ensure that exploits of unprivileged compartments in a
protocol’s implementation will not lead to violations of
these properties. In this section, we present two attacks

Figure 2: Session key disclosure attack against privilege-separated
OpenSSH server.

that violate the confidentiality and integrity of sensitive
user data in two state-of-the-art privilege-separated sys-
tems: one in privilege-separated OpenSSH, and one in a
HiStar-labeled Apache-derived SSL web server.1

3.1 Session Key Disclosure Attack
The partitioning goal stated by the designers of privilege-
separated OpenSSH was to prevent attackers’ executing
code with root privilege. However, as we will see, that
goal is not sufficient to preserve the confidentiality and
integrity of the user’s sensitive data.

In prior work [2], we described an active man-in-
the-middle attack against an SSL-enabled Apache Web
server. This attack, which we term the session key disclo-

sure attack (SKD attack), is also valid against a privilege-
separated OpenSSH server. While in prior work we only
discussed this attack against an SSL implementation, we
now demonstrate that this attack applies against any pro-
tocol in which the two parties share a symmetric secret
key.

In the SKD attack, an active man in the middle com-
promises an unprivileged compartment on the server, dis-
closes the user’s session key, and can then decrypt the
sensitive data transmitted during the session. This attack
succeeds because the unprivileged compartment respon-
sible for key exchange and server authentication can read
the session key shared between the server and client. We
illustrate the SKD attack on Diffie-Hellman (DH) key ex-
change in OpenSSH in Figure 2. Here an unprivileged
compartment processes key exchange messages and in-
vokes a privileged monitor to sign a session ID with
the server’s private key (the privileged monitor is not
shown in the figure). The user-privileged compartment
executes with the authenticated user’s UID and provides
a remotely accessible shell.

The attacker begins by exploiting the server’s unprivi-

50 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 51

leged compartment. He relays all key exchange messages
to and from a legitimate user. The server and user com-
pute a shared session key, which the attacker’s injected
code sends the attacker from the compromised compart-
ment. After user authentication, the user transmits sen-
sitive data encrypted with the compromised session key.
Using the session key, the attacker can reveal the user’s
sensitive data, as well as inject her own commands and
obtain further sensitive information stored on the server.
Moreover, the session key also provides secrecy for user
authentication, so the password of a client using pass-
word authentication will be compromised.

The state-of-the-art, HiStar-labeled SSL web
server [15] aims to safeguard users’ sensitive data
from disclosure to other users. We note with interest
that because the designers of this cryptographic protocol
implementation did not consider the SKD attack when
structuring their code, this server is vulnerable to the
SKD attack in the same way that the privilege-separated
OpenSSH server is. Specifically, the untrusted SSLd

compartment computes a session key for a user’s
connection, but if an active man-in-the-middle attacker
compromises this compartment, she may disclose the
session key.

3.2 Oracle Attack
Next, consider the HiStar-labeled SSL web server shown
in Figure 1. Depending on the key exchange protocol in
use, RSAd signs either the ephemeral RSA key or the
public DH components supplied by the untrusted SSLd

with the server’s permanent private key. This signature
authenticates the server to the client. It is possible, how-
ever, to abuse the signing operation exported by RSAd.
Although a compromised SSLd cannot directly read the
private key, it can sign any data chosen by the attacker;
the attacker controls the SSLd compartment, and can in-
voke RSAd with any arguments she chooses. Thus, the at-
tacker can use a compromised SSLd to produce valid sig-
natures using the server’s identity. This example demon-
strates that simply putting sensitive data beyond direct
reach of untrusted code does not provide sufficient isola-
tion.

We name such attacks against a cryptographic proto-
col’s partitioning oracle attacks. Any trusted compart-
ment or sequence of trusted compartments isolating sen-
sitive data and exporting privileged operations to un-
trusted code can be an oracle. An oracle takes untrusted
input from untrusted code and returns the result of a priv-
ileged operation. An attacker can obtain sensitive infor-
mation by invoking the trusted compartment with ap-
propriately chosen inputs. SSLd is meant only to pass
RSAd an ephemeral key or the DH components for its

own current session for signing. But if an active man-
in-the-middle attacker compromises SSLd, she can sign

arbitrary keys and DH components and present them to
other users, and so impersonate the server.

We have further identified oracle structures in the
“baseline” privilege-separated OpenSSH server [9]. The
trusted monitor process exposes a private key-signing op-
eration to the unprivileged compartment for authentica-
tion of the server during key exchange. The unprivileged
compartment thus has an oracle for the server’s private
key, and an attacker who compromises that compartment
can impersonate the OpenSSH server, just as was de-
scribed for the SSL web server above.

While studying the SSH and SSL/TLS protocols, we
identified further oracle attacks. Digital signatures suf-
fer not only from signing oracles, but also verification
oracles, in which an attacker can force successful signa-
ture verification by supplying chosen inputs to a trusted
compartment performing this privileged operation. There
also exists an oracle where an attacker forces a set of
trusted compartments generating a session key to pro-
duce the same key used in a past user’s session; we name
this oracle a deterministic session key oracle. Forcing
reuse of a session key allows an attacker to replay mes-
sages from a past session. (This particular threat exists in
SSL’s RSA key exchange protocol.) Finally, encryption

and decryption oracles may allow an attacker to encrypt
arbitrary data and decrypt confidential messages.

3.3 Discussion
The SKD and oracle attacks are independent of the low-
level system primitive used to limit privilege; they appear
equally in applications built with privilege separation and
DIFC. These attacks are made possible by weakly struc-

tured cryptographic protocol implementations. The im-
plementation of a cryptographic protocol should guaran-
tee the same properties provided in the middle of the net-
work: data confidentiality, data integrity, and robust au-
thentication of the peers, even if untrusted compartments
in its implementation are compromised. Avoiding SKD
and oracle attacks requires subtle structuring of the im-
plementation of a cryptographic protocol.

The SKD and oracle attacks target building blocks of
cryptographic protocols. Risk of an SKD attack exists in
many cases where a session key and key exchange pro-
tocol are used. Similarly, oracle attacks are associated
with basic cryptographic operations such as encryption,
decryption, signing, signature verification, message au-
thentication, &c.

We next propose guiding principles for defense against
SKD and oracle attacks. Just as these attacks arise in
building blocks for cryptographic protocols, these prin-
ciples concern how to implement these building blocks
safely. We thus believe both the attacks and defenses ap-
ply to many cryptographic protocols.2

4 Principles for Partitioning
In this section, we define principles to guide the pro-
grammer when partitioning an implementation of a cryp-
tographic protocol into reduced-privilege compartments.
These principles allow preserving the key end-to-end se-
curity properties of the protocol, even when untrusted
compartments are compromised. Our principles are ag-
nostic to the underlying privilege-enforcement mecha-
nism. Thus, they may be applied in DIFC-based systems,
in privilege-separated systems based on Linux processes,
and in other systems. They apply both to the client and
server sides of cryptographic protocols.

Throughout, we assume that an attacker can compro-
mise untrusted code and execute arbitrary code in its
compartment, though only with the privileges allowed in
that compartment. In this threat model, if an untrusted
compartment acquires sensitive information or an at-
tacker compromises a privileged compartment, we pre-
sume she obtains sensitive information.

4.1 Two-Barrier, Three-Stage Partitioning
A cryptographic protocol typically shares a symmetric
secret key between two communicating parties, used to
compute message authentication codes (MACs) and to
encrypt data. A key exchange protocol confidentially
shares this symmetric key. In addition, in some applica-
tions, the cryptographic protocol must authenticate peers
to each other. Any authentication method that does not
rely on transferring sensitive data, such as public key
authentication, may be performed during the key ex-
change protocol, before a session-key-encrypted chan-
nel has been established. The SSL/TLS protocol fits this
model [4]. In contrast, password-based authentication,
e.g., as supported by SSH [13], sends sensitive data over
the network, and must therefore only authenticate after
the session-key-MACed and -encrypted channel has been
established. After authentication, an application is as-
sured of the remote principal’s identity, and can grant the
remote principal access to locally stored sensitive data.

We distinguish two attack models. The first is that of
the SKD attack described in Section 3.1, where a man-
in-the-middle attacker exploits a vulnerability in a client
or server application to obtain the peers’ session key. The
second attack model is that of an impersonation attack,

where an attacker exploits an endpoint and subverts au-
thentication in order to impersonate one of the peers.

In order to prevent these attacks, a partitioned applica-
tion should implement structures that we term a session

key barrier and a user privilege barrier. These divide
an application into three stages, as shown in Figure 3.
The first such stage, the session key negotiation stage,
performs the key exchange protocol. The second stage,
the pre-authenticated stage, conducts peer authentica-

Figure 3: Barriers and stages in protocol partitioning.

tion. Finally, the post-authenticated stage processes user
requests. Within each stage, one untrusted compartment
handles network input and executes without privileges to
read or write sensitive data, while multiple trusted com-
partments execute with privilege to access sensitive data.
These trusted compartments export any necessary privi-
leged operations to the untrusted compartment.

Session Key Barrier The session key barrier denotes
the killing of the untrusted compartment that completes
session key negotiation and the subsequent spawning of a
new untrusted compartment (in Linux, a process) to con-
tinue execution in the pre-authenticated stage. We now
explain why this structure is necessary.

The untrusted compartment performing session key
negotiation (before the session key barrier) is the only
untrusted compartment in the partitioning of the crypto-
graphic protocol implementation that processes cleartext,
unauthenticated messages from the network. These mes-
sages (and exploits!) may arrive from an SKD attacker.
Thus, while the untrusted compartment in the session key
negotiation stage interacts with the remote peer to com-
pute the session key, it should not have read access to
the session key. In addition, any data that allows deriving

the session key, such as a private Diffie-Hellman compo-
nent (in the case of Diffie-Hellman key exchange) or a
pre-master secret (in the case of RSA-based session key
establishment in SSL) should be also considered sensi-
tive. All access to privileged operations with such data
should be provided via trusted compartments.

Because this compartment only processes messages in
cleartext, it does not in fact need read access to the ses-
sion key; only the next stage, the pre-authenticated stage,
which continues execution after the channel between the
two peers is MAC’ed and encrypted with the session key,
needs the session key.

Principle 1: A network-facing compartment perform-
ing session key negotiation should not have access to
a session key, nor any data that allows deriving the
session key.

Because the untrusted compartment performing ses-
sion key negotiation may be exploited, we cannot trust
the provenance of the code executing in that compart-
ment at the end of session key negotiation, and rather
than allowing that compartment to continue execution in

52 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 53

the pre-authenticated stage, where it would have access
to the session key, we kill it (i.e., kill the Linux process).

But why can’t an SKD attacker exploit the untrusted
compartment in the pre-authenticated stage? This com-
partment only processes input that is MAC’ed using the
now available session key. A would-be SKD attacker
cannot inject messages with a valid MAC into the chan-
nel, and so is precluded from exploiting this compart-
ment. We assume here that the MAC computation func-
tion itself, which processes network input, can be audited
and trusted not to be exploited.

Thus, both the MAC on the channel and the killing of
the untrusted compartment in which session key negoti-
ation has completed effectively erect a barrier between
any SKD attacker and the session key.

Principle 2: When enabling the MAC, a network-
facing compartment performing session key negotia-
tion should be killed, and a new one created with priv-
ilege to access the session key.

Principle 3: After enabling the MAC, there should be
no unMAC’ed messages processed by the untrusted
compartment.

Note that the “original” privilege-separated OpenSSH
server does in fact destroy the unprivileged compartment
after user authentication, but we require this be done
after key exchange. The “original” OpenSSH destroys
the compartment not for SKD attack-resistance reasons,
but because of a programming difficulty. In this imple-
mentation, the unprivileged compartment runs as user ID
nobody, but must change its user ID to that of the au-
thenticated user. Changing a process’s user ID requires
root privilege; therefore, the monitor kills the compart-
ment and creates a new one with the required user ID.

Transitioning to the pre-authenticated stage may re-
quire transferring state from the unprivileged compart-
ment of the session key negotiation stage to the unpriv-
ileged compartment of the pre-authenticated stage. As
this state comes from a compartment that may be con-
trolled by an SKD attacker, the pre-authentication stage
should validate this state’s sanity to prevent an SKD
attacker from passing bad state in an attempt to com-
promise the pre-authenticated stage. The same problem
arises when a privileged compartment accepts arguments
to a privileged operation from an untrusted compartment;
these arguments should also be verified to prevent com-
promise of the privileged compartment.

Principle 4: Any state exported from a compartment
performing session key negotiation and any untrusted
arguments passed to privileged compartments should
be validated.

We do not offer general techniques for verification of

untrusted state and arguments. However, in our parti-
tioning of protocol implementations, we employ pipes
for inter-process communication. Although marshaling,
unmarshaling, and data copies cost in performance, this
mechanism provides a recipient with an RPC-like expec-
tation of the format of the data it receives. These RPC-
like semantics ease state and argument verification.

The session key barrier is enforced when an appli-
cation switches permanently from communicating with
cleartext messages to MAC’ed messages. Some proto-
cols, such as SSL, however, can alternate between these
two types of messages. In such cases, the transition be-
tween the two stages should be performed after the last
cleartext message. However, doing so would require pro-
cessing messages MAC’ed and encrypted with the ses-
sion key during the session key negotiation stage, which
risks creating session key oracles! We address this prob-
lem with Principle 7.

Principle 5: A cryptographic protocol should not al-
ternate between cleartext messages and MAC’ed mes-
sages.

User Privilege Barrier The user privilege barrier rep-
resents any authentication method that can be used to
authenticate a peer before granting it privilege to ac-
cess sensitive information owned by a particular user.
This barrier prevents impersonation attacks, where an at-
tacker exploits an application to subvert its authentica-
tion mechanism. Authentication should be performed by
an unprivileged compartment that has no access to sensi-
tive user data. The pre-authenticated stage is protected by
the session key barrier, so this stage is not exposed to any
SKD attacker. However, it is crucial for the integrity of
the session key barrier that there be no unMAC’ed mes-
sages processed during the pre-authenticated and post-
authenticated stages. Without the SKD threat, the ses-
sion key is no longer sensitive information in the pre-
authentication stage, and it can be accessed directly by
unprivileged code. We allow the impersonator to access
the session key at this point because it is his own key and
does not correspond to any other user’s session. Success-
ful authentication transitions the application into the next
stage, the post-authenticated stage.

Today’s state-of-the-art privilege-reduced applications
implement the user privilege barrier as we require. How-
ever, monolithic, full-privilege applications perform au-
thentication in a privileged compartment. The privilege-
separated OpenSSH server performs user authentication
in an unprivileged compartment, and then the monitor
creates a new compartment with the user ID and group
ID of the authenticated user. The HiStar-labeled SSL
web server supports only password authentication, and
the unprivileged httpd daemon obtains ownership of the

user’s labels only after the user successfully authenti-
cates with an authentication daemon.

Some protocols authenticate peers without sending
confidential data, such as passwords. For example, the
SSL protocol’s handshake supports only public key au-
thentication methods. Such authentication techniques
can be merged with the key exchange protocol or per-
formed in cleartext after it. Thus, the user privilege bar-
rier can be established within the session key negotia-
tion stage omitting the pre-authenticated stage. This op-
timization is encouraged, as it reduces the number of
stages and compartments, and thus increases the perfor-
mance of a privilege-separated application.

Authentication that requires passing sensitive data en-
crypted with the session key cannot be performed dur-
ing the session key negotiation stage. If it were, the ses-
sion key negotiation stage would require a trusted com-
partment to decrypt sensitive data, and that compart-
ment would result in a session key oracle that could
be used to decrypt the user’s sensitive data. Moreover,
other trusted compartments would be needed to process
authentication-related sensitive data, because we cannot
allow untrusted code to operate with confidential data.

The post-authenticated stage executes in a compart-
ment with the authenticated user’s privilege; it acts
for the authenticated user and can access his data.
When we transition from the pre-authenticated to post-
authenticated stage, we need not kill the former, as it can-
not be exploited, given the MAC’ed channel precludes
SKD attacks and the authentication barrier prevents im-
personation attacks. Instead, we can change the privilege
of the compartment used in the pre-authenticated stage
to that of the authenticated user, and continue execution
with the code for the post-authentication stage.

We note that for some applications, the post-
authenticated stage may require further privilege sep-
aration. For example, an application may require ac-
cess to a centralized database where sensitive data be-
longing to many users is stored. In this case, the user-
authenticated compartment should be denied direct ac-
cess to the database, but a trusted compartment should
export access to the database. This privilege separation,
reminiscent of techniques explored in OKWS [5], pre-
vents a user from accessing other users’ sensitive data.

4.2 Oracle Prevention Techniques
In the previous section, we described how to implement
cryptographic protocols so as to thwart SKD and imper-
sonation attacks. Throughout the suggested implementa-
tion structure there is sensitive data accessible only by
trusted compartments, which in turn export privileged
operations to unprivileged compartments. As discussed
in Section 3.2, in all such situations, there is a risk of
granting an attacker an oracle for sensitive information.

For example, the session key negotiation stage de-
pends on confidential session key sharing. An SKD at-
tacker can use a trusted compartment as a decryption or-
acle to obtain a secret component of a session key. An im-
personator may replay authentication data from another
connection as an input to an authentication oracle and
pass authentication as a legitimate user. Clearly, we need
techniques to mitigate any oracles in these stages.

Entangle Output Strongly with Per-Session Known-
Random Input Network protocols employ random-
ness generated afresh for every session to defeat authenti-
cation replay attacks, where an attacker replays messages
eavesdropped from a user session to reestablish the past
session and repeat a user’s past requests. The server gen-
erates a random nonce incorporated into the session key
(in the case of RSA key exchange) or a fresh private DH
component (for DH key exchange) to make the session
key different for every session. We can similarly employ
this session randomness as a defense to counter oracles.

The output of a trusted compartment should not com-
pletely depend on untrusted input, so that an attacker will
not be able to replay past input to the compartment and
get the same deterministic result. Entangling the output
of a privileged compartment with a trusted per-session
random nonce solves this problem.

For example, Figure 4 demonstrates an approach
to preventing a signing oracle in a privilege-separated
OpenSSH server. We restrict the trusted monitor that im-
plements signing with the private key to sign only ses-
sion IDs that incorporate per-session random bits. A se-
quence of privileged operations performed by the trusted
compartment ensures that the server’s private DH com-
ponent is indeed included in the session ID. This way,
we entangle the output of the RSA signing compart-
ment/operation with trusted, per-session, known-random
input. Numbers within trusted compartments in Figure 4
specify the order of their invocation, and this order
should be enforced by the application.

With this oracle defense mechanism, the attacker can-
not mount an impersonation attack, as every signed
session ID will incorporate different randomness con-
tributed by the server, and will thus not be valid in the
context of any other session. Similarly, in order to pre-
vent deterministic session key oracles, we make sure that
the compartment generating the keys includes random-
ness generated afresh for every session. Moreover, per-
session randomness is crucial in prevention of signature
verification oracles; the data for signature verification
should also incorporate it.

Principle 6: To prevent oracles, entangle output
strongly with per-session, known-random input.

In RSA key exchange in the SSL/TLS protocol, there

54 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 55

Figure 4: Prevention of private key oracle in OpenSSH server by en-
tangling output with per-session known-random input.

is the potential for a deterministic session key oracle at-
tack, where an attacker can produce a deterministic ses-
sion key by supplying chosen inputs to a privileged com-
partment generating the key. In particular, a session key
consists of two public components, per-session server
and client randoms, and a pre-master secret transmitted
encrypted in the server’s public key [4]. When generat-
ing the session key, these components are concatenated
together and hashed. The server decrypts the pre-master
secret using its private key before hashing it together with
the other components. If an attacker controls the server
random, client random, and encrypted pre-master secret
inputs to the session key generation function, he can feed
data eavesdropped from a user session to the privileged
compartment generating the session key and produce the
key that corresponds to the eavesdropped session. We
prevent deterministic session key oracles by ensuring
that every server-computed session key includes a trusted
server nonce produced and supplied to the compartment
generating the session key by a trusted source. This way,
an attacker cannot control the generated session key, as
each time it incorporates a different random nonce.

Obfuscate Untrusted Input by Hashing The SSL
protocol alternates cleartext change cipher spec mes-
sages with authenticated and encrypted finished mes-
sages [4]. A change cipher spec message signals that the
sender is about to enable encryption and authentication
on all subsequent messages. A finished message contains
a MAC’ed and encrypted hash of all previous cleartext
messages received by a peer during the handshake pro-
tocol. The finished message ensures that these cleartext
messages were not tampered with by an attacker.

To ensure that the session key barrier is enforced,
we cannot process cleartext messages in the pre-
authenticated stage. Instead we should process the fin-

ished messages within the session key negotiation stage.
However, doing so requires a trusted compartment that
performs session key encryption and decryption opera-
tions on behalf of untrusted code. This trusted compart-
ment is a session key encryption/decryption oracle which

can be used to decrypt user information and validly en-
crypt an attacker’s exploits or requests.

Our oracle mitigation technique provides the required
privileged operations (encryption and decryption with a
session key) and avoids a session key oracle by obfuscat-
ing input data through hashing. As the finished message
is an encrypted hash, a trusted compartment can be struc-
tured in the following way: it obtains data from an un-
trusted compartment, hashes the data, and then encrypts
the resulting hash. A privileged operation that hashes
data and then encrypts is not useful for an attacker, as the
attacker’s requests and exploits for the pre-authenticated
and post-authenticated stages will be viewed as hashes.

As for the decryption oracle, we do not return the
cleartext finished message to untrusted code. Instead, our
trusted compartment takes the verification data from an
untrusted compartment and performs verification of the
finished message itself. The result of this verification is
returned to the untrusted compartment. However, this
mechanism allows dictionary attacks, where an attacker
can guess the cleartext message by supplying the verifi-
cation data. Again, obfuscating the untrusted validation
data by hashing before comparing it with the cleartext
finished message solves this problem. This approach fits
the protocol because the finished message happens to be
a hash of all previous handshake messages. If an attacker
attempts to guess the cleartext requests, his guess will be
hashed first, then compared with the original message.

The hashing that we apply to prevent both oracles al-
ready is present in the SSL handshake. But the hand-
shake and our oracle mitigation technique use it for dif-
ferent reasons. The handshake requires the compression
and collision-resistance of a hash function, but our tech-
nique employs the hash function because of its non-
invertibility. Happily for us, the hash function provides
all the mentioned properties and does double duty.

Principle 7: To prevent oracles, obfuscate untrusted
input by hashing.

Last Resort: More Trusted Code The previous oracle
mitigation techniques require the availability of a random
nonce or a hash function. However, for those cases in
which a cryptographic protocol does not specify these
functions at a point in the protocol where there is the risk
of an oracle, we offer a last resort technique.

For an oracle to exist, a result of a privileged oper-
ation must return to an unprivileged compartment. It is
possible to avoid the oracle by making the output privi-
leged and restricting access to it in the unprivileged code.
Although this technique helps, it is not efficient, as a
new trusted compartment is required to process the re-
sult, and you may need to process the result of the new
compartment in the same way. Our last resort technique

may lead to a chain of trusted compartments, which in-
creases the trusted code base and requires more auditing
work. Moreover, to terminate this chain, there must be a
suitable condition for applying one of the previous oracle
mitigation techniques, or the last trusted compartment in
the chain must not produce any output.

Principle 8: To prevent oracles, as a last resort, add
more trusted code.

4.3 Degrees of Sensitivity
Cryptographic protocols often operate on sensitive data
of more than one class. As an example, one frequently
occurring class of sensitive data is that which must be
kept secret to ensure secrecy and integrity of data trans-
ferred within a single session, e.g., the pre-master secret
in RSA key exchange, the private DH component in DH
key exchange, the session key, the per-session ephemeral
RSA private key, &c. Disclosure of such sensitive data
results in violation of the secrecy and/or integrity of sen-
sitive data within a single session. Yet there is often an-
other class of even more sensitive data that must remain
secret in order to preserve the secrecy of user data in
many sessions. This class includes a server’s private key,
users’ private keys, and passwords that are reused on
many servers. The secrecy of such data is vital because
an attacker can use it to gain access to user data in mul-
tiple sessions by impersonating the server, or by using
users’ passwords to access many servers.

In a simple scenario like this one involving two classes
of sensitive data—that which is critical to one session’s
secrecy vs. that which is critical to ensuring many ses-
sions’ secrecy—mixing sensitive data of both classes and
code to manipulate data of both classes in the same com-
partment incurs warrantless risk. To see why, let’s devi-
ate from our threat model and assume that an attacker
can compromise trusted compartments. Now any vulner-
ability in code that manipulates sensitive data pertaining
to one session’s secrecy can disclose sensitive data that
could compromise secrecy of all sessions. Creating dis-
tinct compartments for data of differing degrees of sen-
sitivity (and the code that manipulates it) mitigates this
risk. Similarly, to prevent disclosure of one user’s data to
another, separate compartments should manage sensitive
session-related key data for each user.

Principle 9: A privilege-separated application should
manage a session with two separate privileged
compartments—one to operate with data related to se-
crecy of the current session, and one to manage data
that preserves secrecy of many sessions.

Isolating code and data in distinct compartments ac-
cording to their sensitivity often reduces trusted code

base size; the quantity of code with privilege with respect
to one piece of data decreases.

5 Hardened SSH Protocol Implementation
We now demonstrate these principles for preventing
SKD and oracle attacks by finely privilege-separating the
implementations of the client and server sides of the SSH
protocol.

Recent privilege separation and DIFC work focuses on
server applications, as they accept connections and can
thus be attacked at will. But the rise of web browser ex-
ploits demonstrates that client code is equally at risk. An
attacker can set up a public service and provide access
to it via SSH. By exploiting vulnerabilities in the SSH
client implementation, the attacker can obtain users’ pri-
vate keys, used to authenticate them to other legitimate
SSH servers. These keys allow the attacker to obtain or
tamper with the user’s sensitive information stored at
these other SSH servers. Moreover, as the SKD attack is
equally valid on both sides, server and client, protection
against it is equally needed on the two sides.

Throughout this paper, the baseline OpenSSH server
design we refer to is that of Provos et al. [9]. While this
OpenSSH server implements privilege separation, it al-
lows unprivileged code access to the session key (contra-
vening Principles 1 and 2) and to sign a session ID pro-
vided by unprivileged code (contravening Principle 6),
and thus is vulnerable to SKD and oracle attacks. We
show how to partition the server more finely to prevent
these attacks. But first, we focus on the OpenSSH client,
which to date has only existed in monolithic form, and is
thus also vulnerable to both attacks.

5.1 Hardened OpenSSH Client
The OpenSSH client runs under the invoking user’s user
and group IDs. Because changing the user ID to nobody
and invoking the chroot system call require root
privilege, they cannot be used here. Instead, we limit
the privilege of the trusted and untrusted compartments
of the OpenSSH client with SELinux policies [7], and
the SELinux type enforcement mechanism in particular.
SELinux policies allow us to restrict untrusted processes
from issuing unwanted system calls such as ptrace,
open, connect, &c.

3 Our prototype supports only
password and public key authentication, and does not yet
implement advanced SSH functionality (tunneling, X11
forwarding, or support for authentication agents).

Our hardened OpenSSH client starts in the ssh t do-
main, defined as a standard policy in the SELinux pack-
age for the original monolithic SSH client. This policy
provides the union of all privileges required by all code
in the SSH client; i.e., an application in the ssh t do-
main may open SSH configuration files, access files in
the /tmp directory, connect to a server using a network

56 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 57

Figure 5: Architecture of privilege-separated OpenSSH client. Shaded
ovals denote privileged compartments. Unshaded ovals denote unpriv-
ileged compartments. The last line in each oval denotes the SELinux
policy enforced.

Session monitor
1) DH priv key = gen DH priv key()
2) DH pub key = comp DH pub key(DH priv key)
3) sess key = comp sess key(DH priv key,

srvr DH pub key)
4) sess IDi = comp sess ID(sess key, clnt version,

srvr version, clnt kexinit, srvr kexinit, ...)
5) sym keys = derive sym keys(sess IDi, sess key)
6) srvr pub keyi = verify srvr pub key(srvr pub key,

known hosts file)
7) verify sig(sess IDi, srvr pub keyi, sig)
Private key monitor
1) sig = priv key sign(priv key, sess IDi, user name,

service, auth mode, ...)

Figure 6: Privileged operations performed by the two client monitors.
Sensitive data appear in bold, and are accessible only by the monitor
compartment in which they appear. Untrusted parameters provided by
unprivileged compartments are not in bold. xi denotes that sensitive
data x is exported to an unprivileged compartment read-only.

socket, create a pseudo-terminal device, &c. We use this
domain to initialize the client application and connect to
the requested SSH server. At this point, the client has
not yet processed any data from the server. Before ex-
changing any SSH protocol messages, the client creates
two new processes (compartments): a privileged session

monitor that performs privileged operations on sensitive
data that can compromise only a single SSH session,
and a private key monitor that performs authentication
operations with the client’s private keys. This ensemble
of three compartments (represented by ovals) appears in
Figure 5. The use of two distinct monitors is motivated
by Principle 9.

The session monitor runs in the ssh monitor t domain,
a domain we have defined that confines the process to
access only the known hosts file; to read/write UNIX
sockets for communicating with the private key monitor
and an unprivileged process running untrusted code (de-
scribed below); and to read/write a terminal device. The

session monitor cannot create or access any files apart
from known hosts, nor may it create new sockets. The
private key monitor runs in the ssh pkey t domain, a do-
main we have defined with a similarly tight policy, al-
lowing it only to read the user’s private key(s), with no
access to other files, nor privilege to create any sockets.
The private key monitor shares a UNIX socket with the
session monitor and only accepts requests from the latter.
After creating these two monitor processes, the original
SSH client process drops privilege to the ssh nobody t

domain. Untrusted code runs in this unprivileged process
and domain during the rest of the SSH client’s execu-
tion. The ssh nobody t domain allows the unprivileged
process to communicate with the session monitor and re-
mote server via previously opened sockets, but prevents
it from opening any new ones. The ssh nobody t domain
further denies all access to the file system, allowing the
unprivileged process access to the terminal device only.

The session monitor compartment isolates all sensi-
tive data that can be used to compromise the current re-
mote login session, and performs all privileged opera-
tions with these data, enumerated in Figure 6, that are es-
sential for key exchange and prevention of a private-key
oracle. When a privileged operation takes non-sensitive
data as input, the non-sensitive input is supplied by the
unprivileged compartment. Symmetric keys (sym keys)
are the keys derived from the session key for the MAC
and encryption/decryption. The session monitor enforces
the order in which an untrusted compartment may invoke
its privileged operations.

The private key monitor isolates the client’s private
key and performs signing operations with the key. Only
the session monitor may invoke these signing operations
in the private key monitor (over a UNIX-domain socket),
and it provides the session ID to be signed as an argu-
ment. We give a more detailed explanation of the private
key signing operation at the end of this section.

Session Key Negotiation Stage We now consider the
first stage of the hardened OpenSSH client, the session
key negotiation (SKN) stage, designed to thwart SKD at-
tacks (described in Section 3.1). In the SKN stage, an
unprivileged compartment—with the help of the session
monitor—performs Diffie-Hellman key exchange to ne-
gotiate a session key and authenticate the server. In ac-
cordance with Principle 1, we restrict the SKN stage
to run in an unprivileged compartment that cannot ac-
cess sensitive data—not the DH private key, nor the ses-
sion key, nor the symmetric keys (as shown in Figure 6).
Keeping the session key secret (and thus thwarting an
SKD attack) requires in turn keeping this data secret.

We must also prevent a verification oracle attack

against the client at this point in the handshake. Suppose
the attacker wants to impersonate a server to the client,

and can trick the client into connecting to a server he
controls, instead of to the bona fide server intended by
the client. Suppose further that the attacker exploits the
client. To authenticate the server, the client must verify
the server’s public key against the list of trusted public
keys in the known hosts file, and then validate the
server’s signature on the session ID. Once the attacker
exploits the client, if the exploited compartment of the
client implementation allows invocation of signature ver-
ification operation with the session ID or server’s public
key provided by this compartment then the attacker may
be able to force signature verification to succeed, and
thus spoof the bona fide server to the client. To see why,
note the arguments to the signature verification routine
verify sig() in the session monitor in Figure 6. If the at-
tacker controls the values of the signature argument and
either the session ID argument or the server public key
argument, he can provide inputs that will cause the signa-
ture to verify. That is, he can either sign a benign sess ID
with his own private key and supply his own correspond-
ing srvr pub key, or supply a bogus sess ID signed by
the bona fide server (readily obtained from the attacker’s
own connection to the bona fide server), along with the
bona fide server’s true srvr pub key.

To prevent this verification oracle, we must not al-
low an unprivileged compartment (at risk for exploit)
to provide either srvr pub key or sess ID to verify sig().
We thus perform signature verification in the session
monitor, and isolate sess ID and srvr pub key within
the monitor. In actuality, the untrusted compartment
provides srvr pub key to the session monitor, but the
session monitor validates it against the contents of
the known hosts file before verifying the signature.
Note that sess ID is entangled with trusted random bits
generated by the client every new session, originat-
ing from the client’s DH priv key via comp sess key()
and comp sess ID(). This construction, specified by the
OpenSSH protocol, implicitly applies Principle 6, which
further prevents an attacker from forcing sess ID to
match that from a past eavesdropped session.

We now turn our attention to the next steps taken by
the client. In the OpenSSH protocol, session key nego-
tiation and server authentication, which establishes the
user privilege barrier, are intertwined. Therefore, our par-
titioning of OpenSSH needs no distinct pre-authenticated
stage, and the SKN stage proceeds immediately to the
post-authenticated stage.

Post-authenticated Stage After computing symmet-
ric keys and authenticating the server, the client kills
the untrusted compartment from the SKN stage and cre-
ates a new untrusted compartment, also confined to the
ssh nobody t domain, to execute operations in the post-
authenticated stage. This new compartment is granted ac-

cess to the session’s symmetric keys so that it can per-
form encryption and decryption operations. It may in-
voke privileged operations in the session monitor, and
the session monitor can invoke privileged operations on
the client’s private keys by the private key monitor. To do
so, the private key monitor executes with the privilege to
read private key files.

In the post-authenticated stage, the server authenti-
cates the client. Our prototype supports password and
public key authentication. Password authentication does
not require any further partitioning of the client to pro-
tect against a malicious server, as the SSH protocol re-
quires that the client sends the password to the server.
However, we can apply fine-grained privilege separation
to deny the server access to the client’s private key(s).
There is no need for the untrusted compartment to have
direct access to the keys, and if it does, a malicious server
that the user logs in may exploit the client and obtain its
private keys, and thus obtain sensitive information from
other SSH servers where the user authenticates himself
using the same private keys. Therefore, we isolate the
client private keys from the post-authentication stage’s
untrusted compartment by placing them in a privileged
private key monitor. To prevent a private key signing or-
acle in the client, we do not allow the untrusted compart-
ment to directly invoke signing data of its own choice
using the private key. The untrusted compartment passes
untrusted input (user name, service name, authentication
mode, &c.) via the session key monitor. Note that we rely
on session key monitor to supply the trusted session ID
computed earlier in the key exchange protocol to the pri-
vate key monitor as shown in Figure 6. Recall that the
session ID has been entangled with trusted random bits
generated by the client for the current session. Thus, the
signature produced by the private key monitor will not
be valid in any session but the current one, and a private
key oracle has been disseminated.

To support session key rekeying, the unprivileged pro-
cess is permitted to invoke privileged rekeying operations
implemented by the session monitor.

5.2 Hardened OpenSSH Server
In accordance with Principle 9, we extend the baseline
privilege-separated OpenSSH server with an extra ses-
sion monitor process that handles sensitive data related
to a single user’s session while preventing an SKD at-
tack and both private key signing and signature verifi-
cation oracles, as shown in Figure 7. The private key
monitor is the original monitor process from the baseline
privileged-separated OpenSSH server, which performs
operations that require root privilege.

The session monitor, the unprivileged SKN process,
and the unprivileged process of the pre-authentication
stage all run in a chrooted environment with an unused

58 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 59

Figure 7: Architecture of hardened OpenSSH server.

UID, under a restrictive SELinux policy that allows only
the system calls implied in Figure 7, and prohibits all
others, including dangerous ones such as ptrace and
connect. The process for the post-authenticated stage
runs with the UID of the authenticated user and is not
restricted with any SELinux policy, as with the baseline
OpenSSH server.

Session Key Negotiation Stage The session monitor
implements the privileged operations required for the
SKN stage, and we ensure that the pre-authenticated
stage does not start unless the unprivileged compartment
of the SKN stage terminates (in accordance with Princi-
ple 2). Because the Diffie-Hellman key exchange proto-
col is symmetric between the server and client, we im-
plement operations 1–5 from Figure 6 in the server’s ses-
sion monitor just as in the client’s. The SKD attack is
an equally serious threat for client and server; as both
parties share the same session key, an SKD attacker can
compromise either party’s code to disclose it.

During the SKN stage, the server authenticates itself
to the client by signing a session ID. The monitor in the
baseline privilege-separated OpenSSH server signs any
data supplied by the untrusted compartment, thus allow-
ing an oracle attack. A man-in-the-middle attacker can
interpose himself between a client and a bona fide server
and employ a signing oracle on the server to impersonate
the server by producing valid signatures on session IDs
corresponding to the attacker’s session with the client.
We prevent such attacks by constraining the private key
monitor to sign only data provided by the trusted session
monitor—specifically, the current session ID entangled
with trusted random bits provided by the server, as shown
in Figure 4, as suggested by Principle 6. The server’s ses-
sion monitor produces this sess ID in operation 4 in Fig-
ure 6, just as the client’s does. This signed sess ID can-
not be used to impersonate the server as it is only valid
within the current session. To perform the signing opera-

tion, the session monitor calls into the privileged private
key monitor and supplies the required trusted sess ID to
sign.

Pre-authenticated and Post-authenticated Stages
The baseline privilege-separated OpenSSH server sepa-
rates the pre-authenticated and post-authenticated stages.
It performs user authentication operations such as pass-
word verification and signature validation (in public key
authentication) in the monitor. However, this architec-
ture allows an SKD attacker to compromise the password
during password authentication, as it is encrypted with
the session key obtainable by the attacker. During public
key authentication, the untrusted compartment supplies
the data used for user signature verification, again allow-
ing oracle attacks against user authentication. The mon-
itor validates the signature against the session ID sup-
plied earlier when the untrusted compartment requested
the server’s signature on this session ID. Thus the un-
trusted compartment can control the session ID used in
public key authentication of the user. In order for an at-
tacker to impersonate the client, she must provide some
session ID signed by the client for the server’s verifica-
tion operation. It is unlikely that the attacker can force a
user to sign arbitrary data with his private key. However,
an SKD attacker can compromise the user’s session and
log its session ID and signature pair. She can then replay
these data to the server’s signature verification compart-
ment. Because the server’s signature verification routine
does not check whether the provided session ID is valid
within the current session, the verification routine will re-
port that the client has authenticated successfully. In this
way, the attacker successfully impersonates the user.

In our implementation, we fix this problem by making
sure that the session ID used for signature verification is
produced by the session monitor, as done in operation 4
in Figure 6, and entangled with trusted random bits pro-
vided by the server. Our SKN stage also ensures the se-
crecy of user passwords by thwarting SKD attacks.

Discussion: Trusted Code Base Figure 8 compares
the trusted code bases of Provos et al.’s baseline
privilege-separated OpenSSH server and our hardened
OpenSSH server. The latter implements two monitors,
in accordance with Principle 9, and as described in Fig-
ure 7: one private key monitor that implements code re-
quired for user authentication and accessing the server’s
private key, and one session key monitor that contains
the privileged code for processing the sensitive state for
a user’s session. Consider operations 1–5 in Figure 6,
which are essential to protection against SKD and oracle
attacks. In our partitioning, the session monitor imple-
ments these five operations, while in baseline OpenSSH,
the untrusted compartment implements them.

Figure 8: Relationship between privileged (shaded) and unprivileged
(unshaded) code in baseline and hardened OpenSSH server implemen-
tations.

At first glance, one might remark that our partitioning
therefore incorporates more privileged code than base-
line OpenSSH. But that assessment is flawed. Rather, the
sensitive state pertaining to a user’s session was incor-
rectly deemed non-sensitive data in baseline OpenSSH.
Hence, we show baseline OpenSSH’s untrusted pro-
cess as shaded—notation for privileged—because it is
already (albeit inappropriately) privileged to manipu-
late sensitive per-session data. Following the partitioning
principles we have offered leads to the correct treatment
of this data as sensitive, the creation of a new privileged
compartment that can exclusively manipulate this data
(the session monitor), and the reduction of privilege for
all remaining code from baseline OpenSSH’s untrusted
process (denoted in the figure as “unprivileged code”)!

6 Hardened OpenSSL Library
Toward demonstrating the generality of the partitioning
principles presented in Section 4, we have also applied
them to the SSLv3 and TLSv1 cryptographic protocol
implementations in the OpenSSL library. As partition-
ing in accordance with these principles requires a fair
amount of programmer effort, we found the OpenSSL
library a particularly attractive target; hardening the
library allows amortizing one partitioning effort over
a broad range of security-conscious applications. The
resulting hardened OpenSSL library is a drop-in re-
placement that renders any SSL/TLS application linked
against it immune to SKD and oracle attacks. We note,
however, that changing the library alone cannot ensure
that the application atop the library itself handles sensi-
tive data securely. For example, the Apache web server
reuses worker processes across requests submitted by
different users. If an attacker exploits a worker process,
he may be able to obtain sensitive data belonging to the
next user whose request is handled by that process.

We finely partition both the client and server
sides of OpenSSL. Our implementation supports RSA,
ephemeral RSA, Diffie-Hellman, and ephemeral Diffie-

Hellman key exchange, client and server authentication,
and session caching. The OpenSSL partitioning is in fact
similar in structure to that of SSH, as these protocols
protect against similar threat models. When an applica-
tion invokes SSL accept (on the server) or SSL connect
(on the client), we instantiate private key monitor, session
key monitor, and unprivileged SKN compartments. Our
implementation scrubs the server’s private key from the
session key monitor process and the unprivileged SKN
compartment before reading any input from the network.
Within the SKN stage, we apply the same principles and
mechanisms as we did to OpenSSH to prevent SKD and
oracle attacks. As SSL/TLS supports only public key au-
thentication, its partitioning omits the pre-authentication
stage. We apply simple SELinux policies (whose details
we elide in the interest of brevity) to limit the privilege of
the untrusted SKN compartment and the session monitor
in applications that do not run as root. When the SKN
stage completes, the unprivileged compartment and ses-
sion monitor are terminated, and execution continues in
the application’s fully privileged compartment. The pri-
vate key monitor preserves the privileges of the appli-
cation before entering the SSL accept and SSL connect
library calls. Therefore, this compartment continues exe-
cution of the application’s code and can use the symmet-
ric key computed during the SSL handshake to perform
MAC and encryption/decryption operations on the estab-
lished SSL/TLS session.

We have tested this hardened OpenSSL library with
a number of client-side and server-side applications,
including the server and client sides of stunnel, the
mutt and mailx mail agents (for IMAP and POP3 over
SSL/TLS), the dovecot IMAP and POP3 server, the
client and server sides of the sendmail mail transfer agent
(for SMTP over SSL/TLS), and the Apache HTTPS
server (versions 1.3.19 and 2.2.14).

Converting most of these applications was straight-
forward; it merely required replacing the OpenSSL li-
brary and making a one-line change to the application’s
SELinux policy, without any application code modifica-
tions. Apache, however, required code modifications—
not to protect against SKD and oracle attacks, which the
partitioned OpenSSL library defends against, but to pro-
tect sensitive data after the SSL handshake completes. As
noted above, Apache reuses worker processes to serve
successive users’ requests. We modified Apache to en-
force inter-user isolation: to ensure that an attacker’s ex-
ploit of a worker cannot disclose the sensitive data of
the next user to connect to the same worker. We com-
pare two implementations of this isolation. The first is a
naive one in which Apache kills a worker after it serves
one request and forks another to replace it. As the over-
head of fork is significant, we compare against an op-
timized implementation based on checkpoint-restore, as

60 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 61

 0

 0.04

 0.08

 0.12

 0.16

ss
hd ss
h

m
ai

lx

do
ve

co
t

se
nd

m
ai

l
cli

en
t

Ti
m

e,
 s

ec

no SKD or oracle defenses
with SKD and oracle defenses

Figure 9: Latency of operations in OpenSSH 5.2p1 client/server, mailx
12.4, dovecot 1.2.10, and sendmail client 8.14.4 using baseline and
hardened OpenSSL 0.8.9k library. Run on Dell desktop with 1.86 GHz
Intel Core 2 6300 CPU and 1 GB RAM running Linux 2.6.30.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

se
nd

m
ai

l
se

rv
er

ba
se

lin
e

ht
tp

d
no

 c
ac

hi
ng

ba
se

lin
e

ht
tp

d
wi

th
 c

ac
hi

ng

ht
tp

d
fo

rk
 u

se
r i

so
la

tio
n

no
 c

ac
hi

ng

ht
tp

d
fo

rk
 u

se
r i

so
la

tio
n

wi
th

 c
ac

hi
ng

ht
tp

d
ch

ec
kp

oi
nt

-re
st

or
e

us
er

 is
ol

at
io

n
no

 c
ac

hi
ng

ht
tp

d
ch

ec
kp

oi
nt

-re
st

or
e

us
er

 is
ol

at
io

n
wi

th
 c

ac
hi

ng

Th
ro

ug
hp

ut
, r

eq
ue

st
s/

se
c

no SKD or oracle defenses
with SKD and oracle defenses

Figure 10: Throughput of sendmail server 8.14.4 and indicated com-
bination of Apache web server (httpd) 2.2.14 with OpenSSL 0.8.9k li-
brary. Run on Sun X4100 server with 2.2 GHz AMD Opteron 248 CPU
and 2 GB RAM under Linux 2.6.32.

proposed by Bittau [1]. In this approach, Apache takes
a snapshot of each new worker process’s pristine mem-
ory image before it serves any requests, and after each
request, a trusted monitor process restores the worker’s
memory image to this pristine state.

With or without this unrelated application-level
change, Apache 1.3.19 and 2.2.14 run with the hardened
OpenSSL library as a drop-in replacement for the stock
OpenSSL library.

7 Evaluation
We now consider the cost of defending against SKD
and oracle attacks in cryptographic protocol implemen-
tations. As the principles given in Section 4 demand ad-
ditional isolation between code and data, and thus addi-
tional processes, performance is a concern: both process
creation and context switches incur overhead. To explore
the extent of these overheads, we compare the perfor-
mance of the baseline OpenSSH and OpenSSL-enabled
applications with that of the implementations hardened
in accordance with the principles we have propounded.
We consider in turn the end-to-end metrics of operation

latency (important to users) and server-side throughput
(important to server operators).

Figure 9 compares operation latencies for a range
of applications. Each application is either client-side or
server-side; in each case, the complementary remote peer
runs the baseline cryptographic protocol implementa-
tion. All connections are made over the loopback inter-
face to a locally running server. For OpenSSH, we report
the latency of logging into an SSH server using public
key authentication and running the exit command. The
remaining applications use the OpenSSL library. For the
mailx email client and dovecot IMAP server, we measure
the time required for the client to connect over SSL/TLS,
check for new mail, and exit. For the sendmail client, we
measure the time required to connect and send a one-line
email to a sendmail server over SSL/TLS. For these ap-
plications, the latency a user perceives does not increase
significantly between the baseline and hardened crypto-
graphic protocol implementations.

In Figure 10, we consider the throughput achieved by
an SSL/TLS-enabled sendmail server and HTTPS server,
both based on the OpenSSL library. For the sendmail
server, we submit emails over SSL/TLS from multiple
clients and report the maximum load the server can sus-
tain in requests (emails) per second. Introducing oracle
and SKD defenses into the OpenSSL library negligbly
affects the sendmail server’s throughput.

To determine the maximum load the Apache (httpd)
web server can sustain, we increase the number of clients
requesting a small static page over HTTPS until the num-
ber of requests served per second reaches a maximum.
Clients make new SSL/TLS connections for each re-
quest. As noted in Section 6, apart from adding defenses
against SKD and oracle attacks, we further modified the
baseline Apache implementation to isolate users who
successively connect to the same worker from one an-
other. To distinguish the cost of inter-user isolation from
that of defending against SKD and oracle attacks, we
measure the throughput of several Apache implemen-
tations: baseline Apache, in which workers are reused
across requests, so users are not mutually isolated; a
hardened Apache with inter-user isolation implemented
with one fork per request, without oracle or SKD attack
defenses; and a hardened Apache with inter-user isola-
tion implemented with three forks per request, with

oracle and SKD attack defenses. To explore the role
of isolation primitives in performance, we also imple-
mented versions of hardened Apache that use optimized
checkpoint-restore primitives [1] rather than fork. We
further consider Apache’s performance in two extremes
of operation: when no SSL sessions are cached and when
all sessions are cached. We configure HTTPS clients to
use RSA key exchange when establishing an SSL/TLS
session because this protocol is less computationally in-

tensive for the server than ephemeral Diffie-Hellman key
exchange, and thus better exposes the overhead of hard-
ening.

Returning to Figure 10, let us first consider the work-
load in which no SSL/TLS sessions are cached, running
on the hardened versions of Apache implemented using
checkpoint-restore. End-to-end, the version of Apache
providing both inter-user isolation and defenses from or-
acle and SKD attacks achieves more than half (55%) the
throughput of baseline Apache, which provides none of
these security benefits. The overhead of these security
mechanisms is masked in part by the computational costs
of the cryptographic operations required to establish a
new SSL/TLS session. We note that this “fully” hardened
version of Apache achieves over 70% the throughput of
one that provides inter-user isolation with checkpoint-
restore but omits oracle and SKD attack defenses—so
for this workload using these isolation primitives, oracle
and SKD attack defenses incur only moderate overhead.

In the workload in which no SSL/TLS sessions are
cached, there are no public-key cryptographic opera-
tions, so the overheads of inter-user isolation and oracle
and SKD attack defenses are more exposed. Focusing on
the implementations built on checkpoint-restore, Apache
with inter-user isolation (but without oracle/SKD de-
fenses) achieves 60% of the throughput of baseline
Apache; this reduction is the cost of inter-user isola-
tion. Adding oracle and SKD defenses to the inter-user-
isolated implementation further reduces throughput by
60%; that is the incremental cost of oracle and SKD de-
fenses on this challenging workload. End-to-end, this last
version of Apache, which incorporates all defenses and
inter-user isolation, achieves only about one quarter of
the throughput of baseline Apache (which lacks any of
these security enhancements). We stress that while this
throughput reduction is significant, it represents atypi-
cally worst-case behavior: all sessions cached (never the
case) and static content. On servers that distribute dy-
namically generated content, the overhead of protecting
users’ sensitive data will be amortized over far more ap-
plication computation.

The original applications based on the OpenSSL li-
brary used single-process, monolithic designs. Harden-
ing against SKD and oracle attacks requires three pro-
cesses per SSL/TLS session: a private key monitor, a
session monitor, and an unprivileged compartment for
the SKN stage. Similarly, the hardened OpenSSH server
and client use four processes per SSH session vs. the two
employed by the baseline privilege-separated OpenSSH
server. Apart from the process creation and page fault
costs associated with fork and the memory copy costs
associated with checkpoint-restore, anti-SKD and anti-
oracle hardening incur overhead for additional context
switches and the marshaling and unmarshaling of ar-

guments and return values between compartments con-
nected by pipes.

Again for the uncached workload, consider the
throughput achieved by the full checkpoint-restore ver-
sion of Apache (all defenses) vs. that achieved by one
with the same full set of defenses, but implemented
naively with fork. Checkpoint-restore offers a 20%
throughput improvement over fork. While the end-to-
end cost of inter-user isolation and oracle and SKD de-
fenses is significant, the design of the underlying prim-
itives used to implement compartments, though beyond
the scope of this paper, appears to play a significant role
in determining end-to-end performance.

8 Related Work
Provos et al. describe privilege separation, which de-
nies enhanced system privileges to unauthorized attack-
ers who exploit an application [9]. They reduce privilege
in the OpenSSH server by partitioning it into an untrusted
process and a privileged monitor. Our work tackles the
different goal of preventing disclosure of users’ sensitive
data in cryptographic protocol implementations. This
goal incorporates preventing privilege escalation. We ex-
tend the partitioning of the privilege-separated OpenSSH
server to comply with this goal.

OKWS is a toolkit for building secure Web ser-
vices [5]. It employs similar privilege enforcement mech-
anisms as privilege-separated OpenSSH—processes, the
nobody user ID, and the chroot system call—to iso-
late distrusted Web services from the system they are
running on and each other. Our complementary goal has
been to protect sensitive data by hardening cryptographic
protocol implementations against exploit.

HiStar [14] enforces privileges on compartments with
labels and DIFC. DStar [15] extends this approach to a
distributed environment without fully trusted machines.
Zeldovich et al. partition an SSL server to mitigate the
effect of a compromise of any single compartment and
prevent disclosure of user data. However, as we have de-
scribed, it is possible to disclose users’ sensitive data
from the SSL server using SKD and oracle attacks.
The insufficient partitioning of the SSL protocol allows
these attacks. Our work is complementary to work on
DIFC systems: they are privilege-enforcement mecha-
nisms, while we provide guidance on how to structure
code for cryptographic protocols.

We first discovered an instance of the attack we have
generalized in this paper as the SKD attack during prior
work with colleagues on Wedge [2], a set of primitives
and tools for fine-grained partitioning of applications on
Linux. While we presented an ad hoc defense for one
narrow instance of the attack in that work, we offered no
general characterization of it nor solution to it. By con-
trast, in this paper, we offer design principles that defeat

62 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 63

the SKD and oracle attacks and that we believe are gen-
eral enough to apply to many cryptographic protocols.

The partitioning principles and attack mitigation tech-
niques we have offered might also find fruitful use
in capability-based systems such as KeyKOS [3] and
EROS [11]. While capabilities provide convenient means
to restrict privileges, programmers need guidance in how
to apply them to protect sensitive data.

9 Conclusion and Future Work
We have described two practical exploit-based attacks
on cryptographic protocol implementations, the session
key disclosure (SKD) attack and oracle attack, that can
disclose users’ sensitive data, even in state-of-the-art,
reduced-privilege applications such as the OpenSSH
server and HiStar-labeled SSL web server. Privilege sep-
aration and DIFC will not secure the user’s sensitive
data against these attacks unless an application has been
specifically structured to thwart them.

The principles we have offered guide programmers in
partitioning cryptographic protocol implementations to
defend against SKD and oracle attacks. In essence, fol-
lowing these principles reduces the trusted code base of
an application by correctly treating session key mate-
rial and oracle-prone functions as sensitive, and limiting
privilege accordingly.

To demonstrate that these principles are practical, we
newly partitioned an OpenSSH client and extended the
partitioning of a privilege-separated OpenSSH server.
Further experience with the OpenSSL library suggests
they may generalize to other cryptographic protocols;
they are broadly targeted at protocols that negotiate ses-
sion keys and perform common cryptographic opera-
tions. While we hope these principles will serve as a
useful guide where there was none, we note that their
application requires careful programmer effort. Still, our
experience with OpenSSL shows that hardening a library
once brings robustness against these attacks to the several
applications that reuse that library.

The latency cost of defending against SKD and ora-
cle attacks is well within user tolerances for all applica-
tions we measured. Defending against SKD and oracle
attacks does exact a cost in throughput on a busy SSL-
enabled Apache server, however, reducing the uncached
SSL/TLS session handshake rate of a server that isolates
users by just under 30%, and the cached rate by 60%.
While that cost is significant, as our comparison of fork
and checkpoint-restore demonstrates, it depends heavily
on the performance of underlying isolation primitives—a
topic we believe merits further investigation.

Finally, while we have relied upon manual study of the
SSH and SSL/TLS protocols and their implementations
to discover the attacks we have presented, we intend to
explore tools that use static and dynamic analysis to ease

discovery of such vulnerabilities in cryptographic proto-
col implementations.

Acknowledgements
This research was supported in part by a Royal Society-
Wolfson Research Merit Award and by gifts from Intel
Corporation and Research in Motion Limited. We thank
Andrea Bittau, our shepherd Mohammad Mannan, and
the anonymous reviewers for comments that improved
the paper. We further thank Andrea Bittau for sharing
code for his checkpoint-restore server performance opti-
mizations.

References
[1] A. Bittau. Toward Least-Privilege Isolation for Soft-

ware. PhD thesis, University College London, UK, 2009.
http://eprints.ucl.ac.uk/18902/1/18902.pdf.

[2] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: split-
ting applications into reduced-privilege compartments. In NSDI,
2008.

[3] A. C. Bomberger, W. S. Frantz, A. C. Hardy, N. Hardy, C. R. Lan-
dau, and J. S. Shapiro. The KeyKOS nanokernel architecture. In
Proceedings of the Workshop on Micro-kernels and Other Kernel

Architectures, 1992.
[4] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246,

January 1999.
[5] M. Krohn. Building secure high-performance web services with

okws. In USENIX, 2004.
[6] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,

E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. In SOSP, 2007.

[7] P. Loscocco and S. Smalley. Integrating flexible support for secu-
rity policies into the linux operating system. In USENIX (Freenix

Track), 2001.
[8] N. Provos. Improving host security with system call policies. In

USENIX Security Symposium, pages 18–18, 2003.
[9] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege

escalation. In USENIX Security, 2003.
[10] J. Saltzer and M. Schroeder. The protection of information in

computer systems. Proceedings of the IEEE, 63(9):1278–1308,
1975.

[11] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros: a fast capability
system. In SOSP, 1999.

[12] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,
D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières. Labels and
event processes in the asbestos operating system. ACM TOCS,
25(4):11, 2007.

[13] T. Ylonen and C. Lonvick. The secure shell (SSH) protocol ar-
chitecture. RFC 4251, January 2006.

[14] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In OSDI, 2006.

[15] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing dis-
tributed systems with information flow control. In NSDI, 2008.

Notes
1While we did not implement these two attacks, we present analysis

of the protocols and implementations demonstrating they are possible.
2While space limits us to illustrating these attacks and defense prin-

ciples in the context of SSH and SSL/TLS, we have found they apply
equally to IPSec, CRAM-MD5, and other secure protocols.

3Alternatives to SELinux include limiting a process’s privileges
with Systrace [8], ptrace, and chroot (though the latter requires
making a client application setuid root).

PrETP: Privacy-Preserving Electronic Toll Pricing

Josep Balasch, Alfredo Rial, Carmela Troncoso,
Bart Preneel, Ingrid Verbauwhede
IBBT-K.U.Leuven, ESAT/COSIC,

Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee, Belgium.

firstname.lastname@esat.kuleuven.be

Christophe Geuens
K.U.Leuven, ICRI,

Sint-Michielsstraat 6,
B-3000 Leuven, Belgium.

christophe.geuens@law.kuleuven.be

Abstract
Current Electronic Toll Pricing (ETP) implementa-

tions rely on on-board units sending fine-grained loca-
tion data to the service provider. We present PrETP, a
privacy-preserving ETP system in which on-board units
can prove that they use genuine data and perform cor-
rect operations while disclosing the minimum amount of
location data. PrETP employs a cryptographic proto-
col, Optimistic Payment, which we define in the ideal-
world/real-world paradigm, construct, and prove secure
under standard assumptions. We provide an efficient im-
plementation of this construction and build an on-board
unit on an embedded microcontroller which is, to the best
of our knowledge, the first self-contained prototype that
supports remote auditing. We thoroughly analyze our
system from a security, legal and performance perspec-
tive and demonstrate that PrETP is suitable for low-cost
commercial applications.

1 Introduction

Vehicular location-based technologies [36, 42] are
viewed by governments as a perfect tool to support ap-
plications such as electronic toll collection, automated
law enforcement, or collection of traffic statistics. In Oc-
tober 2009, the European Commission announced that
the current flat road tax systems existing in the Member
States will be substituted by an European Electronic Toll
Service (EETS) [13, 20]. In the United States, there are
also ongoing initiatives to introduce Electronic Toll Pric-
ing (ETP), as for instance the Regional High Occupancy
Toll Network of the California Metropolitan Transporta-
tion Commission [1].

ETP allows road taxes to be calculated depending on
parameters such as the distance covered by a driver, the
kind of road used, or the time of usage. This is benefi-
cial both for citizens and governments. The former pay
only for their actual road use, while the latter can im-
prove road mobility by applying “congestion pricing”.

This strategy assigns prices to roads depending on their
traffic density such that driving in congested roads im-
plies a higher cost. This in turn will encourage users to
change their route (or even avoid using their vehicles)
thus reducing congestion. Moreover, ETP has also en-
vironmental benefits as it discourages driving hence re-
duces pollution.

ETP architectures proposed so far [1, 13, 20] require
that vehicles are equipped with an on-board unit neces-
sary for collecting location data. At the end of each tax
period, the fee corresponding to those data is computed
either remotely [36, 42] or locally [44], and relayed to
the service provider. In both cases the service provider
needs to be convinced that the fees correspond to the ac-
tual road usage of the driver, and that they have been
correctly calculated. The verification is straightforward
in implementations in which all the location data is sent
to the service provider, but this constitutes an inherent
threat to users’ privacy.

We propose PrETP, a privacy-preserving ETP sys-
tem in which, without making impractical assumptions,
on-board units i) compute the fee locally, and ii) prove
to the service provider that they carry out correct com-
putations while revealing the minimum amount of lo-
cation data. PrETP employs a cryptographic protocol,
Optimistic Payment (OP), in which on-board units send
along with the final fee commitments to the locations and
prices used in the fee computation. These commitments
do not reveal information on the locations or prices to the
service provider. Moreover, they ensure that drivers can-
not claim that they were at any other position, nor used
different prices, from the ones used to create the commit-
ments. In order to check the veracity of the committed
values, we rely on the service provider having access to
a proof (e.g., a photograph taken by a road-side radar or
a toll gate) that a car was at a specific point at a par-
ticular time, as previously suggested in [17, 39]. Upon
being challenged with this proof, the on-board unit must
respond with some information proving that the location

1

64 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 65

point where it was spotted was correctly used in the cal-
culation of the final fee. To this end, it opens the com-
mitment containing this location, thus revealing only the
location data and the price at the instant specified in the
proof. This information suffices for the provider to ver-
ify that correct input data (location and price) was used
to calculate the fee.

We formally define Optimistic Payment and propose
a construction based on homomorphic commitments
and signature schemes that allow for efficient zero-
knowledge proofs of signature possession. We prove
our construction secure under standard assumptions. Fi-
nally, we present a prototype implementation on an em-
bedded platform, and demonstrate that the cryptographic
overhead of Optimistic Payment is efficient enough to
be practically deployed in commercial in-car devices.
Further, the fact that on-board units carry out all oper-
ations without interaction with the driver makes our sys-
tem ideal in terms of usability.

The rest of the paper is organized as follows: we de-
scribe our system models and the security properties we
seek in Sect. 2. Sect. 3 presents a high level description
of our construction. Our prototype implementation and
its evaluation are presented in Sect. 4, and we discuss
some practical issues in Sect. 5. We situate our work
within the landscape of proposals for privacy-friendly
vehicular applications in Sect. 6, and we conclude in
Sect. 7. Finally, we define the concept of Optimistic Pay-
ment in Appendix A, and describe in detail our crypto-
graphic construction in Appendix B.

2 System model

PrETP employs the architecture and technologies rec-
ommended at European level [13, 20], although it could
be adapted to other systems, such as [1]. The system
model, illustrated in Fig. 1 (left), comprises three enti-
ties: an On-Board Unit (OBU), a Toll Service Provider
(TSP), and a Toll Charger (TC). The OBU is an elec-
tronic device installed in vehicles subscribed to an ETP
service, and it is in charge of collecting GPS data and cal-
culating the fee at the end of each tax period. The TSP is
the entity that offers the ETP service. It is responsible for
providing vehicles with OBUs and monitor their perfor-
mance and integrity. Finally, the TC is the organization
(either public or private) that levies tolls for the use of
roads and defines the correct use of the system. In agree-
ment with the TC, the TSP establishes prices for driving
on each of the roads. Such pricing policy can depend on
the type of road (e.g., highways vs. secondary roads), its
traffic density, or the time of the day (e.g., rush hours
vs. the middle of the night). Additionally, prices can
also depend on attributes of the vehicle or of the driver
(e.g., low-pollution vehicles, or discounts for retired peo-

ple). For the sake of clarity, in this work we focus on the
core functionality of PrETP, and defer the discussion of
practical issues to Sect. 5.

When the vehicle is driving, the OBU calculates the
subfees corresponding to the trajectories according to the
TSP pricing policy. At the end of each tax period, the
OBU aggregates all the subfees to obtain a total fee and
sends it to the TSP. This process safeguards the pri-
vacy of the driver from the TSP, the TC, or any other
third party eavesdropping the communications, as no lo-
cation data leaves the OBU. The privacy objectives of
PrETP focus on the limitation of deliberate surveillance
by any external party with limited access to the vehicle.
We note that for an adversary with physical access to the
vehicle it would be trivial to track it, e.g. by installing
a tracking device. In order to further protect the privacy
of users from adversaries that have occasional access to
OBUs (e.g., mechanic, valet), all location data stored in
the OBU is securely encrypted as specified in [44].

Besides preserving users’ privacy, the system has to
protect the interests of both TC and TSP and provide
means to prevent users from committing fraud. Our
threat model considers malicious drivers capable of tam-
pering with the internal functionality of the OBU, as well
as with any of its interfaces. Under these considerations,
we define the security goals of our system as the detec-
tion of:

Vehicles with inactive OBUs. Drivers should not be
able to shut down their OBUs at will to simulate they
drove less.

OBUs reporting false GPS location data. Drivers
should not be able to spoof the GPS signal and simulate
a cheaper route than the actual roads on which they are
driving.

OBUs using incorrect road prices. Drivers should
not be able to assign arbitrary prices to the roads on
which they are driving.

OBUs reporting false final fees. Drivers should not
be able to report an arbitrary fee, but only the result from
the correct calculations in the OBU.

Focusing on the detection of tampering rather that at
its prevention allows us to consider a very simple OBU
with no trusted components, reducing the production
costs of the device.

In order to perform this detection, reliable information
about the vehicle’s whereabouts is required. We consider
that the TC can perform random “spot checks” that are
recorded as proof of the time and location where a vehi-
cle has been seen. Such spot checks can be carried out by
using an automatic license plate reader, a police control,
or even challenging the OBUs using Dedicated Short-
Range Communications (DSRC) [13]. Without loss of
generality in this work we assume that the proof is gath-

2

Figure 1: Entities in our Electronic Toll Pricing architecture (left.) Enforcement spot-check model (right.)

ered using an automatic license plate reader. This proof
can be used to challenge the vehicle’s OBU to verify its
functioning. In order to be able to respond to this chal-
lenge, the OBU slices the trajectories recorded in seg-
ments, and computes the subfees corresponding to them,
such that these subfees add up to the final fee transmit-
ted to the TSP. For each segment, the TSP receives a
payment tuple that consists of a commitment to location
data and time, a homomorphic commitment to the sub-
fee, and a proof that the committed subfee is computed
according to the policy. These payment tuples, explained
in detail in the next section, bind the reported final fee
to the committed values such that the OBU cannot claim
having used other locations or prices in its computations.
Furthermore, they are signed by the OBU to prevent a
malicious TSP from framing an honest driver.

The verification process, depicted in Fig. 1 (right), is
initiated when the TC gathers a proof of location of a
vehicle. Then it forwards this information to the TSP,
along with a request to check the correct functioning of
the vehicle’s OBU. To this end, the TSP challenges the
OBU to open a commitment containing the location and
time appearing in the proof. The TSP verifies that both
challenge and response match, for instance as explained
in [39], and reports to the TC whether or not the func-
tioning of the OBU is correct. We assume that the TC
(e.g., the government in the EETS architecture) is honest
and does not use fake proofs to challenge OBUs.

3 Optimistic Payment

In this section we sketch the technical concepts neces-
sary to understand the construction of Optimistic Pay-
ment, and we outline our efficient implementation of the
protocol. For a comprehensive and more formal descrip-
tion of OP, we refer the reader to Appendix B.

3.1 Technical Preliminaries

Signature Schemes. A signature scheme consists
of the algorithms SigKeygen, SigSign and SigVerify.
SigKeygen outputs a secret key sk and a public key
pk . SigSign(sk , �) outputs a signature �� of message �.
SigVerify(pk , �, ��) outputs accept if �� is a valid signa-
ture of � and reject otherwise. A signature scheme must
be correct and unforgeable [26]. Informally speaking,
correctness implies that the SigVerify algorithm always
accepts an honestly generated signature. Unforgeability
means that no p.p.t adversary should be able to output a
message-signature pair (�, ��) unless he has previously
obtained a signature on �.

Commitment schemes. A non-interactive commit-
ment scheme consists of the algorithms ComSetup,
Commit and Open. ComSetup(1�) generates the
parameters of the commitment scheme paramsCom .
Commit(paramsCom , �) outputs a commitment �� to
� and auxiliary information open�. A commitment is
opened by revealing (�, open�) and checking whether
Open(paramsCom , ��, �, open�) is true. A commitment
scheme has a hiding property and a binding property.
Informally speaking, the hiding property ensures that
a commitment �� to � does not reveal any informa-
tion about �, whereas the binding property ensures that
�� cannot be opened to another value �′. Given two
commitments ��1

and ��2
with openings (�1, open�1

)
and (�2, open�2

) respectively, the additively homomor-
phic property ensures that, if � = ��1

⋅ ��2
, then

Open(paramsCom , �, �1 + �2, open�1
+ open�2

).

Proofs of Knowledge. A zero-knowledge proof of
knowledge is a two-party protocol between a prover and
a verifier. The prover proves to the verifier knowledge
of some secret values that fulfill some statement without
disclosing the secret values to the verifier. For instance,
let � be the secret key of a public key � = ��, and let
the prover know (�, �, �), while the verifier only knows

3

66 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 67

(�, �). By means of a proof of knowledge, the prover can
convince the verifier that he knows � such that � = ��,
without revealing any information about �.

3.2 Intuition Behind Our Construction

We consider a setting with the entities presented in
Sect. 2. During each tax period tag , the OBU slices
the trajectories of the driver in segments formed by a
structure containing GPS location data and time. Addi-
tionally, this data structure can contain information about
any other parameter that influences the price to be paid
for driving on the segment. We represent this data struc-
ture as a tuple (loc, time). The TSP establishes a func-
tion � : (loc, time) → Υ that maps every possible tuple
(loc, time) to a price p ∈ Υ. For each segment, the
OBU calculates � on input (loc, time) to get a price p,
and computes a payment tuple that consists of a random-
ized hash ℎ on the data structure (loc, time), a homo-
morphic commitment �p to its price, and a proof � that
the committed price belongs to Υ. The randomization of
the hash is needed in order to prevent dictionary attacks
to recover (loc, time).

At the end of the tax period, the OBU and the TSP en-
gage in a two-party protocol. The OBU adds the fees of
all the segments to obtain a total fee fee. The OBU adds
all the openings open� to obtain an opening openfee .
Next, the OBU composes a payment message � that
consists of (tag , fee, openfee) and all the payment tuples
(ℎ, �p , �). The OBU signs � and sends both the mes-
sage � and its signature �� to the TSP. The TSP veri-
fies the signature and, for each payment tuple, verifies the
proof �. Then the TSP, by using the homomorphic prop-
erty of the commitment scheme, adds the commitments
�p of all the payment tuples to obtain a commitment �′fee ,
and checks that (fee, openfee) is a valid opening for �′fee .

When the TC sends the TSP a proof � that a car was
at some position at a given time, the TSP relays � to the
OBU. The OBU first verifies that the request is signed
by the TC, and then it searches for a payment tuple
(ℎ, �p , �) for which �(�, (loc, time)) outputs accept.
Here, � : (�, (loc, time)) → {accept, reject} is a func-
tion established by the TSP that outputs accept when
the information in � and in (loc, time) are similar in ac-
cordance with some metric, such as the one proposed
in [39]. Once the payment tuple is found, the OBU sends
the number of the tuple to the TSP together with the
preimage (loc, time) of ℎ and the opening (p, openp)
of �p . The TSP checks that (p, openp) is the valid open-
ing of �p , that (loc, time) is the preimage of ℎ and that
�(�, (loc, time)) outputs accept.

Intuitively, this protocol ensures the four security
properties enunciated in the previous section. Drivers
cannot shut down their OBUs, nor report false GPS data

as they run the risk of not having committed to a seg-
ment containing the (loc, time) in the challenge �. We
note that after sending (�, ��) to the TSP, OBUs can-
not claim that they were at any position (loc′, time ′) dif-
ferent from the ones used to compute the message �.
Similarly, OBUs cannot use incorrect road prices with-
out being detected, as the TSP can check whether the
correct price for a segment (loc, time) was used once
the commitments are opened. The homomorphic prop-
erty ensures that the reported final fee is not arbitrary,
but the sum of all the committed subfees. Moreover,
by making the OBU prove that the committed prices be-
long to the image of � , we avoid that a malicious OBU
could decrease the final fee by sending only one wrong
commitment to a negative price in the payment message,
which would give it an overwhelming probability of not
being detected by the spot checks. Additionally, the fact
that the OBU signs the payment message � ensures that
no malicious TSP can frame an OBU by modifying the
received commitments, and that a malicious OBU can-
not plead innocent by invoking the possibility of being
framed by a malicious TSP. Similarly, the fact that
the TC signs the challenge � prevents a malicious TSP
sending fake proofs to the OBU, e.g. with the aim of
learning its location. Finally, the privacy of the drivers
is preserved as the OBU does not need to disclose more
location information than that in the payment tuple that
matches the proof � (already known to TSP).

3.3 Efficient Instantiation: High Level
Specification

We now outline at high level our efficient instantiation
of Optimistic Payment. We employ the integer com-
mitment scheme due to Damgård and Fujisaki [15] and
the CL-RSA signature scheme proposed by Camenisch
and Lysyanskaya [9]. Both schemes use cryptographic
keys based on special RSA modulus � of length ��.
A commitment �� to a value � is computed as �� =
�0

��1
����� (mod �), where the opening open� is a ran-

dom number of length �� and the bases (�0, �1) corre-
spond to the commitment public parameters. Given a
public key �� = (�,�, �,), a CL-RSA signature has
the form (�, �,
), with lengths ��, ��, and �� respectively,
such that ≡ ������(mod �). To prove that a price
belongs to Υ, we use a non-interactive proof of posses-
sion of a CL-RSA signature on the price. We also em-
ploy a collision resistant hash function 	 : {0, 1}∗ →
{0, 1}�� .

Initialization. The pricing policy � : (loc, time) → Υ,
where each price � ∈ Υ has associated a valid CL-RSA
signature (�, �,
) generated by the TSP, the crypto-
graphic key pair (pkOBU, skOBU), the public key of the

4

OBU TSP
Pay() algorithm VerifyPayment() algorithm

1 // Main loop 1
2 For all 1 ≤ � ≤ � tuples do: 2
3 �� = �(loc�, time�) 3
4 // Hash computation 4
5 ℎ� = �((loc�, time�)) 5
6 // Commitment computation 6
7 ������

← {0, 1}�� 7
8 ���

= �0
���1

������ (mod �) 8
9 // Proof computation 9
10 open�, � ← {0, 1}�� 10
11 �̃ = ��0

� (mod �) 11
12 �� = �0

��1
open� (mod �) OBUverify(pkOBU,�, ��) 12

13 �� ← {0, 1}�� // Main loop 13
14 ���� = �0

��� �1
�open�� (�, ��)

−−−−−−−−−−−−−−→
For all 1 ≤ � ≤ � tuples do: 14

15 �� = �̃�������� (�−1
0)��⋅� �′���

= ��ℎ��
�0

��� �1
�open� 15

16 ��� = ���0 �
�open�
1 �′� = ��ℎ�̃�������� (1/�0)

��⋅� 16
17 � = ���� (�−1

0)��⋅�(�−1
1)�open�⋅� �′�� = ��ℎ� �0

���1
�open� 17

18 �ℎ = �(∣∣���� ∣∣�� ∣∣��� ∣∣�) �′ = ���
� (1/�0)

��⋅�(1/�1)
�open�⋅� 18

19 �� = �� − �ℎ ⋅ � �ℎ′ = �(∣∣�′��� ∣∣�
′
� ∣∣�′�� ∣∣�

′)? = �ℎ 19
20 �� = (�̃, ��, �ℎ, ��) �� ∈ {0, 1}��+��+�� 20
21 End for ���

∈ {0, 1}��+��+�� 21
22 // Fee reporting End for 22
23 ��� =

∑�
�=1 �� // Commitment validation 23

24 ������� =
∑�

�=1 ������
�′��� =

∏�
�=1 ���

24
25 � = [tag , ���, �������, (ℎ�, ���

, ��)
�
�=1] ���� = �0

����1
������� (mod �) 25

26 �� = OBUsign(skOBU,�) ����? = �′��� 26
� ∈ {��, open��

, �, �, �, open�, � ⋅ �, open�⋅�}
	 = (�∣∣�0∣∣�1∣∣�̃∣∣∣∣�∣∣�−1

0 ∣∣�−1
1 ∣∣���

∣∣�∣∣��∣∣1)

Protocol 1: Protocol between OBU and TSP during taxing phase

TSP (�,, �, �), the public key of TC, and the public
parameters (�0, �1) of the commitment scheme are stored
on the OBU. Similarly, the TSP possesses its own secret
key (skTSP) and knows all the public keys in the system.

Tax period. Protocol 1 illustrates the calculations and in-
teractions between the OBU and the TSP under normal
functioning during the tax period. We denote the opera-
tions carried out by the OBU as Pay(), and the operations
executed by the TSP as VerifyPayment(). While driving,
the OBU collects location data and slices it in segments
(loc, time) according to the policy. For each of the �
collected segments, the OBU generates a payment tu-
ple (ℎ�, ���

, ��). This iterative step is broken down in
lines 1 to 21 in Protocol 1. The most resource consum-
ing operation is the computation of ��, which proves the
possession of a valid CL-RSA signature on the price p�
(lines 9 to 20). The length of the random values used
in this step is specified in Appendix B.2. At the end of
the tax period the OBU generates and signs the payment

message � including the tag tag , the total fee, the open-
ing �������, and all the payment tuples (ℎ�, ���

, ��),
lines 22 to 26. Finally it sends (�, ��) to the TSP.

Upon reception of a payment message, the TSP exe-
cutes the VerifyPayment() algorithm. First the TSP veri-
fies the signature �� using the OBU’s public key pkOBU.
Next, it proceeds to the verification of the proof �� in-
cluded in each of the � payment tuples contained in �,
lines 13 to 22. In each iteration it performs a series of
modular exponentiations, and uses the intermediate re-
sults to compute the hash �ℎ′. Then, it checks whether
�ℎ′ is the same as the value �ℎ contained in ��. If this
verification, together with the two range proofs in lines
20 and 21, is successful, the TSP is convinced that all
the prices �� used by the OBU are indeed a valid image
of � . Finally, the TSP validates the commitments ���

to
ensure that the aggregation of all subfees add up to the fi-
nal fee (lines 24 to 26). For this, it calculates �′��� as the
product of all commitments ���

, and computes the com-

5

68 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 69

mitment ���� using the values ��� and ������� provided
by the OBU. If both values are the same, the TSP is con-
vinced that the final fee reported by the OBU adds up to
the sum of all subfees reported in the payment tuples.

Proof Challenge. We denote as OBUopen() and Check()
the algorithms carried out by the OBU and the TSP, re-
spectively, when the former is challenged with �. When
running the OBUopen() algorithm, the OBU searches
for the pre-image (loc�, time�) of a hash ℎ� containing
the location and time satisfying �, and sends this infor-
mation to the service provider along with the price ��
and the opening ������

.
Upon reception of this message, the TSP executes the

Check() algorithm. First, it verifies whether the segment
(loc�, time�) actually contains the location in �. Then,
it computes the value ℎ′

� = �(loc�, time�) and checks
whether the OBU had committed to this value in one of
the payment tuples reported during the tax period. Lastly,
the TSP uses ������

to open the commitment ���
and

verifies whether �′� = �(loc�, time�) equals the price
�� reported by the OBU during the OBUopen() algo-
rithm. If all verifications succeed, the TSP is convinced
that the location data used by the OBU in the fee calcu-
lation and the price assigned by the OBU to the segment
(loc�, time�) are correct.

4 PrETP Evaluation

In this section we evaluate the performance of PrETP.
We start by describing the test scenario and both our
OBU and TSP prototypes. Next, we analyze the perfor-
mance of the prototypes for different configuration pa-
rameters. Finally, we study the communication overhead
in PrETP, and compare it to existing ETP systems.

4.1 Test Scenario

Policy model. The first step in the implementation of
PrETP consists in specifying a policy model in the form
of the mapping function � : (loc, time) → Υ. We de-
cide to follow the same criteria as currently existing ETP
schemes [36], i.e., road prices are determined by two pa-
rameters: type of road and time of the day. More specif-
ically, we define three categories of roads (‘highway’,
‘primary’, and ‘others’) and three time slots during the
day. For each of the possible nine combinations we as-
sign a price per kilometer � and we create a valid signa-
ture (�, �, �) using the TSP’s secret key. We note that
the choice of this policy is arbitrary and that PrETP, as
well as OP, can accommodate other price strategies.

Location data. We provide the OBU with a set of loca-
tion data describing a real trajectory of a vehicle . These
data are obtained by driving with our prototype for one

hour in an urban area, covering a total distance of 24
kilometers. We note that such dataset is sufficient to val-
idate the performance of PrETP, since results for differ-
ent driving scenarios (e.g., faster or slower) can easily be
extrapolated from the results presented in this section.

Parameters of the instantiation. The performance of
OP depends directly on the length of the protocol instan-
tiation parameters, and in particular, on the size of the
cryptographic keys of the entities (��). In our experi-
ments we consider three case studies: medium security
(�� = 1024 bits), high security (�� = 1536 bits), and very
high security (�� = 2048 bits). The value �� is determined
by the length of the prices �, which in turn determines the
value of ��. Therefore, both lengths are constant for all
security cases. The value of �� varies depending on the
value of ��. Finally, the rest of parameters (�ℎ, ��, �� , and
��) are set as the output length of the chosen hash func-
tion primitive (see Sect. 4.2). These lengths determine
the size of the random numbers generated in line 13 in
Protocol 1 (see Appendix B for a detailed explanation).
Table 1 summarizes the parameter lengths considered for
each security level.

Table 1: Length of the parameters (in bits)
Parameter �� �� �� �� �� ,�ℎ,�� ,��
Normal Sec. 1 024 128 1 216 32 160
High Sec. 1 536 128 1 728 32 160
Very high Sec. 2 048 128 2 240 32 160

OBU Platform. In order to make our prototype as real-
istic as possible, we implement PrETP using as starting
point the embedded design described in [4], which per-
forms the conversion of raw GPS data into a final fee
internally. We extend and adapt this prototype with the
functionalities of OP to make it compatible with PrETP.

At high-level, the elements of our OBU prototype [4]
are: a processing unit, a GPS receiver, a GSM modem,
and an external memory module. We use as benchmark
the Keil MCB2388 evaluation board [30], which contains
an NXP LPC2388 [34] 32-bit ARM7TDMI [2] micro-
controller. This microcontroller implements a RISC ar-
chitecture, it runs at 72 MHz, and it offers 512 Kbytes
of on-chip program memory and 98 Kbytes of internal
SRAM. As external memory, we use an off-the-shelf
1 GByte SD Card connected to the microcontroller. Fi-
nally, we use the Telit GM862-GPS [43] as both GPS
receiver and GSM modem.

As our platform does not contain any cryptographic
coprocessors, we implement all functionalities exclu-
sively in software. Note that although we could easily
add a hardware coprocessor (e.g., [35]) to the prototype
in order to carry out the most expensive cryptographic
computations, we choose the option that minimizes the

6

production costs of the OBU. Besides, this approach al-
lows us to identify the bottlenecks in the protocol im-
plementation, leaving the door open to hardware-based
improvements if needed.

We have constructed a cryptographic library with the
primitives required by our instantiation of the OP proto-
col, namely: i) a modular exponentiation technique, ii) a
one-way hash function, and iii) a random number gener-
ator. For the first primitive we use the ACL [5] library,
a collection of arithmetic and modular routines specially
designed for ARM microcontrollers. As hash function
we choose RIPEMD-160 [22], with an output length �ℎ
of 160 bits. As our platform does not provide any phys-
ical random number generator, we use the Salsa20 [6]
stream cipher in keystream mode as third primitive. We
note that a commercial OBU should include a source of
true randomness.

In order to keep the OBU flexible and easily scalable,
we arrange data in different memory areas depending on
their lifespan. Long-term parameters (pkOBU, skOBU,
pkTSP, commitment parameters) are directly embedded
into the microcontroller’s program memory, while short-
term parameters (payment tuples, (loc, time) segments)
and updatable parameters (digital road map, policy �)
are stored separately on the SD Card. We note that our
library provides a byte-oriented interface with the SD
Card, resulting in a considerable overhead when read-
ing/writing values.

TSP Platform. We implement our TSP prototype on a
commodity computer equipped with an Intel Core2 Duo
E8400 processor at 3 GHz, and 4 Gbyte of RAM. We use
C as programming language, and the GMP [25] library
for large-integer cryptographic operations.

4.2 Performance Evaluation

OBU performance. The most time-consuming opera-
tions carried out by the OBU during the taxing phase are
the Mapping() algorithm and the Pay() algorithm. The
Mapping() algorithm is executed every time a new GPS
string is available in the microcontroller. Its function is
to search in the digital road map the type of road given
the GPS coordinates. When the vehicle drives for a kilo-
meter, the OBU maps the segment to the adequate price
�� as specified in the policy. At this point, the Pay() al-
gorithm is executed in order to create the payment tuple.
For each segment, the OBU generates: i) a hash value ℎ�

of the location data, ii) a commitment ���
to the price ��,

and iii) a proof �� proving that the price �� is genuinely
signed by the TSP (and thus belongs to the image of �).
To protect users’ privacy we also require that no sensi-
tive data is stored in the SD Card in plaintext form. For
this purpose we use the AES [33] block cipher in CCM

mode [23] with a key length of 128 bits. We denote this
operation as ��. At the end of the taxing phase, the OBU
adds all the prices �� mapped to each segment to obtain
the fee, and all the openings open� to obtain openfee .
Finally, the OBU constructs and signs the payment mes-
sage � and sends it to the TSP.

As it does not involve the key, the computing time of
the Mapping() algorithm is independent of the security
scenario. Further, this time only depends on the duration
of the trip and is independent of the speed of the vehicle:
the Mapping() algorithm is always executed 3 600 times
per hour, taking a total of 839.11 seconds in our proto-
type. However, for each of the segments this time can
vary depending on the number of points that have to be
processed, i.e., depending on the speed of the vehicle. In
our experiments it requires 76.10 seconds for the longest
segment, i.e., the one where the vehicle spent more time
to drive one kilometer and thus (����, �����) contains
the larger number of points.

Similarly, the execution time for ℎ� and �� depends
exclusively on the length of the segments (����, �����),
as it is proportional to the number of GPS points in the
segments. The amount of points per segment varies not
only with the average speed of the car but also depending
on the length of the segments defined in the pricing pol-
icy. In our experiments, computing ℎ� and �� take 0.08
seconds and 0.43 seconds, respectively, for the shortest
and the longest segments. For the Mapping() algorithm
and both ℎ� and �� operations, more than 90% of the
time is spent in the communication with the SD card.

On the other hand, the execution time for ���
and ��

is constant for all segments, as it does not depend on the
length of a particular slice (see lines 6 to 20 in Proto-
col 1). In order to calculate ���

, the OBU needs to gen-
erate a random opening ������

and perform two mod-
ular exponentiations and a modular multiplication. The
computation of �� involves the generation of ten random
numbers and a hash value, and the execution of fourteen
modular exponentiations, nine modular multiplications,
eight additions, and eight multiplications. The bottle-
neck of both operations is determined by the modular
operations. Although we could take advantage of fixed-
base modular exponentiation techniques, we choose to
use multi-exponentiations algorithms [18], which have
less storage requirements. Multi-exponentiation based
algorithms, which compute values of the form ����(mod
�) in one step, allow us to considerably speed up the pro-
cess. The average execution times for computing ���

are 0.76 seconds, 2.25 seconds, and 5.69 seconds for
medium, high, and very high security respectively. For
��, these times are 6.20 seconds, 19.45 seconds, and
41.64 seconds, respectively.

Table 2 summarizes the timings for all OBU opera-
tions and routines for a journey of one hour. We note

7

70 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 71

Table 2: Execution times (in seconds) for an hour journey of 24 km, for all possible security scenarios.
Medium Security High Security Very high Security

Algorithm Segment Full trip Segment Full trip Segment Full trip
Mapping() 76.10 s 839.11 s 76.10 s 839.11 s 76.10 s 839.11 s

Pay()

7.88 s 183.91 s 22.13 s 528.47 s 47.79 s 1 143.30 s
ℎ� 0.08 s 1.08 s 0.08 s 1.08 s 0.08 s 1.08 s
�� 0.43 s 6.35 s 0.43 s 6.35 s 0.43 s 6.35 s
��� 0.76 s 18.19 s 2.25 s 54.08 s 5.69 s 136.82 s
�� 6.20 s 158.09 s 19.45 s 466.96 s 41.64 s 999.05 s

that, even when 2048-bit RSA keys are used, the OBU
can perform all operations needed to create the payment
tuples in real time. While the trip lasted one hour, the
Mapping() and Pay() algorithms only required 1 982.41
seconds. The computation time is dominated by the
Pay() algorithm, which depends on the number of GPS
strings in each segment (loc, time). This number varies
with the speed of the vehicle and the pricing policy. If
a vehicle is driving at a constant speed, policies that
establish prices for small distances result in segments
containing less GPS points than policies that consider
long distances. Similarly, given a policy fixing the size
of the segments, driving faster produces segments with
less points than driving slower. In both cases, �� has to
be computed fewer times and the Pay() algorithm runs
faster. Thus, the policy can be used as tuning parameter
to guarantee the real-time operation of the OBU.

Using the values in Table 2, for each of the levels
of security we can calculate the time our OBU is idle
– in our case (3 600 − 839.11) seconds, with 839.11
seconds being the time required by the Mapping() al-
gorithm. Then, considering our current policy, we can
estimate the number of times the Pay() algorithm could
be executed, which in turn represents the number of kilo-
meters that could have been driven by a car in one hour,
i.e., the average speed of the car. For normal security,
our OBU could operate in real time even if a vehicle was
driving at 350 km/h. This speed decreases to 124 km/h
when 1536-bit keys are used, and to 57 km/h if the keys
have length 2048 bits. Only when using high security
parameters our OBU would have problems to operate
in the field. However, as mentioned before, including
a cryptographic coprocessor in the platform would suf-
fice to solve this problem whenever high security is re-
quired. Moreover, in our tests we consider a worst-case
scenario in which all GPS strings are processed upon re-
ception. In fact, processing fewer strings would suffice
to determine the location of the vehicle. As the execu-
tion time required by the Mapping() algorithm would
decrease linearly, OBUs would be able to support higher
vehicle speeds.

In the OBUopen() algorithm, only executed upon re-

quest from TC, the OBU searches its memory for a seg-
ment (loc, time) in accordance to the proof sent by the
TSP. Here, the time accuracy provided by the GPS sys-
tem is used to ensure synchronization between the data
in � and the segment (loc, time). The main bottleneck
of this operation is the decryption of the location data
corresponding to the correct segment. On average, our
prototype can decrypt such a segment in 0.27 seconds.

TSP performance. The most consuming task the TSP
must perform corresponds to the VerifyPayment() algo-
rithm, which has to be executed each time the TSP re-
ceives a payment message. This algorithm involves three
operations: the verification of the proof �� for each seg-
ment, the multiplication of all commitments ���

to obtain
����, and the opening of ���� in order to check whether
it corresponds to the reported final fee. The most costly
operation is the verification of ��, in particular the calcu-
lation of the parameters (�′�� , �′� , �′�� , �′) which requires
a total of eleven modular exponentiations (lines 14 to 22
in Protocol 1).

Table 4.2 (left) shows the performance of the
VerifyPayment() algorithm for each of the considered
security levels when segments have length one kilome-
ter. We also provide an estimation of the time required
to process all the proofs sent by OBU during a month,
assuming that a vehicle drives an average of 18 000 km
per year (1 500 km per month).

These results allow us to extrapolate the number of
OBUs that can be supported by a single TSP in each se-
curity scenario for different segment lengths. Intuitively,
the capacity of TSP increases when segments are larger,
as the payment messages contain fewer proofs ��. The
number of OBUs supported by a single TSP is presented
in Table 4.2 (right). For a segment length of 1 km, the
TSP is able to support 164 000, 58 000, and 29 000 vehi-
cles depending on the chosen security level. Even when
�� is 2048 bits, only 36 servers are needed to accommo-
date one million OBUs. This number can be reduced
by parallelizing tasks at the server side, or by using fast
cryptographic hardware for the modular exponentiations.

8

Table 3: Timings (in seconds) for the execution of VerifyPayment() in TSP (left). Number of OBUs supported by a
single TSP (right).

VerifyPayment() Segment One Month
Medium Sec. 0.0105 s 15.750 s
High Sec. 0.0295 s 44.250 s
Very high Sec. 0.0587 s 88.050 s

Segment size Medium Sec. High Sec. Very high Sec.
0.5 km 82 000 29 000 14 000
0.75 km 123 000 43 000 22 000
1 km 164 000 58 000 29 000
2 km 329 000 117 000 58 000
3 km 493 000 175 000 88 000

4.3 Communication overhead

We now compare the communication overhead of
PrETP with respect to straightforward ETP implemen-
tations and VPriv [39]. Both in straightforward ETP
implementations and in VPriv the OBU sends all GPS
strings to the TSP. Let us consider that vehicles drive
1 500 km per month at an average speed of 80 km/h.
Then, transmitting the full GPS information to the the
TSP requires 2.05 Mbyte (considering a shortened GPS
string of 32 bytes containing only latitude, longitude,
date and time). VPriv requires more bandwidth than
straightforward ETP systems, as extra communications
are necessary to carry out the interactive verification pro-
tocol (see Sect. 6). Using PrETP, the communication
overhead comes from the payment tuples that must be
sent along with the fee. For each segment, the OBU
sends the payment tuple (ℎ, ��, �) to the TSP. When
sent uncompressed, this implies an overhead of approxi-
mately 1.5 Kbyte per segment, i.e., less than 2 Mbyte per
month, for medium security (��=1024 bits). Addition-
ally, less than 50 Kbyte have to be sent occasionally to
respond a verification challenge after a vehicle has been
seen at a spot check. We believe this overhead is not ex-
cessive for the additional security and privacy properties
offered by PrETP.

The communication overhead in PrETP is dominated
by the payment message � sent by the OBU to the TSP,
the length of which depends on the number of segments
covered by the driver. Therefore, the segment length
can be seen as a parameter of the system that tunes the
tradeoff between privacy and communication overhead.
The smaller the segments, the larger the communication
overhead, because more tuples (ℎ�, ���

, ��) need to be
sent. Allowing larger segments reduces the communica-
tion cost but also reduces privacy because the OBU must
disclose a bigger segment when responding a verification
challenge.

Further, the communication overhead can be almost
eliminated by having the OBU sending only the hash of
the payment message at the end of each tax period and
leave the correct operation verification subject to random
checks. Following the spirit of the random “spot checks”
used for checking the input and prices, the OBUs could

occasionally be challenged to prove its correct function-
ing by sending the payment message corresponding to
the preimage of the hash sent at the end of a random tax
period.

5 Discussion

Practical issues. Our OP scheme allows the OBU to
prove its correct operation to the TSP while revealing a
minimum amount of information. Nevertheless, we note
that fee calculation is not flexible. The reason is that the
OBU should store signatures created by the TSP on all
the prices that belong to Im(�), and thus, for the sake of
efficiency, we need to keep Im(�) small. For this pur-
pose, in our evaluation � is only defined for trajectory
segments of a fixed length (one kilometer) and of a fixed
road type. There are two obvious cases in which this
feature is problematic: when a vehicle has driven a non-
integer amount of kilometers, and when one of the seg-
ments contains pieces of roads with different cost (e.g.,
when a driver leaves the highway entering a secondary
road). In both cases the OBU cannot produce a payment
tuple because it does not have the signature by the TSP
on the price of the segment.

There are two possible solutions to these issues. A first
option would be to solve them at contractual level. The
policy designed by the TSP could include clauses that
indicate how to proceed when these conflicts arise. For
instance, in the first case the TSP could dictate that the
driver must pay for the whole kilometer, and in the sec-
ond case the policy could be that the price corresponds to
the cheapest of the roads, or to the most expensive. We
note that these decisions do not conflict with the general
purpose of the system: congestion control, as in all cases,
on average, drivers will pay proportionally to their use of
the roads. The second option would be to change the
way the OBU proves that the committed prices belong
to Im(�). In the construction proposed in Sect. 3, the
OBU employs a set membership proof, based on prov-
ing signature possession, to prove that the committed
prices belong to the finite set Im(�). Alternatively, we
can define Im(�) as a range of (positive) prices, and let
the OBU use a range proof to prove that the committed

9

72 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 73

prices belong to Im(�). Since now Im(�) is much big-
ger, � can be defined for segments of arbitrary length that
include several types of road. We outline a construction
that employs range proofs in the extended version of this
work [3].

Another issue is that our OP scheme does not offer
protection against OBUs that do not reply upon receiv-
ing a verification challenge. In this case, the TSP should
be able to demonstrate to the TC that the OBU is misbe-
having. To permit this, the TSP can delegate to the TC
the verification of the “spot-check”, i.e, the TSP sends
the payment message � and the signature �� to the TC,
and the TC interacts with the OBU (electronically, or by
contacting the driver through some other means) to ver-
ify that � is valid.

Although in Sect. 2 we mentioned that the cost associ-
ated with roads could depend on attributes of the driver
(e.g., retired users may get discounts) or on attributes of
the car (e.g., ecological cars may have reduced fees), the
pricing policy used by our prototype is rather inflexible.
We note that this is a limitation of our prototype and that
PrETP can support more flexible policies. For instance,
the TSP can apply discounts to the total fee reported by
the OBU, without the knowledge of fine grained location
data. Further, the system model in this work considers
only one service provider. However, the European legis-
lation [13, 20] points out that several TSPs may provide
services in a given Toll Charger domain. PrETP can be
trivially extended to this setting.

Production cost. Our OBU prototype, constructed with
off-the-shelf components, demonstrates that a system
like PrETP can be built at a reasonable cost 1. Although
the security of our Optimistic Payment scheme does not
rely on any countermeasure against physical attacks by
drivers, for liability reasons it is desirable to use OBUs
with a certain level of tamper resistance. Nevertheless,
we note that on-board units in the market [36, 42] al-
ready rely on tamper resistance. Further, secure remote
firmware updates are also required in privacy invasive de-
signs, and additional updates in PrETP containing new
maps and policies can be considered occasional.

Privacy. Although we protect the privacy of the users
by keeping the location data in the client domain and
exploiting the hiding property of cryptographic commit-
ments, there exist a few sources of information available
to the TSP. First, as in many other services, users in
PrETP must subscribe to the service by revealing their
identity, and most likely their home address, to the TSP.
Second, the final fee and all the commitments (which in-
dicate the number of kilometers driven), must be sent to
the TSP at the end of each tax period. Decoding tech-

1The cost of our prototype amounts to $500; such a number would
be drastically reduced in a mass-production scenario.

niques (e.g., [16]) using these data could be employed
by the TSP to infer the trajectories followed by a ve-
hicle by inspecting the possible combination of prices
per kilometers that could have generated the total fee.
A possible solution to this problem consists in giving
users the possibility to send data associated to dummy
segments. For this, a price � zero should be included in
the pricing policy so that it does not imply any cost for
the drivers when aggregating the homomorphic commit-
ments, and that the proofs �� are still accepted by the
TSP. The downside of this approach is that it introduces
an overhead in both the processing of the OBU and the
communication link with the TSP. Apart from this, sub-
liminal channels in the communication or the encryption
schemes must be avoided, e.g., by proving a true physi-
cal randomness source in the OBU (see [44] for further
discussion on the topic).

Legal Compliance. We build on the analysis pre-
sented in [44] and discuss the compliance of PrETP
with European Legislation. With regard to data pro-
cessing, the data controller (Art.6.2. in [13]) has to
abide by principles found in the Data Protection Direc-
tive 95/46/EC [21] (DPD) in Art. 6.1, 16 and 17. We use
these principles to assess compliance of the proposed ar-
chitecture since these principles have been further spec-
ified in the other provisions of the DPD. We only look
at the principles of direct interest for this paper which
are that i) the data must be adequate, relevant and not
excessive, ii) kept accurate and up to date, iii) the data
should be processed in a secure and confidential man-
ner and iv) data should not be kept longer than neces-
sary. Firstly, data must be kept accurate and up-to-date
(Art. 6.1(d) in [21]). In PrETP the OBU commits to lo-
cation data and to its price when reporting the final fee.
These commitments do not reveal any details on the lo-
cation or the price calculation. Given that the controller
is only allowed to process the data adequate, relevant and
not excessive for the provision of the service (Art. 6.1(c)
in [21]), this seems a good solution to the problem. The
TC and the TSP should know that the information given
by the user is correct but the information that the com-
mitment covers is not needed for PrETP [28, 38]. The
commitments implemented in PrETP are designed to
guarantee that the OBU sends out the correct data with-
out putting all the user’s data in the hands of the TSP
or the TC. The TC might want to execute checks at
certain points in time to verify the veracity of these com-
mitments and sends “spot-checks” to the TSP, which in-
teracts with the OBU for the sake of verification. Only
at those times will more data be disclosed because then
it is required to know the information the commitment
is based on to know whether the commitment is reli-
able. Data used for verification will however only be
kept when an infringement is found. If there is no in-

10

fringement, the data will not be kept in accordance with
data protection principles (Art. 6.1(E) in [28, 38]). Sec-
ondly, the processing must be secure and confidential as
stated by Art. 16-17 in [21]. A positive step of PrETP in
this regard is keeping all the data inside the OBU and the
applied algorithms to protect these data [28, 38]. The al-
gorithms presented in this work are designed to reconcile
the conflicting interest of the users and the TSP, while
protecting the user from excessive data processing (note
that the data set in road tolling could be potentially quite
comprehensive – Art. 7, Annex VI in [13])). This crite-
rion may be the most important in a road tolling setting.

6 Related work

A privacy-friendly architecture for ETP in which loca-
tion data is not revealed to the service provider was pre-
sented in [44], and its viability was shown in [4]. How-
ever, the design by [44] does not take into account that
the TSP and the TC need to check the correctness of the
operations carried out in the on-board unit jeopardizing
its applicability to real world scenarios.

Another line of research has focused on the design of
secure multi-party protocols between the TSP and the
OBUs that allow TSPs to compute the total fee and de-
tect malicious OBUs while protecting location privacy.
Solutions proposed in [8, 7, 40] resort to general reduc-
tions for secure multi-party computation and are very in-
efficient. A more efficient protocol, VPriv, was proposed
in [39]. The basic idea consists in sending the location
data generated by a driver sliced into segments to the
TSP, in such a way that it remains hidden among seg-
ments from multiple drivers. Then the TSP calculates
the subfees (fees of small time periods that add to the fi-
nal fee) of all segments and returns them to all OBUs.
Each OBU uses this information to compute its total fee
and, without disclosing any location data, proves to the
TSP that the total fee is computed correctly, i.e., by only
using the subfees that correspond to the location data in-
put by this particular OBU. Moreover, in order to pre-
vent malicious users from spoofing the GPS signal to
simulate cheaper trips, VPriv has an out-of-band enforce-
ment mechanism. This mechanism is based on the use of
random spot checks that demonstrate that a vehicle has
been at a location at a time (e.g., a photograph taken by
a road-side radar). Given this proof, the TSP challenges
the OBU to prove that its fee calculation includes the lo-
cation where the vehicle was spotted.

The protocol proposed in [39] has several practical
drawbacks. First, it requires vehicles to send anonymous
messages to the server (e.g., by using Tor [19]) impos-
ing high additional costs to the system. Second, their
protocol only avoids leaking any additional informa-
tion beyond what can be deduced from the anonymized

database. As the database contains path segments, the
TSP could use tracking algorithms to recover paths fol-
lowed by the drivers [29, 27, 32] and infer further infor-
mation about them. Third, the scalability of the system
is limited by the complexity of the protocol on the client
side, as it depends on the number of drivers in the system.
Practical implementations require simplifications such as
partitioning the set of vehicles into smaller groups, thus
reducing the anonymity set of the drivers. Fourth, VPriv
only uses spot checks to verify correctness of the loca-
tion, and thus needs an extra protocol to verify the cor-
rect pricing of segments. This extra protocol produces an
overhead both in terms of computation and communica-
tion complexity.

Our solution, similar to PriPAYD [44], does not re-
quire messages between the OBU and the TSP to be
anonymous as the computation of the fee is made locally
and no personal data is sent to the provider. Thus, no
database of personal data is created and we do not need
to rely on database anonymization techniques to ensure
users’ privacy. Further, the OBU’s operations depend
only on the data it collects, independently of the number
of vehicles in the system. Finally, our protocol can be
integrated into a stand-alone OBU without the need of
external devices to carry out the cryptographic protocols.

To the best of our knowledge, the only protocol that
so far employs spot checks to verify both correctness of
the location and of the fee calculation is due to Jonge and
Jacobs [17]. In this solution, OBUs commit to segments
of location data and its corresponding subfees when re-
porting the total fee to the TSP. They employ hash func-
tions as commitments. Upon being challenged to ratify
the information in the spot check, OBUs must provide
the hash pre-image of the corresponding segment, and
demonstrate that indeed the location was used to com-
pute the final fee.

Jonge and Jacobs’ protocol is limited by the fact that
using hash-based commitments one cannot prove that the
commitments to the subfees add to the total fee. As so-
lution, they propose that the OBU also commits to the
subfees corresponding to bigger time intervals following
a tree structure. Each tax period is divided into months,
each month is divided into weeks, and so forth, and sub-
fees for each month, week, day,. . . are calculated and
committed. Then, instead of asking the OBU to open
only one commitment containing the instant specified in
TC’s proof, the TSP asks the OBU to open all the com-
mitments in the tree that include that instant. This in-
deed proves that the sum is correct at the cost of revealing
much more information to the TSP.
PrETP avoids this information leakage. The reason is

that, in our OP scheme, commitments are homomorphic
and thus allow TSP to check that the commitments to the
subfees add to the total fee without additional data. The

11

74 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 75

use of homomorphic commitments was also proposed
and briefly sketched in [17]. However, their scheme does
not prevent the OBU from committing to a “negative”
price, which would give a malicious OBU the possibil-
ity of reducing the final fee by sending only one wrong
commitment, thus with an overwhelming probability of
not being detected by the spot checks.

7 Conclusion

The revelation of location data in Electronic Toll Pricing
(ETP) systems, besides conflicting with the users’ right
to privacy, can also pose inconveniences and extra invest-
ments to service providers as the law demands that per-
sonal data is stored and processed under strong security
guarantees [21]. Furthermore, it has been shown [31]
that security and privacy concerns are among the main
reasons that discourage the use of electronic communi-
cation services. Recent research [45] demonstrates that
users confronted to a prominent display of private infor-
mation not only prefer service providers that offer bet-
ter privacy guarantees but also are willing to pay higher
prices to utilize more privacy protective systems. Con-
sequently, it is of interest for service providers to deploy
systems where the amount of location information that
users need to disclose is minimized.

As ETP systems are becoming increasingly impor-
tant [13, 1], it is a challenge to implement them respect-
ing both the users’ privacy and the interest of the service
provider. Previous work relied on too expensive solu-
tions, or on unrealistic requirements, to fulfill both prop-
erties. In this work we have presented PrETP, an ETP
system that allows on-board units to prove that they op-
erate correctly leaking the minimum amount of informa-
tion. Namely, upon request of the service provider, on-
board units can attest that the input location data for the
calculation of the fee is authentic and has not been tam-
pered with. For this purpose we proposed a new cryp-
tographic protocol, Optimistic Payment, that we define,
construct and prove secure under standard assumptions.
For this protocol, we also provide an efficient instantia-
tion based on known secure cryptographic primitives.

We have performed a holistic analysis of PrETP. Be-
sides the security analysis, we have built an on-board
unit prototype on an embedded platform, as well as a ser-
vice provider prototype on a commodity computer, and
we have thoroughly tested the performance of both using
real world collected data. The result of our experiments
confirms that our protocol can be executed in real time
in an on-board unit constructed with off-the-shelf com-
ponents. Finally, we have analyzed the legal compliance
of PrETP under the European Law framework and con-
clude that it fully supports the Data Protection Directive
principles.

Acknowledgements. The authors want to thank M. Peeters and
S. Motte for early valuable discussions, and G. Danezis and
C. Diaz for their editorial suggestions that greatly improved the
readability of the paper. We thank B. Gierlichs for driving us
around to collect the data used in our experiments. C. Tron-
coso and A. Rial are research assistants of the Fund for Sci-
entific Research in Flanders (FWO). This work was supported
in part by the IAP Programme P6/26 BCRYPT of the Belgian
State, by the Flemish IBBT NextGenITS project, by the Eu-
ropean Commission under grant agreement ICT-2007-216676
ECRYPT NoE phase II, and by K.U. Leuven-BOF (OT/06/40).
The information in this document reflects only the author’s
views, is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.

References

[1] AB 744 (Torrico) Authorize a BayArea Express Lane
Network to Deliver Congestion Relief and PublicTransit
Funding with No NewTaxes, August 2009.

[2] ARM. ARM7TDMI technical reference manual,
revision: r4p3. http://infocenter.arm.
com/help/topic/com.arm.doc.ddi0234b/
DDI0234.pdf, 2004.

[3] J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Ver-
bauwhede, and C. Geuens. Privacy-preserving electronic
traffic pricing using optimistic payments. COSIC internal
report, K.U. Leuven, 2010.

[4] J. Balasch, I. Verbauwhede, and B. Preneel. An embedded
platform for privacy-friendly road charging applications.
In Design, Automation and Test in Europe (DATE 2010),
pages 867–872. IEEE, 2010.

[5] J. Ban. Cryptographic library for ARM7TDMI proces-
sors. Master’s thesis, T.U. Kosice, 2007.

[6] D. Bernstein. Salsa20. eSTREAM, ECRYPT Stream Ci-
pher Project, Report 2005/025, 2005.

[7] A. Blumberg and R. Chase. Congestion privacy that re-
spects “driver privacy”. In ITSC, 2005.

[8] A. Blumberg, L. Keeler, and A. Shelat. Automated traf-
fic enforcement which respects driver privacy. In ITSC,
2004.

[9] J. Camenisch and A. Lysyanskaya. A signature scheme
with efficient protocols. In In SCN 2002, volume 2576 of
LNCS, pages 268–289. Springer, 2002.

[10] J. Camenisch and M. Stadler. Proof systems for general
statements about discrete logarithms. Technical Report
TR 260, Institute for Theoretical Computer Science, ETH
Zürich, March 1997.

[11] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages
136–145, 2001.

[12] D. Chaum and T. Pedersen. Wallet databases with ob-
servers. In CRYPTO ’92, volume 740 of LNCS, pages
89–105, 1993.

12

[13] Commission Decission of 6 October 2009 on the defini-
tion of the European Electronic Toll Service and its tech-
nical elements, 2009.

[14] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding
protocols. In Y. Desmedt, editor, CRYPTO, volume 839
of LNCS, pages 174–187. Springer, 1994.

[15] I. Damgård and E. Fujisaki. A statistically-hiding integer
commitment scheme based on groups with hidden order.
In Y. Zheng, editor, ASIACRYPT, volume 2501 of LNCS,
pages 125–142. Springer, 2002.

[16] G. Danezis and C. Diaz. Space-efficient private search
with applications to rateless codes. In Sven Dietrich and
Rachna Dhamija, editors, Financial Cryptography, vol-
ume 4886 of LNCS, pages 148–162. Springer, 2007.

[17] W. de Jonge and B. Jacobs. Privacy-friendly electronic
traffic pricing via commits. In P. Degano, J. Guttman,
and F. Martinelli, editors, Formal Aspects in Security and
Trust, volume 5491 of LNCS, pages 143–161. Springer,
2008.

[18] V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Complex-
ity and fast algorithms for multiexponentiations. IEEE
Transactions on Computers, 49(2), 2000.

[19] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In USENIX Security
Symposium, pages 303–320. USENIX, 2004.

[20] Directive 2004/52/EC of the European Parliament and of
the Council of 29 April 2004 on the interoperability of
electronic road toll systems in the Community, 2004.

[21] Directive 95/46/EC of the European parliament and of the
Council of 24 October 1995 on the protection of individ-
uals with regard to the processing of personal data and on
the free movement of such data, 1995.

[22] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-
160: A strengthened version of RIPEMD. In Dieter Goll-
mann, editor, FSE, volume 1039 of LNCS, pages 71–82.
Springer, 1996.

[23] Morris Dworkin. Recommendation for block cipher
modes of operation: The CCM mode for authentication
and confidentiality. NIST special publication 800-38c,
National Institute for Standards and Technology, 2004.

[24] A. Fiat and A. Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In A. Odlyzko, editor, CRYPTO, volume 263 of LNCS,
pages 186–194. Springer, 1986.

[25] GMP. The GNU Multi-precision Library. http://
gmplib.org/.

[26] S. Goldwasser, S. Micali, and R. Rivest. A digital signa-
ture scheme secure against adaptive chosen-message at-
tacks. SIAM J. Comput., 17(2):281–308, 1988.

[27] M. Gruteser and B. Hoh. On the anonymity of periodic
location samples. In D. Hutter and M. Ullmann, editors,
SPC, volume 3450 of LNCS, pages 179–192. Springer,
2005.

[28] J. H. Hoepman. Follow that car! over de mogelijke pri-
vacy gevolgen van rekeningrijden, en hoe die te vermij-
den. Privacy & Informatie, 5(11):225–230, 2008.

[29] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. En-
hancing security and privacy in traffic-monitoring sys-
tems. IEEE Pervasive Computing, 5(4):38–46, 2006.

[30] Keil. MCB2300 Evaluation Board Family.

[31] P. Koargonkar and L. Wolin. A multivariate analysis of
web usage. Journal of Advertising Research, pages 53–
68, March/April 1999.

[32] J. Krumm. Inference attacks on location tracks. In
A. LaMarca, M. Langheinrich, and K. Truong, edi-
tors, Pervasive, volume 4480 of LNCS, pages 127–143.
Springer, 2007.

[33] NIST. Advanced Encryption Standard (AES) (FIPS PUB
197). National Institute of Standards and Technology,
November 2001.

[34] NXP Semiconductors. LPC23xx User Manual.

[35] NXP Semiconductors. SmartMX P5xC012/020/024/
037/052 family. Secure contact PKI smart card controller.

[36] Octo Telematics S.p.A. http://www.
octotelematics.com/.

[37] T. Okamoto. An efficient divisible electronic cash
scheme. In D. Coppersmith, editor, CRYPTO, volume 963
of LNCS, pages 438–451. Springer, 1995.

[38] International Working Group on Data Protection in
Telecommunications. Report and Guidance on Road Pric-
ing, ”Sofia Memorandum”.

[39] R. Popa, H. Balakrishnan, and A. Blumberg. VPriv: Pro-
tecting privacy in location-based vehicular services. In
Proceedings of the 18th Usenix Security Symposium, Au-
gust 2009.

[40] S. Rass, S. Fuchs, M. Schaffer, and K. Kyamakya. How to
protect privacy in floating car data systems. In V. Sadekar,
P. Santi, Y. Hu, and M. Mauve, editors, Vehicular Ad Hoc
Networks, pages 17–22. ACM, 2008.

[41] C. Schnorr. Efficient signature generation for smart cards.
Journal of Cryptology, 4(3):239–252, 1991.

[42] STOK Nederland BV. http://www.
stok-nederland.nl/.

[43] Telit. GM862-GPS Hardware User Guide.

[44] C. Troncoso, G. Danezis, E. Kosta, and B. Preneel. Pri-
PAYD: privacy friendly pay-as-you-drive insurance. In
Peng Ning and Ting Yu, editors, Proceedings of the 2007
ACM Workshop on Privacy in the Electronic Society,
WPES 2007, pages 99–107. ACM, 2007.

[45] J. Tsai, S. Egelman, L. Cranor, and A. Acquisti. The
effect of online privacy information on purchasing be-
havior: An experimental study, working paper. In The
6th Workshop on the Economics of Information Security,
2007.

13

76 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 77

A Security Definition of Optimistic Pay-
ment

Ideal-world/real-world paradigm. We use the ideal-
world/real-world paradigm to prove our construction se-
cure. In this paradigm, parties are modeled as proba-
bilistic polynomial time interactive Turing machines. A
protocol � is secure if there exists no environment � that
can distinguish whether it is interacting with adversary �
and parties running protocol � or with the ideal process
for carrying out the desired task, where ideal adversary
� and dummy parties interact with an ideal functional-
ity ℱ� . More formally, we say that protocol � emulates
the ideal process if, for any adversary �, there exists a
simulator � such that for all environments � , the ensem-
bles IDEALℱ�,�,� and REAL�,�,� are computation-
ally indistinguishable. We refer to [11] for a description
of these ensembles.

Our construction operates in the ℱREG-hybrid model,
where parties register their public keys at a trusted reg-
istration entity and obtain from it a common reference
string. Below we depict the ideal functionality ℱREG,
which is parameterized with a set of participants � that is
restricted to contain OBU, TSP and TC only. We also
describe an ideal functionality ℱOP for Optimistic Pay-
ment. Every functionality and every protocol invocation
should be instantiated with a unique session-ID that dis-
tinguishes it from other instantiations. For the sake of
ease of notation, we omit session-IDs from our descrip-
tion.

Functionality ℱREG. Parameterized with a set of parties
� , ℱREG works as follows:
- On input (crs) from party P , if P /∈ � it aborts. Other-

wise, if there is no value r recorded, it picks r ← D
and records r . It sends (crs, r) to P .

- Upon receiving (register, �) from party P ∈ � , it
records the value (P , �).

- Upon receiving (retrieve,P) from party P ′ ∈ � , if
(P , �) is recorded then return (retrieve,P , �) to P ′.
Otherwise send (retrieve,P ,⊥) to P ′.

Functionality ℱOP. Running with OBU, TSP and TC,
ℱOP works as follows:
- On input a message (initialize, �, �) from TSP, where

� is a mapping � : (loc, time) → Υ and � :
(�, (loc, time)) → {accept, reject}, ℱOP stores
(�, �) and sends (initialize, �, �) to OBU.

- On input a message (payment, tag , fee, (�, (loc�,
time�), p�)

�
�=1) from OBU, where tag identi-

fies the tax period, ℱOP checks that a message
(payment, tag , . . .) was not received before, that
for � = 1 to � , p� ∈ Υ, and that fee =∑�

�=1 p�. If these checks succeed, ℱOP sends
(payment, tag , fee, �) to TSP and stores the tu-

ple (tag , fee, (�, (loc�, time�), p�)
�
�=1). Otherwise

ℱOP sends (payment, tag ,⊥) and stores (tag ,⊥).
- On input a message (proof, tag , �) from TC, ℱOP

stores (tag , �) and sends (proof, tag , �) to TSP.
- On input a message (verify, tag , �) from TSP, ℱOP

checks that it stores messages (payment, tag , . . .)
and (proof, tag , �). If it is the case, ℱOP
sends (verifyreq, tag , �) to OBU. Upon receiv-
ing (verifyresp, tag , (�, (loc′�, time ′�), p

′
�)), ℱOP

checks whether the stored payment tuple (�, (loc�,
time�), p�) equals (�, (loc′�, time ′�), p

′
�) for � =

�, whether �(�, (loc′�, time ′�)) outputs accept, and
whether p′

� = �(loc′�, time ′�). If these checks
are correct, ℱOP sends (verifyresul, not guilty, (�,
(loc′�, time ′�), p

′
�)) to TSP. Otherwise it sends

(verifyresul, guilty, (�, (loc′�, time ′�), p
′
�)).

- On input a message (blame, tag) from TSP, ℱOP
checks that messages (payment, tag , . . .), (proof,
tag , �) and (verifyresp, tag , . . .) were previously
received, and in this case it proceeds with the same
checks done for (verify, . . .). It sends to TC either
(guilty) or (not guilty).

B Construction of an Optimistic Payment
Scheme

We use several existing results to prove statements about
discrete logarithms: (1) proof of knowledge of a discrete
logarithm modulo a prime [41]; (2) proof of knowledge
of the equality of some element in different representa-
tions [12]; (3) proof with interval checks [37] and (4)
proof of the disjunction or conjunction of any two of the
previous [14]. These results are often given in the form
of Σ-protocols but they can be turned into non-interactive
zero-knowledge arguments in the random oracle model
via the Fiat-Shamir heuristic [24].

When referring to the proofs above, we follow the
notation introduced by Camenisch and Stadler [10] for
various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete loga-
rithms. NIPK{(�, �, �) : � = �0

��1
� ∧ �̃ = �̃0

��̃1
� ∧

� ≤ � ≤ �} denotes a “zero-knowledge Proof of
Knowledge of integers �, �, and � such that � =
�0

��1
� , �̃ = �̃0

��̃1
� and � ≤ � ≤ � holds”, where

�, �0, �1, �̃, �̃0, and �̃1 are elements of some groups =
⟨�0⟩ = ⟨�1⟩ and ̃ = ⟨�̃0⟩ = ⟨�̃1⟩ that have the
same order. (Note that some elements in the represen-
tation of � and �̃ are equal.) The convention is that
letters in the parenthesis, in this example �, �, and
�, denote quantities whose knowledge is being proven,
while all other values are known to the verifier. We de-
note a non-interactive proof of signature possession as
NIPK{(�, ��) : SigVerify(pk , �, ��) = accept}.

14

B.1 Construction

We begin with a high level description of the optimistic
payment scheme. We assume that each party registers its
public key at ℱREG, and retrieves public keys from other
parties by querying ℱREG. They also retrieve the com-
mon reference string paramsCom , which is computed by
algorithm SetupOP.

Optimistic Payment
When TSP is activated with (initialize, �, �), TSP

runs TSPkg(1�) to obtain (skTSP, pkTSP), and ob-
tains a setup params with TSPinit(�, skTSP). TSP
stores TSP0 = (�, �, skTSP, pkTSP, paramsCom ,
params) and sends (�, �, params) to OBU. OBU
runs OBUkg(1�) to get (skOBU, pkOBU) and ex-
ecutes OBUinit(params, pkTSP) to get a bit �. If
� = 0, OBU rejects params . Otherwise OBU
stores the tuple OBU0 = (�, �, skOBU, pkOBU,
pkTSP, paramsCom , params).

When OBU is activated with (payment, tag , fee, (�,
(loc�, time�), p�)

�
�=1) and OBU has previously

received (�, �, params), OBU runs algorithm Pay
(paramsCom , params, pkOBU, skOBU, pkTSP,
tag , fee, (�, (loc�, time�), p�)

�
�=1) to obtain a

payment message � along with a signature ��,
and auxiliary information ���. OBU sets ��� =
(���, (�, (loc�, time�), p�)

�
�=1), stores OBUtag =

(OBU0,�, ��, ���) and sends (�, ��) to TSP.
TSP runs VerifyPayment(paramsCom , pkOBU,
pkTSP,�, ��) to obtain a bit �. If � = 0, TSP
rejects (�, ��). Otherwise TSP stores TSPtag =
(TSP0,�, ��, pkOBU).

When TC is activated with (proof, tag , �), TC runs
TCkg(1�) to get (pkTC, skTC), runs Prove(skTC,
tag , �) to obtain a proof � and sends (�) to TSP.
TSP runs VerifyProof(pkTC, �) and aborts if � =
0. Otherwise TSP stores TSPtag = (TSPtag , �).

When TSP is activated with (verify, tag , �), and
TSP has previously obtained (�, ��) and (�),
TSP sends (�) to OBU. OBU executes
VerifyProof(pkTC, �) and aborts if � = 0.
Otherwise OBU runs OBUopen(skOBU, �, ���)
to get a response � and sends (�) to TSP.
TSP runs Check(paramsCom , pkOBU, pkTSP,�,
��, �,�) to obtain either (not guilty, (�, (loc�,
time�), p�) or (guilty, (�, (loc�, time�), p�)).

When TSP is activated with (blame, tag), and
messages (�, ��), (�) and (�) were previ-
ously received, TSP sends ((�, ��), �) to TC.
TC runs Check(paramsCom , pkOBU, pkTSP,�,
��, �,�) to obtain (not guilty, (�, (loc�, time�),
p�)) or (guilty, (�, (loc�, time�), p�)).

In the following, we denote the signature algorithms
used by TSP, OBU and TC as (TSPkeygen,TSPsign,

TSPverify), (OBUkeygen,OBUsign,OBUverify) and
(TCkeygen,TCsign,TCverify). � stands for a
collision-resistant hash function, which is modeled as a
random oracle.
SetupOP(1�). Run ComSetup(1�) and output

paramsCom .
TSPkg(1�). Run TSPkeygen(1�) to get a key pair

(pkTSP, skTSP). Output (pkTSP, skTSP).
OBUkg(1�). Run OBUkeygen(1�) to get a key pair

(pkOBU, skOBU). Output (pkOBU, skOBU).
TCkg(1�). Run TCkeygen(1�) to obtain a key pair

(pkTC, skTC). Output (pkTC, skTC).
TSPinit(�, skTSP). For all possible prices p ∈ Υ,

run � = TSPsign(skTSP, p) and output the set
params = (p, �).

OBUinit(params, pkTSP). Parse params as (p, �) and
run TSPverify(pkTSP, p, �) for all p ∈ Υ. If all the
signatures are correct, output � = 1 else � = 0.

Pay(paramsCom , params, pkOBU, skOBU, pkTSP, tag
fee, (�, (loc�, time�), p�)

�
�=1). For � = 1 to

� , execute ℎ� = �(loc�, time�), calculate a
commitment to the price (��, open�) = Commit
(paramsCom , p�) and compute a proof of posses-
sion of a signature on the price �� = NIPK{(p�,
open�, ��) : TSPverify(pkTSP, p�, ��) =
accept ∧ (��, open�) = Commit(paramsCom ,
p�)}. Add all the prices to obtain the total fee
fee and all the openings open� to get an opening
openfee to the commitment to the fee. Set payment
message � = (tag , fee, open fee , (ℎ�, ��, ��)

�
�=1)

and run �� = OBUsign(skOBU,�). Output (�,
��) and ��� = (open�)

�
�=1.

VerifyPayment(paramsCom , pkOBU, pkTSP,�, ��).
Parse � as (tag , fee, openfee , (ℎ�, ��, ��)

�
�=1). For

� = 1 to � , verify ��. Add all the commitments
to obtain a commitment to the total fee �fee , and
run Open(paramsCom , �fee , fee, open fee). If the
opening is correct, output � = 1. Otherwise output
� = 0.

Prove(skTC, tag , �). Set = (tag , �) and run �� =
TCsign(skTC,). Output � = (, ��).

VerifyProof(pkTC, �). Parse � as (, ��) and run
TCverify(pkTC, , ��). Output � = 1 if the signa-
ture is correct and � = 0 otherwise.

OBUopen(skOBU, �, ���). Parse proof � as (, ��),
as (tag , �) and ��� as (open�, (�, (loc�, time�),
p�))

�
�=1. Find the data structure (loc�, time�) such

that �(�, (loc�, time�)) outputs accept. Set � =
(tag , (�, (loc�, time�), p�), open�) and run �� =
OBUsign(skOBU, �). Output � = (�, ��).

Check(paramsCom , pkOBU, pkTSP,�, ��, �,�).
Parse � as (�, ��) and run OBUverify(pkOBU,
�, ��). If the signature is correct, parse � as
(tag , (�, (loc′�, time ′�), p

′
�), open�), � as ((tag ,

�), ��) and � as (tag , fee, openfee , (ℎ�, ��,

15

78 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 79

��)
�
�=1). Check that openfee was picked from

the adequate interval. Compute ℎ′
� = �(loc′�,

time ′�), check if ℎ′
� = ℎ� and if �(�, (loc′�,

time ′�)) outputs accept. If it is the case, set
reasonpos = 0 and otherwise reasonpos = 1.
Compute p� = �(loc′�, time ′�) and check if
p� = p′

�. Run Open(paramsCom , ��, p�, open�).
If it opens correctly set reasonprice = 0 and
otherwise reasonprice = 1. If reasonpos =
reasonprice = 0, output (not guilty, (�, (loc�,
time�), p�)). If not, output (guilty, (�, (loc�,
time�), p�)).

Theorem 1 This OP scheme securely realizes ℱOP.

We prove Theorem 1 in the extended version of this
work [3].

B.2 Efficient Instantiation

We propose an efficient instantiation for the commitment
scheme, TSP’s signature scheme and the non-interactive
proof of signature possession that are used in the con-
struction described in the previous section. The signa-
ture schemes of TC and OBU can be instantiated with
any existentially unforgeable signature scheme.

Signature Scheme. We select the signature scheme pro-
posed by Camenisch and Lysyanskaya [9].
- SigKeygen. On input 1�, generate two safe primes �, �

of length � such that � = 2�′ + 1 and � = 2�′ + 1.
The special RSA modulus of length �� is defined as
� = ��. Output secret key �� = (�, �). Choose uni-
formly at random � ∈� ���, and �,� ∈� ⟨�⟩.
Output public key �� = (�,�, �, �).

- SigSign. On input message of length ��, choose a
random prime number � of length �� ≥ �� + 3, and
a random number � of length �� = �� + �� + ��,
where �� is a security parameter [9]. Compute the
value
 such that � ≡
�����(mod �). Output
the signature (
, �, �).

- SigVerify. On inputs message and signature (
, �,
�), check that � =
�����(mod �) and 2�� ≤ � ≤
2��−1.

Commitment Scheme. We select the integer commit-
ment scheme due to Damgard and Fujisaki [15].
- ComSetup. Given a special RSA modulus, pick a ran-

dom generator 	1 ∈� ���. Pick random � ←
{0, 1}��+�� and compute 	0 = 	�1 . Output parame-
ters (0, 	1, �).

- Commit. On input message of length ��, choose a
random number open� ∈ {0, 1}��+�� , and compute
�� = 	0

�	1
open� (mod �). Output the commitment

�� and the opening open�.

- Open. On inputs message and opening open�, com-
pute �′� = 	0

�	1
open� (mod �) and check whether

�� = �′�.

Non-Interactive Zero-Knowledge Argument. We em-
ploy the proof of possession of a signature in [9]. Given
a signature (
, �, �) on message and a commitment
to the message �� = 	0

�	1
open� , the prover computes

̃ =
	�, a commitment �� = 	�ℎopen� and a proof
that:

NIPK{ (, open�, �, �, �, open�, � ⋅ �, open� ⋅ �) :
�� = 	0

�	1
open� ∧ � =
̃�����(1/	0)

�⋅� ∧
�� = 	0

�	1
open� ∧ 1 = ���(1/	0)

�⋅�

(1/	1)
open�⋅� ∧ � ∈ {0, 1}��+��+�� ∧

 ∈ {0, 1}��+��+��}

We turn it into a non-interactive zero-knowledge argu-
ment via the Fiat-Shamir heuristic. The prover picks ran-
dom values:
�� ← {0, 1}��+��+�� , �open�

← {0, 1}��+��+��

�� ← {0, 1}��+��+�� , �open�
← {0, 1}��+��+��

�� ← {0, 1}��+��+�� , ��⋅� ← {0, 1}��+��+��+��

�� ← {0, 1}��+��+�� , �open�⋅� ← {0, 1}��+��+��+��

and computes commitments:

��� = 	0
��	1

�open� , ��� = 	��ℎ�open�

�′� =
̃�������� (1/	0)
��⋅� ,

�′ = ���� (1/	0)
��⋅�(1/	1)

�open�⋅� .
Let the challenge computed by the prover be:

�ℎ = �(�∣∣	0∣∣	1∣∣
̃∣∣�∣∣�∣∣1/	0∣∣1/	1∣∣��∣∣�∣∣
��∣∣1∣∣��� ∣∣�� ∣∣��� ∣∣�).

The prover computes responses:
�� = �� − �ℎ ⋅ , �open�

= �open�
− �ℎ ⋅ open�

�� = �� − �ℎ ⋅ � , �open�
= �open�

− �ℎ ⋅ open�

�� = �� − �ℎ ⋅ � , ��⋅� = ��⋅� − �ℎ ⋅ (� ⋅ �)
�� = �� − �ℎ ⋅ � ,
�open�⋅� = �open�⋅� − �ℎ ⋅ (open� ⋅ �)

and sends to the verifier:
� = (
̃, ��, �ℎ, ��, �open�

, ��, ��, ��, �open�
, ��⋅�,

�open�⋅�) .
The verifier computes:

�′�� = ��ℎ� 	0
��	1

�open� , �′�� = ��ℎ� 	0
��	1

�open�

�′� = ��ℎ
̃�������� (1/	0)
��⋅� ,

�′ = ���
� (1/	0)

��⋅�(1/	1)
�open�⋅�

and checks whether:

�� ∈ {0, 1}��+��+�� , �� ∈ {0, 1}��+��+��

and finally:

�ℎ = �(�∣∣	0∣∣	1∣∣
̃∣∣�∣∣�∣∣1/	0∣∣1/	1∣∣��∣∣�∣∣
��∣∣1∣∣�′�� ∣∣�

′
� ∣∣�′�� ∣∣�

′).

16

An Analysis of Private Browsing Modes in Modern Browsers

Gaurav Aggarwal Elie Burzstein
Stanford University

Collin Jackson
CMU

Dan Boneh
Stanford University

Abstract
We study the security and privacy of private browsing
modes recently added to all major browsers. We first pro-
pose a clean definition of the goals of private browsing
and survey its implementation in different browsers. We
conduct a measurement study to determine how often it is
used and on what categories of sites. Our results suggest
that private browsing is used differently from how it is
marketed. We then describe an automated technique for
testing the security of private browsing modes and report
on a few weaknesses found in the Firefox browser. Fi-
nally, we show that many popular browser extensions and
plugins undermine the security of private browsing. We
propose and experiment with a workable policy that lets
users safely run extensions in private browsing mode.

1 Introduction

The four major browsers (Internet Explorer, Firefox,
Chrome and Safari) recently added private browsing
modes to their user interfaces. Loosely speaking, these
modes have two goals. First and foremost, sites visited
while browsing in private mode should leave no trace on
the user’s computer. A family member who examines the
browser’s history should find no evidence of sites visited
in private mode. More precisely, a local attacker who
takes control of the machine at time T should learn no
information about private browsing actions prior to time
T . Second, users may want to hide their identity from
web sites they visit by, for example, making it difficult
for web sites to link the user’s activities in private mode
to the user’s activities in public mode. We refer to this as
privacy from a web attacker.

While all major browsers support private browsing,
there is a great deal of inconsistency in the type of pri-
vacy provided by the different browsers. Firefox and
Chrome, for example, attempt to protect against a local
attacker and take some steps to protect against a web at-
tacker, while Safari only protects against a local attacker.

Even within a single browser there are inconsistencies.
For example, in Firefox 3.6, cookies set in public mode
are not available to the web site while the browser is in
private mode. However, passwords and SSL client cer-
tificates stored in public mode are available while in pri-
vate mode. Since web sites can use the password man-
ager as a crude cookie mechanism, the password policy
is inconsistent with the cookie policy.

Browser plug-ins and extensions add considerable
complexity to private browsing. Even if a browser ad-
equately implements private browsing, an extension can
completely undermine its privacy guarantees. In Sec-
tion 6.1 we show that many widely used extensions un-
dermine the goals of private browsing. For this reason,
Google Chrome disables all extensions while in private
mode, negatively impacting the user experience. Firefox,
in contrast, allows extensions to run in private mode, fa-
voring usability over security.

Our contribution. The inconsistencies between the
goals and implementation of private browsing suggests
that there is considerable room for research on private
browsing. We present the following contributions.

• Threat model. We begin with a clear definition of
the goals of private browsing. Our model has two
somewhat orthogonal goals: security against a local
attacker (the primary goal of private browsing) and
security against a web attacker. We show that cor-
rectly implementing private browsing can be non-
trivial and in fact all browsers fail in one way or an-
other. We then survey how private browsing is im-
plemented in the four major browsers, highlighting
the quirks and differences between the browsers.

• Experiment. We conduct an experiment to test
how private browsing is used. Our study is based
on a technique we discovered to remotely test if a
browser is currently in private browsing mode. Us-
ing this technique we post ads on ad-networks and

80 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 81

determine how often private mode is used. Using ad
targeting by the ad-network we target different cat-
egories of sites, enabling us to correlate the use of
private browsing with the type of site being visited.
We find it to be more popular at adult sites and less
popular at gift sites, suggesting that its primary pur-
pose may not be shopping for “surprise gifts.” We
quantify our findings in Section 4.

• Tools. We describe an automated technique for
identifying failures in private browsing implemen-
tations and use it to discover a few weaknesses in
the Firefox browser.

• Browser extensions. We propose an improve-
ment to existing approaches to extensions in private
browsing mode, preventing extensions from unin-
tentionally leaving traces of the private activity on
disk. We implement our proposal as a Firefox ex-
tension that imposes this policy on other extensions.

Organization. Section 2 presents a threat model for pri-
vate browsing. Section 3 surveys private browsing mode
in modern browsers. Section 4 describes our experimen-
tal measurement of private browsing usage. Section 5
describes the weaknesses we found in existing private
browsing implementations. Section 6 addresses the chal-
lenges introduced by extensions and plug-ins. Section 7
describes additional related work. Section 8 concludes.

2 Private browsing: goal and threat model

In defining the goals and threat model for private brows-
ing, we consider two types of attackers: an attacker who
controls the user’s machine (a local attacker) and an at-
tacker who controls web sites that the user visits (a web
attacker). We define security against each attacker in
turn. In what follows we refer to the user browsing the
web in private browsing mode as the user and refer to
someone trying to determine information about the user’s
private browsing actions as the attacker.

2.1 Local attacker
Stated informally, security against a local attacker means
that an attacker who takes control of the machine after
the user exits private browsing can learn nothing about
the user’s actions while in private browsing. We define
this more precisely below.

We emphasize that the local attacker has no access to
the user’s machine before the user exits private brows-
ing. Without this limitation, security against a local at-
tacker is impossible; an attacker who has access to the
user’s machine before or during a private browsing ses-
sion can simply install a key-logger and record all user

actions. By restricting the local attacker to “after the
fact” forensics, we can hope to provide security by hav-
ing the browser adequately erase persistent state changes
during a private browsing session.

As we will see, this requirement is far from simple.
For one thing, not all state changes during private brows-
ing should be erased at the end of a private browsing ses-
sion. We draw a distinction between four types of persis-
tent state changes:

1. Changes initiated by a web site without any user in-
teraction. A few examples in this category include
setting a cookie, adding an entry to the history file,
and adding data to the browser cache.

2. Changes initiated by a web site, but requiring user
interaction. Examples include generating a client
certificate or adding a password to the password
database.

3. Changes initiated by the user. For example, creating
a bookmark or downloading a file.

4. Non-user-specific state changes, such as installing a
browser patch or updating the phishing block list.

All browsers try to delete state changes in category (1)
once a private browsing session is terminated. Failure to
do so is treated as a private browsing violation. However,
changes in the other three categories are in a gray area
and different browsers treat these changes differently and
often inconsistently. We discuss implementations in dif-
ferent browsers in the next section.

To keep our discussion general we use the term pro-
tected actions to refer to state changes that should be
erased when leaving private browsing. It is up to each
browser vendor to define the set of protected actions.

Network access. Another complication in defining pri-
vate browsing is server side violations of privacy. Con-
sider a web site that inadvertently displays to the world
the last login time of every user registered at the site.
Even if the user connects to the site while in private
mode, the user’s actions are open for anyone to see. In
other words, web sites can easily violate the goals of pri-
vate browsing, but this should not be considered a viola-
tion of private browsing in the browser. Since we are
focusing on browser-side security, our security model
defined below ignores server side violations. While
browser vendors mostly ignore server side violations,
one can envision a number of potential solutions:

• Much like the phishing filter, browsers can consult a
block list of sites that should not be accessed while
in private browsing mode.

• Alternatively, sites can provide a P3P-like policy
statement saying that they will not violate private
browsing. While in private mode, the browser will
not connect to sites that do not display this policy.

• A non-technical solution is to post a privacy seal at
web sites who comply with private browsing. Users
can avoid non-compliant sites when browsing pri-
vately.

Security model. Security is usually defined using two
parameters: the attacker’s capabilities and the attacker’s
goals. A local private browsing attacker has the follow-
ing capabilities:

• The attacker does nothing until the user leaves pri-
vate browsing mode at which point the attacker gets
complete control of the machine. This captures
the fact that the attacker is limited to after-the-fact
forensics.

In this paper we focus on persistent state violations,
such as those stored on disk; we ignore private state
left in memory. Thus, we assume that before the
attacker takes over the local machine all volatile
memory is cleared (though data on disk, including
the hibernation file, is fair game). Our reason for ig-
noring volatile memory is that erasing all of it when
exiting private browsing can be quite difficult and,
indeed, no browser does it. We leave it as future
work to prevent privacy violations resulting from
volatile memory.

• While active, the attacker cannot communicate with
network elements that contain information about the
user’s activities while in private mode (e.g. web
sites the user visited, caching proxies, etc.). This
captures the fact that we are studying the implemen-
tation of browser-side privacy modes, not server-
side privacy.

Given these capabilities, the attacker’s goal is as fol-
lows: for a set S of HTTP requests of the attacker’s
choosing, determine if the browser issued any of those
requests while in private browsing mode. More precisely,
the attacker is asked to distinguish a private browsing
session where the browser makes one of the requests in
S from a private browsing session where the browser
does not. If the local attacker cannot achieve this goal
then we say that the browser’s implementation of private
browsing is secure. This will be our working definition
throughout the paper. Note that since an HTTP request
contains the name of the domain visited this definition
implies that the attacker cannot tell if the user visited a
particular site (to see why set S to be the set of all pos-
sible HTTP requests to the site in question). Moreover,
even if by some auxiliary information the attacker knows
that the user visited a particular site, the definition im-
plies that the attacker cannot tell what the user did at the
site.

An alternate definition, which is much harder to
achieve, requires that the browser hide whether private
mode was used at all. We will not consider this stronger
goal in the paper. Similarly, we do not formalize proper-
ties of private browsing in case the user never exits pri-
vate browsing mode.

Difficulties. Browser vendors face a number of chal-
lenges in securing private browsing against a local at-
tacker. One set of problems is due to the underlying op-
erating system. We give two examples:

First, when connecting to a remote site the browser
must resolve the site’s DNS name. Operating systems
often cache DNS resolutions in a local DNS cache. A
local attacker can examine the DNS cache and the TTL
values to learn if and when the user visited a particular
site. Thus, to properly implement private browsing, the
browser will need to ensure that all DNS queries while
in private mode do not affect the system’s DNS cache:
no entries should be added or removed. A more aggres-
sive solution, supported in Windows 2000 and later, is to
flush the entire DNS resolver cache when exiting private
browsing. None of the mainstream browsers currently
address this issue.

Second, the operating system can swap memory pages
to the swap partition on disk which can leave traces of the
user’s activity. To test this out we performed the follow-
ing experiment on Ubuntu 9.10 running Firefox 3.5.9:

1. We rebooted the machine to clear RAM and setup
and mounted a swap file (zeroed out).

2. Next, we started Firefox, switched to private brows-
ing mode, browsed some websites and exited pri-
vate mode but kept Firefox running.

3. Once the browser was in public mode, we ran a
memory leak program a few times to force memory
pages to be swapped out. We then ran strings
on the swap file and searched for specific words
and content of the webpages visited while in private
mode.

The experiment showed that the swap file contained
some URLs of visited websites, links embedded in those
pages and sometimes even the text from a page – enough
information to learn about the user’s activity in private
browsing.

This experiment shows that a full implementation of
private browsing will need to prevent browser memory
pages from being swapped out. None of the mainstream
browsers currently do this.

Non-solutions. At first glance it may seem that secu-
rity against a local attacker can be achieved using virtual
machine snapshots. The browser runs on top of a vir-
tual machine monitor (VMM) that takes a snapshot of the

82 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 83

browser state whenever the browser enters private brows-
ing mode. When the user exits private browsing the
VMM restores the browser, and possibly other OS data,
to its state prior to entering private mode. This architec-
ture is unacceptable to browser vendors for several rea-
sons: first, a browser security update installed during pri-
vate browsing will be undone when exiting private mode;
second, documents manually downloaded and saved to
the file system during private mode will be lost when ex-
iting private mode, causing user frustration; and third,
manual tweaks to browser settings (e.g. the homepage
URL, visibility status of toolbars, and bookmarks) will
revert to their earlier settings when exiting private mode.
For all these reasons and others, a complete restore of the
browser to its state when entering private mode is not the
desired behavior. Only browser state that reveals infor-
mation on sites visited should be deleted.

User profiles provide a lightweight approach to imple-
menting the VM snapshot method described above. User
profiles store all browser state associated with a partic-
ular user. Firefox, for example, supports multiple user
profiles and the user can choose a profile when start-
ing the browser. The browser can make a backup of the
user’s profile when entering private mode and restore the
profile to its earlier state when exiting private mode. This
mechanism, however, suffers from all the problems men-
tioned above.

Rather than a snapshot-and-restore approach, all four
major browsers take the approach of not recording cer-
tain data while in private mode (e.g. the history file is
not updated) and deleting other data when exiting pri-
vate mode (e.g. cookies). As we will see, some data that
should be deleted is not.

2.2 Web attacker
Beyond a local attacker, browsers attempt to provide
some privacy from web sites. Here the attacker does not
control the user’s machine, but has control over some vis-
ited sites. There are three orthogonal goals that browsers
try to achieve to some degree:

• Goal 1: A web site cannot link a user visiting
in private mode to the same user visiting in pub-
lic mode. Firefox, Chrome, and IE implement this
(partially) by making cookies set in public mode un-
available while in private mode, among other things
discussed in the next section. Interestingly, Safari
ignores the web attacker model and makes public
cookies available in private browsing.

• Goal 2: A web site cannot link a user in one private
session to the same user in another private session.
More precisely, consider the following sequence of
visits at a particular site: the user visits in public

mode, then enters private mode and visits again, ex-
its private mode and visits again, re-activates pri-
vate mode and visits again. The site should not
be able to link the two private sessions to the same
user. Browsers implement this (partially) by delet-
ing cookies set while in private mode, as well as
other restrictions discussed in the next section.

• Goal 3: A web site should not be able to determine
whether the browser is currently in private browsing
mode. While this is a desirable goal, all browsers
fail to satisfy this; we describe a generic attack in
Section 4.

Goals (1) and (2) are quite difficult to achieve. At
the very least, the browser’s IP address can help web
sites link users across private browsing boundaries. Even
if we ignore IP addresses, a web site can use various
browser features to fingerprint a particular browser and
track that browser across privacy boundaries. Mayer [14]
describes a number of such features, such as screen reso-
lution, installed plug-ins, timezone, and installed fonts,
all available through standard JavaScript objects. The
Electronic Frontier Foundation recently built a web site
called Panopticlick [6] to demonstrate that most browsers
can be uniquely fingerprinted. Their browser fingerprint-
ing technology completely breaks private browsing goals
(1) and (2) in all browsers.

Torbutton [29] — a Tor client implemented as a Fire-
fox extension — puts considerable effort into achieving
goals (1) and (2). It hides the client’s IP address using the
Tor network and takes steps to prevent browser finger-
printing. This functionality is achieved at a considerable
performance and convenience cost to the user.

3 A survey of private browsing in modern
browsers

All four majors browsers (Internet Explorer 8, Firefox
3.5, Safari 4, and Google Chrome 5) implement a private
browsing mode. This feature is called InPrivate in In-
ternet Explorer, Private Browsing in Firefox and Safari,
and Incognito in Chrome.

User interface. Figure 1 shows the user interface associ-
ated with these modes in each of the browsers. Chrome
and Internet Explorer have obvious chrome indicators
that the browser is currently in private browsing mode,
while the Firefox indicator is more subtle and Safari only
displays the mode in a pull down menu. The difference
in visual indicators has to do with shoulder surfing: can
a casual observer tell if the user is currently browsing
privately? Safari takes this issue seriously and provides
no visual indicator in the browser chrome, while other
browsers do provide a persistent indicator. We expect

that hiding the visual indicator causes users who turn on
private browsing to forget to turn it off. We give some ev-
idence of this phenomenon in Section 4 where we show
that the percentage of users who browse the web in pri-
vate mode is greater in browsers with subtle visual indi-
cators.

Another fundamental difference between the browsers
is how they start private browsing. IE and Chrome spawn
a new window while keeping old windows open, thus
allowing the user to simultaneously use the two modes.
Firefox does not allow mixing the two modes. When en-
tering private mode it hides all open windows and spawns
a new private browsing window. Unhiding public win-
dows does nothing since all tabs in these windows are
frozen while browsing privately. Safari simply switches
the current window to private mode and leaves all tabs
unchanged.

Internal behavior. To document how the four imple-
mentations differ, we tested a variety of browser fea-
tures that maintain state and observed the browsers’ han-
dling of each feature in conjunction with private brows-
ing mode. The results, conducted on Windows 7 using a
default browser settings, are summarized in Tables 1, 2
and 3.

Table 1 studies the types of data set in public mode
that are available in private mode. Some browsers block
data set in public mode to make it harder for web sites to
link the private user to the pubic user (addressing the web
attacker model). The Safari column in Table 1 shows
that Safari ignores the web attacker model altogether and
makes all public data available in private mode except
for the web cache. Firefox, IE, and Chrome block ac-
cess to some public data while allowing access to other
data. All three make public history, bookmarks and pass-
words available in private browsing, but block public
cookies and HTML5 local storage. Firefox allows SSL
client certs set in public mode to be used in private mode,
thus enabling a web site to link the private session to the
user’s public session. Hence, Firefox’s client cert pol-
icy is inconsistent with its cookie policy. IE differs from
the other three browsers in the policy for form field auto-
completion; it allows using data from public mode.

Table 2 studies the type of data set in private mode
that persists after the user leaves private mode. A lo-
cal attacker can use data that persists to learn user ac-
tions in private mode. All four browsers block cook-
ies, history, and HTML5 local storage from propagating
to public mode, but persist bookmarks and downloads.
Note that all browsers other than Firefox persist server
self-signed certificates approved by the user while in pri-
vate browsing mode. Lewis [35] recently pointed that
Chrome 5.0.375.38 persisted the window zoom level for
URLs across incognito sessions; this issue has been fixed
as of Chrome 5.0.375.53.

Table 3 studies data that is entered in private mode and
persists during that same private mode session. While
in private mode, Firefox writes nothing to the history
database and similarly no new passwords and no search
terms are saved. However, cookies are stored in mem-
ory while in private mode and erased when the user ex-
ists private mode. These cookies are not written to per-
sistent storage to ensure that if the browser crashes in
private mode this data will be erased. The browser’s
web cache is handled similarly. We note that among the
four browsers, only Firefox stores the list of downloaded
items in private mode. This list is cleared on leaving pri-
vate mode.

3.1 A few initial privacy violation examples
In Section 5.1 we describe tests of private browsing mode
that revealed several browser attributes that persist after
a private browsing session is terminated. Web sites that
use any of these features leave tracks on the user’s ma-
chine that will enable a local attacker to determine the
user’s activities in private mode. We give a few exam-
ples below.

Custom Handler Protocol. Firefox implements an
HTML 5 feature called custom protocol handlers (CPH)
that enables a web site to define custom protocols,
namely URLs of the form xyz://site/path where
xyz is a custom protocol name. We discovered that cus-
tom protocol handlers defined while the browser is in
private mode persist after private browsing ends. Con-
sequently, sites that use this feature will leak the fact that
the user visited these sites to a local attacker.

Client Certificate. IE, Firefox, and Safari support SSL
client certificates. A web site can, using JavaScript, in-
struct the browser to generate an SSL client public/pri-
vate key pair. We discovered that all these browsers re-
tain the generated key pair even after private browsing
ends. Again, if the user visits a site that generates an
SSL client key pair, the resulting keys will leak the site’s
identity to the local attacker. When Internet Explorer and
Safari encounter a self-signed certificate they store it in
a Microsoft certificate vault. We discovered that entries
added to the vault while in private mode remain in the
vault when the private session ends. Hence, if the user
visits a site that is using a self signed certificate, that in-
formation will be available to the local attacker even after
the user leaves private mode.

SMB Query. Since Internet Explorer shares some un-
derlying components with Window Explorer it under-
stands SMB naming conventions such as \\host\
mydir\myfile and allows the user to browse files and
directories. This feature has been used before to steal
user data [16]. Here we point out that SMB can also be

84 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 85

(a) Google Chrome 4 (b) Internet Explorer 8

(c) Firefox 3.6 (d) Safari 4

Figure 1: Private browsing indicators in major browsers

FF Safari Chrome IE
History no yes no no
Cookies no yes no no
HTML5 local storage no yes no no
Bookmarks yes yes yes yes
Password database yes yes yes yes
Form autocompletion yes yes yes no
User approved SSL self-signed cert yes yes yes yes
Downloaded items list no yes yes n/a
Downloaded items yes yes yes yes
Search box search terms yes yes yes yes
Browser’s web cache no no no no
Client certs yes yes yes yes
Custom protocol handlers yes n/a n/a n/a
Per-site zoom level no n/a yes n/a

Table 1: Is the state set in earlier public mode(s) accessible in private mode?

FF Safari Chrome IE
History no no no no
Cookies no no no no
HTML5 Local storage no no no no
Bookmarks yes yes yes yes
Password database no no no no
Form autocompletion no no no no
User approved SSL self-signed cert no yes yes yes
Downloaded items list no no no n/a
Downloaded items yes yes yes yes
Search box search terms no no no no
Browser’s web cache no no no no
Client certs yes n/a n/a yes
Custom protocol handlers yes n/a n/a n/a
Per-site zoom level no n/a no n/a

Table 2: Is the state set in earlier private mode(s) accessible in public mode?

FF Safari Chrome IE
History no no no no
Cookies yes yes yes yes
HTML5 Local storage yes yes yes yes
Bookmarks yes yes yes yes
Password database no no no no
Form autocompletion no no no no
User approved SSL self-signed cert yes yes yes yes
Downloaded items list yes no no n/a
Downloaded items yes yes yes yes
Search box search terms no no no no
Browser’s web cache yes yes yes yes
Client certs yes n/a n/a yes
Custom protocol handlers yes n/a n/a n/a
Per-site zoom level no n/a yes n/a

Table 3: Is the state set in private mode at some point accessible later in the same session?

86 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 87

used to undo some of the benefits of private browsing
mode. Consider the following code :

When IE renders this tag, it initiates an SMB request to
the web server whose IP is specified in the image source.
Part of the SMB request is an NTLM authentication that
works as follows: first an anonymous connection is tried
and if it fails IE starts a challenge-response negotiation.
IE also sends to the server Windows username, Windows
domain name, Windows computer name even when the
browser is in InPrivate mode. Even if the user is behind a
proxy, clears the browser state, and uses InPrivate, SMB
connections identify the user to the remote site. While
experimenting with this we found that many ISPs filter
the SMB port 445 which makes this attack difficult in
practice.

4 Usage measurement

We conducted an experiment to determine how the
choice of browser and the type of site being browsed af-
fects whether users enable private browsing mode. We
used advertisement networks as a delivery mechanism
for our measurement code, using the same ad network
and technique previously demonstrated in [10, 4].

Design. We ran two simultaneous one-day campaigns:
a campaign that targeted adult sites, and a campaign
that targeted gift shopping sites. We also ran a cam-
paign on news sites as a control. We spent $120 to pur-
chase 155,216 impressions, split evenly as possible be-
tween the campaigns. Our advertisement detected pri-
vate browsing mode by visiting a unique URL in an
<iframe> and using JavaScript to check whether a link
to that URL was displayed as purple (visited) or blue (un-
visited). The technique used to read the link color varies
by browser; on Firefox, we used the following code:

i f (g e t C o m p u t e d S t y l e (l i n k) . c o l o r ==
” rgb (5 1 , 1 0 2 , 1 6 0) ”)

/ / Link is purple, private browsing is OFF
} e l s e {

/ / Link is blue, private browsing is ON
}

To see why this browser history sniffing technique [11]
reveals private browsing status, recall that in private
mode all browsers do not add entries to the history
database. Consequently, they will color the unique URL
link as unvisited. However, in public mode the unique
URL will be added to the history database and the
browser will render the link as visited. Thus, by reading
the link color we learn the browser’s privacy state. We
developed a demonstration of this technique in February

2009 [9]. To the best of our knowledge, we are the first
to demonstrate this technique to detect private browsing
mode in all major browsers.

While this method correctly detects all browsers in pri-
vate browsing, it can slightly over count due to false pos-
itives. For example, some people may disable the his-
tory feature in their browser altogether, which will incor-
rectly make us think they are in private mode. In Firefox,
users can disable the :visited pseudotag using a Fire-
fox preference used as a defense against history sniffing.
Again, this will make us think they are in private mode.
We excluded beta versions of Firefox 3.7 and Chrome 6
from our experiment, since these browsers have experi-
mental visited link defenses that prevent our automated
experiment from working. However, we note that these
defenses are not sufficient to prevent web attackers from
detecting private browsing, since they are not designed to
be robust against attacks that involve user interaction [3].
We also note that the experiment only measures the pres-
ence of private mode, not the intent of private mode—
some users may be in private mode without realizing it.

Results. The results of our ad network experiment are
shown in Figure 2. We found that private browsing was
more popular at adult web sites than at gift shopping sites
and news sites, which shared a roughly equal level of pri-
vate browsing use. This observation suggests that some
browser vendors may be mischaracterizing the primary
use of the feature when they describe it as a tool for buy-
ing surprise gifts [8, 17].

We also found that private browsing was more com-
monly used in browsers that displayed subtle private
browsing indicators. Safari and Firefox have subtle in-
dicators and enforce a single mode across all windows;
they had the highest rate of private browsing use. Google
Chrome and Internet Explorer give users a separate win-
dow for private browsing, and have more obvious private
browsing indicators; these browsers had lower rates of
private browsing use. These observations suggest that
users may remain in private browsing mode for longer if
they are not reminded of its existence by a separate win-
dow with obvious indicators.

Ethics. The experimental design complied with the
terms of service of the advertisement network. The
servers logged only information that is typically logged
by advertisers when their advertisements are displayed.
We also chose not to log the client’s IP address. We
discussed the experiment with the institutional review
boards at our respective institutions and were instructed
that a formal IRB review was not required because the
advertisement did not interact or intervene with individ-
uals or obtain identifiable private information.

0%	

2%	

4%	

6%	

8%	

10%	

12%	

14%	

16%	

18%	

Safari	 Firefox	 3.5-‐3.6	 Chrome	 1-‐5	 IE	 8+	 Combined	

Adult	

GiD	 Shopping	

News	

Figure 2: Observed rates of private browsing use

5 Weaknesses in current implementations:
a systematic study

Given the complexity of modern browsers, a systematic
method is needed for testing that private browsing modes
adequately defend against the threat models of Section 2.
During our blackbox testing in Section 3.1 it became
clear that we need a more comprehensive way to en-
sure that all browser features behave correctly in private
mode. We performed two systematic studies:

• Our first study is based on a manual review of the
Firefox source code. We located all points in the
code where Firefox writes to persistent storage and
manually verified that those writes are disabled in
private browsing mode.

• Our second study is an automated tool that runs
the Firefox unit tests in private browsing mode and
looks for changes in persistent storage. This tool
can be used as a regression test to ensure that new
browser features are consistent with private brows-
ing.

We report our results in the next two sections.

5.1 A systematic study by manual code re-
view

Firefox keeps all the state related to the user’s brows-
ing activity including preferences, history, cookies, text
entered in forms fields, search queries, etc. in a Profile
folder on disk [22]. By observing how and when persis-
tent modifications to these files occur in private mode we
can learn a great deal about how private mode is imple-
mented in Firefox. In this section we describe the results
of our manual code review of all points in the Firefox
code that modify files in the Profile folder.

Our first step was to identify those files in the profile
folder that contain information about a private browsing
session. Then, we located the modules in the Mozilla
code base that directly or indirectly modify these files.

Finally, we reviewed these modules to see if they write
to disk while in private mode.

Our task was greatly simplified by the fact that all
writes to files inside the Profile directory are done us-
ing two code abstractions. The first is nsIFile, a
cross-platform representation of a location in the filesys-
tem used to read or write to files [21]. The sec-
ond is Storage, a SQLite database API that can be
used by other Firefox components and extensions to
manipulate SQLite database files [23]. Points in the
code that call these abstractions can check the current
private browsing state by calling or hooking into the
nsIPrivateBrowsingService interface [24].

Using this method we located 24 points in the Firefox
3.6 code base that control all writes to sensitive files in
the Profile folder. Most had adequate checks for private
browsing mode, but some did not. We give a few exam-
ples of points in the code that do not adequately check
private browsing state.

• Security certificate settings (stored in file
cert8.db): stores all security certificate set-
tings and any SSL certificates that have been
imported into Firefox either by an authorized
website or manually by the user. This includes SSL
client certificates.

There are no checks for private mode in the code.
We explained in Section 3.1 that this is a violation
of the private browsing security model since a lo-
cal attacker can easily determine if the user visited a
site that generates a client key pair or installs a client
certificate in the browser. We also note that certifi-
cates created outside private mode are usable in pri-
vate mode, enabling a web attacker to link the user
in public mode to the same user in private mode.

• Site-specific preferences (stored in file
permissions.sqlite): stores many of
Firefox permissions that are decided on a per-site
basis. For example, it stores which sites are
allowed or blocked from setting cookies, installing

88 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 89

extensions, showing images, displaying popups,
etc.

While there are checks for private mode in the
code, not all state changes are blocked. Permissions
added to block cookies, popups or allow add-ons in
private mode are persisted to disk. Consequently, if
a user visits some site that attempts to open a popup,
the popup blocker in Firefox blocks it and displays
a message with some actions that can be taken. In
private mode, the “Edit popup blocker preferences”
option is enabled and users who click on that option
can easily add a permanent exception for the site
without realizing that it would leave a trace of their
private browsing session on disk. When browsing
privately to a site that uses popups, users might be
tempted to add the exception, thus leaking informa-
tion to the local attacker.

• Download actions (stored in file
mimeTypes.rdf): the file stores the user’s
preferences with respect to what Firefox does when
it comes across known file types like pdf or avi. It
also stores information about which protocol han-
dlers (desktop-based or custom protocol handlers)
to launch when it encounters a non-http protocol
like mailto [26].

There are no checks for private mode in the code.
As a result, a webpage can install a custom proto-
col handler into the browser (with the user’s permis-
sion) and this information would be persisted to disk
even in private mode. As explained in Section 3.1,
this enables a local attacker to learn that the user
visited the website that installed the custom proto-
col handler in private mode.

5.2 An automated private browsing test us-
ing unit tests

All major browsers have a collection of unit tests for
testing browser features before a release. We automate
the testing of private browsing mode by leveraging these
tests to trigger many browser features that can potentially
violate private browsing. We explain our approach as it
applies to the Firefox browser. We use MozMill, a Fire-
fox user-interface test automation tool [20]. Mozilla pro-
vides about 196 MozMill tests for the Firefox browser.

Our approach. We start by creating a fresh browser
profile and set preferences to always start Firefox in pri-
vate browsing mode. Next we create a backup copy of
the profile folder and start the MozMill tests. We use
two methods to monitor which files are modified by the
browser during the tests:

• fs usage is a Mac OSX utility that presents sys-
tem calls pertaining to filesystem activity. It out-
puts the name of the system call used to access the
filesystem and the file descriptor being acted upon.
We built a wrapper script around this tool to map
the file descriptors to actual pathnames using lsof.
We run our script in parallel with the browser and
the script monitors all files that the browser writes
to.

• We also use the “last modified time” for files in
the profile directory to identity those files that are
changed during the test.

Once the MozMill test completes we compare the modi-
fied profile files with their backup versions and examine
the exact changes to eliminate false positives. In our ex-
periments we took care to exclude all MozMill tests like
“testPrivateBrowsing” that can turn off private browsing
mode. This ensured that the browser was in private mode
throughout the duration of the tests.

We did the above experiment on Mac OSX 10.6.2 and
Windows Vista running Firefox 3.6. Since we only con-
sider the state of browser profile and start with a clean
profile, the results should not depend on OS or state of
the machine at the time of running the tests.

Results. After running the MozMill tests we discovered
several additional browser features that leak information
about private mode. We give a few examples.

• Certificate Authority (CA) Certificates (stored in
cert8.db). Whenever the browser receives a cer-
tificate chain from the server, it stores all the cer-
tificate authorities in the chain in cert8.db. Our
tests revealed that CA certs cached in private mode
persist when private mode ends. This is significant
privacy violation. Whenever the user visits a site
that uses a non-standard CA, such as certain govern-
ment sites, the browser will cache the corresponding
CA cert and expose this information to the local at-
tacker.

• SQLite databases. The tests showed that the last
modified timestamps of many SQLite databases in
the profile folder are updated during the test. But at
the end of the tests, the resulting files have exactly
the same size and there are no updates to any of the
tables. Nevertheless, this behavior can exploited by
a local attacker to discover that private mode was
turned on in the last browsing session. The attacker
simply observes that no entries were added to the
history database, but the SQLite databases were ac-
cessed.

• Search Plugins (stored in search.sqlite and
search.json). Firefox supports auto-discovery

of search plugins [19, 25] which is a way for web
sites to advertise their Firefox search plugins to the
user. The tests showed that a search plugin added in
private mode persists to disk. Consequently, a local
attacker will discover that the user visited the web
site that provided the search plugin.

• Plugin Registration (stored in pluginreg.dat).
This file is generated automatically and records in-
formation about installed plugins like Flash and
Quicktime. We observed changes in modification
time, but there were only cosmetic changes in the
file content. However, as with search plugins, new
plugins installed in private mode result in new in-
formation written to pluginreg.dat.

Discovering these leaks using MozMill tests is much eas-
ier than a manual code review.

Using our approach as a regression tool. Using exist-
ing unit tests provides a quick and easy way to test private
browsing behavior. However, it would be better to in-
clude testcases that are designed specifically for private
mode and cover all browser components that could po-
tentially write to disk. The same suite of testcases could
be used to test all browsers and hence would bring some
consistency in the behavior of various browsers in private
mode.
As a proof of concept, we wrote two MozMill testcases
for the violations discovered in Section 5.1:
• Site-specific Preferences (stored in file
permissions.sqlite): visits a fixed URL
that open up a popup. The test edits preferences to
allow a popup from this site.

• Download Actions (mimeTypes.rdf): visits a
fixed URL that installs a custom protocol handler.

Running these tests using our testing script revealed
writes to both profile files involved.

6 Browser addons

Browser addons (extensions and plug-ins) pose a privacy
risk to private browsing because they can persist state to
disk about a user’s behavior in private mode. The devel-
opers of these addons may not have considered private
browsing mode while designing their software, and their
source code is not subject to the same rigorous scrutiny
that browsers are subjected to. Each of the different
browsers we surveyed had a different approach to addons
in private browsing mode:

• Internet Explorer has a configurable “Disable
Toolbars and Extensions when InPrivate Browsing
Mode Starts” menu option, which is checked by de-
fault. When checked, extensions (browser helper

objects) are disabled, although plugins (ActiveX
controls) are still functional.

• Firefox allows extensions and plugins to function
normally in Private Browsing mode.

• Google Chrome disables most extension function-
ality in Incognito mode. However, plugins (includ-
ing plugins that are bundled with extensions) are en-
abled. Users can add exceptions on a per-extension
basis using the extensions management interface.

• Safari does not have a supported extension API.
Using unsupported APIs, it is possible for exten-
sions to run in private browsing mode.

In Section 6.1, we discuss problems that can occur in
browsers that allow extensions in private browsing mode.
In Section 6.2 we discuss approaches to address these
problems, and we implement a mitigation in Section 6.3.

6.1 Extensions violating private browsing
We conducted a survey of extensions to find out if they
violated private browsing mode. This section describes
our findings.

Firefox. We surveyed the top 40 most popular add-ons
listed at http://addons.mozilla.org. Some of
these extensions like “Cooliris” contain binary compo-
nents (native code). Since these binary components exe-
cute with the same permissions as those of the user, the
extensions can, in principle, read or write to any file on
disk. This arbitrary behavior makes the extensions dif-
ficult to analyze for private mode violations. We regard
all binary extensions as unsafe for private browsing and
focus our attention only on JavaScript-only extensions.

To analyze the behavior of JavaScript-only extensions,
we observed all persistent writes they caused when the
browser is running in private mode. Specifically, for each
extension, we install that extension and remove all other
extensions. Then, we run the browser for some time, do
some activity like visiting websites and modifying ex-
tension options so as to exercise as many features of the
extension as possible and track all writes that happen dur-
ing this browsing session. A manual scan of the files and
data that were written then tells us if the extension vio-
lated private mode. If we find any violations, the exten-
sion is unsafe for private browsing. Otherwise, it may or
may not be safe.

Tracking all writes caused by extensions is easy as al-
most all JavaScript-only extensions rely on either of the
following three abstractions to persist data on disk:

• nsIFile is a cross-platform representation of
a location in the filesystem. It can be used

90 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 91

to create or remove files/directories and write
data when used in combination with compo-
nents such as nsIFileOutputStream and
nsISafeOutputStream.

• Storage is a SQLite database API [23]
and can be used to create, remove, open or
add new entries to SQLite databases using
components like mozIStorageService,
mozIStorageStatement and
mozIStorageConnection.

• Preferences can be used to store preferences
containing key-value (boolean, string or integer)
pairs using components like nsIPrefService,
nsIPrefBranch and nsIPrefBranch2.

We instrumented Firefox (version 3.6 alpha1 pre, co-
denamed Minefield) by adding log statements in all func-
tions in the above Mozilla components that could write
data to disk. This survey was done on a Windows Vista
machine.

Out of the 32 JavaScript-only extensions, we did not
find any violations for 16 extensions. Some of these ex-
tensions like “Google Shortcuts” did not write any data
at all and some others like “Firebug” only wrote boolean
preferences. Other extensions like “1-Click YouTube
Video Download” only write files that users want to
download whereas “FastestFox” writes bookmarks made
by the user. Notably, only one extension (“Tab Mix
Plus”) checks for private browsing mode and disables the
UI option to save session if it is detected.

For 16 extensions, we observed writes to disk that can
allow an attacker to learn about private browsing activity.
We provide three categories of the most common viola-
tions below:

• URL whitelist/blocklist/queues. Many extensions
maintain a list of special URLs that are always ex-
cluded from processing. For instance, “NoScript”
extension blocks all scripts running on visited web-
pages. User can add sites to a whitelist for which
it should allow all scripts to function normally.
Such exceptions added in private mode are persisted
to disk. Also, downloaders like “DownThemAll”
maintain a queue of URLs to download from. This
queue is persisted to disk even in private mode and
not cleared until download completes.

• URL Mappings. Some extensions allow specific
features or processing to be enabled for specific
websites. For instance, “Stylish” allows different
CSS styles to be used for rendering pages from dif-
ferent domains. The mapping of which style to use
for which website is persisted to disk even in private
mode.

• Timestamp. Some extensions store a timestamp in-
dicating the last use of some feature or resource. For
instance, “Personas” are easy-to-use themes that let
the user personalize the look of the browser. It
stores a timestamp indicating the last time when the
theme was changed. This could potentially be used
by an attacker to learn that private mode was turned
on by comparing this timestamp with the last times-
tamp when a new entry was added to the browser
history.

It is also interesting to note that the majority of the ex-
tensions use Preferences or nsIFile to store their
data and very few use the SQLite database. Out of the
32 JavaScript-only extensions, only two use the SQLite
database whereas the rest of them use the former.

Google Chrome. Google launched an extension plat-
form for Google Chrome [5] at the end of January 2010.
We have begun a preliminary analysis of the most popu-
lar extensions that have been submitted to the official ex-
tensions gallery. Of the top 100 extensions, we observed
that 71 stored data to disk using the localStorage
API. We also observed that 5 included plugins that can
run arbitrary native code, and 4 used Google Analytics to
store information about user behavior on a remote server.
The significant use of local storage by these extensions
suggests that they may pose a risk to Incognito.

6.2 Running extensions in private brows-
ing

Current browsers force the user to choose between run-
ning extensions in private browsing mode or blocking
them. Because not all extensions respect private brows-
ing mode equally, these policies will either lead to pri-
vacy problems or block extensions unnecessarily. We
recommend that browser vendors provide APIs that en-
able extension authors to decide which state should be
persisted during private browsing and which state should
be cleared. There are several reasonable approaches that
achieve this goal:

• Manual check. Extensions that opt-in to running in
private browsing mode can detect the current mode
and decide whether or not to persist state.

• Disallow writes. Prevent extensions from changing
any local state while in private browsing mode.

• Override option. Discard changes made by ex-
tensions to local state while in private browsing
mode, unless the extension explicitly indicates that
the write should persist beyond private browsing
mode.

Several of these approaches have been under discus-
sion on the Google Chrome developers mailing list [28].
We describe our implementation of the first variant in
Section 6.3. We leave the implementation of the latter
variants for future work.

6.3 Extension blocking tool
To implement the policy of blocking extensions from
running in private mode as described in section 6.2,
we built a Firefox extension called ExtensionBlocker
in 371 lines of JavaScript. Its basic functionality
is to disable all extensions that are not safe for pri-
vate mode. So, all unsafe extensions will be disabled
when the user enters private mode and then re-enabled
when the user leaves private mode. An extension is
considered safe for private mode if its manifest file
(install.rdf for Firefox extensions) contains a new
XML tag <privateModeCompatible/>. Table 4
shows a portion of the manifest file of ExtensionBlocker
declaring that it is safe for private browsing.

ExtensionBlocker subscribes to the
nsIPrivateBrowsingService to observe
transitions into and out of private mode. Whenever
private mode is enabled, it looks at each enabled
extension in turn, checks their manifest file for the
<privateModeCompatible/> tag and disables
the extension if no tag is found. Also, it saves the list
of extensions that were enabled before going to private
mode. Lastly, when the user switches out of private
mode, it re-enables all extensions in this saved list. At
this point, it also cleans up the saved list and any other
state to make sure that we do not leave any traces behind.

One implementation detail to note here is that we need
to restart Firefox to make sure that appropriate exten-
sions are completely enabled or disabled. This means
that the browser would be restarted at every entry into or
exit from private mode. However, the public browsing
session will still be restored after coming out of private
mode.

7 Related work

Web attacker. Most work on private browsing focuses
on security against a web attacker who controls a num-
ber of web sites and is trying to determine the user’s
browsing behavior at those sites. Torbutton [29] and Fox-
Tor [31] are two Firefox extensions designed to make it
harder for web sites to link users across sessions. Both
rely on the Tor network for hiding the client’s IP address
from the web site. PWS [32] is a related Firefox exten-
sion designed for search query privacy, namely prevent-
ing a search engine from linking a sequence of queries to

a specific user.
Earlier work on private browsing such as [34] focused

primarily on hiding the client’s IP address. Browser fin-
gerprinting techniques [1, 14, 6] showed that additional
steps are needed to prevent linking at the web site. Tor-
button [29] is designed to mitigate these attacks by block-
ing various browser features used for fingerprinting the
browser.

Other work on privacy against a web attacker includes
Janus [7], Doppelganger [33] and Bugnosis [2]. Janus
is an anonymity proxy that also provides the user with
anonymous credentials for logging into sites. Doppel-
ganger [33] is a client-side tool that focuses on cookie
privacy. The tool dynamically decides which cookies
are needed for functionality and blocks all other cook-
ies. Bugnosis [2] is a Firefox extension that warns users
about server-side tracking using web bugs. Millet et al.
carry out a study of cookie policies in browsers [18].

P3P is a language for web sites to specify privacy poli-
cies. Some browsers let users configure the type of sites
they are willing to interact with. While much work went
into improving P3P semantics [13, 27, 30] the P3P mech-
anism has not received widespread adoption.

Local attacker. In recent years computer forensics ex-
perts developed an array of tools designed to process the
browser’s cache and history file in an attempt to learn
what sites a user visited before the machine was con-
fiscated [12]. Web historian, for example, will crawl
browser activity files and report on all recent activity
done using the browser. The tool supports all major
browsers. The Forensic Tool Kit (FTK) has similar func-
tionality and an elegant user interface for exploring the
user’s browsing history. A well designed private brows-
ing mode should successfully hide the user’s activity
from these tools.

In an early analysis of private browsing modes,
McKinley [15] points out that the Flash Player and
Google Gears browser plugins violate private browsing
modes. Flash player has since been updated to be con-
sistent with the browser’s privacy mode. More generally,
NPAPI, the plugin API, was extended to allow plugins
to query the browser’s private browsing settings so that
plugins can modify their behavior when private brows-
ing is turned on. We showed that the problem is more
complex for browser extensions and proposed ways to
identify and block problematic extensions.

8 Conclusions

We analyzed private browsing modes in modern
browsers and discussed their success at achieving the de-
sired security goals. Our manual review and automated
testing tool pointed out several weaknesses in existing

92 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 93

<e m : t a r g e t A p p l i c a t i o n>
<D e s c r i p t i o n>

<em: id>{ ec8030f7−c20a −464f−9b0e−13a3a9e97384 }< / em: id>
<em:minVers ion>1 . 5< / em:minVers ion>
<em:maxVersion>3 .∗< / em:maxVersion>
<em:p r iva t eModeCompa t ib l e />

< / D e s c r i p t i o n>
< / e m : t a r g e t A p p l i c a t i o n>

Table 4: A portion of the manifest file of ExtensionBlocker

implementations. The most severe violations enable a
local attacker to completely defeat the benefits of private
mode. In addition, we performed the first measurement
study of private browsing usage in different browsers and
on different sites. Finally, we examined the difficult is-
sues of keeping browser extensions and plug-ins from
undoing the goals of private browsing.

Future work. Our results suggest that current private
browsing implementations provide privacy against some
local and web attackers, but can be defeated by deter-
mined attackers. Further research is needed to design
stronger privacy guarantees without degrading the user
experience. For example, we ignored privacy leakage
through volatile memory. Is there a better browser ar-
chitecture that can detect all relevant private data, both
in memory and on disk, and erase it upon leaving pri-
vate mode? Moreover, the impact of browser extensions
and plug-ins on private browsing raises interesting open
problems. How do we prevent uncooperative and legacy
browser extensions from violating privacy? In browsers
like IE and Chrome that permit public and private win-
dows to exist in parallel, how do we ensure that exten-
sions will not accidentally transfer data from one window
to the other? We hope this paper will motivate further re-
search on these topics.

Acknowledgments

We thank Martin Abadi, Jeremiah Grossman, Sid
Stamm, and the USENIX Program Committee for help-
ful comments about this work. This work was supported
by NSF.

References

[1] 0x000000. Total recall on Firefox. http:
//mandark.fr/0x000000/articles/
Total_Recall_On_Firefox..html.

[2] Adil Alsaid and David Martin. Detecting web bugs
with Bugnosis: Privacy advocacy through educa-
tion. In Proc. of the 2002 Workshop on Privacy
Enhancing Technologies (PETS), 2002.

[3] David Baron et al. :visited support al-
lows queries into global history, 2002.
https://bugzilla.mozilla.org/show_
bug.cgi?id=147777.

[4] Adam Barth, Collin Jackson, and John C. Mitchell.
Robust defenses for cross-site request forgery. In
Proc. of the 15th ACM Conference on Computer
and Communications Security. (CCS), 2008.

[5] Nick Baum. Over 1,500 new features for
Google Chrome, January 2010. http:
//chrome.blogspot.com/2010/01/
over-1500-new-features-for-google.
html.

[6] Peter Eckersley. A primer on information
theory and privacy, January 2010. https:
//www.eff.org/deeplinks/2010/01/
primer-information-theory-and-privacy.

[7] E. Gabber, P. B. Gibbons, Y. Matias, and A. Mayer.
How to make personalized web browing simple, se-
cure, and anonymous. In Proceedings of Financial
Cryptography’97, volume 1318 of LNCS, 1997.

[8] Google. Explore Google Chrome features:
Incognito mode (private browsing). http:
//www.google.com/support/chrome/
bin/answer.py?hl=en&answer=95464.

[9] Jeremiah Grossman and Collin Jackson.
Detecting Incognito, Feb 2009. http:
//crypto.stanford.edu/˜collinj/
research/incognito/.

[10] Collin Jackson, Adam Barth, Andrew Bortz, Wei-
dong Shao, and Dan Boneh. Protecting browsers
from DNS rebinding attacks. In Proceedings of the

14th ACM Conference on Computer and Commu-
nications Security (CCS), 2007.

[11] Collin Jackson, Andrew Bortz, Dan Boneh, and
John C. Mitchell. Protecting browser state from
web privacy attacks. In Proc. of the 15th Interna-
tional World Wide Web Conference (WWW), 2006.

[12] Keith Jones and Rohyt Belani. Web browser
forensics, 2005. www.securityfocus.com/
infocus/1827.

[13] Stephen Levy and Carl Gutwin. Improving un-
derstanding of website privacy policies with fine-
grained policy anchors. In Proc. of WWW’05, pages
480–488, 2005.

[14] Jonathan R. Mayer. “Any person... a pamphleteer”:
Internet Anonymity in the Age of Web 2.0. PhD the-
sis, Princeton University, 2009.

[15] Katherine McKinley. Cleaning up after cookies,
Dec. 2008. https://www.isecpartners.
com/files/iSEC_Cleaning_Up_After_
Cookies.pdf.

[16] Jorge Medina. Abusing insecure features
of internet explorer, Febuary 2010. http:
//www.blackhat.com/presentations/
bh-dc-10/Medina_Jorge/
BlackHat-DC-2010-Medina-Abusing-/
insecure-features-of-Internet-/
Explorer-wp.pdf.

[17] Microsoft. InPrivate browsing. http:
//www.microsoft.com/windows/
internet-explorer/features/safer.
aspx.

[18] Lynette Millett, Batya Friedman, and Edward Fel-
ten. Cookies and web browser design: Toward real-
izing informed consent online. In Proce. of the CHI
2001, pages 46–52, 2001.

[19] Mozilla Firefox - Creating OpenSearch plugins for
Firefox. https://developer.mozilla.
org/en/Creating_OpenSearch_
plugins_for_Firefox.

[20] Mozilla Firefox - MozMill. http://quality.
mozilla.org/projects/mozmill.

[21] Mozilla Firefox - nsIFile. https://
developer.mozilla.org/en/nsIFile.

[22] Mozilla Firefox - Profiles. http://support.
mozilla.com/en-US/kb/Profiles.

[23] Mozilla Firefox - Storage. https://
developer.mozilla.org/en/Storage.

[24] Mozilla Firefox - Supporting private brows-
ing mode. https://developer.
mozilla.org/En/Supporting_private_
browsing_mode.

[25] OpenSearch. http://www.opensearch.
org.

[26] Web-based protocol handlers. https:
//developer.mozilla.org/en/
Web-based_protocol_handlers.

[27] The platform for privacy preferences project (P3P).
http://www.w3.org/TR/P3P.

[28] Matt Perry. RFC: Extensions Incognito, Jan-
uary 2010. http://groups.google.
com/group/chromium-dev/browse_
thread/thread/5b95695a7fdf6c15/
b4052bb405f2820f.

[29] Mike Perry. Torbutton. http://www.
torproject.org/torbutton/design.

[30] J. Reagle and L. Cranor. The platform for privacy
preferences. CACM, 42(2):48–55, 1999.

[31] Sasha Romanosky. FoxTor: helping protect your
identity while browsing online. cups.cs.cmu.
edu/foxtor.

[32] F. Saint-Jean, A. Johnson, D. Boneh, and J. Feigen-
baum. Private web search. In Proc. of the 6th
ACM Workshop on Privacy in the Electronic Soci-
ety (WPES), 2007.

[33] Umesh Shankar and Chris Karlof. Doppelganger:
Better browser privacy without the bother. In Pro-
ceedings of ACM CCS’06, pages 154–167, 2006.

[34] Paul Syverson, Michael Reed, and David Gold-
schlag. Private web browsing. Journal of Computer
Security (JCS), 5(3):237–248, 1997.

[35] Lewis Thompson. Chrome incognito tracks
visited sites, 2010. www.lewiz.org/
2010/05/chrome-incognito-tracks-/
visited-sites.html.

USENIX Association 19th USENIX Security Symposium 95

BotGrep: Finding P2P Bots with Structured Graph Analysis

Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, Nikita Borisov
University of Illinois at Urbana-Champaign

{sn275,mittal2,hong78,caesar,nikita}@illinois.edu

Abstract
A key feature that distinguishes modern botnets from

earlier counterparts is their increasing use of structured
overlay topologies. This lets them carry out sophisticated
coordinated activities while being resilient to churn, but
it can also be used as a point of detection. In this
work, we devise techniques to localize botnet mem-
bers based on the unique communication patterns aris-
ing from their overlay topologies used for command and
control. Experimental results on synthetic topologies
embedded within Internet traffic traces from an ISP’s
backbone network indicate that our techniques (i) can lo-
calize the majority of bots with low false positive rate,
and (ii) are resilient to incomplete visibility arising from
partial deployment of monitoring systems and measure-
ment inaccuracies from dynamics of background traffic.

1 Introduction

Malware is an extremely serious threat to modern net-
works. In recent years, a new form of general-purpose
malware known as bots has arisen. Bots are unique in
that they collectively maintain communication structures
across nodes to resiliently distribute commands from a
command and control (C&C) node. The ability to coor-
dinate and upload new commands to bots gives the bot-
net owner vast power when performing criminal activi-
ties, including the ability to orchestrate surveillance at-
tacks, perform DDoS extortion, sending spam for pay,
and phishing. This problem has worsened to a point
where modern botnets control hundreds of thousands of
hosts and generate revenues of millions of dollars per
year for their owners [23, 42].

Early botnets followed a centralized architecture.
However, growing size of botnets, as well as the devel-
opment of mechanisms that detect centralized command-
and-control servers [10, 44, 27, 31, 72, 9, 49, 30, 29, 76],
has motivated the design of decentralized peer-to-peer

botnets. Several recently discovered botnets, such as
Storm, Peacomm, and Conficker, have adopted the use
of structured overlay networks [71, 57, 58]. These net-
works are a product of research into efficient communi-
cation structures and offer a number of benefits. Their
lack of centralization means a botnet herder can join
and control at any place, simplifying ability to evade
discovery. The topologies themselves provide low de-
lay any-to-any communication and low control overhead
to maintain the structure. Further, structured overlay
mechanisms are designed to remain robust in the face of
churn [48, 32], an important concern for botnets, where
individual machines may be frequently disinfected or
simply turned off for the night. Finally, structured over-
lay networks also have protection mechanisms against
active attacks [12].

In this work, we examine the question of whether ISPs
can detect these efficient communication structures of
peer-to-peer (P2P) botnets and use this as a basis for bot-
net defense. ISPs, enterprise networks, and IDSs have
significant visibility into these communication patterns
due to the potentially large number of paths between
bots that traverse their routers. Yet the challenge is sep-
arating botnet traffic from background Internet traffic, as
each botnet node combines command-and-control com-
munication with the regular connections made by the ma-
chine’s user. In addition, the massive scale of the com-
munications makes it challenging to perform this task ef-
ficiently.

We propose BotGrep, an algorithm that isolates effi-
cient peer-to-peer communication structures solely based
on the information about which pairs of nodes commu-
nicate with one another (communication graph). Our
approach relies on the fast-mixing nature of the struc-
tured P2P botnet C&C graph [26, 11, 6, 79]. The Bot-
Grep algorithm iteratively partitions the communication
graph into a faster-mixing and a slower-mixing piece,
eventually narrowing on to the fast-mixing component.
Although graph analysis has been applied to botnet and

1

96 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 97

P2P detection [15, 36, 78, 35], our approach exploits the
spatial relationships in communication traffic to a sig-
nificantly larger extent than these works. Based on ex-
perimental results, we find that under typical workloads
and topologies our techniques localize 93-99% of botnet-
infected hosts with a false positive probability of less
than 0.6%, even when only a partial view of the commu-
nication graph is available. We also develop algorithms
to run BotGrep in a privacy-preserving fashion, such that
each ISP keeps its share of the communication graph pri-
vate, and show that it can still be executed with access to
a moderate amount of computing resources.

The BotGrep algorithm is content agnostic, thus it is
not affected by the choice of ports, encryption, or other
content-based stealth techniques used by bots. However,
BotGrep must be paired with some sort of malware de-
tection scheme, such as anomaly or misuse detection,
to be able to distinguish botnet control structures from
other applications using peer-to-peer communication. A
promising approach starts with a honeynet that “traps” a
number of bots. BotGrep is then able to take this small
seed of bot nodes and recover the rest of the botnet com-
munication structure and nodes.
Roadmap: We start by giving a more detailed prob-
lem description in Section 2. In Section 3, we describe
our overall approach and core algorithms, and describe
privacy-preserving extensions that enable sharing of ob-
servations across ISP boundaries in Section 4. We then
evaluate performance of our algorithms on synthetic bot-
net topologies embedded in real Internet traffic traces in
Section 5. We provide a brief discussion of remaining
challenges in Section 6, and describe related work in Sec-
tion 7. Finally, we conclude in Section 8.

2 System Architecture

In this section we describe several challenges involved in
detecting botnets. We then describe our overall architec-
ture and system design.
Challenges: Over the recent years, botnets have been
adapting in order to evade detection and their activities
have become increasingly stealthy. Botnets use random
ports, encrypt their communication contents, thus defeat-
ing content-based identification. Traffic patterns, which
have previously been used for detection [29], could po-
tentially be altered as well, using content padding or
other approaches. However, overall, it seems hard to hide
the fact that two nodes are communicating, and thus we
use this information as the basis for our design.

However, we are faced with several additional chal-
lenges. The background traffic on the Internet is highly
variable and continuously changing, and likely dwarfs
the small amount of control traffic exchanged between

botnet hosts. Further, botnet nodes combine their ma-
licious activity with the regular traffic of the legitimate
users, thus they are deeply embedded inside the back-
ground communication topology. For example, Fig-
ure 1(b) shows a visualization of a synthetic P2P bot-
net graph embedded within a communication graph col-
lected from the Abilene Internet2 ISP. The botnet is
tightly integrated and cannot be separated from the rest
of the nodes by a small cut.

In order to observe a significant fraction of botnet
C&C traffic, it is necessary to combine observations from
many vantage points across multiple ISPs. This creates
an extremely large volume of data, since originally the
background traffic will be captured as well. Thus, any
analysis algorithms face a significant scaling challenge.
In addition, although ISPs have already demonstrated
their willingness to detect misbehavior in order to better
serve their customers [3] as well as cooperating across
administrative boundaries [4], they may be reluctant to
share traffic observations, as those may reveal confiden-
tial information about their business operations or their
customers.

We next propose a botnet defense architecture that ad-
dresses these challenges.
System architecture : As a first step, our approach
requires collecting a communication graph, where the
nodes represent Internet hosts and edges represent com-
munication (of any sort) between them. Portions of this
graph are already being collected by various ISPs: the
need to perform efficient accounting, traffic engineer-
ing and load balancing, detection of malicious and dis-
allowed activity, and other factors, have already led net-
work operators to deploy infrastructure to monitor traffic
across multiple vantage points in their networks. Bot-
Grep operates on a graph that is obtained by combin-
ing observations across these points into a single graph,
which offers significant, though incomplete visibility
into the overall communication of Internet hosts 1. Traf-
fic monitoring itself has been studied in previous work
(e.g., [44]), and hence our focus in this work is not on
architectural issues but rather on building scalable botnet
detection algorithms to operate on such an infrastructure.

A second source of input is misuse detection. Since
botnets use communication structures similar to other
P2P networks, the communication graph alone may not

1Tools such as Cisco IOS’s NetFlow [2] are designed to sample
traffic by only processing one out of every 500 packets (by default).
To evaluate the effect of sampling, we replayed packet-level traces col-
lected by the authors of [42] from Storm botnet nodes, and simulated
NetFlow to determine the fraction of botnet links that would be de-
tected. We found that in the worst case (assuming each flow traversed a
different router), after 50 minutes, 100% of botnet links were detected.
Moreover, recent advances in counter architectures [77] may enable
efficient tracking of the entire communication graph without need for
sampling.

2

(a) (b)

Figure 1: (a) BotGrep architecture and (b) Abilene network with embedded P2P subgraph

be enough to distinguish the two. Some form of indica-
tion of malicious activity, such as botnet nodes trapped in
Honeynets [68] or scanning behavior detected by Dark-
nets [7], is therefore necessary. A list of misbehaving
hosts can act as an initial “seed” to speed up botnet iden-
tification, or it can be used later to verify that the detected
network is indeed malicious.

The next step is to isolate a botnet communication sub-
graph. Recently, botnet creators have been turning to
communication graphs provided by structured networks,
both due to their advantages in terms of efficiency and
resilience, and due to easy availability of well-tested
implementations of the structured P2P algorithms (e.g.,
Storm bases the C&C structure for its supernodes on the
Overnet implementation of Kademlia [50]). One com-
mon feature of these structured graphs is their fast mix-
ing time, i.e., the convergence time of random walks to a
stationary distribution. Our algorithm exploits this prop-
erty by performing random walks to identify fast-mixing
component(s) and isolate them from the rest of the com-
munication graph. If sharing of sensitive information
is an issue, it is possible to perform random walks in a
privacy-preserving fashion on a graph that is split among
a collection of ISPs.

Once the botnet C&C structure is identified and con-
firmed as malicious, BotGrep outputs a set of suspect
hosts. This list may be used to install blacklists into
routers, to configure intrusion detection systems, fire-
walls, and traffic shapers; or as “hints” to human oper-
ators regarding which hosts should be investigated. The
list may also be distributed to subscribers of the service,
potentially providing a revenue stream. The overall ar-
chitecture is shown in Figure 1(a).

3 Inference Algorithm

Our inference algorithm starts with a communication
graph G = (V,E) with V representing the set of hosts

observed in traffic traces and undirected edges e ∈ E in-
serted between communicating hosts. Embedded within
G is a P2P graph Gp ⊂ G, and the remaining subgraph
Gn = G−Gp containing non-P2P communications. The
goal of our algorithms is to reliably partition the input
graph G into {Gp,Gn} in the presence of dynamic back-
ground traffic and with only partial visibility.

3.1 Approach overview

The main idea behind our approach is that, since most
P2P topologies are much more highly structured than
background Internet traffic, we can partition by detect-
ing subgraphs that exhibit different topological patterns
from each other or the rest of the graph. We do this
by performing random walks, and comparing the relative
mixing rates of the P2P subgraph structure and the rest
of the communication graph. The subgraph correspond-
ing to structured P2P traffic is expected to have a faster
mixing rate than the subgraph corresponding to the rest
of the network traffic. The challenge of the problem is to
partition the graph into these two subgraphs when they
are not separated by a small cut, and to do so efficiently
for very large graphs.

Our approach consists of three key steps. Since the
input graph could contain millions of nodes, we first ap-
ply a prefiltering step to extract a smaller set of candi-
date peer-to-peer nodes. This set of nodes contains most
peer-to-peer nodes, as well as false positives. Next, we
use a clustering technique based on the SybilInfer algo-
rithm [21] to cluster only the peer-to-peer nodes, and re-
move false positives. The final step involves validating
the result of our algorithms based on fast-mixing charac-
teristics of peer-to-peer networks.

3

98 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 99

3.2 Prefiltering Step
The key idea in the prefiltering step is that for short ran-
dom walks, the state probability mass associated with
nodes in the fast-mixing subgraph is likely to be closer to
the stationary distribution than nodes in the slow-mixing
subgraph. Let P be the transition matrix of the random
walks. P is defined as

Pi j =

{
1
di

if i → j is an edge in G
0 otherwise

, (1)

where di denotes the degree of vertex i in G.
The probability associated with each vertex after the

short random walk of length t, denoted by qt , can be be
used as a metric to compare vertices and guide the ex-
traction of the P2P subgraph. The initial probability dis-
tribution q0 is set to q0

i = 1/|V |, which means that the
walk starts at all nodes with the equal probability. We
can recursively compute qt as follows:

qt = qt−1 ·P (2)

Now, since nodes in the fast-mixing subgraph are
likely to have qt values closer to the stationary distri-
bution than nodes in the slow-mixing subgraph, and be-
cause the stationary distribution is proportional to node
degrees, we can cluster nodes with homogeneous qt

i
di

val-
ues. However, before doing so, we apply a transfor-
mation to dampen the negative effects of high-degree
nodes on structured graph detection. High-degree nodes
or hubs are responsible for speeding up the mixing rate
of the non-structured subgraph Gn and can reduce the
relative mixing rate of Gp as compared to Gn. The trans-
formation filter is as follows:

si =
(

qt
i

di

) 1
r

, (3)

where r is the dampening constant. We can now cluster
vertices in the graph by using the k-means algorithm [47]
on the set of values s. The k-means clustering algorithm
divides the points in s into k (k � |V |) clusters such that
the sum of squares J from points to the assigned cluster
centers is minimized.

J =
k

∑
j=1

|V |

∑
i=1

‖si − c j‖2, (4)

where c j is the center of cluster j. The within-cluster sum
of squares for each cluster constitutes the cluster score.
The parameter k is chosen using the method of Pelleg
and Moore [56]. Starting from a user specified minimum
number of clusters k = kmin we repeatedly compute k-
means over our dataset by incrementing k up to a max-
imum of kmax. We then select the best-scoring k value.

kmin and kmax correspond to the minimum and maximum
number of possible botnets within the dataset. In our ex-
periments, we used kmin = 0 and kmax = 20.

Each of the k clusters corresponds to a set of nodes
in VG, so we may partition our graph into subgraphs
{G1,G2, . . . ,Gk}. We must now confirm or reject the hy-
pothesis that each of these subgraphs contains a struc-
tured P2P graph. Clustering helps speed up the super-
linear components of the following algorithm; we may
also be able to focus our attention on a particular sub-
set of clusters if misuse detection is concentrated within
them.

Note that we can use the sparse nature of the ma-
trix P to compute qt using Equation 2 very efficiently
in O(|E| · t) time. The time and space complexity of
Equation 3 is O(|V |), while Equation 4 can be computed
in O(k · |V |) iterations. Thus the prefiltering step is a
very efficient mechanism to obtain a set of candidate P2P
nodes, capable of operating on large node graphs.

3.3 Clustering P2P Nodes
The subgraphs computed by the above step are likely
to contain P2P nodes, but they are also likely to con-
tain some non-P2P nodes due to the “leakage” of random
walks out of the structured subgraph. We perform a sec-
ond pass over the each subgraph Gl ∈ G1,G2, . . . ,Gk to
remove weakly connected nodes.

We cluster P2P nodes by using the SybilInfer [21]
framework. SybilInfer is a technique to detect Sybil
identities in a social network graph; a key feature of
SybilInfer is a sampling strategy to identify a good parti-
tion out of an extremely large space of possibilities (2V).
However, the detection algorithm used in SybilInfer re-
lies on the existence of a small cut between the honest
social network and the Sybil subgraph, and is thus not
directly applicable to our setting. Next, we present a
modified SybilInfer algorithm that is able to detect P2P
nodes.

1. Generation of Traces : The first step of the clus-
tering is the the generation of a set of random walks on
the input graph. The walks are generated by perform-
ing a number n of random walks, starting at each node in
the graph. A special probability transition matrix is used,
defined as follows:

P′
i j =

{
min(1

di
, 1

d j
) if i → j is an edge in G

0 otherwise
(5)

This choice of transition probabilities ensures that the
stationary distribution of the random walk is uniform
over all vertices. The length of the random walk is
O(log |V |), while the number of random walks per node

4

(denoted by n), is a tunable parameter of the system.
Only the start vertex and end vertex of each random walk
are used by the algorithm, and this set of vertex pairs is
called the traces, denoted by T .

2. A probabilistic model for P2P nodes: At the heart
of our detection algorithm lies a model that assigns a
probability to each subset of nodes of being P2P nodes.
Consider any cut X ⊆V of nodes in the graph. We wish
to compute the probability that the set of nodes X are all
P2P nodes, given our set of traces T, i.e. P(X = P2P|T).
Through the application of Bayes theorem, we have an
expression of this probability:

P(X = P2P|T) =
P(T |X = P2P) ·P(X = P2P)

Z = P(T)
(6)

Note that we can treat P(T) as a normalization con-
stant Z, as it does not change with the choice of X . The
prior probability P(X = P2P) can be used to encode any
further knowledge about P2P nodes (using honeynets), or
can simply be set uniformly over all possible cuts. Our
key theoretical task here is the computation of the proba-
bility P(T |X = P2P), since given this probability, we can
compute P(X = P2P|T) using the Bayes theorem.

Our intuition in proposing a model for P(T |X = P2P)
is that for short random walks, the state probability mass
for peer-to-peer nodes quickly approaches the station-
ary distribution. Recall that the stationary distribution of
our special random walks is uniform, and thus, the state
probability mass for peer-to-peer nodes should be homo-
geneous. We can classify the random walks in the trace T
into two categories: random walks that end in the set X ,
and random walks that end in the set X (complementary
set of nodes).

Using our intuition that for short random walks, the
state probability mass associated with peer-to-peer nodes
is homogeneous, we assign a uniform probability to all
walks ending in the set X . On the other hand, we make
no assumptions about random walks ending in the set X
(in contrast to the original SybilInfer algorithm). Thus,

P(T |X = P2P) = Πw∈T P(w|X = P2P), (7)

where w denotes a random walk in the trace. Now if the
walk w ends in vertex a in X , then we have that

P(w|X = P2P) = ∑
v∈X

Nv

n · |V |
· 1
|X |

, (8)

where Nv denotes the number of random walks ending in
vertex v. Observe that this probability is the same for all
vertices in X . On the other hand, if the walk w ends in
vertex a in X , then we have that

P(w|X = P2P) =
Na

n · |V |
. (9)

3. Metropolis-Hastings Sampling: Using the proba-
bilistic model for P2P nodes, we have been able to com-
pute the the probability P(X = P2P|T) up to a multi-
plicative constant Z. However, computing Z is difficult
since it involves enumeration over all subsets X of the
graph. Thus, instead of directly calculating this prob-
ability for any configuration of nodes X , we will sam-
ple configurations Xi following this distribution. We use
the Metropolis-Hastings algorithm [34] to compute a set
of samples Xi ∼ P(X |T). Given a set of samples S, we
can compute marginal probabilities of nodes being P2P
nodes as follows:

P[i is P2P] =
∑ j∈S I(i ∈ Xj)

|S|
, (10)

where I(i ∈ Xj) is an indicator random variable taking
value 1 if node i is in the P2P sample Xj, and value 0 oth-
erwise. Finally, we can use a threshold on the marginal
probabilities (set to 0.5) to partition the set of nodes into
fast-mixing and slow-mixing components.

3.4 Validation
We note that a general graph may be composed of mul-
tiple subgraphs having different mixing characteristics.
However, our modified SybilInfer based clustering ap-
proach only partitions the graph into two subgraphs. This
means we may have to use multiple iterations of the mod-
ified SybilInfer based clustering algorithm to get to the
desired fastest mixing subgraph. This raises an impor-
tant question - what is the termination condition for the
iteration. In other words, we need a validation test to
establish that we have obtained the fast-mixing P2P sub-
graph that we were trying to detect. Next, we propose
a set of validation tests: if all of the tests are true, the
iteration is terminated.

• Graph Conductance test: It has been shown [62]
that the presence of a small cut in a graph results
in a slow mixing time and that a fast-mixing time
implies the absence of small cuts. To formalize the
notion of a small cut, we use the measure of graph
conductance (Φx) [43] between cuts (X , X), defined
as

ΦX =
Σx∈X Σy/∈X π(x)Pxy

π(X)
Since peer-to-peer networks are fast mixing, their
graph conductance should be high (they do not have
a small cut). Thus we can prevent further parti-
tioning of a fast-mixing subgraph by testing that the
graph conductance between the cuts is high.

• q(t) entropy comparison test: Random walks on
structured homogeneous P2P graphs are character-
ized by high entropy state probability distributions.

5

100 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 101

This means that on a graph with n nodes, a random
walk of length t � log|n| results in q(t)

i = 1/n. In
this sense they are theoretically optimal. We com-
pute the relative entropy of the state probability dis-
tribution in graph G(V,E) versus its theoretical op-
timal equivalent graph GT . For this we use the
Kullback-Leibler (KL) divergence measure [45] to
calculate the relative entropy between qG and qGT :

FG = ∑x qGT (x) log
qGT (x)
qG(x) When FG is close to zero

then the mixing rates of G and GT are compara-
ble. This step can be computed in O(|V |) time and
O(|V |) space.

• Degree-homogeneity test: The entropy comparison
test above does not rule out fast-mixing heteroge-
neous graphs such as a star topology. However since
structured P2P graphs have relatively homogeneous
degree distributions (by definition), we need an ad-
ditional test to measure the dispersion of degree val-
ues. In our study, we measured the coefficient of
variation of the degree distribution of G, defined as
the ratio of standard deviation and mean: cG = σ/µ.
cG will be 0 for a fully homogeneous degree dis-
tribution. This metric can also be computed within
O(|V |) time and space.

4 Privacy Preserving Graph Algorithms

In general, ISPs treat the monitoring data they collect
from their own networks as confidential, since it can re-
veal proprietary information about the network config-
uration, performance, and business relationships. Thus,
they may be reluctant to share the pieces of the commu-
nication graph they collect with other ISPs, presenting a
barrier to deploying our algorithms. In this section, we
present privacy-preserving algorithms for performing the
computations necessary for our botnet detection. Funda-
mentally, these algorithms support the task of performing
a random walk across a distributed graph.

4.1 Establishing a Common Identifier
Space

Our algorithms are expressed in terms of a graph G =
(V,E), where the vertices are Internet hosts and edges
are connections between them. This graph is assembled
from m subgraphs belonging to m ASes, Gi = (Vi,Ei)
such that G =

Sm
i=1 Gi. To simplify computations, we

would like to generate an index mapping I : Z|V | → V .
We base our approach on private set intersection pro-
tocols. In particular, Jarecki and Liu have shown how
to use Oblivious Pseudo-Random Functions (OPRFS)
to perform private set intersection in linear time, i.e.,

O(|Vi|+ |Vj|). [37]. The basic approach consists of hav-
ing a server pick a PRF fk(x), with a secret k. The
server then evaluates S = { fk(si)} for all points within
the server’s set and sends it to the client. The client then,
together with the server, evaluates the PRF obliviously
on all ci for its own set; i.e, the client learns C = { fk(ci)}
without learning k, whereas the server learns nothing ex-
cept |C|. The client can then compute C∪S and thus find
the intersection.

We extend this approach to our problem as follows: we
pick one AS to act as the server, and the rest as clients.
Each client uses OPRF to compute fk(Vi). The server
then generates an ordered list of fk(V1) and sends it to the
second AS. The second AS finds fk(V1)∩ fk(V2) and thus
identifies the positions of its nodes in the vector. It then
appends fk(V2) fk(V1) to the list and sends the resulting
list fk(V1 ∪V2) to the next AS. This process continues
until the last AS is reached, who then reports |V | to all of
the others. Each AS can then compute I for any node v
in its subgraph by finding the corresponding position of
fk(v) in the list it saw.

Next, the ASes needs to eliminate duplicate edges. A
similar algorithm can be used here, with each ISP drop-
ping from its observations any edge that was also ob-
served by another ISP that comes earlier in the list. Al-
ternatively, routing information can be used to determine
which edges might be observed by which other AS and
perform a pairwise set intersection including only those
nodes.

Finally, to perform random walk, each AS needs to
learn the degree of each node. Since we eliminated du-
plicated edges, d(v) = ∑m

i=1 di(v), where di(v) is the de-
gree of node v in Gi. The sum can be computed by a
standard privacy-preserving protocol, which is an exten-
sion of Chaum’s dining cryptographer’s protocol [13].
Each AS i creates m random shares s(i)

j ∈ Zl such that

∑m
j=1 s(i)

j ≡ di(v) mod l (where l is chosen such that l >

maxv d(v)). Each share s(i)
j is sent to AS j. After all

shares have been distributed, each AS computes si =
∑m

j=1 s(j)
i mod l and broadcasts it to all the other ASes.

Then d(v) = ∑m
i=1 si mod l. This protocol is information-

theoretically secure: any set of malicious ASes S only
learns the value d(v)−∑ j∈S di(v). The protocol can be
executed in parallel for all nodes v to learn all node de-
grees.

4.2 Random Walk

We perform a random walk by using matrix operations.
In particular, given a transition matrix T and an initial
state vector�v, we can compute T�v, the state vector after a
single random walk step. Our basic approach is to create
matrices Ti such that ∑m

i=1 Ti = T . We can then compute

6

Ti�v in a distributed fashion and compute the final sum at
the end.

To construct Ti, an AS will set the value (Ti) j,k to be
1/d(v j) for each edge (j,k) ∈ Ei (after duplicate edges
have been removed). Note that this transition matrix is
sparse; it can be represented by N linked lists of non-
zero values (Ti) j,k. Thus, the storage cost is O(|Ei|) �
O(|Vi|2).

To protect privacy, we use Paillier encryption [55] to
perform computation on an encrypted vector E(�v). Pail-
lier encryption supports a homomorphism that allows
one to compute E(x)⊕E(y) = E(x + y); it also allows
the multiplication by a constant: c⊗E(x) = E(cx). This,
given an encrypted vector E(�v) and a known matrix Ti, it
is possible to compute E(Ti�v).

Damgård and Jurik [20] showed an efficient dis-
tributed key generation mechanism for Paillier that al-
lows the creation of a public key K such that no indi-
vidual AS knows the private key, but together, they can
decrypt the value. In the full protocol, one AS creates an
encrypted vector E(�v) that represents the initial state of
the random walk. This vector is sent to each AS, who
then computes E(Ti�v). The ASes sum up the individual
results to obtain E(∑m

i=1 Ti�v) = E(T�v). This process can
be iterated to obtain E(T k�v). Finally, the ASes jointly
decrypt the result to obtain T k�v.

Note that Paillier operates over members Zn, where n
is the product of two large primes. However, the vector
�v and the transition matrices Ti contain fractional values.
To address this, we used fixed-point representation, stor-
ing �x× 2c� (equivalently, (x− ε)× 2c, where ε < 2−c).
Each multiplication results in changing the position of
the fixed point, since:

((x− ε1)×2c)((y− ε2)×2c) = (xy− ε3)×22c

where ε3 < 2−c+1. Therefore, we must ensure that 2kc <
n, where k is the number of random walk steps. The
maximal length random walk we use is 2 logd̄ |V |, where
d̄ is the average node degree, so k < 40, which gives us
plenty of fixed-point precision to work with for a typical
choice of n (1024 or 2048 bits).2

4.3 Performance
Although the base privacy-preserving protocols we pro-
pose are efficient, due to the large data sizes, the oper-
ations still take a significant amount of processing time.

2Note that the multiplication of probabilities might result in values
that are extremely small; however, the number of digits after the fixed
point correspondingly increases after each multiplication, preventing
loss of precision.

3The CPU time is estimated based on experiments on different hard-
ware; however, these numbers are intended to provide an order-of-
magnitude estimate of the costs.

Table 1: Privacy Preserving Operations
Step CPU time AS1 (s) 3

1. Determine common identifiers 1 020 000
2. Eliminate duplicate edges 8 160 000
3. Compute node degrees (no crypto)
4. Random walk (20 steps) 8 000 000

We estimate the actual processing costs and bandwidth
overhead, using some approximate parameters. In par-
ticular, we consider a topology of 30 million hosts, with
an average degree of 20 per node.4

The running time of the intersections to compute a
common representation is linear in |Vi|+ |Vj|. We expect
that |Vi| < |V |, but in the worst case, each ISP sees all of
the nodes. Projecting linearly, we expect to spend about
30 000s on an intersection between two ISPs. Most ASes
must perform only one intersection, but the first AS is in-
volved in m−1 intersections. We expect m to be around
35, based on our analysis of visibility of bot paths by
tier-1 ISPs (Section 5.1). An important feature of the al-
gorithm is that each ISP other than the first need only
perform as many OPRF evaluations as it has nodes in its
observation table, thus smaller ISPs with fewer resources
need to perform correspondingly less work. We therefore
suggest that the largest contributing ISP be chosen as the
server. De Cristofaro and Tsudik suggest an efficiency
improvement for Jaercki and Liu’s algorithm [18]; they
find that the server computation for 1 000 client values is
less than 400ms. Projecting linearly, we expect that the
server load per client should be 12 000 seconds.

The next series of set intersections involve edge sets.
The worst-case scenario for this computation assumes
that all ASes see all edges, although, of course, this is
unlikely (and would mean that the participation of some
ASes is redundant). The load on the central server is
(0.4s/1000) ·600000000 ·34 = 8160000s

A step of the random walk requires O(|E|) homomor-
phic multiplications and additions of encrypted values.
Our measurements with libpaillier5 show that the
multiplications are two orders of magnitude slower than
additions. We were able to perform approx. 1500 mul-
tiplications per second using a 2048-bit modulus. This
means that a single step would take 400 000s of compu-
tation.

We summarize the costs of the computation in Ta-
ble 1. It is important to note that all of the operations
are trivially parallelizable and thus can be computed on a
moderately-sized cluster of commodity machines. Addi-
tionally, the table represents the costs of an initial com-
putation; updated results can be computed by operating

4The choice of topology size and the average node degree is moti-
vated from our experimental setting in Section 5.

5http://acsc.cs.utexas.edu/libpaillier/

7

102 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 103

only on the deltas of the observations, which we expect
to be significantly smaller.

5 Results

To evaluate performance of our design, we evaluate it in
the context of real Internet traffic traces. Ideally, to eval-
uate our design, we would like to have a list of all bots
in the Internet, along with which logs of packets flowing
between them, in addition to packet traces between non-
botnet hosts. Unfortunately, acquiring data this exten-
sive is very hard, due to the (understandable) reluctance
of ISPs to share their internal traffic, and the difficulty in
gaining ground truth on which hosts are part of a botnet.

To address this, we apply our approach to synthetic
traces. In particular, we construct a topology containing
a botnet communication graph, and embed it within a
communication graph corresponding to background traf-
fic. To improve realism, we build the background traf-
fic communication graph by using real traffic collected
from Netflow logs from the IP backbone of the Abi-
lene Internet2 ISP. For our analysis, we consider a full
day’s trace collected on 22 October 2009. Since Abi-
lene’s NetFlow traces are aggregated into /24-sized sub-
nets for anonymity, we perform the same aggregation for
the botnet graph, and collect experimental results over
the resulting subnet-level communication graph (we ex-
pect if our design were deployed in practice with access
to per-host information, its performance would improve
due to increased visibility). To investigate sensitivity of
our results to this methodology and data set, we also use
packet-level traces collected by CAIDA on OC192 Inter-
net backbone links [5] on 11 January 2009. To construct
the botnet graph, we select a random subset of nodes in
the background communication graph to be botnet nodes,
and synthetically add links between them correspond-
ing to a particular structured overlay topology. We then
pass the combined graph as input to our algorithm. By
keeping track of which nodes are bots (this information
is not passed to our algorithm), we can acquire “ground
truth” to measure performance. To investigate sensitivity
of our techniques to the particular overlay structure, we
consider several alternative structured overlays, includ-
ing (a) Chord, (b) de Bruijn, (c) Kademlia, and (d) the
“robust ring” topology described in [39]. The remainder
of this section contains results from running our algo-
rithms over the joined botnet and Internet communica-
tion graphs, and measuring the ability to separate out the
two from each other.

Before we proceed to the results, we first illustrate our
inference algorithm with an example run.

Figure 2: The filtered limit distribution (si) after cluster-
ing

5.1 Algorithm Example

Let us consider a specific application of our algorithm
on a synthetically-generated de Bruijn [41] peer-to-peer
graph embedded within a communication graph sampled
from the Internet (using NetFlow traces from the Abi-
lene Internet2 ISP). The Abilene communication graph
GD contains |VD| = 104426 nodes. We then generated a
de Bruijn graph Gp of 10000 nodes, with m = 10 out-
going links and n = 4 dimensions (10% of |V |). Gp is
then embedded in GD by mapping a node in Gp into a
node in GD: for every node i∈VB we select a node j ∈VD
uniformly at random between 1 and |VD| without replace-
ment, and add the corresponding edges in EB to ED. The
resulting graph is G(V,E) with N = |V | = 104426 nodes
and |E| = 647053 edges. The goal of our detection tech-
nique is to extract Gp from GD as accurately as possible.

First, we apply the pre-filtering step: we carry out a
short random walk starting from every node with proba-
bility 1/N to obtain q(t), on which the transformation fil-
ter of Equation 3 is applied to obtain s. We used a damp-
ening constant of r = 100 to undermine the influence of
hub nodes on the random walk process. The data points
in s corresponding to each of the partitions returned by
k-means clustering is shown in Figure 2.

In the example we consider here, applying the k-
means algorithm gives us ten sets of potential P2P can-
didates. In a completely unsupervised setting, we would
need to run the modified SybilInfer algorithm on each of
the candidate sets. However we expect that the analysis
can simply be focused on the candidate set containing the
set of honey-net nodes. Thus, let us consider the graph

8

Table 2: Termination Conditions
Condition Final iter. Other iters.
Conductance 0.9 < 0.5
KL-divergence 0.1 > 0.45
Entropy 0.97 < 0.64
Coeff. of variation < 1 > 4.6

nodes corresponding to the fourth cluster (colored in yel-
low). The cluster size is 17576 nodes.

Next, we recursively apply the modified SybilInfer
partitioning algorithm to this cluster. After three itera-
tions of the SybilInfer partitioning algorithm, we obtain
a subgraph of size 10143 nodes, containing 9905 P2P
nodes, and 238 other nodes. At this stage, our set of val-
idation conditions indicates that the sub-graph is indeed
fast mixing, and we stop the recursion. Table 2 shows the
values of the validation metrics on the final subgraph and
the previous graphs. There is a significant gap, making it
easy to select a threshold value.

To evaluate performance, we are concerned with the
false positive rate (the fraction of non-bot nodes that are
detected as bots) and the false negative rate (the frac-
tion of bot nodes that are not detected). These results
are shown in Tables 3(a) and 3(b). The experimental
methodology and parameters used were the same as in
the above example. All results are averaged over five
random seeds. Overall, we found that BotGrep was able
to detect 93-99% of bots over a variety of topologies and
workloads. In particular, we observed several key results:
Effect of botnet topology: To study applicability of
our approach to different botnet topologies, we consider
Kademlia [50], Chord [70], and de Bruijn graphs. In ad-
dition, we also consider the LEET-Chord topology [39],
a recently proposed overlay topology that aims to be dif-
ficult to detect (cannot be reliably detected with exist-
ing traffic dispersion graph techniques). Overall, we find
performance to be fairly stable across multiple kinds of
botnet topologies, with detection rates higher than 95%.
In addition, BotGrep is able to achieve a false positive
rate of less than 0.42% on the harder-to-detect LEET-
Chord topology. While our approach is not perfectly ac-
curate, we envision it may be of use when coupled with
other detection strategies (e.g., previous work on botnet
detection [38, 36], or if used to signal “hints” to net-
work operators regarding which hosts may be infected.
Furthermore, while the LEET-Chord topology is harder
to detect, this comes at a tradeoff with less resilience
to failure. To study the robustness of the LEET-Chord
topology, Figure 3 shows the robustness of Chord and
LEET-Chord by randomly removing varying percentages
of nodes. We observed that LEET-Chord is much less re-
silient to node failures (or active attacks) as compared
with Chord. This trade-off between stealthiness of the

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

Pe
rc

en
ta

ge
 o

f f
ai

le
d

 e
nd

-to
-e

nd
 p

at
hs

 [%
]

Percentage of failed nodes [%]

Chord
LEET-Chord-Iter

LEET-Chord

Figure 3: Robustness of Chord and LEET-Chord with 65,536
nodes. We also consider an alternative LEET-Chord-Iter, where
routing proceeds as in regular LEET-Chord, but when the des-
tination is outside the node’s cluster, and when all long range
links are failed, it greedily forwards the packet iteratively to
next clockwise cluster.

topology and its resilience is not surprising, since a com-
mon indicator of resilience is the bisection bandwidth,
and Sinclair [66] has shown that the bisection bandwidth
is bounded by the mixing time of the topology. Thus, it
is likely that the use of stealthy slow mixing topologies
to escape detection via BotGrep would adversely effect
the resilience of the botnet.

Effect of botnet graph size: Next, we vary the size
of the embedded botnet. We do this to investigate perfor-
mance as a function of botnet size, for example, to evalu-
ate whether BotGrep can efficiently detect small botnets
(e.g., bots in early stages of deployment, which may have
greater chance of containment) and large-scale botnets
(which may pose significant threats due to their size and
large topological coverage). We perform this experiment
by keeping the size of the background traffic graph con-
stant, and generating synthetic botnet topologies of vary-
ing sizes (between 100 and 100,000 bots). The degree
of bot nodes in the case of Chord and Kademlia depend
on the size of the topology (logN), while for de Bruijn,
we used a constant node degree of 10. Overall, we found
that as the size of the bot graph increases, performance
degrades, but only by a small amount. For example, in
Table 3(a), with the fully visible de Bruijn topology, for
100 nodes the false positive rate is zero, while for 10,000
nodes the rate becomes 0.12%.

Effect of background graph size: One concern is that
BotGrep may perform less accurately with larger back-
ground graphs, as it may become easier for the botnet
structure to “hide” in the increasing number of links in
the graph. To evaluate sensitivity of performance to
scale, we vary the size of the background communication
graph, by evaluating over both the Abilene and CAIDA
dataset (104,426 and 3,839,936 nodes, respectively). To

9

104 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 105

(a) Abilene
Topology |VB| % FP % FN % Detected
de Bruijn 100 0.00 2.00 98.00

1000 0.01 2.40 97.60
10000 0.12 2.35 97.65

Kademlia 100 0.00 3.20 97.80
1000 0.01 2.48 98.52
10000 0.10 2.12 97.88

Chord 100 0.00 3.00 97.00
1000 0.01 2.32 97.68
10000 0.08 1.94 98.06

LEET-Chord 100 0.00 3.00 97.00
1000 0.03 1.60 98.40
10000 0.42 1.00 99.00

(b) CAIDA
Topology |VB| % FP % FN % Detected
de Bruijn 1000 0.00 1.80 98.20

10000 0.01 0.93 99.07
100000 0.09 0.67 99.33

Kademlia 1000 0.00 2.10 97.90
10000 0.01 0.80 99.20
100000 0.19 0.17 99.83

Chord 1000 0.00 2.20 97.80
10000 0.01 0.48 99.52
100000 0.06 0.46 99.54

LEET-Chord 1000 0.00 0.40 99.60
10000 0.02 0.48 99.52

Table 3: Detection and error rates of inference for (a) Abilene and (b) CAIDA communication graphs

(a) CAIDA 30M
Topology |VB| % FP % FN % Detected
de Bruijn 100000 0.01 0.8 99.20
Kademlia 100000 0.01 0.4 99.60
Chord 100000 0.01 0.4 99.60

(b) Leveraging Honeynets - CAIDA

Topology |VB| % FP % FN % Detected
de Bruijn 100000 0.04 0.8 99.20
Kademlia 100000 0.05 0.4 99.60
Chord 100000 0.04 0.4 99.60

Table 4: Detection and error rates of inference (a) for CAIDA 30M (b) when leveraging Honeynets for CAIDA.

get a rough sense of performance on much larger back-
ground graphs, we also build a “scaled up” version of
the CAIDA graph containing 30 million hosts while re-
taining the statistical properties of the CAIDA graph. To
scale up the CAIDA graph Gc by a factor of k, we make
k copies of Gc, namely G1 . . .Gk with vertex sets V1 . . .Vk
and edge sets E1 . . .Ek. Note that for each edge (p,q) in
Er, we have a corresponding edge in each copy G1 . . .Gk,
we refer to these as (p1,q1) . . .(pk,qk). We then compute
the graph disjoint union over them as GS(VS,ES) where
VS = (V1 ∪V2 · · · ∪Vk and ES = E1 ∪E2 · · · ∪Ek). Next,
we randomly select a fraction of links from ES to ob-
tain a set of edges Er that we shall rewire. As a heuris-
tic, we set the number of links selected for rewiring to
|Er| = k

√
N log(N) where N is the number of nodes in

the CAIDA graph Gc. For each edge (p,q) in Er we
wish to rewire, we choose two random numbers a and
b (1 ≤ a,b ≤ k) and rewire edges (pa,qa) and (pb,qb) to
(pa,qb) and (pb,qa) such that dpa = dpb and dqa = dqb .
This edge rewiring ensures that (a) the degree of all
four nodes pa,qa,pb and qb remains unchanged, (b) the
joint degree distribution P(d1,d2) – the probability that
an edge connects d1 and d2 degree nodes remains un-
changed, and (c) P(d1,d2, . . .dl) remains unchanged as
well, where l is the number of unique degree values that
nodes in Gc can take.

Overall, we found that BotGrep scales well with net-
work size, with performance remaining stable as network
size increases. For example, in the CAIDA dataset with
a background graph of size 3.8 million hosts, the false
positive rate for the de Bruijn topology of size 100000
is 0.09% (shown in Table 3b), while for the scaled up
30 million node CAIDA topology, this rate is 0.01 (Ta-

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000 100000Fr
ac

tio
n

of
 b

ot
ne

t l
in

ks
 o

bs
vd

.

Number of ASes

Storm-trace
Storm-botlab

Kraken-botlab

Figure 4: Number of visible botnet links, as a function of num-
ber of most-affected ASes contributing views.

ble 4(a)). Observe that the false positive rate has de-
creased by a factor of 9, which is approximately equal
to the scale up factor between the two topologies, indi-
cating the the actual number of false positives remains
the same. This indicates that the number of false posi-
tives depend on botnet size and not the background graph
size.

Effect of reduced visibility: In the experiments we
have performed so far, the embedded structured graph Gp
is present in its entirety. However, just as GD is obtained
by sampling Internet or enterprise traffic, only a subset of
botnet control traffic will actually be available to us. It is
therefore important to evaluate how well our algorithms
work with graphs where only a fraction of the structured
subgraph edges are known. To study this, we evalu-
ate performance of our scheme when deployed at only
a subset of ISPs in the Internet. To do this, we collected

10

(a) Abilene
Topology |VB| % FP % FN % Detected
de Bruijn 100 0.00 3.00 97.00

1000 0.02 2.80 97.20
10000 0.17 3.31 96.69

Kademlia 100 0.00 3.75 96.25
1000 0.01 2.90 97.10
10000 0.19 2.07 97.93

Chord 100 0.00 9.00 91.00
1000 0.02 3.50 96.50
10000 0.13 2.54 97.46

LEET-Chord 100 0.00 6.00 94.00
1000 0.06 2.70 97.30
10000 0.58 1.80 98.20

(b) CAIDA
Topology |VB| % FP % FN % Detected
de Bruijn 1000 0.00 2.70 97.30

10000 0.00 4.22 95.78
100000 0.12 1.74 98.26

Kademlia 1000 0.00 0.50 99.50
10000 0.01 0.30 99.70
100000 0.09 0.53 99.47

Chord 1000 0.00 3.40 96.60
10000 0.01 0.65 99.35
100000 0.06 5.36 94.64

LEET-Chord 1000 0.01 0.20 99.80
10000 0.02 1.09 98.91

Table 5: Results if only Tier-1 ISPs contribute views, for (a) Abilene and (b) CAIDA

roughly 4,000 Storm botnet IP addresses from Botlab [1]
(botlab-storm), and measured what fraction of inter-bot
paths were visible from tier-1 ISPs. From an analysis of
the Internet AS-level topology [63], we find that 60%
of inter-bot paths traverse tier-1 ISPs. We found that
if the most-affected ASes cooperate—the ASes with the
largest number of bots—this number increased to 89%).
Figure 4 shows this result in more detail. Here, we vary
the number of ASes cooperating to contribute views (as-
suming the most-affected ASes contribute views first),
plotting the number of visible inter-bot links. We repeat
the experiment also for the Kraken botnet trace from [1]
(kraken-botlab), as well as a packet-level trace from the
Storm botnet (storm-trace). We find that if only the 5
most-affected ASes contribute views, 57% of Storm links
and 65% of Kraken links were visible.

We therefore removed 40% of links from our botnet
graphs (Table 5a and Table 5b). While the false-negative
rate increases, our approach still detects over 90% of bot-
net hosts with high reliability (the false positive rate for
the hard to detect LEET-Chord topology still remains
less than 0.58%). Disabling or removing such a large
fraction of nodes will lead to certain loss of operational
capability.

Leveraging Honeynets: We shall now present an exten-
sion to our inference algorithm that leverages the knowl-
edge of a few known bot nodes. This extension considers
random walks starting only from the honeynet nodes to
obtain a set of candidate P2P nodes in the prefiltering
stage. Using this extension, we find that there is a sig-
nificant gain in terms of reducing the false positives, as
well as speeding up the efficiency of the protocol. As
Table 4b shows, the false positive rate for the Kademlia
topology has been reduced by a factor of 4 as compared
to corresponding value in Table 3b. Furthermore, only a
single iteration of the modified SybilInfer algorithm was
required to obtain the final subgraphs, providing a signif-
icant gain in efficiency.

Effect of inference algorithm: For comparison pur-

poses, we also consider several graph partitioning algo-
rithms that have been proposed in the literature. While
these techniques were not intended to scale up to the
large data sets we consider here, we can compare against
them on smaller data sets to get a sense of how BotGrep
compares against these approaches. In particular, several
algorithms for community detection (detecting groups of
nodes in a network with dense internal connections) have
been proposed. Work in this space mainly focuses on hi-
erarchical clustering methods. Work in this space can be
classified as following two categories, and for our evalu-
ation we implement two representative algorithms from
each category:

Edge importance based community structure detec-
tion iteratively removes the edges with the highest im-
portance, which can be defined in different ways. Gir-
van and Newman [25] defined edge importance by its
shortest path betweenness. The idea is that the edge with
higher betweenness is typically responsible for connect-
ing nodes from different communities. In [22], informa-
tion centrality has been proposed to measure the edge
importance. The information centrality of an edge is de-
fined as the relative network efficiency [46] drop caused
by the removal of that. The time complexity of algorithm
in [25] and [22] are O(|V |3) and O(|E|3 ×V), respec-
tively.

The spectral-based approach detects communities by
optimizing the modularity (a benefit function measures
community structure [52] over possible network divi-
sions. In [53], the communities are detected by calcu-
lating the eigenvector of the modularity matrix. It takes
O(|E|+ |V |2) time to separating each community. More-
over, Clauset et al. [14] proposed a hierarchical agglom-
eration algorithm for community detecting. The pro-
posed greedy algorithm adopts more sophisticated data
structures to reduce the computation time of modularity
calculation. The time complexity is O(|E|+ |V | log2 |V |)
in average.

As the time complexity of above algorithms is not ac-
ceptable for computing large-scale networks, here we

11

106 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 107

Topology BotGrep Fast Greedy Girvan-Newman Modularity
Modularity Betweenness Eigenvector

de Bruijn 0.78/2.55 14.43/7.65 19.73/15.31 0.92/43.88
Chord 0.77/7.15 7.58/10.13 6.05/19.50 4.24/20.19

Kademlia 0.92/7.00 14.66/33.80 18.06/4.75 5.70/48.70

Table 6: 2k Abilene Results (% FP /% FN)

consider a small-scale scenario for performance evalua-
tion. We extract subgraphs from full Abilene data by per-
forming a Breadth-First-Search (BFS) starting at a ran-
domly selected node, in which the overall visited nodes
are limited by a size of 2000. Results from our com-
parison are shown in Table 6. The information central-
ity algorithm took more than one month to run for just
one iteration on this 2000-node graph, and was hence
excluded from further analysis (we tested information
centrality on smaller 50-node graphs, and found perfor-
mance comparable to the Girvan and Newman Between-
ness algorithm). Overall, we found that our approach
outperformed these approaches. For example, on the
Chord topology, BotGrep’s false positive rate was 0.77%,
while false positive rates for the other approaches ranged
from 4.24-7.58%. The performance of BotGrep is less on
this scaled down 2000-node topology as compared to the
earlier Abilene and CAIDA datasets, because our method
of generating the scaled-down 2000 node graph selected
the densely connected core of the graph, which is fast-
mixing, while on more realistic graphs, it is easier for
BotGrep to distinguish the fast-mixing botnet topology
from the rest of the non-fast-mixing background graph.

Moreover, we found that run-time was a significant
limiting factor in using these alternate approaches. For
example, the Girvan-Newman Betweenness Algorithm
took 2.5 hours to run on a graph containing 2000 nodes
(in all cases, BotGrep runs in under 10.4 seconds on a
Core2 Duo 2.83GHz machine with 4GB RAM using a
single core). While these traditional techniques were not
intended to scale to the large data sets we consider here,
they may be appropriate for localizing smaller botnets in
contained environments (e.g., within a single Honeynet,
or the part of a botnet contained within an enterprise net-
work). Since these techniques leverage different features
of the inputs, they are synergistic with our approach, and
may be used in conjunction with our technique to im-
prove performance.

6 Discussion

As we have demonstrated, analysis of core Internet traf-
fic can be effective at identifying nodes and communi-
cation links of structured overlay networks. However,
many challenges remain to turn our approach into a full-

scale detection mechanism.
Misuse Detection: It is easy to see that other forms of
P2P activity, such as file sharing networks, will also be
identified by our techniques. While there is some benefit
to being able to identify such traffic as well, it requires a
dramatically different response than botnets and so it is
important to distinguish the two. We believe that funda-
mentally, our mechanisms need to be integrated with de-
tection mechanisms at the edge that identify suspicious
behavior. Also, multiple intrusion detection approaches
can reinforce each other and provide more accurate re-
sults [75, 67, 30]; e.g., misbehaving hosts that follow a
similar misuse pattern and at the same time are detected
to be part of the same botnet communication graph may
be precisely labeled as a botnet, even if each individual
misbehavior detection is not sufficient to provide a high-
confidence categorization.

A concrete example of how misuse detection may
work is the following: we randomly sample nodes from
the suspect P2P network and compute the likelihood of
the sampled nodes being malicious, based on inputs from
honeynets, spam blacklists etc. If we can identify a statis-
tically significant difference of the rates of misuse, then
we can assume that membership in the P2P network is
correlated with misuse and we should label it as a P2P
botnet. Note that, given the availability of large sample
sizes, even a small difference in the rates will be statisti-
cally significant, so this approach will be successful even
if misuse detection fails to identify the vast majority of
the botnet nodes as malicious.
Scale and cooperation: Our experiments show our de-
sign can scale to large traffic volumes, and in the pres-
ence of partial observations. However, several practi-
cal issues remain. First, large ISPs tend to use sam-
pled data analysis to monitor their networks. This can
miss low-volume control communications used by botnet
networks. New counter architectures or programmable
monitoring techniques should be used to collect suffi-
cient statistics to run our algorithms [73]. Also, for best
results multiple vantage points should contribute data to
obtain a better overall perspective.
Tradeoffs between structure and detection: The com-
munication structure of botnet graphs plays an important
role in their delay penalty, and how resilient they are to
network failures. At the same time, our results indicate

12

that the structure of the communication graph has some
effect on the ability to detect the botnet host from a col-
lection of vantage points. As part of future work, we plan
to study the tradeoff between resilience and the ability to
avoid detection, and whether there exist fundamentally
hard-to-detect botnet structures that are also resilient.
Containing botnets: The ability to quickly localize
structured network topologies may assist existing sys-
tems that monitor network traffic to quickly localize and
contain bot-infected hosts. When botnets are detected
in edge networks, the relevant machines are taken of-
fline. However, this may not always be easy with in-
core detection; an interesting question is whether in-core
filtering or distributed blacklisting can be an effective re-
sponse strategy when edge cooperation is not possible.
Another question we plan to address is whether there ex-
ist responses that do not completely disconnect a node
but mitigate its potential malicious activities, to be ef-
fected when a node is identified as a botnet member, but
with a low confidence.

7 Related Work

The increasing criticality of the botnet threat has led to
vast amounts of work that attempt to localize them. We
can classify this work into host based approaches and
network based approaches. Host based approaches detect
intrusions by analyzing information available on a sin-
gle host. On the other hand, network based approaches
detect botnets by analyzing incoming and outgoing host
traffic. Hybrid approaches exist as well. BotGrep (our
work) is a network based approach to botnet detection
that uses graph theory to detect botnets.

In the following section (Section 7.1) we review re-
lated work on network based approaches and then de-
scribe work on botnet detection using graph analysis
(Section 7.2).

7.1 Network based approaches

Several pieces of work isolate bot-infected hosts by de-
tecting the malicious traffic they send, which may be
divided into schemes that analyze attack traffic, and
schemes that analyze control traffic.
Attack traffic: For example, network operators may
look for sources of denial of service attacks, port scan-
ning, spam, and other unwanted traffic as a likely bot.
These works focus on the symptoms caused by the bot-
nets instead of the networks themselves. Several works
seek to exploit DNS usage patterns. Dagon et al. [19]
studied the propagation rates of malware released at dif-
ferent times by redirecting DNS traffic for bot domain
names. Their use of DNS sinkholes is useful in mea-

suring new deployments of a known botnet. However,
this approach requires a priori knowledge of botnet do-
main names and negotiations with DNS operators and
hence does not target scaling to networks where a bot-
net can simply change domain names, have a large pool
of C&C IP addresses and change the domain name gen-
eration algorithm by remotely patching the bot. Subse-
quently, Ramachandran et al. [61] use a graph based ap-
proach to isolate spam botnets by analyzing the pattern
of requests to DNS blacklists maintained by ISPs. They
observed that legitimate email servers request blacklist
lookups and are looked up by other email servers ac-
cording to the timing pattern of email arrival, while bot-
infected machines are a lot less likely to be looked up
by legitimate email servers. However, DNS blacklists
and phishing blacklists [65], while initially effective have
are becoming increasingly ineffective [60] owing to the
agility of the attackers. Much more recently, Villamar
et al. [74] applied Bayesian methods to isolate central-
ized botnets that use fast-flux to counter DNS blacklists,
based on the similarity of their DNS traffic with a given
corpus of known DNS botnet traces. Further, in order
to study bots, Honeypot techniques have been widely
used by researchers. Cooke et al. [17] conducted several
studies of botnet propagation and dynamics using Hon-
eypots; Barford and Yegneswaran [8] collected bot sam-
ples and carried out a detailed study on the source code
of several families; finally, Freiling et al. [24] and Rajab
et al. [59] carried out measurement studies using Honey-
pots. Collins et al. [16] present a novel botnet detection
approach based on the tendency of unclean networks to
contain compromised hosts for extended periods of time
and hence acting as a natural Honeypot for various bot-
nets. However Honeypot-based approaches are limited
by their ability to attract botnets that depend on human
action for an infection to take place, an increasingly pop-
ular aspect of the attack vector [51].

Control traffic: Another direction of work, is to local-
ize botnets solely based on the control traffic they use to
maintain their infrastructures. This line of work can be
classified as traffic-signature based detection and statis-
tical traffic analysis based detection. Techniques in the
former category require traffic signatures to be developed
for every botnet instance. This approach has been widely
used in the detection of IRC-based botnets. Blinkley and
Singh[10] combine IRC statistics and TCP work weight
to generate signatures; Karasaridis et al. [44] present an
algorithm to detect IRC C&C traffic signatures using
Netflow records; Rishi [27] uses n-gram analysis to iden-
tify botnet nickname patterns. The limitations of these
approaches are analogous to the scalability issues faced
by host-based detection techniques. In addition, such
signatures may not exist for P2P botnets. In the latter
category, several works [31, 72, 9, 49] suggest that bot-

13

108 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 109

nets can be detected by analyzing their flow character-
istics. In all these approaches, the authors use a vari-
ety of heuristics to characterize the network behavior of
various applications and then apply clustering algorithms
to isolate botnet traffic. These schemes assume that the
statistical properties of bot traffic will be different from
normal traffic because of synchronized or correlated be-
havior between bots. While this behavior is currently
somewhat characteristic of botnets, it can be easily mod-
ified by botnet authors. As such it does not derive from
the fundamental property of botnets.

Other works use a hybrid approach such as Both-
unter [30] which automates traffic-signature generation
by searching for a series of flows that match the infec-
tion life-cycle of a bot; BotMiner [29] combines packet
statistics of C&C traffic with those of attack traffic and
then applies clustering techniques to heuristically isolate
botnet flows. TAMD [76] is another method that ex-
ploits the spatial and temporal characteristics of botnet
traffic that emerges from multiple systems within a van-
tage point. They aggregate flows based on similarity of
flow sizes and host configuration (such as OS platforms)
and compare them with a historical baseline to detect in-
fected hosts.

Finally, there are also schemes that combine network-
and host-based approaches. The work of Stinson et
al. [69] attempts to discriminate between locally-initiated
versus remotely-initiated actions by tracking data arriv-
ing over the network being used as system call arguments
using taint tracking methods. Following a similar ap-
proach, Gummadi et al. [33] whitelist application traf-
fic by identifying and attesting human-generated traffic
from a host which allows an application server to se-
lectively respond to service requests. Finally, John et
al. [40] present a technique to defend against spam bot-
nets by automating the generation of spam feeds by di-
recting an incoming spam feed into a Honeynet, then
downloading bots spreading through those messages and
then using the outbound spam generated to create a bet-
ter feed. While all the above are interesting approaches
they again deal with the side-effects of botnets instead of
tackling the problem in its entirety in a scalable manner.

7.2 Graph-based approaches

Several works [15, 36, 35, 78, 38] have previously ap-
plied graph analysis to detect botnets. The technique of
Collins and Reiter [15] detects anomalies induced in a
graph of protocol specific flows by a botnet control traf-
fic. They suggest that a botnet can be detected based on
the observation that an attacker will increase the number
of connected graph components due to a sudden growth
of edges between unlikely neighboring nodes. While it
depends on being able to accurately model valid network

growth, this is a powerful approach because it avoids de-
pending on protocol semantics or packet statistics. How-
ever this work only makes minimal use of spatial re-
lationship information. Additionally, the need for his-
torical record keeping makes it challenging in scenar-
ios where the victim network is already infected when
it seeks help and hasn’t stored past traffic data, while our
scheme can be used to detect pre-existing botnets as well.
Illiofotou et al. [36, 35] also exploit dynamicity of traffic
graphs to classify network flows in order to detect P2P
networks. It uses static (spatial) and dynamic (temporal)
metrics centered on node and edge level metrics in addi-
tion to the largest-connected-component-size as a graph
level metric. Our scheme however starts from first princi-
ples (searching for expanders) and uses the full extent of
spatial relationships to discover P2P graphs including the
joint degree distribution and the joint-joint degree distri-
bution and so on.

Of the many botnet detection and mitigation tech-
niques mentioned above, most are rather ad-hoc and
only apply to specific scenarios of centralized botnets
such as IRC/HTTP/FTP botnets, although studies [28]
indicate that the centralized model is giving way to the
P2P model. Of the techniques that do address P2P bot-
nets, detection is again dependent on specifics regarding
control traffic ports, network behavior of certain types
of botnets, reverse engineering botnet protocols and so
on, which limits the applicability of these techniques.
Generic schemes such as BotMiner [29] and TAMD [76]
using behavior based clustering are better off but need
access to extensive flow information which can have le-
gal and privacy implications. It is also important to think
about possible defenses that botmasters can apply, the
cost of these defenses and and how they might affect the
efficiency of detection. Shear and Nicol [64, 54] describe
schemes to mask the statistical characteristics of real traf-
fic by embedding it in synthetic, encrypted, cover traffic.
The adoption of such schemes will only require minimal
alterations to existing botnet architectures but can effec-
tively defend against detection schemes that depend on
packet level statistics including BotMiner and TAMD.

8 Conclusion

The ability to localize structured communication graphs
within network traffic could be a significant step forward
in identifying bots or traffic that violates network policy.
As a first step in this direction, we proposed BotGrep, an
inference algorithm that identifies botnet hosts and links
within network traffic traces. BotGrep works by search-
ing for structured topologies, and separating them from
the background communication graph. We give an ar-
chitecture for a BotGrep network deployment as well as
a privacy-preserving extension to simplify deployment

14

across networks. While our techniques do not achieve
perfect accuracy, they achieve a low enough false posi-
tive rate to be of substantial use, especially when com-
bined with complementary techniques. There are sev-
eral avenues of future work. First, performance of our
approach may be improved by leveraging temporal in-
formation (observing how parts of the the communica-
tion graph change over time) to assist in separating out
the botnet graph. In addition, it may be desirable to
distinguish other peer-to-peer structure from other Inter-
net background traffic, perhaps by observing more fine-
grained properties of communication patterns. Finally,
we do not attempt to address the challenging problem of
botnet response. Future work may leverage our inferred
botnet topologies by dropping crucial links to partition
the botnet, based on the structure of the botnet graph.

Acknowledgments

We would like to thank Vern Paxson and Christian
Kreibich for sharing their Storm traces. We are also
grateful to Reiner Sailer and Mihai Christodorescu for
helpful discussions. This work is supported in part by
National Science Foundation Grants CNS 06–27671 and
CNS 08–31653.

References
[1] Botlab: A real-time botnet monitoring platform. botlab.cs.

washington.edu.
[2] Cisco IOS Netflow. http://www.cisco.com/en/US/

products/ps6601/products_ios_protocol_group_home.
html.

[3] Comcast constant guard. http://security.comcast.net/
constantguard/.

[4] Spamhaus. www.spamhaus.org.
[5] The Cooperative Association for Internet Data Analysis

(CAIDA). http://www.caida.org/.
[6] J. Aspnes and U. Wieder. The expansion and mixing time of skip

graphs with applications. In SPAA ’05: Proceedings of the seven-
teenth annual ACM symposium on Parallelism in algorithms and
architectures, pages 126–134, New York, NY, USA, 2005. ACM
Press.

[7] M. Bailey, E. Cooke, F. Jahanian, N. Provos, K. Rosaen, and
D. Watson. Data Reduction for the Scalable Automated Analysis
of Distributed Darknet Traffic. In Proceedings of IMC, 2005.

[8] P. Barford and V. Yegneswaran. An Inside Look at Botnets, vol-
ume 27 of Advanced in Information Security, chapter 8, pages
171–192. Springer, 2006.

[9] A. Barsamian. Network characterization for botnet detection us-
ing statistical-behavioral methods. Masters thesis, Thayer School
of Engineering, Dartmouth College, USA, June 2009.

[10] J. R. Binkley and S. Singh. An algorithm for anomaly-based bot-
net detection. In SRUTI’06: Proceedings of the 2nd conference
on Steps to Reducing Unwanted Traffic on the Internet, pages 7–
7, Berkeley, CA, USA, 2006. USENIX Association.

[11] N. Borisov. Anonymous routing in structured peer-to-peer over-
lays. PhD thesis, University of California at Berkeley, Berkeley,
CA, USA, 2005.

[12] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-
lach. Secure routing for structured peer-to-peer overlay networks.
SIGOPS Oper. Syst. Rev., 36(SI):299–314, 2002.

[13] D. Chaum. The dining cryptographers problem: unconditional
sender and recipient untraceability. J. Cryptol., 1(1):65–75, 1988.

[14] A. Clauset, M. E. J. Newman, and C. Moore. Finding community
structure in very large networks. Physical Review E, 70(6), 2004.

[15] M. P. Collins and M. K. Reiter. Hit-list worm detection and bot
identification in large networks using protocol graphs. In RAID,
2007.

[16] M. P. Collins, T. J. Shimeall, S. Faber, J. Janies, R. Weaver,
M. De Shon, and J. Kadane. Using uncleanliness to predict future
botnet addresses. In IMC, pages 93–104, New York, NY, USA,
2007. ACM.

[17] E. Cooke and F. Jahanian. The zombie roundup: Understanding,
detecting, and disrupting botnets. In Steps to Reducing Unwanted
Traffic on the Internet Workshop, 2005.

[18] E. D. Cristofaro and G. Tsudik. Practical private set intersection
protocols. Cryptology ePrint Archive, Report 2009/491, 2009.
http://eprint.iacr.org/.

[19] D. Dagon, C. Zou, and W. Lee. Modeling botnet propagation
using time zones. In NDSS, 2006.

[20] I. Damgard and M. Jurik. A generalisation, a simplification and
some applications of Paillier’s probabilistic public-key system. In
Public Key Cryptography. Springer, 2001.

[21] G. Danezis and P. Mittal. Sybilinfer: Detecting Sybil nodes using
social networks. In NDSS, 2009.

[22] S. Fortunato, V. Latora, and M. Marchiori. Method to find com-
munity structures based on information centrality. Physical Re-
view E, 70(5), 2004.

[23] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An inquiry
into the nature and causes of the wealth of internet miscreants.
In ACM conference on Computer and communications security,
pages 375–388, New York, NY, USA, 2007. ACM.

[24] F. C. Freiling, T. Hoz, and G. Wichereski. Botnet tracking: Ex-
ploring a root-cause methodology to prevent distributed denial-
of-service attacks. In European Symposium on Research in Com-
puter Security, 2005.

[25] M. Girvan and M. E. J. Newman. Community structure in social
and biological networks. Proceedings of the National Academy
of Sciences of the United States of America, 99(12), 2002.

[26] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-
to-peer networks. In IEEE INFOCOM, 2004.

[27] J. Goebel and T. Holz. Rishi: Identify bot contaminated hosts by
IRC nickname evaluation. In HotBots, 2007.

[28] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and
D. Dagon. Peer-to-peer botnets: Overview and case study. In
HotBots, 2007.

[29] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clus-
tering analysis of network traffic for protocol- and structure-
independent botnet detection. In Proceedings of the 17th USENIX
Security Symposium (Security’08), 2008.

[30] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotH-
unter: Detecting malware infection through IDS-driven dialog
correlation. In USENIX Security Symposium, 2007.

[31] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting botnet com-
mand and control channels in network traffic. In Proceedings of
the 15th Annual Network and Distributed System Security Sym-
posium (NDSS’08), February 2008.

[32] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of DHT routing geometry
on resilience and proximity. In Proceedings of ACM SIGCOMM
2003, Aug. 2003.

[33] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy.
Not-a-Bot (NAB): Improving Service Availability in the Face of
Botnet Attacks. In NSDI 2009, Boston, MA, April 2009.

[34] W. K. Hastings. Monte carlo sampling methods using Markov
chains and their applications. Biometrika, 57(1):97–109, April

15

110 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 111

1970.
[35] M. Iliofotou, M. Faloutsos, and M. Mitzenmacher. Exploiting

dynamicity in graph-based traffic analysis: Techniques and ap-
plications. In ACM CoNext, 2009.

[36] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher,
G. Varghese, and H. Kim. Graption: Automated detection of
P2P applications using traffic dispersion graphs (TDGs). In UC
Riverside Technical Report, CS-2008-06080, 2008.

[37] S. Jarecki and X. Liu. Efficient Oblivious Pseudorandom Func-
tion with Applications to Adaptive OT and Secure Computation
of Set Intersection. In Theory of Cryptography Conference, pages
577–594. Springer, 2009.

[38] M. Jelasity and V. Bilicki. Towards automated detection
of peer-to-peer botnets: On the limits of local approaches.
In USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET), 2009.

[39] M. Jelasity and V. Billicki. Towards automated detection
of peer-to-peer botnets: On the limits of local approaches.
In USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET), 2009.

[40] J. P. John, A. Moshchuk, S. D. Gribble, and A. Krishnamurthy.
Studying spamming botnets using Botlab. In NSDI, 2009.

[41] M. Kaashoek and D. Karger. Koorde: A simple degree-optimal
distributed hash table. In IPTPS, 2003.

[42] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. Voelker,
V. Paxson, and S. Savage. Spamalytics: An empirical analysis of
spam marketing conversion. In CCS, Oct. 2008.

[43] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad
and spectral. J. ACM, 51(3):497–515, 2004.

[44] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet
detection and characterization. In HotBots, 2007.

[45] S. Kullback and R. A. Leibler. On information and sufficiency.
Annals of Mathematical Statistics, 22:49–86, 1951.

[46] V. Latora and M. Marchiori. Economic small-world behavior in
weighted networks. The European Physical Journal B - Con-
densed Matter, 32(2), 2002.

[47] S. Lloyd. Least squares quantization in PCM. Information The-
ory, IEEE Transactions on, 28(2):129–137, 1982.

[48] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic
analysis of structured peer-to-peer systems: Routing distances
and fault resilience. In Proceedings of ACM SIGCOMM, Aug.
2003.

[49] W. Lu, M. Tavallaee, and A. A. Ghorbani. Automatic discovery
of botnet communities on large-scale communication networks.
In ASIACCS, pages 1–10, New York, NY, USA, 2009. ACM.

[50] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer in-
formation system based on the xor metric. In Proceedings of the
1st International Peer To Peer Systems Workshop, 2002.

[51] S. Nagaraja and R. Anderson. The snooping dragon: social-
malware surveillance of the tibetan movement. Technical Report
UCAM-CL-TR-746, University of Cambridge, 2009.

[52] M. E. Newman and M. Girvan. Finding and evaluating commu-
nity structure in networks. Phys Rev E Stat Nonlin Soft Matter
Phys, 69(2 Pt 2), 2004.

[53] M. E. J. Newman. Finding community structure in networks us-
ing the eigenvectors of matrices. Physical Review E, 74(3), 2006.

[54] D. M. Nicol and N. Schear. Models of privacy preserving traffic
tunneling. Simulation, 85(9):589–607, 2009.

[55] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Eurocrypt. Springer, 1999.

[56] D. Pelleg and A. W. Moore. X-means: Extending k-means with
efficient estimation of the number of clusters. In ICML ’00: Pro-
ceedings of the Seventeenth International Conference on Machine
Learning, pages 727–734, San Francisco, CA, USA, 2000. Mor-
gan Kaufmann Publishers Inc.

[57] P. Porras, H. Saidi, and V. Yegneswaran. A multi-perspective
analysis of the Storm (Peacomm) worm. In SRI Technical Report
10-01, 2007.

[58] P. Porras, H. Saidi, and V. Yegneswaran. A foray into Conficker’s
logic and rendezvous points. In 2nd Usenix Workshop on Large-
Scale Exploits and Emergent Threats (LEET ’09), 2009.

[59] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted
approach to understanding the botnet phenomenon. In Internet
Measurement Conference, 2006.

[60] A. Ramachandran, D. Dagon, and N. Feamster. Can DNS-based
blacklists keep up with bots? In CEAS, 2006.

[61] A. Ramachandran, N. Feamster, and D. Dagon. Revealing botnet
membership using dnsbl counter-intelligence. In SRUTI: Pro-
ceedings of the 2nd conference on Steps to Reducing Unwanted
Traffic on the Internet, 2006.

[62] D. Randall. Rapidly mixing Markov chains with applications in
computer science and physics. Computing in Science and Engi-
neering, 8(2):30–41, 2006.

[63] Route views. http://www.routeviews.org.
[64] N. Schear and D. M. Nicol. Performance analysis of real traf-

fic carried with encrypted cover flows. In PADS, pages 80–87,
Washington, DC, USA, 2008. IEEE Computer Society.

[65] S. Sheng, B. Wardman, G. Warner, L. F. Cranor, J. Hong, and
C. Zhang. An empirical analysis of phishing blacklists. In CEAS,
2009.

[66] A. Sinclair. Improved bounds for mixing rates of markov chains
and multicommodity flow. Combinatorics, Probability and Com-
puting, 1:351–370, 1992.

[67] E. Spafford and D. Zamboni. Intrusion detection using au-
tonomous agents. Computer Networks, 34(4):547–570, 2000.

[68] L. Spitzner. The Honeynet Project: trapping the hackers. Security
& Privacy Magazine, IEEE, 1(2):15–23, 2003.

[69] E. Stinson and J. C. Mitchell. Characterizing bots’ remote control
behavior. In Botnet Detection. 2008.

[70] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for Inter-
net applications. In Proceedings of ACM SIGCOMM, Aug. 2001.

[71] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich. Analysis of
the Storm and Nugache trojans: P2P is here. ;login, 32(6), Dec.
2007.

[72] W. T. Strayer, D. E. Lapsley, R. Walsh, and C. Livadas. Botnet
detection based on network behavior. In Advances in Information
Security. 2008.

[73] G. Varghese and C. Estan. The measurement manifesto. In
HotNets-II, 2003.

[74] R. Villamarı́n-Salomón and J. C. Brustoloni. Bayesian bot detec-
tion based on dns traffic similarity. In SAC ’09: Proceedings of
the 2009 ACM Symposium on Applied Computing, pages 2035–
2041, New York, NY, USA, 2009. ACM.

[75] G. White, E. Fisch, and U. Pooch. Cooperating security man-
agers: a peer-based intrusion detection system. IEEE Network,
10(1):20–23, 1996.

[76] T.-F. Yen and M. K. Reiter. Traffic aggregation for malware de-
tection. In DIMVA ’08: Proceedings of the 5th international
conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment, pages 207–227, Berlin, Heidelberg, 2008.
Springer-Verlag.

[77] Q. Zhao, J. Xu, and Z. Liu. Design of a novel statistics counter
architecture with optimal space and time efficiency. In ACM SIG-
METRICS, June 2006.

[78] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum. Bot-
graph: Large scale spamming botnet detection. In NSDI, 2009.

[79] M. Zhong, K. Shen, and J. Seiferas. Non-uniform random mem-
bership management in peer-to-peer networks. In INFOCOM,
pages volume 2, 1151–1161, 2005.

16

Fast Regular Expression Matching using Small TCAMs for Network

Intrusion Detection and Prevention Systems

Chad R. Meiners Jignesh Patel Eric Norige Eric Torng Alex X. Liu

Department of Computer Science and Engineering

Michigan State University

East Lansing, MI 48824-1226, U.S.A.

{meinersc, patelji1, norigeer, torng, alexliu}@cse.msu.edu

Abstract

Regular expression (RE) matching is a core component

of deep packet inspection in modern networking and

security devices. In this paper, we propose the first

hardware-based RE matching approach that uses Ternary

Content Addressable Memories (TCAMs), which are

off-the-shelf chips and have been widely deployed in

modern networking devices for packet classification. We

propose three novel techniques to reduce TCAM space

and improve RE matching speed: transition sharing, ta-

ble consolidation, and variable striding. We tested our

techniques on 8 real-world RE sets, and our results show

that small TCAMs can be used to store large DFAs and

achieve potentially high RE matching throughtput. For

space, we were able to store each of the corresponding 8

DFAs with as many as 25,000 states in a 0.59Mb TCAM

chip where the number of TCAM bits required per DFA

state were 12, 12, 12, 13, 14, 26, 28, and 42. Using

a different TCAM encoding scheme that facilitates pro-

cessing multiple characters per transition, we were able

to achieve potential RE matching throughputs of between

10 and 19 Gbps for each of the 8 DFAs using only a sin-

gle 2.36 Mb TCAM chip.

1 Introduction

1.1 Background and Problem Statement

Deep packet inspection is a key part of many networking

devices on the Internet such as Network Intrusion De-

tection (or Prevention) Systems (NIDS/NIPS), firewalls,

and layer 7 switches. In the past, deep packet inspec-

tion typically used string matching as a core operator,

namely examining whether a packet’s payload matches

any of a set of predefined strings. Today, deep packet in-

spection typically uses regular expression (RE) matching

as a core operator, namely examining whether a packet’s

payload matches any of a set of predefined regular ex-

pressions, because REs are fundamentally more expres-

sive, efficient, and flexible in specifying attack signatures

[27]. Most open source and commercial deep packet in-

spection engines such as Snort, Bro, TippingPoint X505,

and many Cisco networking appliances use RE match-

ing. Likewise, some operating systems such as Cisco

IOS and Linux have built RE matching into their layer 7

filtering functions. As both traffic rates and signature set

sizes are rapidly growing over time, fast and scalable RE

matching is now a core network security issue.

RE matching algorithms are typically based on the De-

terministic Finite Automata (DFA) representation of reg-

ular expressions. A DFA is a 5-tuple (Q,Σ, δ, q0, A),
where Q is a set of states, Σ is an alphabet, δ : Σ×Q →
Q is the transition function, q0 is the start state, and

A ⊆ Q is a set of accepting states. Any set of regu-

lar expressions can be converted into an equivalent DFA

with the minimum number of states. The fundamental

issue with DFA-based algorithms is the large amount of

memory required to store transition table δ. We have to

store δ(q, a) = p for each state q and character a.

Prior RE matching algorithms are either software-

based [4, 6, 7, 12, 16, 18, 19] or FPGA-based [5, 7, 13, 14,

22, 24, 29]. Software-based solutions have to be imple-

mented in customized ASIC chips to achieve high-speed,

the limitations of which include high deployment cost

and being hard-wired to a specific solution and thus lim-

ited ability to adapt to new RE matching solutions. Al-

though FPGA-based solutions can be modified, resynthe-

sizing and updating FPGA circuitry in a deployed system

to handle regular expression updates is slow and diffi-

cult; this makes FPGA-based solutions difficult to be de-

ployed in many networking devices (such as NIDS/NIPS

and firewalls) where the regular expressions need to be

updated frequently [18].

1.2 Our Approach

To address the limitations of prior art on high-speed RE

matching, we propose the first Ternary Content Address-

able Memory (TCAM) based RE matching solution. We

1

112 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 113

use a TCAM and its associated SRAM to encode the

transitions of the DFA built from an RE set where one

TCAM entry might encode multiple DFA transitions.

TCAM entries and lookup keys are encoded in ternary

as 0’s, 1’s, and *’s where *’s stand for either 0 or 1.

A lookup key matches a TCAM entry if and only if

the corresponding 0’s and 1’s match; for example, key

0001101111 matches entry 000110****. TCAM circuits

compare a lookup key with all its occupied entries in par-

allel and return the index (or sometimes the content) of

the first address for the content that the key matches; this

address is then used to retrieve the corresponding deci-

sion in SRAM.

Given an RE set, we first construct an equivalent min-

imum state DFA [15]. Second, we build a two column

TCAM lookup table where each column encodes one of

the two inputs to δ: the source state ID and the input char-

acter. Third, for each TCAM entry, we store the destina-

tion state ID in the same entry of the associated SRAM.

Fig. 1 shows an example DFA, its TCAM lookup table,

and its SRAM decision table. We illustrate how this DFA

processes the input stream “01101111, 01100011”. We

form a TCAM lookup key by appending the current input

character to the current source state ID; in this example,

we append the first input character “01101111” to “00”,

the ID of the initial state s0, to form “0001101111”. The

first matching entry is the second TCAM entry, so “01”,

the destination state ID stored in the second SRAM en-

try is returned. We form the next TCAM lookup key

“0101100011” by appending the second input character

“011000011” to this returned state ID “01”, and the pro-

cess repeats.

Figure 1: A DFA with its TCAM table

Advantages of TCAM-based RE Matching There

are three key reasons why TCAM-based RE matching

works well. First, a small TCAM is capable of encoding

a large DFA with carefully designed algorithms lever-

aging the ternary nature and first-match semantics of

TCAMs. Our experimental results show that each of the

DFAs built from 8 real-world RE sets with as many as

25,000 states, 4 of which were obtained from the authors

of [6], can be stored in a 0.59Mb TCAM chip. The two

DFAs that correspond to primarily string matching RE

sets require 28 and 42 TCAM bits per DFA state; 5 of

the remaining 6 DFAs which have a sizeable number of

‘.*’ patterns require 12 to 14 TCAM bits per DFA state

whereas the 6th DFA requires 26 TCAM bits per DFA

state. Second, TCAMs facilitate high-speed RE matching

because TCAMs are essentially high-performance paral-

lel lookup systems: any lookup takes constant time (i.e.,

a few CPU cycles) regardless of the number of occupied

entries. Using Agrawal and Sherwood’s TCAM model

[1] and the resulting required TCAM sizes for the 8 RE

sets, we show that it may be possible to achieve through-

puts ranging between 5.36 and 18.6 Gbps using only a

single 2.36 Mb TCAM chip. Third, because TCAMs are

off-the-shelf chips that are widely deployed in modern

networking devices, it should be easy to design network-

ing devices that include our TCAM based RE matching

solution. It may even be possible to immediately deploy

our solution on some existing devices.

Technical Challenges There are two key technical

challenges in TCAM-based RE matching. The first is en-

coding a large DFA in a small TCAM. Directly encoding

a DFA in a TCAM using one TCAM entry per transi-

tion will lead to a prohibitive amount of TCAM space.

For example, consider a DFA with 25000 states that con-

sumes one 8 bit character per transition. We would need

a total of 140.38Mb (= 25000×28×(8+⌈log 25000⌉)).
This is infeasible given the largest available TCAM chip

has a capacity of only 72 Mb. To address this challenge,

we use two techniques that minimize the TCAM space

for storing a DFA: transition sharing and table consol-

idation. The second challenge is improving RE match-

ing speed and thus throughput. One way to improve the

throughput by up to a factor of k is to use k-stride DFAs

that consume k input characters per transition. However,

this leads to an exponential increase in both state and

transition spaces. To avoid this space explosion, we use

the novel idea of variable striding.

Key Idea 1 - Transition Sharing The basic idea is to

combine multiple transitions into one TCAM entry by

exploiting two properties of DFA transitions: (1) char-

acter redundancy where many transitions share the same

source state and destination state and differ only in their

character label, and (2) state redundancy where many

transitions share the same character label and destina-

tion state and differ only in their source state. One rea-

son for the pervasive character and state redundancy in

DFAs constructed from real-world RE sets is that most

states have most of their outgoing transitions going to

some common “failure” state; such transitions are often

called default transitions. The low entropy of these DFAs

2

opens optimization opportunities. We exploit character

redundancy by character bundling (i.e., input character

sharing) and state redundancy by shadow encoding (i.e.,

source state sharing). In character bundling, we use a

ternary encoding of the input character field to repre-

sent multiple characters and thus multiple transitions that

share the same source and destination states. In shadow

encoding, we use a ternary encoding for the source state

ID to represent multiple source states and thus multiple

transitions that share the same label and destination state.

Key Idea 2 - Table Consolidation The basic idea is

to merge multiple transition tables into one transition

table using the observation that some transition tables

share similar structures (e.g., common entries) even if

they have different decisions. This shared structure can

be exploited by consolidating similar transition tables

into one consolidated transition table. When we con-

solidate k TCAM lookup tables into one consolidated

TCAM lookup table, we store k decisions in the asso-

ciated SRAM decision table.

Key Idea 3 - Variable Striding The basic idea is to

store transitions with a variety of strides in the TCAM so

that we increase the average number of characters con-

sumed per transition while ensuring all the transitions fit

within the allocated TCAM space. This idea is based on

two key observations. First, for many states, we can cap-

ture many but not all k-stride transitions using relatively

few TCAM entries whereas capturing all k-stride tran-

sitions requires prohibitively many TCAM entries. Sec-

ond, with TCAMs, we can store transitions with different

strides in the same TCAM lookup table.

The rest of this paper proceeds as follows. We review

related work in Section 2. In Sections 3, 4, and 5, we

describe transition sharing, table consolidation, and vari-

able striding, respectively. We present implementation

issues, experimental results, and conclusions in Sections

6, 7, and 8, respectively.

2 Related Work

In the past, deep packet inspection typically used string

matching (often called pattern matching) as a core op-

erator; string matching solutions have been extensively

studied [2, 3, 28, 30, 32, 33, 35]). TCAM-based solutions

have been proposed for string matching, but they do not

generalize to RE matching because they only deal with

independent strings [3, 30, 35].

Today deep packet inspection often uses RE match-

ing as a core operator because strings are no longer ad-

equate to precisely describe attack signatures [25, 27].

Prior work on RE matching falls into two categories:

software-based and FPGA-based. Prior software-based

RE matching solutions focus on either reducing mem-

ory by minimizing the number of transitions/states or

improving speed by increasing the number of characters

per lookup. Such solutions can be implemented on gen-

eral purpose processors, but customized ASIC chip im-

plementations are needed for high speed performance.

For transition minimization, two basic approaches have

been proposed: alphabet encoding that exploits charac-

ter redundancy [6, 7, 12, 16] and default transitions that

exploit state redundancy [4, 6, 18, 19]. Previous alphabet

encoding approaches cannot fully exploit local charac-

ter redundancy specific to each state. Most use a sin-

gle alphabet encoding table that can only exploit global

character redundancy that applies to every state. Kong

et al. proposed using 8 alphabet encoding tables by par-

titioning the DFA states into 8 groups with each group

having its own alphabet encoding table [16]. Our work

improves upon previous alphabet encoding techniques

because we can exploit local character redundancy spe-

cific to each state. Our work improves upon the default

transition work because we do not need to worry about

the number of default transitions that a lookup may go

through because TCAMs allow us to traverse an arbitrar-

ily long default transition path in a single lookup. Some

transition sharing ideas have been used in some TCAM-

based string matching solutions for Aho-Corasick-based

DFAs [3, 11]. However, these ideas do not easily ex-

tend to DFAs generated by general RE sets, and our

techniques produce at least as much transition sharing

when restricted to string matching DFAs. For state min-

imization, two fundamental approaches have been pro-

posed. One approach is to first partition REs into multi-

ple groups and build a DFA from each group; at run time,

packet payload needs to be scanned by multiple DFAs

[5, 26, 34]. This approach is orthogonal to our work and

can be used in combination with our techniques. In par-

ticular, because our techniques achieve greater compres-

sion of DFAs than previous software-based techniques,

less partitioning of REs will be required. The other ap-

proach is to use scratch memory to store variables that

track the traversal history and avoid some duplication of

states [8,17,25]. The benefit of state reduction for scratch

memory-based FAs does not come for free. The size of

the required scratch memory may be significant, and the

time required to update the scratch memory after each

transition may be significant. This approach is orthogo-

nal to our approach. While we have only applyied our

techniques to DFAs in this initial study of TCAM-based

RE matching, our techniques may work very well with

scratch memory-based automata.

Prior FPGA-based solutions exploit the parallel pro-

cessing capabilities of FPGA technology to implement

nondeterministic finite automata (NFA) [5, 7, 13, 14, 22,

24,29] or parallel DFAs [23]. While NFAs are more com-

pact than DFAs, they require more memory bandwidth

3

114 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 115

to process each transition as an NFA may be in multiple

states whereas a DFA is always only in one state. Thus,

each character that is processed might be processed in

up to |Q| transition tables. Prior work has looked at

ways for finding good NFA representations of the REs

that limit the number of states that need to be processed

simultaneously. However, FPGA’s cannot be quickly re-

configured, and they have clock speeds that are slower

than ASIC chips.

There has been work [7, 12] on creating multi-stride

DFAs and NFAs. This work primarily applies to FPGA

NFA implementations since multiple character SRAM

based DFAs have only been evaluated for a small number

of REs. The ability to increase stride has been limited

by the constraint that all transitions must be increased

in stride; this leads to excessive memory explosion for

strides larger than 2. With variable striding, we increase

stride selectively on a state by state basis. Alicherry et al.

have explored variable striding for TCAM-based string

matching solutions [3] but not for DFAs that apply to ar-

bitrary RE sets.

3 Transition Sharing

The basic idea of transition sharing is to combine mul-

tiple transitions into a single TCAM entry. We pro-

pose two transition sharing ideas: character bundling and

shadow encoding. Character bundling exploits intra-state

optimization opportunities and minimizes TCAM tables

along the input character dimension. Shadow encoding

exploits inter-state optimization opportunities and mini-

mizes TCAM tables along the source state dimension.

3.1 Character Bundling

Character bundling exploits character redundancy by

combining multiple transitions from the same source

state to the same destination into one TCAM entry. Char-

acter bundling consists of four steps. (1) Assign each

state a unique ID of ⌈log |Q|⌉ bits. (2) For each state,

enumerate all 256 transition rules where for each rule,

the predicate is a transition’s label and the decision is the

destination state ID. (3) For each state, treating the 256

rules as a 1-dimensional packet classifier and leveraging

the ternary nature and first-match semantics of TCAMs,

we minimize the number of transitions using the op-

timal 1-dimensional TCAM minimization algorithm in

[20, 31]. (4) Concatenate the |Q| 1-dimensional minimal

prefix classifiers together by prepending each rule with

its source state ID. The resulting list can be viewed as a

2-dimensional classifier where the two fields are source

state ID and transition label and the decision is the des-

tination state ID. Fig. 1 shows an example DFA and its

TCAM lookup table built using character bundling. The

three chunks of TCAM entries encode the 256 transi-

tions for s0, s1, and s2, respectively. Without character

bundling, we would need 256× 3 entries.

3.2 Shadow Encoding

Whereas character bundling uses ternary codes in the in-

put character field to encode multiple input characters,

shadow encoding uses ternary codes in the source state

ID field to encode multiple source states.

3.2.1 Observations

We use our running example in Fig. 1 to illustrate shadow

encoding. We observe that all transitions with source

states s1 and s2 have the same destination state except

for the transitions on character c. Likewise, source state

s0 differs from source states s1 and s2 only in the char-

acter range [a, o]. This implies there is a lot of state re-

dundancy. The table in Fig. 2 shows how we can ex-

ploit state redundancy to further reduce required TCAM

space. First, since states s1 and s2 are more similar, we

give them the state IDs 00 and 01, respectively. State

s2 uses the ternary code of 0* in the state ID field of its

TCAM entries to share transitions with state s1. We give

state s0 the state ID of 10, and it uses the ternary code of

∗∗ in the state ID field of its TCAM entries to share tran-

sitions with both states s1 and s2. Second, we order the

state tables in the TCAM so that state s1 is first, state s2
is second, and state s0 is last. This facilitates the sharing

of transitions among different states where earlier states

have incomplete tables deferring some transitions to later

tables.

TCAM SRAM

Src State ID Input Dest State ID

s1 00 0110 0011 01: s2

0* 0110 001* 00: s1

s2 0* 0110 0000 10: s0

0* 0110 **** 01: s2

** 0110 0000 10: s0

s0 ** 0110 **** 00: s1

** **** **** 10: s0

Figure 2: TCAM table with shadow encoding

We must solve three problems to implement shadow

encoding: (1) Find the best order of the state tables in

the TCAM given that any order is allowed. (2) Identify

entries to remove from each state table given this order.

(3) Choose binary IDs and ternary codes for each state

that support the given order and removed entries. We

solve these problems in the rest of this section.

Our shadow encoding technique builds upon prior

work with default transitions [4, 6, 18, 19] by exploiting

the same state redundancy observation and using their

4

concepts of default transitions and Delayed input DFAs

(D2FA). However, our final technical solutions are dif-

ferent because we work with TCAM whereas prior tech-

niques work with RAM. For example, the concept of a

ternary state code has no meaning when working with

RAM. The key advantage of shadow encoding in TCAM

over prior default transition techniques is speed. Specif-

ically, shadow encoding incurs no delay while prior de-

fault transition techniques incur significant delay because

a DFA may have to traverse multiple default transitions

before consuming an input character.

3.2.2 Determining Table Order

We first describe how we compute the order of tables

within the TCAM. We use some concepts such as default

transitions and D2FA that were originally defined by Ku-

mar et al. [18] and subsequently refined [4, 6, 19].

Figure 3: D2FA, SRG, and deferment tree

A D2FA is a DFA with default transitions where each

state p can have at most one default transition to one

other state q in the D2FA. In a legal D2FA, the di-

rected graph consisting of only default transitions must

be acyclic; we call this graph a deferment forest. It is a

forest rather than a tree since more than one node may

not have a default transition. We call a tree in a defer-

ment forest a deferment tree.

We determine the order of state tables in TCAM by

constructing a deferment forest and then using the par-

tial order defined by the deferment forest. Specifically, if

there is a directed path from state p to state q in the defer-

ment forest, we say that state p defers to state q, denoted

p ≻ q. If p ≻ q, we say that state p is in state q’s shadow.

We use the partial order of a deferment forest to deter-

mine the order of state transition tables in the TCAM.

Specifically, state q’s transition table must be placed af-

ter the transition tables of all states in state q’s shadow.

We compute a deferment forest that minimizes the

TCAM representation of the resulting D2FA as follows.

Our algorithm builds upon algorithms from prior work

[4, 6, 18, 19], but there are several key differences. First,

unlike prior work, we do not pay a speed penalty for long

default transition paths. Thus, we achieve better transi-

tion sharing than prior work. Second, to maximize the

potential gains from our variable striding technique de-

scribed in Section 5 and table consolidation, we choose

states that have lots of self-loops to be the roots of our

deferment trees. Prior work has typically chosen roots

in order to minimize the distance from a leaf node to a

root, though Becchi and Crowley do consider related cri-

teria when constructing their D2FA [6]. Third, we ex-

plicitly ignore transition sharing between states that have

few transitions in common. This has been done implic-

itly in the past, but we show how doing so leads to better

results when we use table consolidation.

The algorithm for constructing deferment forests con-

sists of four steps. First, we construct a Space Reduction

Graph (SRG), which was proposed in [18], from a given

DFA. Given a DFA with |Q| states, an SRG is a clique

with |Q| vertices each representing a distinct state. The

weight of each edge is the number of common (outgoing)

transitions between the two connected states. Second,

we trim away edges with small weight from the SRG. In

our experiments, we use a cutoff of 10. We justify this

step based on the following observations. A key property

of SRGs that we observed in our experiments is that the

weight distribution is bimodal: an edge weight is typ-

ically either very small (< 10) or very large (> 180).

If we use these low weight edges for default transitions,

the resulting TCAM often has more entries. Plus, we

get fewer deferment trees which hinders our table con-

solidation technique (Section 4). Third, we compute a

deferment forest by running Kruskal’s algorithm to find

a maximum weight spanning forest. Fourth, for each de-

ferment tree, we pick the state that has largest number of

transitions going back to itself as the root. Fig. 3(b) and

(c) show the SRG and the deferment tree, respectively,

for the DFA in Fig. 1.

We make the following key observation about the root

states in our deferment trees. In most deferment trees,

more than 128 (i.e., half) of the root state’s outgoing tran-

sitions lead back to the root state; we call such a state a

self-looping state. Based on the pigeonhole principle and

the observed bimodal distribution, each deferment tree

can have at most one self-looping state, and it is clearly

the root state. We choose self-looping states as roots to

improve the effectiveness of variable striding which we

describe in Section 5. Intuitively, we have a very space-

efficient method, self-loop unrolling, for increasing the

stride of self-looping root states. The resulting increase

in stride applies to all states that defer transitions to this

self-looping root state.

When we apply Kruskal’s algorithm, we use a tie

breaking strategy because many edges have the same

weight. To have most deferment trees centered around

a self-looping state, we give priority to edges that have

the self-looping state as one endpoint. If we still have a

5

116 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 117

tie, we favor edges by the total number of edges in the

current spanning tree that both endpoints are connected

to prioritize nodes that are already well connected.

3.2.3 Choosing Transitions

For a given DFA and a corresponding deferment forest,

we construct a D2FA as follows. If state p has a default

transition to state q, we remove any transitions that are

common to both p’s transition table and q’s transition ta-

ble from p’s transition table. We denote the default tran-

sition in the D2FA with a dashed arrow labeled with de-

fer. Fig. 3(a) shows the D2FA for the DFA in Fig. 1 given

the corresponding deferment forest (a deferment tree in

this case) in Figure 3(c). We now compute the TCAM

entries for each transition table.

(1) For each state, enumerate all individual transition

rules except the deferred transitions. For each transition

rule, the predicate is the label of the transition and the

decision is the state ID of the destination state. For now,

we just ensure each state has a unique state ID. Thus, we

get an incomplete 1-dimensional classifier for each state.

(2) For each state, we minimize its transition table using

the 1-dimensional incomplete classifier minimization al-

gorithm in [21]. This algorithm works by first adding a

default rule with a unique decision that has weight larger

than the size of the domain, then applying the weighted

one-dimensional TCAM minimization algorithm in [20]

to the resulting complete classifier, and finally remove

the default rule, which is guaranteed to remain the default

rule in the minimal complete classifier due to its huge

weight. In our solution, the character bundling technique

is used in this step. We also consider some optimizations

where we specify some deferred transitions to reduce the

total number of TCAM entries. For example, the second

entry in s2’s table in Fig. 2 is actually a deferred transi-

tion to state s0’s table, but not using it would result in 4

TCAM entries to specify the transitions that s2 does not

share with s0.

3.2.4 Shadow Encoding Algorithm

To ensure that proper sharing of transitions occurs, we

need to encode the source state IDs of the TCAM entries

according to the following shadow encoding scheme.

Each state is assigned a binary state ID and a ternary

shadow code. State IDs are used in the decisions of tran-

sition rules. Shadow codes are used in the source state

ID field of transition rules. In a valid assignment, every

state ID and shadow code must have the same number of

bits, which we call the shadow length of the assignment.

For each state p, we use ID(p) and SC(p) to denote the

state ID and shadow code of p. A valid assignment of

state IDs and shadow codes for a deferment forest must

satisfy the following four shadow encoding properties:

1. Uniqueness Property: For any two distinct states p
and q, ID(p) �= ID(q) and SC(p) �= SC(q).

2. Self-Matching Property: For any state p, ID(p) ∈
SC(p) (i.e., ID(p) matches SC(p)).

3. Deferment Property: For any two states p and q, p ≻
q (i.e., q is an ancestor of p in the given deferment

tree) if and only if SC(p) ⊂ SC(q).

4. Non-interception Property: For any two distinct

states p and q, p ≻ q if and only if ID(p) ∈ SC(q).

Intuitively, q’s shadow code must include the state ID of

all states in q’s shadow and cannot include the state ID

of any states not in q’s shadow.

We give an algorithm for computing a valid assign-

ment of state IDs and shadow codes for each state given

a single deferment tree DT . We handle deferment forests

by simply creating a virtual root node whose children are

the roots of the deferment trees in the forest and then run-

ning the algorithm on this tree. In the following, we refer

to states as nodes.

Our algorithm uses the following internal variables for

each node v: a local binary ID denoted L(v), a global

binary ID denoted G(v), and an integer weight denoted

W (v) that is the shadow length we would use for the

subtree of DT rooted at v. Intuitively, the state ID of

v will be G(v)|L(v) where | denotes concatenation, and

the shadow code of v will be the prefix string G(v) fol-

lowed by the required number of *’s; some extra padding

characters may be needed. We use #L(v) and #G(v)to
denote the number of bits in L(v) and G(v), respectively.

Our algorithm processes nodes in a bottom-up fashion.

For each node v, we initially set L(v) = G(v) = ∅ and

W (v) = 0. Each leaf node of DT is now processed,

which we denote by marking them red. We process an

internal node v when all its children v1, · · · , vn are red.

Once a node v is processed, its weight W (v) and its local

ID L(v) are fixed, but we will prepend additional bits to

its global ID G(v) when we process its ancestors in DT .

We assign v and each of its children a variable-length

binary code, which we call HCode. The HCode provides

a unique signature that uniquely distinguishes each of the

n+1 nodes from each other while satisfying the four re-

quired shadow code properties. One option would be to

simply use lg(n + 1) bits and assign each node a binary

number from 0 to n. However, to minimize the shadow

code length W (v), we use a Huffman coding style algo-

rithm instead to compute the HCodes and W (v). This

algorithm uses two data structures: a binary encoding

tree T with n + 1 leaf nodes, one for v and each of its

children, and a min-priority queue, initialized with n+1
elements, one for v and each of its children, that is or-

dered by node weight. While the priority queue has more

than one element, we remove the two elements x and y
with lowest weight from the priority queue, create a new

6

Figure 4: Shadow encoding example

internal node z in T with two children x and y and set

weight(z)=maximum(weight(x), weight(y))+1, and then

put element z into the priority queue. When there is only

a single element in the priority queue, the binary encod-

ing tree T is complete. The HCode assigned to each leaf

node v′ is the path in T from the root node to v′ where

left edges have value 0 and right edges have value 1. We

update the internal variables of v and its descendants in

DT as follows. We set L(v) to be its HCode, and W (v)
to be the weight of the root node of T ; G(v) is left empty.

For each child vi, we prepend vi’s HCode to the global

ID of every node in the subtree rooted at vi including vi
itself. We then mark v as red. This continues until all

nodes are red.

We now assign each node a state ID and a shadow

code. First, we set the shadow length to be k, the weight

of the root node of DT . We use {∗}m to denote a ternary

string with m number of *’s and {0}m to denote a bi-

nary string with m number of 0’s. For each node v,

we compute v’s state ID and shadow code as follows:

ID(v) = G(v)|L(v)|{0}k−#G(v)−#L(v), SC(v) =
G(v)|{∗}k−#G(v). We illustrate our shadow encoding

algorithm in Figure 4. Figure 4(a) shows all the inter-

nal variables just before v1 is processed. Figure 4(b)

shows the Huffman style binary encoding tree T built

for node v1 and its children v2, v3, and v4 and the result-

ing HCodes. Figure 4(c) shows each node’s final weight,

global ID, local ID, state ID and shadow code.

Experimentally, we found that our shadow encoding

algorithm is effective at minimizing shadow length. No

DFA had a shadow length larger than ⌈log2 |Q|⌉+3, and

⌈log2 |Q|⌉ is the minimum possible shadow length.

4 Table Consolidation

We now present table consolidation where we combine

multiple transition tables for different states into a single

transition table such that the combined table takes less

TCAM space than the total TCAM space used by the

original tables. To define table consolidation, we need

two new concepts: k-decision rule and k-decision table.

A k-decision rule is a rule whose decision is an array

of k decisions. A k-decision table is a sequence of k-

decision rules following the first-match semantics. Given

a k-decision table T and i (0 ≤ i < k), if for any rule r
in T we delete all the decisions except the i-th decision,

we get a 1-decision table, which we denote as T[i]. In

table consolidation, we take a set of k 1-decision tables

T0, · · · ,Tk−1 and construct a k-decision table T such

that for any i (0 ≤ i < k), the condition Ti ≡ T[i] holds

where Ti ≡ T[i] means that Ti and T[i] are equivalent

(i.e., they have the same decision for every search key).

We call the process of computing k-decision table T ta-

ble consolidation, and we call T the consolidated table.

4.1 Observations

Table consolidation is based three observations. First,

semantically different TCAM tables may share common

entries with possibly different decisions. For example,

the three tables for s0, s1 and s2 in Fig. 1 have three en-

tries in common: 01100000, 0110****, and ********.

Table consolidation provides a novel way to remove such

information redundancy. Second, given any set of k 1-

decision tables T0, · · · ,Tk−1, we can always find a k-

decision table T such that for any i (0 ≤ i < k), the

condition Ti ≡ T[i] holds. This is easy to prove as

we can use one entry per each possible binary search

key in T. Third, a TCAM chip typically has a build-in

SRAM module that is commonly used to store lookup

decisions. For a TCAM with n entries, the SRAM mod-

ule is arranged as an array of n entries where SRAM[i]

stores the decision of TCAM[i] for every i. A TCAM

lookup returns the index of the first matching entry in the

TCAM, which is then used as the index to directly find

the corresponding decision in the SRAM. In table con-

solidation, we essentially trade SRAM space for TCAM

space because each SRAM entry needs to store multiple

decisions. As SRAM is cheaper and more efficient than

7

118 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 119

TCAM, moderately increasing SRAM usage to decrease

TCAM usage is worthwhile.

Fig. 5 shows the TCAM lookup table and the SRAM

decision table for a 3-decision consolidated table for

states s0, s1, and s2 in Fig. 1. In this example, by table

consolidation, we reduce the number of TCAM entries

from 11 to 5 for storing the transition tables for states

s0, s1, and s2. This consolidated table has an ID of 0.

As both the table ID and column ID are needed to en-

code a state, we use the notation < Table ID > @ <
Column ID > to represent a state.

TCAM SRAM

Consolidated Input Column ID

Src Table ID Character 00 01 10

0 0110 0000 s0 s0 s0

0 0110 0010 s1 s1 s1

0 0110 0011 s1 s2 s1

0 0110 **** s1 s2 s2

0 **** **** s0 s0 s0

Figure 5: 3-decision table for 3 states in Fig. 1

There are two key technical challenges in table con-

solidation. The first challenge is how to consolidate k
1-decision transition tables into a k-decision transition

table. The second challenge is which 1-decision transi-

tion tables should be consolidated together. Intuitively,

the more similar two 1-decision transition tables are, the

more TCAM space saving we can get from consolidating

them together. However, we have to consider the defer-

ment relationship among states. We present our solutions

to these two challenges.

4.2 Computing a k-decision table

In this section, we assume we know which states need to

be consolidated together and present a local state consol-

idation algorithm that takes a k1-decision table for state

set Si and a k2-decision table for another state set Sj as

its input and outputs a consolidated (k1 + k2)-decision

table for state set Si ∪ Sj . For ease of presentation, we

first assume that k1 = k2 = 1.

Let s1 and s2 be the two input states which have de-

fault transitions to states s3 and s4. We enforce a con-

straint that if we do not consolidate s3 and s4 together,

then s1 and s2 cannot defer any transitions at all. If we do

consolidate s3 and s4 together, then s1 and s2 may have

incomplete transition tables due to default transitions to

s3 and s4, respectively. We assign state s1 column ID 0

and state s2 column ID 1. This consolidated table will be

assigned a common table ID X . Thus, we encode s1 as

X@0 and s2 as X@1.

The key concepts underlying this algorithm are break-

points and critical ranges. To define breakpoints, it is

helpful to view Σ as numbers ranging from 0 to |Σ| − 1;

given 8 bit characters, |Σ| = 256. For any state s, we

define a character i ∈ Σ to be a breakpoint for s if

δ(s, i) �= δ(s, i − 1). For the end cases, we define 0
and |Σ| to be breakpoints for every state s. Let b(s)
be the set of breakpoints for state s. We then define

b(S) =
⋃

s∈S b(s) to be the set of breakpoints for a

set of states S ⊂ Q. Finally, for any set of states S,

we define r(S) to be the set of ranges defined by b(S):
r(S) = {[0, b2−1], [b2, b3−1], . . . , [b|b(S)|−1, |Σ|−1]}
where bi is ith smallest breakpoint in b(S). Note that

0 = b1 is the smallest breakpoint and |Σ| is the largest

breakpoint in b(S). Within r(S), we label the range be-

ginning at breakpoint bi as ri for 1 ≤ i ≤ |b(S)| − 1. If

δ(s, bi) is deferred, then ri is a deferred range.

When we consolidate s1 and s2 together, we compute

b({s1, s2}) and r({s1, s2}). For each r′ ∈ r({s1, s2})
where r′ is not a deferred range for both s1 and s2, we

create a consolidated transition rule where the decision

of the entry is the ordered pair of decisions for state s1
and s2 on r′. For each r′ ∈ r({s1, s2}) where r′ is a

deferred range for one of s1 but not the other, we fill in

r′ in the incomplete transition table where it is deferred,

and we create a consolidated entry where the decision of

the entry is the ordered pair of decisions for state s1 and

s2 on r′. Finally, for each r′ ∈ r({s1, s2}) where r′ is

a deferred range for both s1 and s2, we do not create a

consolidated entry. This produces a non-overlapping set

of transition rules that may be incomplete if some ranges

do not have a consolidated entry. If the final consolidated

transition table is complete, we minimize it using the

optimal 1-dimensional TCAM minimization algorithm

in [20, 31]. If the table is incomplete, we minimize it

using the 1-dimensional incomplete classifier minimiza-

tion algorithm in [21]. We generalize this algorithm to

cases where k1 > 1 and k2 > 1 by simply considering

k1 + k2 states when computing breakpoints and ranges.

4.3 Choosing States to Consolidate

We now describe our global consolidation algorithm for

determining which states to consolidate together. As we

observed earlier, if we want to consolidate two states

s1 and s2 together, we need to consolidate their parent

nodes in the deferment forest as well or else lose all the

benefits of shadow encoding. Thus, we propose to con-

solidate two deferment trees together.

A consolidated deferment tree must satisfy the follow-

ing properties. First, each node is to be consolidated with

at most one node in the second tree; some nodes may not

be consolidated with any node in the second tree. Sec-

ond, a level i node in one tree must be consolidated with

a level i node in the second tree. The level of a node

is its distance from the root. We define the root to be a

level 0 node. Third, if two level i nodes are consolidated

together, their level i− 1 parent nodes must also be con-

solidated together. An example legal matching of nodes

8

between two deferment trees is depicted in Fig. 6.

Figure 6: Consolidating two trees

Given two deferment trees, we start the consolidation

process from the roots. After we consolidate the two

roots, we need to decide how to pair their children to-

gether. For each pair of nodes that are consolidated to-

gether, we again must choose how to pair their children

together, and so on. We make an optimal choice using

a combination of dynamic programming and matching

techniques. Our algorithm proceeds as follows. Suppose

we wish to compute the minimum cost C(x, y), mea-

sured in TCAM entries, of consolidating two subtrees

rooted at nodes x and y where x has u children X =
{x1, . . . , xu} and y has v children Y = {y1, . . . , yv}.

We first recursively compute C(xi, yj) for 1 ≤ i ≤ u
and 1 ≤ j ≤ v using our local state consolidation al-

gorithm as a subroutine. We then construct a complete

bipartite graph KX,Y such that each edge (xi, yj) has

the edge weight C(xi, yj) for 1 ≤ i ≤ u and 1 ≤ j ≤ v.

Here C(x, y) is the cost of a minimum weight match-

ing of K(X,Y) plus the cost of consolidating x and y.

When |X | �= |Y |, to make the sets equal in size, we pad

the smaller set with null states that defer all transitions.

0 0-96,b,d-255

4

a

1

c

0-a,d-255

8

b

5

c

2

d

9

c

6

d

3

e

7

e

Figure 7: D2FA for {a.*bc, cde}

Finally, we must

decide which trees

to consolidate to-

gether. We as-

sume that we pro-

duce k-decision ta-

bles where k is a

power of 2. We

describe how we

solve the problem

for k = 2 first.

We create an edge-

weighted complete

graph with where

each deferment tree

is a node and where

the weight of each edge is the cost of consolidating the

two corresponding deferment trees together. We find a

minimum weight matching of this complete graph to give

us an optimal pairing for k = 2. For larger k = 2l, we

then repeat this process l − 1 times. Our matching is not

necessarily optimal for k > 2.

In some cases, the deferment forest may have only one

tree. In such cases, we consider consolidating the sub-

trees rooted at the children of the root of the single defer-

ment tree. We also consider similar options if we have a

few deferment trees but they are not structurally similar.

4.4 Effectiveness of Table Consolidation

We now explain why table consolidation works well on

real-world RE sets. Most real-world RE sets contain

REs with wildcard closures ‘.*’ where the wildcard ‘.’

matches any character and the closure ‘*’ allows for un-

limited repetitions of the preceding character. Wildcard

closures create deferment trees with lots of structural

similarity. For example, consider the D2FA in Fig. 7

for RE set \{a.*bc, cde\} where we use dashed ar-

rows to represent the default transitions. The wildcard

closure ‘.*’ in the RE a.*bc duplicates the entire DFA

sub-structure for recognizing string cde. Thus, table

consolidation of the subtree (0, 1, 2, 3) with the subtree

(4, 5, 6, 7) will lead to significant space saving.

5 Variable Striding

We explore ways to improve RE matching throughput by

consuming multiple characters per TCAM lookup. One

possibility is a k-stride DFA which uses k-stride transi-

tions that consume k characters per transition. Although

k-stride DFAs can speed up RE matching by up to a fac-

tor of k, the number of states and transitions can grow

exponentially in k. To limit the state and transition space

explosion, we propose variable striding using variable-

stride DFAs. A k-var-stride DFA consumes between 1

and k characters in each transition with at least one tran-

sition consuming k characters. Conceptually, each state

in a k-var-stride DFA has 256k transitions, and each tran-

sition is labeled with (1) a unique string of k characters

and (2) a stride length j (1 ≤ j ≤ k) indicating the num-

ber of characters consumed.

In TCAM-based variable striding, each TCAM lookup

uses the next k consecutive characters as the lookup key,

but the number of characters consumed in the lookup

varies from 1 to k; thus, the lookup decision contains

both the destination state ID and the stride length.

5.1 Observations

We use an example to show how variable striding can

achieve a significant RE matching throughput increase

with a small and controllable space increase. Fig. 8

shows a 3-var-stride transition table that corresponds to

state s0 in Figure 1. This table only has 7 entries as op-

posed to 116 entries in a full 3-stride table for s0. If we

assume that each of the 256 characters is equally likely

to occur, the average number of characters consumed per

9

120 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 121

3-var-stride transition of s0 is 1 ∗ 1/16 + 2 ∗ 15/256 +
3 ∗ 225/256 = 2.82.

TCAM SRAM

SRC Input DEC : Stride

s0 0110 0000 **** **** **** **** s0 : 1

s0 0110 **** **** **** **** **** s1 : 1

s0 **** **** 0110 0000 **** **** s0 : 2

s0 **** **** 0110 **** **** **** s1 : 2

s0 **** **** **** **** 0110 0000 s0 : 3

s0 **** **** **** **** 0110 **** s1 : 3

s0 **** **** **** **** **** **** s0 : 3

Figure 8: 3-var-stride transition table for s0

5.2 Eliminating State Explosion

We first explain how converting a 1-stride DFA to a k-

stride DFA causes state explosion. For a source state and

a destination state pair (s, d), a k-stride transition path

from s to d may contain k−1 intermediate states (exclud-

ing d); for each unique combination of accepting states

that appear on a k-stride transition path from s to d, we

need to create a new destination state because a unique

combination of accepting states implies that the input has

matched a unique combination of REs. This can be a

very large number of new states.

We eliminate state explosion by ending any k-var-

stride transition path at the first accepting state it reaches.

Thus, a k-var-stride DFA has the exact same state set

as its corresponding 1-stride DFA. Ending k-var-stride

transitions at accepting states does have subtle interac-

tions with table consolidation and shadow encoding. We

end any k-var-stride consolidated transition path at the

first accepting state reached in any one of the paths being

consolidated which can reduce the expected throughput

increase of variable striding. There is a similar but even

more subtle interaction with shadow encoding which we

describe in the next section.

5.3 Controlling Transition Explosion

In a k-stride DFA converted from a 1-stride DFA with al-

phabet Σ, a state has |Σ|k outgoing k-stride transitions.

Although we can leverage our techniques of character

bundling and shadow encoding to minimize the number

of required TCAM entries, the rate of growth tends to be

exponential with respect to stride length k. We have two

key ideas to control transition explosion: k-var-stride

transition sharing and self-loop unrolling.

5.3.1 k-var-stride Transition Sharing Algorithm

Similar to 1-stride DFAs, there are many transition shar-

ing opportunities in a k-var-stride DFA. Consider two

states s0 and s1 in a 1-stride DFA where s0 defers to s1.

The deferment relationship implies that s0 shares many

common 1-stride transitions with s1. In the k-var-stride

DFA constructed from the 1-stride DFA, all k-var-stride

transitions that begin with these common 1-stride tran-

sitions are also shared between s0 and s1. Furthermore,

two transitions that do not begin with these common 1-

stride transitions may still be shared between s0 and s1.

For example, in the 1-stride DFA fragment in Fig. 9, al-

though s1 and s2 do not share a common transition for

character a, when we construct the 2-var-stride DFA, s1
and s2 share the same 2-stride transition on string aa that

ends at state s5.

Figure 9: s1 and s2 share transi-

tion aa

To promote

transition sharing

among states in a

k-var-stride DFA,

we first need to

decide on the

deferment rela-

tionship among

states. The ideal

deferment rela-

tionship should be calculated based on the SRG of the

final k-var-stride DFA. However, the k-var-stride DFA

cannot be finalized before we need to compute the

deferment relationship among states because the final

k-var-stride DFA is subject to many factors such as

available TCAM space. There are two approximation

options for the final k-var-stride DFA for calculating

the deferment relationship: the 1-stride DFA and the

full k-stride DFA. We have tried both options in our

experiments, and the difference in the resulting TCAM

space is negligible. Thus, we simply use the deferment

forest of the 1-stride DFA in computing the transition

tables for the k-var-stride DFA.

Second, for any two states s1 and s2 where s1 defers to

s2, we need to compute s1’s k-var-stride transitions that

are not shared with s2 because those transitions will con-

stitute s1’s k-var-stride transition table. Although this

computation is trivial for 1-stride DFAs, this is a sig-

nificant challenge for k-var-stride DFAs because each

state has too many (256k) k-var-stride transitions. The

straightforward algorithm that enumerates all transitions

has a time complexity of O(|Q|2|Σ|k), which grows ex-

ponentially with k. We propose a dynamic program-

ming algorithm with a time complexity of O(|Q|2|Σ|k),
which grows linearly with k. Our key idea is that the

non-shared transitions for a k-stride DFA can be quickly

computed from the non-shared transitions of a (k-1)-var-

stride DFA. For example, consider the two states s1 and

s2 in Fig. 9 where s1 defers to s2. For character a, s1
transits to s3 while s2 transits to s4. Assuming that we

have computed all (k-1)-var-stride transitions of s3 that

are not shared with the (k-1)-var-stride transitions of s4,

if we prepend all these (k-1)-var-stride transitions with

10

character a, the resulting k-var-stride transitions of s1 are

all not shared with the k-var-stride transitions of s2, and

therefore should all be included in s1’s k-var-stride tran-

sition table. Formally, using n(si, sj , k) to denote the

number of k-stride transitions of si that are not shared

with sj , our dynamic programming algorithm uses the

following recursive relationship between n(si, sj , k) and

n(si, sj, k − 1):

n(si, sj , 0) =

{
0 if si = sj
1 if si �= sj

(1)

n(si, sj, k) =
∑
c∈Σ

n(δ(si, c), δ(sj , c), k − 1) (2)

The above formulae assume that the intermediate

states on the k-stride paths starting from si or sj are all

non-accepting. For state si, we stop increasing the stride

length along a path whenever we encounter an accepting

state on that path or on the corresponding path starting

from sj . The reason is similar to why we stop a con-

solidated path at an accepting state, but the reasoning is

more subtle.

Let p be the string that leads sj to an accepting state.

The key observation is that we know that any k-var-stride

path that starts from sj and begins with p ends at that ac-

cepting state. This means that si cannot exploit transition

sharing on any strings that begin with p.

The above dynamic programming algorithm produces

non-overlapping and and incomplete transition tables

that we compress using the 1-dimensional incomplete

classifier minimization algorithm in [21].

5.3.2 Self-Loop Unrolling Algorithm

We now consider root states, most of which are self-

looping. We have two methods to compute the k-var-

stride transition tables of root states. The first is direct

expansion (stopping transitions at accepting states) since

these states do not defer to other states which results in

an exponential increase in table size with respect to k.

The second method, which we call self-loop unrolling,

scales linearly with k.

Self-loop unrolling increases the stride of all the self-

loop transitions encoded by the last default TCAM entry.

Self-loop unrolling starts with a root state j-var-stride

transition table encoded as a compressed TCAM table of

n entries with a final default entry representing most of

the self-loops of the root state. Note that given any com-

plete TCAM table where the last entry is not a default

entry, we can always replace that last entry with a default

entry without changing the semantics of the table. We

generate the (j+1)-var-stride transition table by expand-

ing the last default entry into n new entries, which are

obtained by prepending 8 *s as an extra default field to

the beginning of the original n entries. This produces

a (j+1)-var-stride transition table with 2n − 1 entries.

Fig. 8 shows the resulting table when we apply self-loop

unrolling twice on the DFA in Fig. 1.

5.4 Variable Striding Selection Algorithm

We now propose solutions for the third key challenge -

which states should have their stride lengths increased

and by how much, i.e., how should we compute the tran-

sition function δ. Note that each state can independently

choose its variable striding length as long as the final

transition tables are composed together according to the

deferment forest. This can be easily proven based on

the way that we generate k-var-stride transition tables.

For any two states s1 and s2 where s1 defers to s2, the

way that we generate s1’s k-var-stride transition table

is seemingly based on the assumption that s2’s transi-

tion table is also k-var-stride; actually, we do not have

this assumption. For example, if we choose k-var-stride

(2 ≤ k) for s1 and 1-stride for s2, all strings from s1
will be processed correctly; the only issue is that strings

deferred to s2 will process only one character.

We view this as a packing problem: given a TCAM

capacity C, for each state s, we select a variable stride

length value Ks, such that
∑

s∈Q |T(s,Ks)| ≤ C, where

T(s,Ks) denotes the Ks-var-stride transition table of

state s. This packing problem has a flavor of the knap-

sack problem, but an exact formulation of an optimiza-

tion function is impossible without making assumptions

about the input character distribution. We propose the

following algorithm for finding a feasible δ that strives

to maximize the minimum stride of any state. First, we

use all the 1-stride tables as our initial selection. Second,

for each j-var-stride (j ≥ 2) table t of state s, we create

a tuple (l, d, |t|) where l denotes variable stride length, d
denotes the distance from state s to the root of the defer-

ment tree that s belongs to, and |t| denotes the number

of entries in t. As stride length l increases, the individual

table size |t| may increase significantly, particularly for

the complete tables of root states. To balance table sizes,

we set limits on the maximum allowed table size for root

states and non-root states. If a root state table exceeds the

root state threshold when we create its j-var-stride table,

we apply self-loop unrolling once to its (j−1)-var-stride

table to produce a j-var-stride table. If a non-root state

table exceeds the non-root state threshold when we cre-

ate its j-var-stride table, we simply use its j−1-var-stride

table as its j-var-stride table. Third, we sort the tables by

these tuple values in increasing order first using l, then

using d, then using |t|, and finally a pseudorandom coin

flip to break ties. Fourth, we consider each table t in or-

der. Let t′ be the table for the same state s in the current

selection. If replacing t′ by t does not exceed our TCAM

capacity C, we do the replacement.

11

122 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 123

6 Implementation and Modeling

Entries TCAM TCAM Latency

Chip size Chip size ns

(36-bit wide) (72-bit wide)

1024 0.037 Mb 0.074 Mb 0.94

2048 0.074 Mb 0.147 Mb 1.10

4096 0.147 Mb 0.295 Mb 1.47

8192 0.295 Mb 0.590 Mb 1.84

16384 0.590 Mb 1.18 Mb 2.20

32768 1.18 Mb 2.36 Mb 2.57

65536 2.36 Mb 4.72 Mb 2.94

131072 4.72 Mb 9.44 Mb 3.37

Table 1: TCAM size in Mb and Latency in ns

We now describe some implementation issues associ-

ated with our TCAM based RE matching solution. First,

the only hardware required to deploy our solution is the

off-the-shelf TCAM (and its associated SRAM). Many

deployed networking devices already have TCAMs, but

these TCAMs are likely being used for other purposes.

Thus, to deploy our solution on existing network devices,

we would need to share an existing TCAM with another

application. Alternatively, new networking devices can

be designed with an additional dedicated TCAM chip.

Second, we describe how we update the TCAM when

an RE set changes. First, we must compute a new DFA

and its corresponding TCAM representation. For the

moment, we recompute the TCAM representation from

scratch, but we believe a better solution can be found and

is something we plan to work on in the future. We report

some timing results in our experimental section. Fortu-

nately, this is an offline process during which time the

DFA for the original RE set can still be used. The sec-

ond step is loading the new TCAM entries into TCAM. If

we have a second TCAM to support updates, this rewrite

can occur while the first TCAM chip is still processing

packet flows. If not, RE matching must halt while the

new entries are loaded. This step can be performed very

quickly, so the delay will be very short. In contrast, up-

dating FPGA circuitry takes significantly longer.

We have not developed a full implementation of our

system. Instead, we have only developed the algorithms

that would take an RE set and construct the associated

TCAM entries. Thus, we can only estimate the through-

put of our system using TCAM models. We use Agrawal

and Sherwood’s TCAM model [1] assuming that each

TCAM chip is manufactured with a 0.18µm process to

compute the estimated latency of a single TCAM lookup

based on the number of TCAM entries searched. These

model latencies are shown in Table 1. We recognize that

some processing must be done besides the TCAM lookup

such as composing the next state ID with the next input

character; however, because the TCAM lookup latency is

much larger than any other operation, we focus only on

this parameter when evaluating the potential throughput

of our system.

7 Experimental Results

In this section, we evaluate our TCAM-based RE match-

ing solution on real-world RE sets focusing on two met-

rics: TCAM space and RE matching throughput.

7.1 Methodology

We obtained 4 proprietary RE sets, namely C7, C8, C10,

and C613, from a large networking vendor, and 4 public

RE sets, namely Snort24, Snort31, Snort34, and Bro217

from the authors of [6] (we do report a slightly differ-

ent number of states for Snort31, 20068 to 20052; this

may be due to Becchi et al. making slight changes to

their Regular Expression Processor that we used). Quot-

ing Becchi et al. [6], “Snort rules have been filtered ac-

cording to the headers ($HOME NET, any, $EXTER-

NAL NET, $HTTP PORTS/any) and ($HOME NET,

any, 25, $HTTP PORTS/any). In the experiments which

follow, rules have been grouped so to obtain DFAs with

reasonable size and, in parallel, have datasets with dif-

ferent characteristics in terms of number of wildcards,

frequency of character ranges and so on.” Of these 8 RE

sets, the REs in C613 and Bro217 are all string match-

ing REs, the REs in C7, C8, and C10 all contain wild-

card closures ‘.*’, and about 40% of the REs in Snort 24,

Snort31, and Snort34 contain wildcard closures ‘.*’.

Finally, to test the scalability of our algorithms, we

use one family of 34 REs from a recent public release

of the Snort rules with headers ($EXTERNAL NET,

$HTTP PORTS, $HOME NET, any), most of which

contain wildcard closures ‘.*’. We added REs one at a

time until the number of DFA states reached 305,339.

We name this family Scale.

We calculate TCAM space by multiplying the number

of entries by the TCAM width: 36, 72, 144, 288, or 576

bits. For a given DFA, we compute a minimum width by

summing the number of state ID bits required with the

number of input bits required. In all cases, we needed at

most 16 state ID bits. For 1-stride DFAs, we need exactly

8 input character bits, and for 7-var-stride DFAs, we need

exactly 56 input character bits. We then calculate the

TCAM width by rounding the minimum width up to the

smallest larger legal TCAM width. For all our 1-stride

DFAs, we use TCAM width 36. For all our 7-var-stride

DFAs, we use TCAM width 72.

We estimate the potential throughput of our TCAM-

based RE matching solution by using the model TCAM

lookup speeds we computed in Section 6 to determine

how many TCAM lookups can be performed in a second

12

TS TS + TC2 TS + TC4

RE set # states TCAM #Entries throughput TCAM #Entries thru TCAM #Entries thru

megabits per state Gbps megabits per state Gbps megabits per state Gbps

Bro217 6533 0.31 1.40 3.64 0.21 0.94 4.35 0.17 0.78 4.35

C613 11308 0.63 1.61 3.11 0.52 1.35 3.64 0.45 1.17 3.64

C10 14868 0.61 1.20 3.11 0.31 0.61 3.64 0.16 0.32 4.35

C7 24750 1.00 1.18 3.11 0.53 0.62 3.64 0.29 0.34 3.64

C8 3108 0.13 1.20 5.44 0.07 0.62 5.44 0.03 0.33 8.51

Snort24 13886 0.55 1.16 3.64 0.30 0.64 3.64 0.18 0.38 4.35

Snort31 20068 1.43 2.07 2.72 0.81 1.17 2.72 0.50 0.72 3.64

Snort34 13825 0.56 1.18 3.11 0.30 0.62 3.64 0.17 0.36 4.35

Table 2: TCAM size and throughput for 1-stride DFAs

for a given number of TCAM entries and then multiply-

ing this number by the number of characters processed

per TCAM lookup. With 1-stride TCAMs, the number

of characters processed per lookup is 1. For 7-var-stride

DFAs, we measure the average number of characters pro-

cessed per lookup in a variety of input streams. We use

Becchi et al.’s network traffic generator [9] to generate

a variety of synthetic input streams. This traffic gener-

ator includes a parameter that models the probability of

malicious traffic pM . With probability pM , the next char-

acter is chosen so that it leads away from the start state.

With probability (1 − pM), the next character is chosen

uniformly at random.

7.2 Results on 1-stride DFAs

Table 2 shows our experimental results on the 8 RE sets

using 1-stride DFAs. We use TS to denote our transition

sharing algorithm including both character bundling and

shadow encoding. We use TC2 and TC4 to denote our

table consolidation algorithm where we consolidate at

most 2 and 4 transition tables together, respectively. For

each RE set, we measure the number states in its 1-stride

DFA, the resulting TCAM space in megabits, the average

number of TCAM table entries per state, and the pro-

jected RE matching throughput; the number of TCAM

entries is the number of states times the average number

of entries per state. The TS column shows our results

when we apply TS alone to each RE set. The TS+TC2

and TS+TC4 columns show our results when we apply

both TS and TC under the consolidation limit of 2 and 4,

respectively, to each RE set.

We draw the following conclusions from Table 2. (1)

Our RE matching solution is extremely effective in saving

TCAM space. Using TS+TC4, the maximum TCAM size

for the 8 RE sets is only 0.50 Mb, which is two orders of

magnitude smaller than the current largest commercially

available TCAM chip size of 72 Mb. More specifically,

the number of TCAM entries per DFA state ranges be-

tween .32 and 1.17 when we use TC4. We require 16,

32, or 64 SRAM bits per TCAM entry for TS, TS+TC2,

and TS+TC4, respectively as we need to record 1, 2, or

4 state 16 bit state IDs in each decision, respectively.

(2) Transition sharing alone is very effective. With the

transition sharing algorithm alone, the maximum TCAM

size is only 1.43Mb for the 8 RE sets. Furthermore, we

see a relatively tight range of TCAM entries per state of

1.16 to 2.07. Transition sharing works extremely well

with all 8 RE sets including those with wildcard clo-

sures and those with primarily strings. (3) Table con-

solidation is very effective. On the 8 RE sets, adding

TC2 to TS improves compression by an average of 41%

(ranging from 16% to 49%) where the maximum pos-

sible is 50%. We measure improvement by computing

(TS − (TS + TC2))/TS). Replacing TC2 with TC4

improves compression by an average of 36% (ranging

from 13% to 47%) where we measure improvement by

computing ((TS+TC2)−(TS+TC4))/(TS+TC2).
Here we do observe a difference in performance, though.

For the two RE sets Bro217 and C613 that are primarily

strings without table consolidation, the average improve-

ments of using TC2 and TC4 are only 24% and 15%,

respectively. For the remaining six RE sets that have

many wildcard closures, the average improvements are

47% and 43%, respectively. The reason, as we touched

on in Section 4.4, is how wildcard closure creates multi-

ple deferment trees with almost identical structure. Thus

wildcard closures, the prime source of state explosion, is

particularly amenable to compression by table consoli-

dation. In such cases, doubling our table consolidation

limit does not greatly increase SRAM cost. Specifically,

while the number of SRAM bits per TCAM entry dou-

bles as we double the consolidation limit, the number

of TCAM entries required almost halves! (4) Our RE

matching solution achieves high throughput with even 1-

stride DFAs. For the TS+TC4 algorithm, on the 8 RE

sets, the average throughput is 4.60Gbps (ranging from

3.64Gbps to 8.51Gbps).

We use our Scale dataset to assess the scalability of

our algorithms’ performance focusing on the number of

TCAM entries per DFA state. Fig. 10(a) shows the num-

ber of TCAM entries per state for TS, TS+TC2, and

TS+TC4 for the Scale REs containing 26 REs (with DFA

size 1275) to 34 REs (with DFA size 305,339). The DFA

size roughly doubled for every RE added. In general, the

13

124 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 125

(a)

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 1000 10000 100000

#
 e

n
tr

ie
s
/s

ta
te

states

TS
TS+TC2
TS+TC4

(b)

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000

ti
m

e
/s

ta
te

 (
m

s
e

c
)

states

TS Build
TS+TC2 Build
TS+TC4 Build

TS BW
TS+TC2 BW
TS+TC4 BW

Figure 10: TCAM entries per DFA state (a) and compute

time per DFA state (b) for Scale 26 through Scale 34.

number of TCAM entries per state is roughly constant

and actually decreases with table consolidation. This is

because table consolidation performs better as more REs

with wildcard closures are added as there are more trees

with similar structure in the deferment forest.

We now analyze running time. We ran our exper-

iments on the Michigan State University High Perfor-

mance Computing Center (HPCC). The HPCC has sev-

eral clusters; most of our experiments were executed

on the fastest cluster which has nodes that each have 2

quad-core Xeons running at 2.3GHz. The total RAM for

each node is 8GB. Fig. 10(b) shows the compute time

per state in milliseconds. The build times are the time

per DFA state required to build the non-overlapping set

of transitions (applying TS and TC); these increase lin-

early because these algorithms are quadratic in the num-

ber of DFA states. For our largest DFA Scale 34 with

305,339 states, the total time required for TS, TS+TC2,

and TS+TC4 is 19.25 mins, 118.6 hrs, and 150.2 hrs,

respectively. These times are cumulative; that is going

from TS+TC2 to TS+TC4 requires an additional 31.6

hours. This table consolidation time is roughly one

fourth of the first table consolidation time because the

number of DFA states has been cut in half by the first ta-

ble consolidation and table consolidation has a quadratic

running time in the number of DFA states. The BW times

are the time per DFA state required to minimize these

transition tables using the Bitweaving algorithm in [21];

these times are roughly constant as Bitweaving depends

on the size of the transition tables for each state and is not

dependent on the size of the DFA. For our largest DFA

Scale 34 with 305,339 states, the total Bitweaving opti-

mization time on TS, TS+TC2, and TS+TC4 is 10 hrs, 5

hrs, and 2.5 hrs. These times are not cumulative and fall

by a factor of 2 as each table consolidation step cuts the

number of DFA states by a factor of 2.

7.3 Results on 7-var-stride DFAs

We consider two implementations of variable striding

assuming we have a 2.36 megabit TCAM with TCAM

width 72 bits (32,768 entries). Using Table 1, the latency

of a lookup is 2.57 ns. Thus, the potential RE matching

throughput of by a 7-var-stride DFA with average stride

S is 8× S/.00000000257 = 3.11× S Gbps.

In our first implementation, we only use self-loop un-

rolling of root states in the deferment forest. Specifically,

for each RE set, we first construct the 1-stride DFA using

transition sharing. We then apply self-loop unrolling to

each root state of the deferment forest to create a 7-var-

stride transition table. In all cases, the increase in size

due to self-loop unrolling is tiny. The bigger issue was

that the TCAM width doubled from 36 bits to 72 bits.

We can decrease the TCAM space by using table con-

solidation; this was very effective for all RE sets except

the string matching RE sets Bro217 and C613. This was

only necessary for Snort31. All other self-loop unrolled

tables fit within our available TCAM space.

Second, we apply full variable striding. Specifically,

we first create 1-stride DFAs using transition sharing and

then apply variable striding with no table consolidation,

table consolidation with 2-decision tables, and table con-

solidation with 4-decision tables. We use the best result

that fits within the 2.36 megabit TCAM space. For the

RE sets Bro217, C8, C613, Snort24 and Snort34, no ta-

ble consolidation is used. For C10 and Snort31, we use

table consolidation with 2-decision tables. For C7, we

use table consolidation with 4-decision tables.

We now run both implementations of our 7-var-stride

DFAs on traces of length 287484 to compute the aver-

age stride. For each RE set, we generate 4 traces using

Becchi et al.’s trace generator tool using default values

35%, 55%, 75%, and 95% for the parameter pM . These

generate increasingly malicious traffic that is more likely

to move away from the start state towards distant accept

states of that DFA. We also generate a completely ran-

dom string to model completely uniform traffic such as

binary traffic patterns which we treat as pM = 0.

We group the 8 RE sets into 3 groups: group (a) repre-

sents the two string matching RE sets Bro217 and C613;

group (b) represents the three RE sets C7, C8, and C10

that contain all wildcard closures; group (c) represents

the three RE sets Snort24, Snort31, and Snort34 that con-

tain roughly 40% wildcard closures. Fig. 11 shows the

average stride length and throughput for the three groups

of RE sets according to the parameter pM (the random

string trace is pM = 0).

We make the following observations. (1) Self-loop un-

rolling is extremely effective on the uniform trace. For

the non string matching sets, it achieves an average stride

length of 5.97 and 5.84 and RE matching throughputs

14

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

A
v
e
ra

g
e
 S

tr
id

e
 l
e
n
g
th

pM

Self-Loop Unrolling

Group (a)
Group (b)
Group (c)

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

A
v
e
ra

g
e
 S

tr
id

e
 l
e
n
g
th

pM

Variable Striding

Group (a)
Group (b)
Group (c)

Figure 11: The throughput and average stride length of

RE sets.

of 18.58 and 18.15 Gbps for groups (b) and (c), re-

spectively. For the string matching sets in group (a), it

achieves an average stride length of 3.30 and a result-

ing throughput of 10.29 Gbps. Even though only the

root states are unrolled, self-loop unrolling works very

well because the non-root states that defer most transi-

tions to a root state will still benefit from that root state’s

unrolled self-loops. In particular, it is likely that there

will be long stretches of the input stream that repeatedly

return to a root state and take full advantage of the un-

rolled self-loops. (2) The performance of self-loop un-

rolling does degrade steadily as pM increases for all RE

sets except those in group (b). This occurs because as

pM increases, we are more likely to move away from

any default root state. Thus, fewer transitions will be

able to leverage the unrolled self-loops at root states. (3)

For the uniform trace, full variable striding does little

to increase RE matching throughput. Of course, for the

non-string matching RE sets, there was little room for

improvement. (4) As pM increases, full variable strid-

ing does significantly increase throughput, particularly

for groups (b) and (c). For example, for groups (b) and

(c), the minimum average stride length is 2.91 for all

values of pM which leads to a minimum throughput of

9.06Gbps. Also, for all groups of RE sets, the aver-

age stride length for full variable striding is much higher

than that for self-loop unrolling for large pM . For ex-

ample, when pM = 95%, full variable striding achieves

average stride lengths of 2.55, 2.97, and 3.07 for groups

(a), (b), and (c), respectively, whereas self-loop unrolling

achieves average stride lengths of only 1.04, 1.83, and

1.06 for groups (a), (b), and (c), respectively.

These results indicate the following. First, self-loop

unrolling is extremely effective at increasing throughput

for random traffic traces. Second, other variable striding

techniques can mitigate many of the effects of malicious

traffic that lead away from the start state.

8 Conclusions

We make four key contributions in this paper. (1) We

propose the first TCAM-based RE matching solution.

We prove that this unexplored direction not only works

but also works well. (2) We propose two fundamental

techniques, transition sharing and table consolidation, to

minimize TCAM space. (3) We propose variable striding

to speed up RE matching while carefully controlling the

corresponding increase in memory. (4) We implemented

our techniques and conducted experiments on real-world

RE sets. We show that small TCAMs are capable of stor-

ing large DFAs. For example, in our experiments, we

were able to store a DFA with 25K states in a 0.5Mb

TCAM chip; most DFAs require at most 1 TCAM entry

per DFA state. With variable striding, we show that a

throughput of up to 18.6 Gbps is possible.

References

[1] B. Agrawal and T. Sherwood. Modeling TCAM

power for next generation network devices. In Proc.

IEEE Int. Symposium on Performance Analysis of

Systems and Software, 2006.

[2] A. V. Aho and M. J. Corasick. Efficient string

matching: an aid to bibliographic search. Commu-

nications of the ACM, 1975.

[3] M. Alicherry, M. Muthuprasanna, and V. Kumar.

High speed pattern matching for network IDS/IPS.

In Proc. ICNP, 2006.

[4] M. Becchi and S. Cadambi. Memory-efficient reg-

ular expression search using state merging. In Proc.

INFOCOM, 2007.

[5] M. Becchi and P. Crowley. A hybrid finite automa-

ton for practical deep packet inspection. In Proc.

CoNext, 2007.

[6] M. Becchi and P. Crowley. An improved algorithm

to accelerate regular expression evaluation. In Proc.

ANCS, 2007.

[7] M. Becchi and P. Crowley. Efficient regular expres-

sion evaluation: Theory to practice. In Proc. ANCS,

2008.

[8] M. Becchi and P. Crowley. Extending finite au-

tomata to efficiently match perl-compatible regular

expressions. In Proc. CoNEXT, 2008.

15

126 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 127

[9] M. Becchi, M. Franklin, and P. Crowley. A work-

load for evaluating deep packet inspection architec-

tures. In Proc. IEEE IISWC, 2008.

[10] M. Becchi, C. Wiseman, and P. Crowley. Evalu-

ating regular expression matching engines on net-

work and general purpose processors. In Proc.

ANCS, 2009.

[11] A. Bremler-Bar, D. Hay, and Y. Koral. Com-

pactDFA: generic state machine compression for

scalable pattern matching In Proc. INFOCOM,

2010.

[12] B. C. Brodie, D. E. Taylor, and R. K. Cytron. A

scalable architecture for high-throughput regular-

expression pattern matching. SIGARCH Computer

Architecture News, 2006.

[13] C. R. Clark and D. E. Schimmel. Efficient reconfig-

urable logic circuits for matching complex network

intrusion detection patterns. In Proc. FPL, pages

956–959, 2003.

[14] C. R. Clark and D. E. Schimmel. Scalable pattern

matching for high speed networks. In FCCM 2004.

[15] J. E. Hopcroft. The Theory of Machines and Com-

putations, chapter An nlogn algorithm for minimiz-

ing the states in a finite automaton, pages 189–196.

Academic Press, 1971.

[16] S. Kong, R. Smith, and C. Estan. Efficient signa-

ture matching with multiple alphabet compression

tables. In Proc. ACM SecureComm, Article 1, 2008.

[17] S. Kumar, B. Chandrasekaran, J. Turner, and

G. Varghese. Curing regular expressions matching

algorithms from insomnia, amnesia, and acalculia.

In Proc. ACM/IEEE ANCS, pages 155–164, 2007.

[18] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and

J. Turner. Algorithms to accelerate multiple regular

expressions matching for deep packet inspection. In

Proc. SIGCOMM, 2006.

[19] S. Kumar, J. Turner, and J. Williams. Advanced al-

gorithms for fast and scalable deep packet inspec-

tion. In Proc. ANCS, pages 81–92, 2006.

[20] C. R. Meiners, A. X. Liu, and E. Torng. TCAM

Razor: A systematic approach towards minimizing

packet classifiers in TCAMs. In Proc. ICNP, 2007.

[21] C. R. Meiners, A. X. Liu, and E. Torng. Bit weav-

ing: A non-prefix approach to compressing packet

classifiers in TCAMs. In Proc. ICNP, 2009.

[22] A. Mitra, W. Najjar, and L. Bhuyan. Compiling

PCRE to FPGA for accelerating SNORT IDS. In

Proc. ACM/IEEE ANCS, 2007.

[23] J. Moscola, J. Lockwood, R. P. Loui, and M. Pa-

chos. Implementation of a content-scanning mod-

ule for an internet firewall. In FCCM, 2003.

[24] R. Sidhu and V. K. Prasanna. Fast regular expres-

sion matching using fpgas. In FCCM, 2001.

[25] R. Smith, C. Estan, and S. Jha. XFA: Faster sig-

nature matching with extended automata. In Proc.

Symposium on Security and Privacy, 2008.

[26] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating

the big bang: fast and scalable deep packet inspec-

tion with extended finite automata. In Proc. SIG-

COMM, pages 207–218, 2008.

[27] R. Sommer and V. Paxson. Enhancing bytelevel

network intrusion detection signatures with con-

text. In Proc. ACM CCS, pages 262–271, 2003.

[28] I. Sourdis and D. Pnevmatikatos. Pnevmatikatos:

Fast, large-scale string match for a 10gbps fpga-

based network intrusion detection system. In Proc.

FCCM, pages 880–889, 2003.

[29] I. Sourdis and D. Pnevmatikatos. Pre-decoded cams

for efficient and high-speed nids pattern matching.

In Proc. FCCM, 2004.

[30] J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, and

B.-T. Kim. A multi-gigabit rate deep packet in-

spection algorithm using TCAM. In Proc. IEEE

GLOBECOM, 2005.

[31] S. Suri, T. Sandholm, and P. Warkhede. Compress-

ing two-dimensional routing tables. Algorithmica,

2003.

[32] L. Tan and T. Sherwood. A high throughput string

matching architecture for intrusion detection and

prevention. In Proc. ISCA, 2005.

[33] N. Tuck, T. Sherwood, B. Calder, and G. Varghese.

Deterministic memory-efficient string matching al-

gorithms for intrusion detection. In Proc. IEEE In-

focom, pages 333–340, 2004.

[34] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H.

Katz. Fast and memory-efficient regular expres-

sion matching for deep packet inspection. In Proc.

ANCS, 2006.

[35] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit

rate packet pattern-matching using TCAM. In Proc.

ICNP, 2004.

16

Searching the Searchers with SearchAudit

John P. John‡§, Fang Yu§, Yinglian Xie§, Martı́n Abadi§∗, Arvind Krishnamurthy‡
‡University of Washington §Microsoft Research Silicon Valley

{jjohn, arvind}@cs.washington.edu {fangyu, yxie, abadi}@microsoft.com
∗University of California, Santa Cruz

Abstract

Search engines not only assist normal users, but also pro-
vide information that hackers and other malicious enti-
ties can exploit in their nefarious activities. With care-
fully crafted search queries, attackers can gather infor-
mation such as email addresses and misconfigured or
even vulnerable servers.

We present SearchAudit, a framework that identifies
malicious queries from massive search engine logs in or-
der to uncover their relationship with potential attacks.
SearchAudit takes in a small set of malicious queries as
seed, expands the set using search logs, and generates
regular expressions for detecting new malicious queries.
For instance, we show that, relying on just 500 malicious
queries as seed, SearchAudit discovers an additional 4
million distinct malicious queries and thousands of vul-
nerable Web sites. In addition, SearchAudit reveals a
series of phishing attacks from more than 400 phishing
domains that compromised a large number of Windows
Live Messenger user credentials. Thus, we believe that
SearchAudit can serve as a useful tool for identifying and
preventing a wide class of attacks in their early phases.

1 Introduction

With the amount of information in the Web rapidly grow-
ing, the search engine has become an everyday tool for
people to find relevant and useful information. While
search engines make online browsing easier for normal
users, they have also been exploited by malicious entities
to facilitate their various attacks. For example, in 2004,
the MyDoom worm used Google to search for email ad-
dresses in order to send spam and virus emails. Recently,
it was also reported that hackers used search engines to
identify vulnerable Web sites and compromised them im-
mediately after the malicious searches [20, 16]. These
compromised Web sites were then used to serve malware
or phishing pages.

Indeed, by crafting specific search queries, hackers
may get very specific information from search engines
that could potentially reveal the existence and locations
of security flaws such as misconfigured servers and vul-
nerable software. Furthermore, attackers may prefer us-
ing search engines because it is stealthier and easier than
setting up their own crawlers.

The identification of these malicious queries thus pro-
vides a wide range of opportunities to disrupt or prevent
potential attacks at their early stages. For example, a
search engine may choose not to return results to these
malicious queries [20], making it harder for attackers to
obtain useful information. In addition, these malicious
queries could provide rich information about the attack-
ers, including their intentions and locations. Therefore,
strategically, we can let the attackers guide us to better
understand their methods and techniques, and ultimately,
to predict and prevent followup attacks before they are
launched.

In this paper, we present SearchAudit, a suspicious-
query generation framework that identifies malicious
queries by auditing search engine logs. While auditing is
often an important component of system security, the au-
diting of search logs is particularly worthwhile, both be-
cause authentication and authorization (two other pillars
of security [14]) are relatively weak in search engines,
and because of the wealth of information that search en-
gines and their logs contain.

Working with SearchAudit consists of two stages:
identification and investigation. In the first stage,
SearchAudit identifies malicious queries. In the second
stage, with SearchAudit’s assistance, we focus on ana-
lyzing those queries and the attacks of which they are
part.

More specifically, in the first stage, SearchAudit takes
a few known malicious queries as seed input and tries
to identify more malicious queries. The seed can be ob-
tained from hacker Web sites [1], known security vul-
nerabilities, or case studies performed by other security

1

128 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 129

researchers [16]. As seed malicious queries are usu-
ally limited in quantity and restricted by previous dis-
coveries, SearchAudit monitors the hosts that conducted
these malicious queries to obtain an expanded set of
queries from these hosts. Using the expanded set of
queries, SearchAudit further generates regular expres-
sions, which are then used to match search logs for iden-
tifying other malicious queries. This step is critical as
malicious queries are typically automated searches gen-
erated by scripts. Using regular expressions offers us the
opportunity to catch a large number of other queries with
a similar format, possibly generated by such scripts.

After identifying a large number of malicious queries,
in stage two, we analyze the malicious queries and the
correlation between search and other attacks. In particu-
lar, we ask questions such as: why do attackers use Web
search, how do they leverage search results, and who are
the victims. Answers to these questions not only help
us better understand the attacks, but also provide us an
opportunity to protect or notify potential victims before
the actual attacks are launched, and hence stop attacks in
their early stages.

We apply SearchAudit to three months of sampled
Bing search logs. As search logs contain massive
amounts of data, SearchAudit is implemented on the
Dryad/DryadLINQ [11, 26] platform for large-scale data
analysis. It is able to process over 1.2TB of data in 7
hours using 240 machines.

To our knowledge, we are the first to present a system-
atic approach for uncovering the correlations between
malicious searches and the attacks enabled by them. Our
main results include:

• Enhanced detection capability: Using just 500 seed
queries obtained from one hacker Web site, SearchAu-
dit detects another 4 million malicious queries, some
even before they are listed by hacker Web sites.

• Low false-positive rates. Over 99% of the captured
malicious queries display multiple bot features, while
less than 2% of normal user queries do.

• Ability to detect new attacks: While the seed queries
are mostly ones used to search for Web site vulnerabil-
ities, SearchAudit identifies a large number of queries
belonging to a different type of attack—forum spam-
ming.

• Facilitation of attack analysis: SearchAudit helps
identify vulnerable Web sites that are targeted by at-
tackers. In addition, SearchAudit helps analyze a se-
ries of phishing attacks that lasted for more than one
year. These attacks set up more than 400 phishing do-
mains, and tried to steal a large number of Windows
Live Messenger user credentials.

The rest of the paper is organized as follows. We
start with reviewing related work in Section 2. Then

we present the architecture of SearchAudit in Section 3.
As SearchAudit contains two stages, Section 4 focuses
on the results of the first stage—presenting the mali-
cious queries identified, and verifying that they are in-
deed malicious. Section 5 describes the second stage
of SearchAudit—analyzing the correlation between ma-
licious queries and other attacks. In this paper, we study
three types of attacks in detail: searching for vulnerable
Web sites (Section 6), forum spamming (Section 7), and
Windows Live Messenger phishing attacks (Section 8).
Finally we conclude in Section 9.

2 Related Work

There is a significant amount of automated Web traffic
on the Internet [5]. A recent study by Yu et al. showed
that more than 3% of the entire search traffic may be gen-
erated by stealthy search bots [25] .

One natural question to ask is: what is the motivation
of these search bots? While some search bots have legit-
imate uses, e.g., by search engine competitors or third
parties for studying search quality [8, 17], many oth-
ers could be malicious. It is widely known that attack-
ers conduct click fraud for monetary gain [7, 10]. Re-
cently, researchers have associated malicious searches
with other types of attacks. For example, Provos et
al. reported that worms such as MyDoom.O and Santy
used Web search to identify victims for spreading infec-
tion [20]. Also, Moore et al. [16] identified four types of
evil searches and showed that some Web sites were com-
promised shortly after evil searches. They showed that
attackers searched for keywords like “phpizabi v0.848b
c1 hfp1” to gather all the Web sites that have a known
PHP vulnerability [9]. Subsequently these vulnerable
Web servers were compromised to set up phishing pages.

Besides email spamming and phishing, there are many
other types of attacks, e.g., malware propagation and
Denial of Service (DoS) attacks. Although there are a
wealth of attack-detection approaches, most of these at-
tacks were studied in isolation. Their correlations, espe-
cially to Web searches, have not been extensively stud-
ied. In this paper, we aim to take a step towards a system-
atic framework to unveil the correlations between mali-
cious searches and many other attacks.

In SearchAudit, we derive regular expression patterns
for matching malicious queries. There are many exist-
ing signature-generation techniques for detecting worms
and spam emails such as Polygraph [18], Hamsa [15],
Autograph [12], Earlybird [21], Honeycomb [13], Ne-
man [24] Vigilante [6], and AutoRE [23]. Some of these
approaches are based on semantics, e.g., Neman and Vig-
ilante, and hence are not suitable for us, since query
strings do not have semantic information. The remain-
ing content-based signature-generation schemes, Hon-

2

eycomb, Polygraph, Hamsa, and AutoRE, can generate
string tokens or regular expressions. These are more ap-
pealing to us since attackers add random keywords to
query strings, and we want the generated signatures to
capture this polymorphism. In this work, we choose Au-
toRE, which generates regular expression signatures.

In [20], Provos et al. found malicious queries from the
Santy worm by looking at search results. In those at-
tacks, the attackers constantly changed the queries, but
obtained similar search results (viz., the Web servers that
are vulnerable to Santy’s attack). SearchAudit, on the
other hand, is primarily targeted at finding new attacks,
of which we have no prior knowledge. SearchAudit is
thus a general framework to detect and understand ma-
licious searches. While there might already be propri-
etary approaches adopted by various search engines, or
anecdotal evidence of malicious searches, we hope that
our analysis results can provide useful information to the
general research community.

3 Architecture

Our main goal is to let attackers be our guides—to follow
their activities and predict their future attacks. We use a
small-sized set of seed activities to bootstrap our system.
The seed is usually limited and restricted to malicious
searches of which we are aware. The system then applies
a sequence of techniques to extend this seed set in order
to identify previously unknown attacks and obtain a more
comprehensive view of malicious search behavior.

Figure 1 presents the architecture of our system. At
a high level, the system can be viewed as having two
stages. In the first stage, it examines search query logs,
and expands the set of seed queries to generate additional
sets of suspicious queries. This stage is automated and
quite general, i.e., it can be used to find different types of
suspicious queries pertaining to different malicious ac-
tivities. The second stage involves the analysis of these
suspicious queries to see how different attacks are con-
nected with search—this is mostly done manually, since
it requires a significant amount of domain knowledge to
understand the behavior of the different malicious enti-
ties. This section focuses on the first stage of our system
and Sections 6, 7, and 8 provide examples of the analysis
done in the second stage.

Extending the seed using query logs appears to be a
straightforward idea. Yet, there are two challenges. First,
hackers do not always use the same queries; they mod-
ify and change query terms over time in order to ob-
tain different sets of search results, and thereby identify
new victims. Therefore, simply using a blacklist of bad
queries is not effective. Second, malicious searches may
be mixed with normal user activities, especially on prox-
ies. So we need to differentiate malicious queries from

normal ones, though they may originate from the same
machine or IP address. To address these challenges, we
do not simply use the suspicious queries directly, but in-
stead generate regular expression signatures from these
suspicious queries. Regular expressions help us capture
the structure of these malicious queries, which is nec-
essary to identify future queries. We also filter regu-
lar expressions that are too general and therefore match
both malicious and normal queries. Using these two ap-
proaches, the first stage of the system now consists of a
pipeline of two steps: Query Expansion and Regular Ex-
pression Generation. Since any set of malicious queries
could potentially lead to additional ones, we loop back
these queries until we reach a fixed point with respect to
query expansion. The rest of this section presents each
of the stages in detail.

3.1 Query Expansion

The first step in our system is to take a small set of seed
queries and expand them. These seed queries are known
to be suspicious or malicious. They could be obtained
from a variety of sources, such as preliminary analysis of
the search query logs or with the help of domain experts.

Our search logs contain the following information: a
query, the time at which the query was issued, the set of
results returned to the searcher, and a few properties of
the request, such as the IP address that issued the request
and the user agent (which identifies the Web browser
used). Since the amount of data in the search logs is mas-
sive, we use the Dryad/DryadLINQ platform to process
data in parallel on a cluster of hundreds of machines.

The seed queries are expanded as follows. We run the
seed queries through the search logs to find exact query
matches. For each record where the queries match ex-
actly, we extract the IP address that issued the query. We
then go back to the search logs and extract all queries
that were issued by this IP address. The reasoning here
is that since this IP address issued a query that we believe
to be malicious, it is probably that other queries from this
IP address would also be malicious. This is because at-
tackers typically issue not just a single query but rather
multiple queries so as to get more search results. This
method of expansion would allow us to capture the other
queries issued.

However, it must be noted that since we are using the
IP address to expand to other queries, we need to be care-
ful about dynamic IP addresses because of DHCP. In or-
der to reduce the impact of dynamic IPs on our data, we
consider only queries that were made on the same day as
the seed query.

At the end of this step, we have all the queries that
were issued from suspicious IP addresses on the same
day.

3

130 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 131

Stage 1

Stage 2

Search
log

Seed
queries

Seed
query IPs

Expanded
query set

Regular
expression

engine

Attackers'
queries +

results
Proxy
filter

Seed
queries

Seed
queries

Regular
expressions

Attack
analysis

Prediction

Prevention

Data
dissemination

Phishing

Spam

Malware

Loop back seed queries

Figure 1: The architecture of the system is a pipeline connecting the query expansion framework, the proxy elimination, and the
regular expression generation.

3.2 Regular Expression Generation

The next step after performing query expansion is the
generation of regular expressions. We prefer regular ex-
pressions over fixed strings for two reasons. First, they
can potentially match malicious searches even if attack-
ers change the search terms slightly. In our logs, we find
that many hackers add restrictions to the query terms,
e.g., adding “site:cn” will obtain search results in the
.cn domain only; regular expressions can capture these
variations of queries. Second, as many of the queries are
generated using scripts, regular expressions can capture
the structure of the queries and therefore can match fu-
ture malicious queries.

Signature Generation: We use a technique similar
to AutoRE [23] to derive regular expressions, with a
few modifications to incorporate additional information
from the search domain, such as giving importance to
word boundaries and special characters in a query. The
regular-expression generator works as follows. First, it
builds a suffix array to identify all popular keywords in
the input set. Then it picks the most popular keyword
and builds a root node that contains all the input strings
matching this keyword. For the remaining strings, it re-
peats the process of selecting root nodes until all strings
are selected. These root nodes are used to start building
trees of frequent substrings. Then the regular-expression
generator recursively processes each tree to form a forest.
For each tree node, the keywords on the path to the root
construct a pattern. It then checks the content between
keywords and places restrictions on it (e.g., [0-9]{1,3}
to constrain the intervening content to be one to three

digits). In addition, for each regular expression, we com-
pute a score that measures the likelihood that the regular
expression would match a random string. This score is
based on entropy analysis, as described in [23]; the lower
the score, the more specific the regular expression. How-
ever, a too specific regular expression would be equiva-
lent to having an exact match, and thus loses the bene-
fit of using the regular expression in the first place. We
therefore need a score threshold to pick the set of regular
expressions in order to trade off between the specificity
of the regular expression and the possibility of it match-
ing too many benign queries. In SearchAudit, we select
regular expressions with score lower than 0.6. (Parame-
ter selection is discussed in detail in Section 4.2.)

Eliminating Redundancies: One issue with the gener-
ated regular expressions is that some of them may be re-
dundant, i.e., though not identical, they match the same
or similar set of queries. For example, three input strings
query site:A, query site:B, and query may
generate two regular expressions query.{0,7} and
query site:.{1}. The two regular expressions have
different coverage and scores, but are both valid. In or-
der to eliminate redundancy in regular expressions, we
use the REGEX CONSOLIDATE algorithm described in
Algorithm 1. The algorithm takes as input S, the set of
input queries, R1, . . . , Rn, the regular expressions, and
returns R, the subset of input regular expressions. Here,
the function MATCHES(S , Ri) returns the strings V ⊆ S
that match the regular expression Ri.

We note that REGEX CONSOLIDATE is a greedy algo-
rithm and does not return the minimal set of regular ex-

4

Algorithm 1 REGEX CONSOLIDATE(S, R1, . . . , Rn)
R ← {}
V ← ∪n

i=1 MATCHES(S , Ri)
while |V | > 0 do

Rmax ← Rj where Rj is the regular expression
that matches the most number of strings in V
R ← R ∪ Rmax

V ← V − MATCHES(V , Rmax)
end while
return R

pressions required to match all the input strings. Finding
the minimal set is in fact NP-Hard [4].

This ability to consolidate regular expressions has an-
other advantage: if the input to the regular-expression
generator contains too many strings, it is split into mul-
tiple groups, and regular expressions are generated for
each group separately. These regular expressions can
then be merged together using REGEX CONSOLIDATE.

Eliminating Proxies: We observe that we can speed
up the generation of regular expressions by reducing the
number of strings fed as input to the regular-expression
generator. However, we would like to do this without
sacrificing the quality of the regular expressions gener-
ated. We observe in our experiments that some of the
seed malicious queries are performed by IP addresses
that correspond to public proxies or NATs. These IPs are
characterized by a large query volume, since the same
IP is used by multiple people. Also, most of the queries
from these IPs are regular benign queries, interspersed
with a few malicious ones. Therefore, eliminating these
IPs would provide a quick and easy way of decreasing
the number of input strings, while still leaving most of
the malicious queries untouched.

In order to detect such proxy-like IPs, we use a sim-
ple heuristic called behavioral profiling. Most users in
a geographical region have similar query patterns, which
are different from that of an attacker. For proxies that
have mostly legitimate users, their set of queries will
have a large overlap with the popular queries from the
same /16 IP prefix. We label an IP as a proxy if it issues
more than 1000 queries in a day, and if the k most pop-
ular queries from that IP and the k most popular queries
from that prefix overlap in m queries. (We empirically
find k = 100 and m = 5 to work well.) Note however,
that the proxy elimination is purely a performance opti-
mization, and not necessary for the correct operation of
SearchAudit. Behavioral profiling could also be replaced
with a better technique for detecting legitimate proxies.

Looping Back Queries: Once the regular expressions
are generated, they are applied to the search logs in order
to extract all queries that match the regular expressions.
This is an enlarged set of suspicious queries. These

Matching Type Total Queries Uniq. Queries IPs

Seed match 122,529 122 174
Exact match (expanded) 216,000 800 264
Regular expression match 297,181 3,560 1,001

Table 1: The number of search requests, unique queries, and
IPs for different matching techniques on the February 2009
dataset.

!

!"#

!"$

!"%

!"&

'

! !"# !"$!"% !"& '

!"
#$
%&'

()
'*
)+

#%
$,
-.

)/
0-

"&-
1)

,#
2&
(3
)(
-4

)$
''

5&
-1

6-3-7)8,"-1,'9.

Figure 2: Selecting the threshold for regular expression scores:
for regular expressions having score 0.6 or less, nearly all the
matched queries have new cookies.

queries generated by SearchAudit can now be fed back
into the system as new seed queries for another itera-
tion. A discussion on the effect of looping back queries
as seeds, and its benefits, is presented in Section 4.3.3.

4 Stage One Results

We apply SearchAudit to several months of search logs
in order to identify malicious searchers. In this section,
we first describe the data collection and system setup.
Then we explain the process of parameter selection. Fi-
nally, we present the detection results and verify the re-
sults.

4.1 Data Description and System Setup

We use three months of search logs from the Bing search
engine for our study: February 2009 (when it was known
as Live Search), December 2009, and January 2010.
Each month of sampled data contains around 2 billion
pageviews. Each pageview records all the activities re-
lated to a search result page, including information such
as the query terms, the links clicked, the query IP ad-
dress, the cookie, the user agent, and the referral URL.
Because of privacy concerns, the cookie and the user
agent fields are anonymized by hashing.

The seed malicious queries are obtained from a hacker
Web site milw0rm.com [1]. We crawl the site and ex-
tract 500 malicious queries, which were posted between
May 2006 and August 2009.

5

132 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 133

We implement SearchAudit on the Dryad/DryadLINQ
platform, where data is processed in parallel on a clus-
ter of 240 machines. The entire process of SearchAudit
takes about 7 hours to process the 1.2 TB of sampled
data.

4.2 Selection of Regular Expressions

As described in Section 3.2, we can eliminate proxies
to speed up the regular expression generation. If we do
not eliminate proxies, the input to the regular-expression
generator can contain queries from the proxies, and there
may be many benign queries among them. As a result, al-
though some of the generated regular expressions may be
specific, they could match benign queries. In this setting,
we need to examine each regular expression individu-
ally, and select those that match only malicious queries.
To do this, we use the presence of old cookies to guide
us. We observe that if we pick a random set of search
queries (which may contain a mix of normal and mali-
cious queries), the number of new cookies in them is sub-
stantially low. However, for the known malicious queries
(the seed queries), it is close to 100%, because most au-
tomated traffic either does not enable cookies or presents
invalid cookies. (In both these cases, a new cookie is
created by the search engine and assigned to the search
request.) Of course, cookie presence is just one feature
of regular user queries. We can use other features as well,
as discussed in Section 4.5.

If proxies are eliminated, the remaining queries are
from the attackers’ IPs, and we find that most of them are
malicious. In this case, we can simply use a threshold
to pick regular expressions based on their scores. This
threshold represents a trade-off between the specificity of
the regular expression and the possibility of it being too
general and matching too many random queries. Again,
we use the number of new cookies as a metric to guide us
in our threshold selection. Figure 2 shows the relation-
ship between the regular expression score and the per-
centage of new cookies in the queries matched by the
regular expressions. We see empirically that expressions
with scores lower than 0.6 have a very high fraction of
new cookies (> 99.85%), similar to what we observe
with the seed malicious queries. On the other hand, regu-
lar expressions with score greater than 0.6 match queries
where the fraction of new cookies is similar to what we
see for a random sampling of user queries; therefore it
is plausible that these regular expressions mostly match
random queries that are not necessarily malicious.

In our tests, proxy elimination filters most of the be-
nign queries, but less than 3% of the unique malicious
queries (using cookie-age as the indicator). Therefore
it has little effect on the generated regular expressions.
Consequently, all the results presented in the paper are

Seed Queries Used Coverage

100 queries (pre-2009) 100%
Random 50% 98.50%
Random 25% 88.50%

Table 2: Malicious query coverage obtained when using differ-
ent subsets of the seed queries.

with the use of proxy elimination. We choose 0.6 as the
regular expression threshold, and this ends up picking
about 20% of the generated regular expressions.

4.3 Detection Results
We now present results obtained from running
SearchAudit, and show how each component con-
tributes to the end results.

4.3.1 Effect of Query Expansion and Regular Ex-
pression Matching

We feed the 500 malicious queries obtained from
milw0rm.com into SearchAudit, and examine the
February 2009 dataset. Using exact string match, we
find that 122 of the 500 queries appear in the dataset, and
we identify 174 IP addresses that issued these queries.
Many of these queries are submitted from multiple IP
addresses and many times, presumably to fetch multi-
ple pages of search results. In all, there are 122,529 such
queries issued by these IP addresses to the search engine.
Then we use the query expansion module together with
the proxy elimination module of SearchAudit and obtain
800 unique queries from 264 IP addresses. Finally we
run these queries through the regular expression genera-
tion engine.

Table 1 quantifies the number of additional queries
SearchAudit identifies by the use of query expansion
and regular expression generation. Using regular expres-
sion matching, SearchAudit identifies 3,560 distinct ma-
licious queries from 1001 IP addresses. Compared to
exact matching of the seed queries, regular-expression-
based matching increases the number of unique queries
found by almost a factor of 30. We also find 4 times more
attacker IPs. Thus using regular expressions for match-
ing provides significant gains.

4.3.2 Effect of Incomplete Seeds

Seed queries are inherently incomplete, since they are a
very small set of known malicious queries. In this sec-
tion, we look at how much coverage SearchAudit contin-
ues to get when the number of seed queries is decreased.

First, we split the 122 seed queries into two sets: 100
queries that were first posted on milw0rm.com before

6

IPs Queries % Queries
with Cookies

No loopback 1,001 297,181 0.15%
Loopback 1 39,969 8,992,839 0.87%
Loopback 2 40,318 9,001,737 0.96%
Loopback 3 41,301 9,028,143 0.97%

Table 3: The number of IPs and queries captured by SearchAu-
dit in the February 2009 dataset, with and without looping back.

2009, and the remaining 22 that were posted in 2009. We
then use the 100 queries as our seed, and run SearchAudit
on the same search log for a week in February 2009. We
find that the queries generated by SearchAudit recover
all the 122 seed queries. Therefore SearchAudit is ef-
fective in finding the malicious queries even before they
are posted on the Web site; in fact we find queries in the
search logs several months before they are first posted on
the Web site.

Next, we choose a random subset of the original seed
queries. With 50% of the randomly selected seed queries,
our coverage is 98.5% out of the 122 input seed queries;
and using just 25% of the seed queries, we can obtain
88.5% of the queries. These results are summarized in
Table 2.

4.3.3 Looping Back Seed Queries

After SearchAudit is bootstrapped using malicious
queries, it uses the derived regular expressions to gen-
erate a steady stream of queries that are being performed
by attackers. SearchAudit uses these as new seeds to gen-
erate additional suspicious queries. Each such set of sus-
picious queries can subsequently be fed back as new seed
input to SearchAudit, until the system reaches a fixed
point, or until the marginal benefit of finding more such
queries outweighs the cost.

To measure when this fixed point would occur, we use
the February 2009 dataset, and run SearchAudit multiple
times, each time taking the output from the previous run
as the seed input. For the first run, we use the 500 seed
queries obtained from milw0rm.com.

Table 3 summarizes our findings. We see that, as ex-
pected, the number of queries captured increases when
the generated queries are looped back as new seeds.
Also, the number of queries that have valid cookies re-
mains quite small throughout (< 1%), suggesting that
the new queries generated through the loopback are sim-
ilar to the seed queries and the queries generated in the
first round. We observe that looping back once signifi-
cantly increases the set of queries and IPs captured (from
1001 IPs to almost 40,000 IPs), but subsequent iterations
do not add much information.

Therefore, we restrict SearchAudit to loop back the
generated queries as seeds exactly once.

Dataset IPs Total Queries Uniq. Queries

Feb-2009 39,969 8,992,839 542,505
Dec-2009 29,364 5,824,212 3,955,244
Jan-2010 42,833 2,846,703 422,301

Table 4: The number of search requests, unique queries, and
IPs captured by SearchAudit in the different datasets.

4.3.4 Overall Matching Statistics

Putting it all together, i.e., using regular expression
matching and loopback, Table 4 shows the number of
IPs, total queries, and distinct queries that SearchAudit
identifies in each of the datasets. Overall, SearchAu-
dit identifies over 40,000 IPs issuing more than 4 mil-
lion malicious queries, resulting in over 17 million
pageviews. One interesting point to note here is the sig-
nificant spike in the number of unique queries found in
the December dataset. The reason for this spike is the
presence of a set of attacker IPs that do not fetch multiple
result pages for a query, but instead generate new queries
by adding a random dictionary word to the query, thereby
increasing the number of distinct queries we observe.

4.4 Verification of Malicious Queries

Next, we verify that the queries identified by SearchAu-
dit are indeed malicious queries. As we lack ground truth
information about whether a query is malicious or not,
we adopt two approaches. The first is to check whether
the query is reported on any hacker Web sites or secu-
rity bulletins. The second is to check query behavior—
whether the query matches individual bot or botnet fea-
tures.

For each query q returned by SearchAudit, we issue a
query “q AND (dork OR vulnerability)” to the search en-
gine, and save the results. Here, the term “dork” is used
by attackers to represent malicious searches. We add the
terms “dork” and “vulnerability” to the query to help us
find forums and Web sites that discuss these queries. We
then look at the most popular domains appearing in the
search results across multiple queries. Domains that list
a large number of malicious searches from our set are
likely to be security forums, blogs by security companies
or researchers, or even hacker Web sites. These can now
be used as new sources for finding more seed queries.
We manually examine 50 of these Web sites, and find that
around 60% of them are security blogs or advisories. The
remaining 40% are in fact hacker forums. In all, 73% of
the queries reported by SearchAudit contain search re-
sults associated with these 50 Web sites.

Next we look at two sets of behavioral features that
would indicate whether the query is automated, and
whether a set of queries was generated by the same

7

134 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 135

script. The first set of features applies to individual bot-
generated queries, e.g., not clicking any link. They indi-
cate whether a query is likely to be scripted or not. The
second set of features relates to botnet group properties.
In particular, they quantify the likelihood that the differ-
ent queries captured by a particular regular expression
were generated by the same (or similar) script.

Note that although these behavior features could dis-
tinguish bot queries from human-generated ones, they
are not robust features because attackers can easily use
randomization or change their behavior if they know
these features. In this work, we use these behavior fea-
tures only for validation rather than relying on them to
detect malicious queries.

4.4.1 Verification of Queries Generated by Individ-
ual Bots

To distinguish bot queries from those generated by hu-
man users, we select the following features:
• Cookie: This is the cookie presented in the search re-

quest. Most bot queries do not enable cookies, result-
ing in an empty cookie field. For normal users who
do not clear their cookies, all the queries carry the old
cookies.

• Link clicked: This records whether any link in the
search results was clicked by the user. Many bots do
not click any link on the result page. Instead, they
scrape the results off the page.
We compare queries returned by SearchAudit with

queries issued by normal users for popular terms such
as facebook and craigslist. Table 5 and Table 6
show the comparison results. We see that for SearchAu-
dit returned queries, 98.8% of them disable cookies, as
opposed to normal users, where only 2.7% disable cook-
ies. We also see that on average, all the queries in a group
returned by SearchAudit had no links clicked. On the
other hand, for normal users, over 85% of the searches
resulted in clicks. All these common features suggest
that the queries returned by SearchAudit are highly likely
to be automated or scripted searches, rather than being
submitted by regular users.

4.4.2 Verification of Queries Generated by Botnets

Having shown that individual queries identified by
SearchAudit display bot characteristics, we next study
whether a set of queries matched by a regular expression
are likely to be generated by the same script, and hence
the same attacker (or botnet). For all the queries matched
by a regular expression, we look at the behavior of each
IP address that issued the queries. If most of the IP ad-
dresses that issued these queries exhibit similar behavior,
then it is likely that all these IPs were running the same

script. We pick the following four features that are rep-
resentative of querying behavior:

• User agent: This string contains information about the
browser and the version used.

• Metadata: This field records certain metadata that
comes with the request, e.g., where the search was is-
sued from.

Some botnets use a fixed user agent string or metadata,
or choose from a set of common values. For each group,
we check the percentage of IP addresses that have identi-
cal values or identical behavior, e.g., changing value for
each request. If over 90% of the IPs show similar behav-
ior, we infer that IPs in this group might have used the
same script.

• Pages per query: This records the number of search
result pages retrieved per query.

• Inter-query interval: This denotes the time between
queries issued by the same IP.

Queries generated by the same script may retrieve a
similar number of result pages per query or have a simi-
lar inter-query interval. For these two features, we com-
pute median value for each IP address and then check
whether there is only a small spread in this value across
IP addresses (< 20%). This allows us to infer whether
the different IPs follow the same distribution, and so be-
long to the same group.

Table 7 and Table 8 show the comparison between ma-
licious queries and regular query groups. We see that
for query groups returned by SearchAudit, a significant
fraction of the queries agree on the metadata feature. For
regular users, one usually observes a wide distribution of
metadata. We see a similar trend in the user-agent string
as well. For regular users, the user-agent strings rarely
match, while for suspicious queries, more than half of
them share the same user-agent string. With respect to
the number of pages retrieved per search query, we see
that regular users typically take only the first page re-
turned. On the other hand, groups captured by SearchAu-
dit fetch on average around 15 pages per query. This
varies quite a bit across groups, with many groups fetch-
ing as few as 5 pages per query, and several groups fetch-
ing as many as 100 pages for a single query.

The average inter-query interval for normal users is
over 2.5 hours between successive queries. On the other
hand, the average inter-query interval for bot queries is
only 7 seconds, with most of the attackers submitting the
queries every second or two. A few stealthy attackers
repeated search queries at a much slower rate of once
every 3 minutes.

For each regular expression group, we sum up the bot-
net features that it matches. Figure 3 shows the distri-
bution. A majority (87%) of the groups have at least

8

Field
Fraction of Queries
within a Group with
Same Value

Cookie enabled = false 87.50%
Link clicked = false 99.90%

Table 5: The fraction of search queries within each regular ex-
pression group agreeing on the value of each field.

Field
Fraction of Queries
within a Group with
Same Value

Cookie enabled = false 2.70%
Link clicked = false 14.23%

Table 6: The fraction of search queries by normal users agreeing
on the value of each field.

Feature
Fraction of Queries
within a Group
with Same Value

User agent 51.30%
Metadata 87.50%
Pages per query 14.82
Inter-query interval 6.98 seconds

Table 7: The fraction of search queries within each SearchAudit
regular expression group agreeing on botnet features.

Feature
Fraction of Queries
within a Group
with Same Value

User agent 4.02%
Metadata 21.80%
Pages per query 1.07
Inter-query interval 9275.5 seconds

Table 8: The fraction of search queries by normal users agreeing
on botnet features.

!"#$%

!"&'%

!"()%

!"!)%
!"!!%

!"(!%

!")!%

!"&!%

!"#!%

*"!!%

*% (% +%)%

!"
#$
%
&'

(&
)("
*+
*,
(+
"&
-.

/(

0-12*"(&)(2&3'*3()*#3-"*/(

Figure 3: Graph showing the fraction of regular expressions
that match one or more botnet features.

one similar botnet feature and 69% of them have two or
more features, suggesting that the queries captured by
SearchAudit are probably generated by the same script.

4.5 Discussion
Network security can be an arms race and the generated
regular expressions can become obsolete [20]. However,
we believe that the signature-based approach is still a vi-
able solution, especially if we have good seed queries. In
the paper, we show that even a few hundred seed queries
can help identify millions of malicious queries. In ad-
dition, SearchAudit can also identify new hackers’ fo-
rums or security bulletins that can be used as additional
sources for seed queries. As long as there are a few IP
addresses participating in different types of attacks, the
query expansion framework of SearchAudit can be used
to follow attackers and capture new attacks.

With the publication of the SearchAudit framework,
attackers may try to work around the system and hide
their activities. Attackers may try to mix the malicious
searches with normal user traffic to trick SearchAudit to

conclude that they are using proxy IP addresses. This
is hard because behavior profiling requires attackers to
submit queries that are location sensitive and also time
sensitive. As many attackers use botnets to hide them-
selves, their IP addresses are usually spread all over the
world, making it a challenging task to come up with nor-
mal user queries in all regions. In addition, as we men-
tioned in Section 3, proxy elimination is an optimization
and it can be disabled. In such settings, both the normal
queries and malicious queries can generate regular ex-
pressions. But the regular expressions of normal queries
will be discarded because they match many other queries
from normal users.

Attackers may also try to add randomness to the
queries to escape regular expression generation. The reg-
ular expression engine looks at frequently occurring key-
words to form the basis of the regular expression. There-
fore, even if one attacker can manage not to reuse key-
words for multiple queries, he has no control over other
attackers using a similar query with the same keyword.
An attacker may also simply avoid using a keyword, but
since the query needs to be meaningful in order to get
relevant search results, this approach would not work.

In this work, we use the presence of old cookies to
help us choose regular expressions that are more likely
to be malicious; old cookies are a feature associated with
normal benign users. We use the cookies as a marker for
normal users because it is very simple, and works well
in practice. If the attackers evolve and start to use old
cookies, possibly by hijacking accounts of benign users,
we can rely on other features such as the presence of a
real browser, long user history, actual clicking of search
results, or other attributes such as user credentials.

9

136 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 137

Even if a particular attacker is very careful and man-
ages to escape detection, if other attackers are less careful
and use similar queries and get caught by SearchAudit,
the careful attacker should still be found.

5 Stage 2: Analysis of Detection Results

In this section, we move on to the second stage of
SearchAudit: analyzing malicious queries and using
search to study the correlation between attacks.

The detected suspicious queries were submitted from
more than 42,000 IP addresses across the globe. Large
countries such as USA, Russia, and China are respon-
sible for almost half the IPs issuing malicious queries.
Looking at the number of queries issued from each IP,
we find a large skew: 10% of the IPs are responsible for
90% of the queries.

SearchAudit generates around 200 regular expres-
sions. Table 9 lists ten example regular expressions,
ordered by their scores. As we can see, the lower the
score, the more specific the regular expression is. The
last one .{1,25}comment.{2,21} is an example of a
discarded regular expression, with a score 0.78. It is very
generic (searching for string comment only) and hence
may cause many false positives.

By inspecting the generated regular expressions and
the corresponding query results, we identify two asso-
ciated attacks: finding vulnerable Web sites and forum
spamming. We describe them next.

Vulnerable Web sites: When searching for vulnerable
servers, attackers predominantly adopt two approaches:

1. They search within the structure of URLs to find
ones that take particular arguments. For example,

index.php?content=[ˆ?=#+;&:]{1,10}

searches for Web sites that are generated by PHP
scripts and take arguments (content=). Attackers
then try to exploit these Web sites by using specially
crafted arguments to check whether they have pop-
ular vulnerabilities like SQL injection.

2. They perform malicious searches that are targeted,
focusing on particular software with known vulner-
abilities.

We see many malicious queries that start with
"Powered by" followed by the name of the soft-
ware and version number, searching for known vul-
nerabilities in some version of that software.

Forum spamming: The second category of malicious
searches are those that do not try to compromise Web
sites. Instead, they are aimed towards performing certain
actions on the Web sites that are generated by a particular

piece of software. The most common goal is Web spam-
ming, which includes spamming on blogs and forums.
For example, a regular expression
"/includes/joomla.php" site:.[a-zA-Z]{2,3}
searches for blogs generated by the Joomla software.
Attackers may have scripts to post spam to such blogs or
forums.

Windows Live Messenger phishing: Besides iden-
tifying malicious searches generated by attackers,
SearchAudit is also useful to study malicious searches
triggered by normal users. In April 2009, we noticed in
our search logs a large number of queries with the key-
word party, generated by a series of Windows Live
Messenger phishing attacks [25]. We see these queries
because the users are redirected by the phishing Web
site to pages containing the search results for the query.
Since the queries are triggered by normal users compro-
mised by the attack, expanding the queries by IP address
will not gain us any information. In this case we use
SearchAudit only to generate regular expressions to de-
tect this series of phishing attacks.

In the next three sections, we study these three attacks
(compromise of vulnerable Web sites, forum spamming,
and Windows Live Messenger phishing) in detail. We
aim to answer questions such as how do attackers lever-
age malicious searches for launching other attacks, how
do attacks propagate and at what scale do they operate,
and how can the results of SearchAudit be used to better
understand and perhaps stop these attacks in their early
stages.

6 Attack 1: Identifying Vulnerable Web
Sites

As vulnerable Web sites are typically used to host phish-
ing pages and malware, we start with a brief overview
of phishing and malware attacks before describing how
malicious searches can help find vulnerable Web sites.

6.1 Background of Phishing/Malware At-
tacks

A typical phishing attack starts with an attacker search-
ing for vulnerable servers by either crawling the Web,
probing random IP addresses, or searching the Web with
the help of search engines. After identifying a vulner-
able server and compromising it, the attacker can host
malware and phishing pages on this server. Next, the
attacker advertises the URL of the phishing or malware
page through spam or other means. Finally, if users are
tricked into visiting the compromised server, the attacker
can conduct cyber crimes such as stealing user creden-
tials and infecting computers.

10

Regular	
�   Expression Score

"/includes/joomla\.php" site:\.[a-zA-Z]{2,3} 0.06

"/includes/class_item\.php" site:[^?=#+@;&:]{2,4} 0.08

"php-nuke" site:[^?=#+@;&:]{2,4} 0.16

"modules\.php\?op=modload" site:\.[a-zA-Z0-9]{2,6} 0.16

"[^?=#+@;&:]{0,1}index\.php\?content=[^?=#+@;&:]{1,10} 0.24

"powered by xoopsgallery" [^?=#+@;&:]{0,23}site:[a-zA-Z]{2,3} 0.30

"[^?=#+@;&:]{0,12}\?page=shop\.browse".{0,9} 0.35

.{0,8}index\.php\?option=com_.{3,17} 0.40

[^?=#+@;&:]{0,3}webcalendar v1\..{3,17} 0.43

.{1,25}comment.{2,21} 0.78

Table 9: Example regular expressions and their scores. The last row is an example of a regular expression that is not selected
because it is not specific enough.

Currently, phishing and malware detection happens
only after the attack is live, e.g., when an anti-spam
product identifies the URLs in the spam email, when a
browser captures the phishing content, or when anti-virus
software detects the malware or virus. Once detected,
the URL is added to anti-phishing blacklists. However, it
is highly likely that some users may have already fallen
victim to the phishing scam by the time the blacklists are
updated.

6.2 Applications of Vulnerability Searches

With SearchAudit, we can potentially detect phish-
ing/malware attack at the very first stage, when the at-
tacker is searching for vulnerabilities. We might even
proactively prevent servers from getting compromised.

To obtain the list of vulnerable Web sites, we sample
5,000 queries returned by SearchAudit. For every query
q we issue a query “q -dork -vulnerability” to the search
engine and record the returned URLs. Here we explicitly
exclude the terms “dork” and “vulnerabilities” because
we do not want results that point to security forums or
hacker Web sites that discuss and post the vulnerability
and the associated “dork”. Using this approach, we ob-
tain 80,490 URLs from 39,475 unique Web sites.

Ideally, we would like to demonstrate that most of
these Web sites are vulnerable. Since there does not
exist a complete list of vulnerable Web sites to com-
pare against, we use several methods for our validation.
First, we compare this list and a list of random Web sites
against a list of known phishing or malware sites, and
show that the sites returned by SearchAudit are more
likely to appear in phishing or malware blacklists. Sec-

!"

!#$"

!#%"

!#&"

!#'"

("

!" !#(" !#$" !#)" !#%" !#*" !#&" !#+"!"
#
"$
%&

'(
)*+
%,
&
-.

)-
*)/

"(
+0
(1
)

2+%,&-.)-*)+(1"$31),-#4+-#01(5)

Figure 4: The fraction of search results that were present in
phishing/malware feeds for each query.

ond, we test and show that many of these sites indeed
have SQL injection vulnerabilities.

6.2.1 Comparison Against Known Phishing and
Malware Sites

For the potentially vulnerable Web sites obtained from
the malicious queries, we check the presence of these
URLs in known anti-malware and anti-phishing feeds.
We use two blacklists: one obtained from PhishTank [2]
and the other from Microsoft. In addition, we submit
these queries to the search engine again at the time of
our experiments in order to obtain the latest results.

In both cases, the results are similar: 3-4% of the do-
mains listed in the search results of malicious queries are
in the anti-phishing blacklists, and 1.5% of them are in
the anti-malware blacklist. In total, around 5% of the
domains appear in one or more blacklists. This is signif-
icantly higher than other classes of Web sites we consid-
ered.

11

138 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 139

Not all malicious queries may be equally good at find-
ing vulnerable servers. Figure 4 shows the distribution
of compromised search results across queries. For the
top 10% of the queries, at least 15% of the search results
appear in the blacklists.

6.2.2 SQL Injection Vulnerabilities

Next, we show that a subset of these Web sites do indeed
have vulnerabilities. Given that SQL injection is a popu-
lar attack, since many Web sites use database backends,
we test for SQL vulnerabilities.

The best way to prove that a server has SQL injec-
tion vulnerabilities would be to actually compromise the
server; however, we were not comfortable with doing
this. Instead, we limit ourselves to checking if the in-
puts appear to be sanitized by performing the following
study. For the malicious queries, we look at the search
results and crawl all of the links twice. For each link, the
first time we crawl the link as is, and the second time we
add a single quote (’) to the first argument to test whether
the server sanitizes the argument correctly. Note that we
consider URLs that take an argument. We then compare
the Web pages obtained from the successive crawls. If
the two pages are identical, then it suggests that the in-
put arguments are being properly sanitized, so there is
no obvious SQL injection vulnerability. However, if the
pages are different, it does not necessarily mean that the
input is not being sanitized—it could just be an adver-
tisement that changes with each access. Instead, we look
at the diff between the two pages, and check whether
the second page contains any kind of SQL error. If there
is an SQL error in the second page, but not in the first, it
shows that the input string is not being filtered properly.
While the presence of unsanitized inputs does not guar-
antee SQL injection vulnerabilities, it is nevertheless a
strong indicator.

We examine a sample of 14,500 URLs obtained from
the results of malicious queries, and find that 1,760 URLs
(12%) do not sanitize the input strings and therefore may
be vulnerable to SQL injection. Note that this is a conser-
vative estimate since these URLs only account for Web
sites that take arguments in the URL. Other Web sites
that take POST arguments or have input forms on their
pages could also be susceptible to SQL injection attacks.

7 Attack 2: Forum-Spamming Attacks

Using the seed queries from milw0rm (which were for
the purpose of finding vulnerable Web sites), SearchAu-
dit additionally identifies forum-spamming attacks. In
this section, we study the forum-spamming searches in
detail.

Dataset Forum-Searching IPs Total Searches

February 2009 22,466 5,828,704
December 2009 20,309 1,130,337
January 2010 31,071 567,445

Table 11: Stats on forum-searching IPs.

7.1 Attack Process
Forum spamming is an effective way to deliver spam
messages to a large audience. In addition, it may be used
as a technique to boost the page rank of Web sites. To do
so, spammers insert the URL of the target Web site that
they want to promote in a spam message. By posting
the message in many online forums, the target Web site
would have a high in-degree of links, possibly resulting
in a high page rank.

While there are several studies on the effect of forum
spamming [19, 22], this section focuses on exploring the
ways spammers perform forum spamming. In particu-
lar, we show how they discover a large number of forum
pages in the first place.

Table 10 shows a few example forum-related queries
captured by SearchAudit. There are two types of
queries: the first being general like “post a new topic”,
and the second being more specific, tailored for a par-
ticular piece of software. For example,“UBBCode:
!JoomlaComment” searches for pages generated by
the JoomlaComment software. For both types of queries,
random keywords are added to increase the search cov-
erage. The randomness is especially useful if spammers
use botnets, as each bot will get different query results
and they can focus on spamming different forums in par-
allel.

7.2 Attack Scale
From the regular expressions generated by SearchAudit,
we manually identified 46 regular expressions that are
associated with forum spamming. Using these regular
expressions, we proceeded to study the matched queries
and IP addresses. Table 7.2 shows that the number of IPs
used for forum searching stayed quite constant in 2009,
but in 2010, the number of IP addresses increased by
50%.

Most IPs have transient behavior. Comparing the
IPs in December 2009 to those in January 2010, only
3115 (10-15%) IPs overlap. This shows that the forum-
spamming hosts either change frequently, or may reside
on dynamic IP ranges and hence their IPs change over
time. Both these possibilities suggest that they are likely
to be botnet hosts. In fact, when we apply the group
similarity tests to check botnet behavior (defined in Sec-
tion 4.4.2), all forum groups have at least one group sim-
ilarity features.

12

Regular	
�   Expression #	
�   of	
�   

IPs

Group	
�   

Similarity	
�   

Features

Targeted	
�   	
�   Forum

Genera on	
�    ware

[^?=#+@;&:]{2,7}	
�   "Commenta"	
�   !JoomlaComment -‐""#R# 253 3 Joomla

[^?=#+@;&:]{6,11}	
�   "ips,	
�   inc" 9159 IP.Board

[^?=#+@;&:]{1,8}	
�   "Message:"	
�   photogallery#R# 253 3 PhotoPost

[^?=#+@;&:]{1,9}	
�   "Be	
�    rst	
�   to	
�   comment	
�   this	
�    cle"	
�   

akocomment#R#

255 4 AkoComment

[^?=#+@;&:]{1,6}	
�   "UBBCode:"	
�   !JoomlaComment -‐""#R# 255 3 JoomlaComment

[^?=#+@;&:]{1,8}	
�   "The	
�   comments	
�   are	
�   owned	
�   by	
�   the	
�   poster\.	
�   

We	
�   aren't	
�   responsible	
�   for	
�   their	
�   content\."	
�   sec ons#R#

253 3 PHP-‐Nuke,	
�   Xoops,	
�   etc.

[a-‐zA-‐Z]{4,12}	
�   post	
�   new	
�   topic 1028 1 phpBB,	
�   Gallery,	
�   etc

[^?=#+@;&:]{5,13}	
�   Board	
�   Sta s cs.{0,10} 302 1 Invision Power	
�   Board	
�   

(IP.Board),	
�   MyBB,	
�   etc.

BBS	
�   [a-‐zA-‐Z]{4,12}	
�    1861 1 Infopop etc.

yabb [a-‐zA-‐Z]{4,14}	
�    388 1 yaBB

ezboard [a-‐zA-‐Z]{4,11}	
�    388 1 ezboard

VBulle n [a-‐zA-‐Z]{4,11} 360 1 Vbulle n

4

Table 10: Example regular expressions related to forum searches, their scale, and the targeted forum generation software.

100 102 104 1060

0.2

0.4

0.6

0.8

1

of queries per IP

%
 o

f q
ue

rie
s

(c
df

)

Feb 2009
Dec 2009
Jan 2010

Figure 5: CDF of the distribution of queries among IPs based
on the query volume.

It is interesting to note that, although the number of
IPs increased, the total number of queries decreased. As
shown in Figure 5, IPs are becoming more stealthy. In
February 2009, more than 80% of forum queries were
originated from very aggressive IPs that submitted thou-
sands of queries per IP. Those IPs could be spammers’
own dedicated machines. In Jan 2010, less than 20% of
forum queries are from aggressive IPs. The majority of
the queries are from IPs that search at a low rate.

7.3 Applications of Forum Searching
Queries

Knowledge of forum-searching IPs and query search
terms can be used to help filter forum spam. After a ma-

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Forum group size (# of IPs)

%
 o

f I
Ps

 c
ap

tu
re

d
by

 P
ro

je
ct

 H
on

ey
 P

ot

Figure 6: Fraction of IP addresses appearing in the Project
Honey Pot list vs. the forum group size.

licious search, we can follow the search result pages to
clean up the spam posts. More aggressively, even before
the malicious search, by recognizing the malicious query
terms or the malicious IP addresses, search engines could
refuse to return results to the spammers. Web servers
could also refuse connections from IPs that are known to
search for forums.

We validate the forum-spamming IPs using Project
Honey Pot [3]. Project Honey Pot is a distributed hon-
eypot network that aims to identify Web spamming. Par-
ticipating Web sites embed a piece of software that dy-
namically generates a page containing a different email
address for each HTTP request. Requests are recorded
and the generated email addresses are also monitored.
If later they receive emails (which must be spam, since
these email addresses are unused), Project Honey Pot

13

140 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 141

will know which IP addresses obtained those email ad-
dresses, and which IP addresses sent the spam emails.

Around 12% of the forum searching IPs found
by SearchAudit were captured by Project Honey Pot.
In contrast, among IP addresses that conduct normal
queries such as craigslist, only 0.5% of them were
listed. This shows that the captured forum searching IPs
have a much higher chance of being caught spamming
than the IP addresses of normal users.

Figure 6 plots the matching percentages of different
regular expression groups related to forum searching. We
can see that, across different groups, the percentages of
forum IPs appeared in Project Honey Pot are all signif-
icant. This suggests that most of the forum-spamming
groups are involved in email address scraping as well.
For the largest forum-spamming group, which has 9125
IP addresses, more than 30% of the IP addresses ap-
peared in Project Honey Pot. It is possible that the re-
maining 70% are also associated with spamming, but
they could have targeted Web sites that are not part of
their network, and are hence not captured. Hence, the
analysis of search logs complements Project Honey Pot.
It offers a unique view that allows us to observe all the
IP addresses conducting forum searches, while Project
Honey Pot allows us to see what the attackers do after
performing the searches.

8 Attack 3: Windows Live Messenger
Phishing Attacks

In this section, we study a series of Windows Live Mes-
senger phishing attacks. The queries were not issued by
attackers directly. Rather, they were triggered by normal
users. In this section, we use SearchAudit to generate
regular expressions and study this series of attacks.

8.1 Attack Process

The scheme of these phishing attacks operates as fol-
lows:

1. The victim (say Alice) receives a message from one
of her contacts, asking her to check out some party
pictures, with a link to one of the phishing sites.

2. Alice clicks the link and is taken to the Web page
that looks very similar to the legitimate Windows
Live Messenger login screen and asks her to enter
her messenger credentials. Alice enters her creden-
tials.

3. Alice is now taken to a page
http://<domain-name>.com?user=alice,
which redirects to image search results from a
search engine (in this case, Bing) for party.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 100 200 300 400

Cu
m
ul
at
iv
e
fr
ac
ti
on

 o
f

us
er
s
co
m
pr
om

is
ed

Days since start

Figure 7: The rate at which new users were compromised by
the phishing attack.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

D
om

ai
n

Day

Figure 8: The timeline of how different domain names were
used during the phishing attack. All lines of the same color
correspond to the same IP address.

4. The attackers now have Alice’s credentials. They
log in to Alice’s account and send a similar message
to her friends to further propagate the attack.

We believe there are two reasons why the attackers use
a search engine here. First, using images from a search
engine is less likely to tip the victim off than if the images
were hosted on a random server. Second, the attackers do
not need to host the image Web pages themselves, and
can thus offload the cost of hosting to the search engine
servers.

8.2 Attack Scale

Since this attack generated search traffic that contains the
keyword party, we feed this keyword as the seed query
into SearchAudit. Since all the queries of this attack are
identical or similar, we modify SearchAudit to focus on
the query referral field, which records the source of traf-
fic redirection. SearchAudit generates two regular ex-
pressions from the query referral field:
1.http://[a-zA-Z0-9.]*.<domain-name>/

2.http://<domain-name>?user=[a-zA-Z0-9.]*

14

In the second regular expression, the pattern
[a-zA-Z0-9.]* may seem like a random set of let-
ters and numbers, but it actually describes usernames.
In our example attack scenario, when Alice is redirected
to the image search results, the HTTP-referrer is set to
http://<domain-name>.com?user=alice. Using
this information, we can identify the set of users whose
credentials may have been compromised.

Using these regular expressions, SearchAudit identi-
fies a large number of unique user names in the log col-
lected from May 2008 to July 2009. Figure 7 shows the
cumulative fraction of users compromised by this attack
over time. When the attack first started, there was an ex-
ponential growth phase, similar to other worm or virus
breakouts. This phase ended around day 50, when most
of the domains got blacklisted (see Figure 8). This attack
then transited into a steady increase phase, until day 250
when it broke out again.

There are over 400 unique phishing domain names as-
sociated with this attack. The top domains targeted more
than 105 users. Around one third of the domains phished
fewer than 100 users each. These domains were the ones
that were quickly blacklisted. Figure 8 plots the timeline
of how different domains were used over time. For read-
ability, the plot contains only the top domains (out of the
total 400 domains) that were responsible for compromis-
ing at least 1000 users. The figure plots the domains on
the Y-axis, and the days on which that domain was active
on the X-axis. Each horizontal line corresponds to the
set of days a particular domain was seen in our search
log. The different colors correspond to the different IP
addresses on which the Web pages were hosted. We ob-
serve that though there were over 180 domain names in
circulation, they were all hosted on only a dozen differ-
ent IP addresses. It can also be seen that multiple do-
main names were associated with an IP address at the
same time. Therefore, it is not the case that a new do-
main name was registered and used only after an older
one was blocked.

8.3 Characteristics of Compromised Ac-
counts

We find that the compromised accounts had a large num-
ber of short login sessions (lasting less than one minute).
These short login sessions were initiated from IPs in sev-
eral different /24 subnets. Figure 9 shows the compar-
ison between the short logins from multiple subnets for
compromised users and for the other users. We see that
for typical users, 99% of the short logins happened from
fewer than 4 different subnets. However, for the compro-
mised users, we see that more than 50% had short logins
from 15 or more different subnets.

!"

!#$"

!#%"

!#&"

!#'"

("

!" $!" %!" &!" '!" (!!"

!"
#
"$
%&

'(
)*+
%,
&
-.

)-
*)"

/(
+/
)

0)123(+(.4)567/)48%4)%)"/(+)8%/)/8-+4)$-92./)*+-#)

)*+,-.,/"01,21"
344"01,21"

Figure 9: Number of different /24 subnets from which short
logins happen.

We also observe that many of the short logins came
from IPs which were located in Hong Kong. Given
that the phishing sites were also mostly located in Hong
Kong, the attackers might have resources in Hong Kong,
where they logged in to the compromised accounts and
sent messages to spread the phishing attacks.

Using these characteristics, we can then look back at
the login patterns of all Windows Live Messenger users
to identify more user accounts with similar suspicious
login patterns, thus enabling us to take remedial actions
for protecting a larger number of compromised users.

9 Conclusion

In this paper we present SearchAudit, a framework to
identify malicious Web searches. By taking just a small
number of known malicious queries as seed, SearchAu-
dit can identify millions of malicious queries and thou-
sands of vulnerable Web sites. Our analysis showes that
the identification of malicious searches can help detect
and prevent large-scale attacks, such as forum spamming
and Windows Live Messenger phishing attacks. More
broadly, our findings highlight the importance of ana-
lyzing search logs and studying correlations between the
various attacks enabled by malicious searches.

Acknowledgements

We thank Fritz Behr, Dave DeBarr, Dennis Fetterly, Ge-
off Hulten, Nancy Jacobs, Steve Miale, Robert Sim,
David Soukal, and Zijian Zheng for providing us with
data and feedback on the paper. We are also grateful to
anonymous reviewers for their valuable comments.

References

[1] milw0rm.com. http://www.milw0rm.com/.

[2] PhishTank - Join the fight against phishing. http://
www.phishtank.com.

15

142 19th USENIX Security Symposium USENIX Association

[3] Project Honey Pot. http://www.
projecthoneypot.org/home.php.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, 1974.

[5] G. Buehrer, J. W. Stokes, and K. Chellapilla. A large-
scale study of automated Web search traffic. In the 4th
International Workshop on Adversarial Information Re-
trieval on the Web (AIRWeb), 2008.

[6] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end contain-
ment of Internet worms. In the 12th ACM Symposium on
Operating Systems Principles (SOSP), 2005.

[7] N. Daswani and M. Stoppelman. The anatomy of Click-
bot.A. In the 1st Conference on Hot Topics in Under-
standing Botnets (HotBots), 2007.

[8] E. N. Efthimiadis, N. Malevris, A. Kousaridas, A. Lepe-
niotou, and N. Loutas. An evaluation of how search en-
gines respond to greek language queries. In HICSS, 2008.

[9] D. Eichmann. The RBSE spider - Balancing effective
search against Web load, 1994.

[10] S. Frantzen. Clickbot. http://isc.sans.org/
diary.html?storyid=1334.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequen-
tial building blocks. In European Conference on Com-
puter Systems (EuroSys), 2007.

[12] H.-A. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. In the 13th Confer-
ence on USENIX Security Symposium, 2004.

[13] C. Kreibich and J. Crowcroft. Honeycomb: Creating in-
trusion detection signatures using honeypots. In the 2nd
Workshop on Hot Topics in Networks (HotNets-II), 2003.

[14] B. W. Lampson. Computer security in the real world.
IEEE Computer, 37(6):37–46, June 2004.

[15] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez.
Hamsa: Fast signature generation for zero-day polymor-
phic worm with provable attack resilience. In IEEE Sym-
posium on Security and Privacy, 2006.

[16] T. Moore and R. Clayton. Evil searching: Compromise
and recompromise of Internet hosts for phishing. In 13th
International Conference on Financial Cryptography and
Data Security, 2009.

[17] H. Moukdad. Lost in cyberspace: How do search engines
handle Arabic queries. In the 32nd Annual Conference of
the Canadian Association for Information Science, 2004.

[18] J. Newsome, B. Karp, and D. Song. Polygraph: Auto-
matically generating signatures for polymorphic worms.
In IEEE Symposium on Security and Privacy, 2005.

[19] Y. Niu, Y. Wang, H. Chen, M. Ma, and F. Hsu. A quanti-
tative study of forum spamming using context based anal-
ysis. In Network and Distributed System Security (NDSS)
Symposium, 2007.

[20] N. Provos, J. McClain, and K. Wang. Search worms. In
the 4th ACM Workshop on Recurring Malcode (WORM),
2006.

[21] S. Singh, C. Estan, G. Varghese, and S. Savage. Auto-
mated worm fingerprinting. In Operating Systems Design
and Implementation (OSDI), 2004.

[22] Y. Wang, M. Ma, Y. Niu, and H. Chen. Spam double-
funnel: Connecting Web spammers with advertisers. In
World Wide Web Conference (WWW), 2007.

[23] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and
I. Osipkov. Spamming botnets: Signatures and character-
istics. In SIGCOMM, 2008.

[24] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An ar-
chitecture for generating semantics-aware signatures. In
the 14th USENIX Security Symposium, 2005.

[25] F. Yu, Y. Xie, and Q. Ke. Sbotminer: Large scale search
bot detection. In International Conference on Web Search
and Data Mining (WSDM), 2010.

[26] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing us-
ing a high-level language. In Operating Systems Design
and Implementation (OSDI), 2008.

16

USENIX Association 19th USENIX Security Symposium 143

Toward Automated Detection of
Logic Vulnerabilities in Web Applications

Viktoria Felmetsger Ludovico Cavedon Christopher Kruegel Giovanni Vigna
[rusvika,cavedon,chris,vigna]@cs.ucsb.edu

Computer Security Group

Department of Computer Science

University of California, Santa Barbara

Abstract

Web applications are the most common way to make ser-
vices and data available on the Internet. Unfortunately,
with the increase in the number and complexity of these
applications, there has also been an increase in the num-
ber and complexity of vulnerabilities. Current techniques
to identify security problems in web applications have
mostly focused on input validation flaws, such as cross-
site scripting and SQL injection, with much less attention
devoted to application logic vulnerabilities.

Application logic vulnerabilities are an important class
of defects that are the result of faulty application logic.
These vulnerabilities are specific to the functionality of
particular web applications, and, thus, they are extremely
difficult to characterize and identify. In this paper, we
propose a first step toward the automated detection of
application logic vulnerabilities. To this end, we first use
dynamic analysis and observe the normal operation of a
web application to infer a simple set of behavioral spe-
cifications. Then, leveraging the knowledge about the
typical execution paradigm of web applications, we filter
the learned specifications to reduce false positives, and
we use model checking over symbolic input to identify
program paths that are likely to violate these specifica-
tions under specific conditions, indicating the presence
of a certain type of web application logic flaws. We de-
veloped a tool, called Waler, based on our ideas, and
we applied it to a number of web applications, finding
previously-unknown logic vulnerabilities.

1 Introduction

Web applications have become the most common means
to provide services on the Internet. They are used
for mission-critical tasks and frequently handle sensi-
tive user data. Unfortunately, web applications are often
implemented by developers with limited security skills,
who often have to deal with time-to-market pressure and

financial constraints. As a result, the number of web ap-
plication vulnerabilities has increased sharply. This is re-
flected in the Symantec Global Internet Security Threat
Report, which was published in April 2009 [12]. The re-
port states that, in 2008, web vulnerabilities accounted
for 63% of the total number of vulnerabilities reported.

Most recent research on vulnerability analysis for web
applications has focused on the identification and miti-
gation of input validation flaws. This class of vulnera-
bilities is characterized by the fact that a web application
uses external input as part of a sensitive operation with-
out first checking or sanitizing it properly. Prominent
examples of input validation flaws are cross-site script-
ing (XSS) [20] and SQL injection vulnerabilities [3, 32].
With XSS, an application sends to a client output that is
not sufficiently checked. This allows an attacker to in-
ject malicious JavaScript code into the output, which is
then executed on the client’s browser. In the case of SQL
injection, an attacker provides malicious input that alters
the intended meaning of a database query.

One reason for the prior focus on input validation vul-
nerabilities is that it is possible to provide a concise and
general specification that captures the essential charac-
teristics of these vulnerabilities. That is, given a pro-
gramming environment, it is possible to specify a set of
functions that read inputs (called sources), a set of func-
tions that represent security-sensitive operations (called
sinks), and a set of functions that check data for mali-
cious content. Then, various static and dynamic anal-
ysis techniques can be used to ensure that there are no
unchecked data flows from sources to sinks. Since the
specification of input validation flaws is independent of
the application logic, once a detection system is avail-
able, it can be used to find bugs in many applications.

While it is important to identify and correct input vali-
dation flaws, they represent only a subset of the spectrum
of (web application) vulnerabilities. In this paper, we ex-
plore another type of application flaws. In particular, we
look at vulnerabilities that result from errors in the logic

144 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 145

of a web application. Such errors are typically specific
to a particular web application, and might be domain-
specific. For example, consider an online store web ap-
plication that allows users to use coupons to obtain a dis-
count on certain items. In principle, a coupon can be
used only once, but an error in the implementation of the
application allows an attacker to apply a coupon an arbi-
trary number of times, reducing the price to zero.

So far, web application logic flaws have received little
attention, and their treatment is limited to informal dis-
cussions (a well-known example is the white paper by J.
Grossman [14]). This is due to the fact that logic vulnera-
bilities are specific to the intended functionality of a web
application. Therefore, it is difficult (if not impossible)
to define a general specification that allows for the dis-
covery of logic vulnerabilities in different applications.

One possible approach would be to leverage an appli-
cation’s requirement specification and design documents
to identify parts of the implementation that do not respect
the intended behavior of the application. Unfortunately,
these documents are almost never available in the case of
web applications. Therefore, other means to characterize
the expected behavior of web application must be found
for detection of application logic flaws.

In this paper, we take a first step toward the automated
detection of application logic vulnerabilities. Our ap-
proach operates in two steps. In the first step, we infer
specifications that (partially) capture a web application’s
logic. These specifications are in the form of likely in-
variants, which are derived by analyzing the dynamic ex-
ecution traces of the web application during normal oper-
ation. The intuition is that the observed, normal behavior
allows one to model properties that are likely intended by
the programmer. This step is necessary to automatically
obtain specifications that reflect the business logic of a
particular web application. In the second step, we ana-
lyze the inferred specifications with respect to the web
application’s code and identify violations.

The current implementation of our approach is based
on two well-known analysis techniques, namely, dy-
namic execution to extract (likely) program invariants
and model checking to identify specification violations.
However, to the best of our knowledge, the way in which
we combine these two techniques is novel, has never
been applied to web applications, and has not been lever-
aged to detect application logic flaws. Moreover, we had
to significantly extend the existing techniques to capture
specific characteristics of web applications and to scale
them to real-world applications as outlined below.

In the first step of our analysis, we used a well-known
dynamic analysis tool [9, 11] to infer program specifica-
tions in the form of likely invariants. We extended the
existing general technique to be more targeted to the ex-
ecution of web applications. In particular, we addressed

two main shortcomings of the general approach: the fact
that many invariants that relate to important concepts of
web applications were not identified (e.g., invariants re-
lated to objects that are part of the user session) and the
fact that many spurious invariants were generated as a re-
sult of the limited coverage of the dynamic analysis step
or because of artifacts in the analyzed inputs.

To deal with spurious invariants, we developed two
novel techniques to identify which derived invariants re-
flect real (or “true”) program specifications. The first
one uses the presence of explicit program checks, in-
volving the variable(s) constrained by an invariant, as a
clue that the invariant is indeed relevant to the behav-
ior of the web application. The second one is based on
the idea that certain types of invariants are intrinsically
more likely to reflect the intent of the programmer. In
particular, we focus on invariants that relate external in-
puts to the contents of user sessions and the back-end
database. The use of these techniques to filter the derived
invariants allows for a more effective extraction of speci-
fication of a web application’s behavior, when compared
to previously-proposed approaches that accept all gener-
ated likely invariants as correctly reflecting the behavior
of a program.

In the second step of the analysis, we use model check-
ing over symbolic input to analyze the inferred specifica-
tions with respect to the web application’s code and to
identify which real invariants can be violated. We had to
extend existing model checking tools with new mecha-
nisms to take into account the unique characteristics of
web applications. These characteristics include the fact
that web applications are composed of modules that can
be invoked in any order and that the state of the web
application must also take into account the contents of
back-end databases and other session-related storage fa-
cilities.

By following the two steps outlined above, it is possi-
ble to automatically detect a certain subclass of applica-
tion logic flaws, in which an application has inconsistent
behavior with respect to security-sensitive functionality.
Note that our approach is neither sound nor complete,
and, therefore, it is prone to both false positives and false
negatives. However, we implemented our approach in
a prototype tool, called Waler, that is able to automati-
cally identify logic flaws in web applications based on
Java servlets. We applied our tool to several real-world
web applications and to a number of student projects, and
we were able to identify many previously-unknown web
application logic flaws. Therefore, even though our tech-
nique cannot detect all possible logic flaws and our tool
is currently limited to servlet-based web applications, we
believe that this is a promising first step towards the au-
tomated identification of logic flaws in web applications.

2

In summary, this paper makes the following contribu-
tions:

• We extend existing dynamic analysis techniques to
derive program invariants for a class of web applica-
tions, taking into account their particular execution
paradigm.

• We identify novel techniques for the identification
of invariants that are “real” with high probability
and likely associated with the security-relevant be-
havior of a web application, pruning a large number
of spurious invariants.

• We extend existing model checking techniques to
take into account the characteristics of web appli-
cations. Using this approach, we are able to iden-
tify the occurrence of two classes of web applica-
tion logic flaws.

• We implemented our ideas in a tool, called Waler,
and we used it to analyze a number of servlet-based
web applications, identifying previously-unknown
application logic flaws.

2 Web Application Logic Vulnerabilities

Web application vulnerabilities can be divided into two
main categories, depending on how a vulnerability can be
detected: (1) vulnerabilities that have common character-
istics across different applications and (2) vulnerabilities
that are application-specific. Well-known vulnerabilities
such as XSS and SQL injection belong to the first cate-
gory. These two vulnerabilities are characterized by the
fact that a web application uses external input as part of a
sensitive operation without first checking or sanitizing it.
Vulnerabilities of the second type (such as, for example,
failures of the application to check for proper user autho-
rization or for the correct prices of the items in a shop-
ping cart) require some knowledge about the application
logic in order to be characterized and identified. In this
paper, we focus on this second type of vulnerabilities,
and we call them web application logic vulnerabilities.

To detect web application logic vulnerabilities auto-
matically, one needs to provide the detection tool with a
specification of the application’s intended behavior. Un-
fortunately, these specifications, whether formal or infor-
mal, are rarely available. Therefore, in this work, we pro-
pose an automated way to detect application logic vul-
nerabilities that do not require the specification of the
web application behavior to be available. Our intuition is
that often the application code contains “clues” about the
behavior that the developer intended to enforce. These
“clues” are expressed in the form of constraints on the
values of variables and on the order of the operations per-
formed by the application.

There are many ways in which constraints can be im-
plemented in an application. In this work, we focus on
two concrete types of constraints. The first (and most in-
tuitive) way to encode application-specific constraints is
in the form of program checks (i.e., if -statements). The
presence of such a check in the program before certain
data or functionality is accessed often represents a “clue”
that either the range of the allowed input should be lim-
ited or that an access to an item is limited. The absence of
a similar check on an alternate program path to the same
program point might represent a vulnerability. For ex-
ample, vulnerabilities like authentication bypass, where
an attacker is able to invoke a privileged operation with-
out having to provide the necessary credentials, could be
detected using this approach.

The second type of constraints, which often exist in
web applications, is the implicit correlation between the
data stored in back-end databases and the data stored in
user sessions. More specifically, in web applications,
databases are often used to store persistent data, and user
sessions are used to store the most accessed parts of this
data (such as user credentials). Thus, there often exist
implicit constraints on what is currently stored in the user
session when a database query is issued. A “clue,” in
this case, is an explicit relation between session data and
database data. Certain application logic vulnerabilities,
like unauthorized editing of a post belonging to another
user, can be detected if a path where these relations are
violated is found. More detailed examples of this type of
vulnerabilities will be provided in Section 4.3.2.

3 Detection Approach

Based on the discussions in the previous section, it is
clear that an analysis tool that aims to detect web appli-
cation logic vulnerabilities requires a specification of ex-
pected behavior of the program that should be checked.
If such specifications are available (e.g., in the form of
formal specifications or unit testing procedures), they can
be leveraged to validate the behavior of the application’s
implementation. However, in many cases there is no spe-
cification of the expected behavior of a web application.
In these cases, we need a way to derive it in an automated
fashion.

A number of techniques has been proposed by vari-
ous researchers to derive program specification automat-
ically. However, regardless of the approach used, none
of them can derive a complete specification without hu-
man feedback. To overcome this problem, we propose to
use one of the existing dynamic techniques to derive par-
tial program specifications and use an additional analysis
step to refine the results and find vulnerabilities.

In particular, we observe that web applications are typ-
ically exercised by users in a way that is consistent with

3

146 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 147

the intentions of the developers. More specifically, users
usually browse the application by following the provided
links and filling out forms with expected input. These
program paths are usually well-tested for normal input.
As a result, when monitoring a web application whose
“regular” functionality is exercised, it is possible to infer
interesting relationships between variables, constraints
on inputs and outputs, and the order in which the applica-
tion’s components are invoked. This information can be
used to extract specifications that partially characterize
the intended behavior of the web application.

As a result, in our approach, we use an initial dynamic
step where we monitor the execution of a web applica-
tion when it operates on a number of normal inputs. In
this step, it is important to exercise the application func-
tionality in a way that is consistent with the intentions of
the developer, i.e., by following the provided links and
submitting reasonable input. Note that the information
about a web application’s “normal” behavior cannot be
gathered using automatic-crawling tools, as these tools
usually do not interact with an application following the
workflow intended by the developer or using inputs that
reflect normal operational patterns.

In this work, as the result of the dynamic analysis
step, we infer partial program specifications in the form
of likely invariants. These invariants capture constraints
on the values of variables at different program points,
as well as relationships between variables. For exam-
ple, we might infer that the Boolean variable isAdmin
must be true whenever a certain (privileged) function
is invoked. As another example, the analysis might de-
termine that the variable freeShipping is true only
when the number of items in the shopping cart is greater
than 5. We believe that these invariants provide a good
base for the detection of logic flaws because they often
capture application-specific constraints that the program-
mer had in mind when developing the web application.
Of course, it is unlikely that the set of inferred invari-
ants represents a complete (or precise) specification of a
web application’s functionality. Nevertheless, it provides
a good, initial step to obtain a model of the intended be-
havior of a program and can be used to guide further,
more elaborate program analysis.

As the second step of the analysis, we use model
checking with symbolic inputs to check the inferred spe-
cifications. The goal is to find additional evidence in
the code about which invariants are likely to be part of
the real program specification and then to identify paths
where these invariants are violated.

A naı̈ve approach would assume that all the generated
invariants represent real invariants (specifications) for an
application. Unfortunately, this straightforward solution
leads to an unacceptably large number of false positives.
The reason is the incompleteness of the dynamic analysis

step. In particular, the limited variety of the input data
frequently leads to the discovery of spurious invariants
that do not reflect the intended program specification. To
address this problem, we propose two novel techniques
to distinguish between spurious and real program invari-
ants.

The first technique aims to distinguish between a spu-
rious and a true invariant by determining whether a pro-
gram contains a check that involves the variables con-
tained in the invariant on a path leading to the pro-
gram point for which this likely invariant was gener-
ated. A check on a variable is a control flow operation
that constrains this variable on a path. For example, the
if -statement if (isAdmin == true) {...} repre-
sents a check on the variable isAdmin. Intuitively, we
assume that a certain invariant was intended by a pro-
grammer if there is at least one program path that con-
tains checks that enforce the correctness of this invariant
(i.e., the checks imply that the invariant holds). We call
such invariants supported invariants. When we find a
supported invariant that can be violated on an alterna-
tive program path leading to the same program point, we
report this as a potential application logic vulnerability.
When a likely invariant can be violated, but there are no
checks in the program that are related to this invariant,
then we consider it to be spurious.

The second technique identifies a certain type of in-
variant that we always consider to reflect actual program
specifications. These invariants represent equality rela-
tions between web application state variables (in partic-
ular, variables storing the content of user sessions and
database contents). Relationships of that kind often re-
flect important internal consistency constraints in a web
application and are rarely coincidental. A vulnerability
is reported when the analysis determines that the equal-
ity relation is not enforced on all paths.

The vulnerability detection process and our techniques
to distinguish between spurious and real invariants are
discussed in more detail in Section 4.3.

4 Implementation

We chose to implement the proposed approach for
servlet-based web applications written in Java. Servlets
are frequently used for implementing web applications.
In addition, there are a number of existing tools available
for Java that can be used for program analysis. In this
section, we describe the tools that we used, the exten-
sions that we developed, and the challenges that we had
to overcome to make them work together.

We first briefly introduce servlets [24]. A typi-
cal servlet-based web application consists of servlets,
static documents, client-side code, and descriptive meta-
information. A servlet is a Java-based web component

4

package myapp;
public class User {
private String username;
private String role;

}
public class Order {
private int tax;
private int total;
private Cart cart;

}
public class Cart {
private List products;
private int total;

}

Class Definitions

_jspService(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)
:::EXIT106

// invariants for the field "role" belonging to an
// object stored in the session under the key "user"
req.session.user.role != null
req.session.user.role.toString == ‘‘admin’’

// invariants for the fields "cart" and "total"
// stored in the session under the key "order"
req.session.order.cart.total

== req.session.order.total
req.session.order.total > req.session.order.tax

Generated Invariants

Figure 1: Example of invariants generated for an exit
point on line 106 of the jspService method of a servlet.

whose methods are executed on the server in response to
certain web requests. Servlets are managed by a servlet

container, which is an extension of a web server that
loads/manages servlets and provides services via a well-
defined API. These services include receiving and map-
ping requests to servlets, sending responses, caching, en-
forcing security restrictions, etc. Servlets can be devel-
oped as Java classes or as JavaServer Pages (JSPs). JSPs
are a mix of code and static HTML content, and they are
translated into Java classes that implement servlets.

4.1 Deriving Specifications

As mentioned previously, in this work, we consider pro-
gram specifications that can be expressed as invariants
over program variables. To derive these invariants, we
leverage Daikon [9, 11], a well-known tool for dynamic
detection of likely program invariants.

Daikon. Daikon generates program invariants using ap-
plication execution traces, which contain values of vari-
ables at concrete program points. It is capable of gene-
rating a wide variety of invariants that cover both single
variables (e.g., total ≥ 50.0) and relationships between
multiple variables (e.g., total = price ∗ num + tax).
Daikon-generated invariants are called likely invariants

because they are based on dynamic execution traces and
might not hold on all program paths.

Daikon comes with a set of front-ends. Each front-
end is specific to a certain programming language (such
as C or Java). The task of a front-end is to instrument
a given program, execute it, and create data trace files.
These trace files are then fed to Daikon for invariant gen-
eration. For our analysis, we leveraged the existing front
end for Java, called Chicory, and plugged it into a JVM
on top of which the Tomcat servlet engine [13] is exe-
cuted. This allowed us to intercept and instrument all
servlets executed by the Tomcat server.

The current implementation of Chicory produces
traces only for procedure entry and exit points and non-
local variables. Therefore, Daikon generates invariants
for method parameters, function return values, static and
instance fields of Java objects, and global variables.

Our changes. In addition to altering Chicory’s invoca-
tion model to work with Tomcat, we extended Chicory
with a way to include the content of user sessions into
the generated execution traces. Invariants over this data
are important for the vulnerability analysis of web appli-
cations because user sessions are an integral part of an
application’s state and directly affect its logic.

The content of user sessions is stored by a servlet con-
tainer in the form of dynamically-generated mappings
from a key to a value, i.e., as elements in a hash map con-
tainer. We found that, given the current design of Daikon
and Chicory, it is not possible to generate useful invari-
ants for the contents of such containers. The reason is
that Daikon requires the type and the name of all vari-
ables that can appear at a particular program point to be
declared before the first trace for a particular program
point is generated. This information is not available be-
forehand for containers like hash maps because they are
dynamically-sized and can contain elements of different
types.

To generate valid traces for Daikon, Chicory gener-
ates all declarations for program points at the applica-
tion loading time. At this time, it needs to know the ex-
act type of each variable/object in declaration to be able
to traverse the object structure and generate precise (or
interesting) invariants. For example, in order to gener-
ate a definition for the field role of the object of type
User (defined in Figure 1), which might be stored in the
user session of a servlet application under the key “user,”
Chicory needs to know that the object of the type User is
expected in the session.

To overcome these problems, we provide our front-
end with possible mappings from a key to an object type
that can be observed in a session during execution. For
example, for the code shown in Figure 1, we would need
to provide the following mappings:

5

148 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 149

user:myapp.User
cart:myapp.Cart
order:myapp.Order

We modified Chicory to use this information to gener-
ate more precise traces for session data. This information
allows for the generation of more interesting invariants,
such as the ones shown in the Figure 1. We extended the
front-end to generate traces for the content of user ses-
sions for every method in an application. As future work,
we plan to generate these mapping automatically for ar-
bitrary containers by generating new declarations as new
elements are found in a container, and then merging the
resulting traces before feeding them to Daikon.

To generate program execution traces, we wrote
scripts to automatically operate web applications. For
each application, these scripts simulate typical user ac-
tivities, such as creating user accounts, logging into the
application, choosing and buying items from a store, ac-
cessing administrative functionality, etc. The main idea
of this step is to exercise the application’s common ex-
ecution paths by following the links and filling out the
forms presented to the user during a typical interaction
with the application. The final outcome of the dynamic
analysis step is a file containing a serialized version of
likely invariants for the given web application. These
invariants serve as a (partial, simplified) specification of
the web application, and they are provided as input to the
next step of the analysis.

4.2 Model Checking Applications
Once the approximate specifications (i.e., the likely in-
variants) for a web application have been derived, the
next step is to analyze the application for supporting
“clues” and identify invariants that are part of a true pro-
gram specification. Any violation of such an invariant
represents a vulnerability.

We chose to use model checking for this step of the
analysis and implemented it in a tool called Waler (Web
Application Logic Errors AnalyzeR). Given a servlet-
based application and a set of likely invariants, Waler
systematically instantiates and executes symbolically the
servlets of the application imitating the functionality of
a servlet container. As the application is executed, Wa-
ler checks the truth value of provided likely invariants,
analyzes the application’s code for “clues,” and reports
possible logic errors. In this section, we describe the ar-
chitecture and execution model of Waler. Then, in Sec-
tion 4.3 we explain how Waler identifies interesting in-
variants and application logic vulnerabilities.

4.2.1 System Top-level Design

Waler is implemented on top of the Java PathFinder (JPF)
framework [19, 35], and its general architecture is shown

Virtual Machine

Search

Strategies

Symbolic Model Classes

Vulnerability

Analysis

Strategies

Program

Checks

Analyzer

Likely

Invariants

Analyzer

J
P
F

Symbolic Execution Extension

Java API Servlet API JSP API

Java VM

Functionality

Application Controller

Web

Application

Likely

Invariants

C
o
re

 J
P

F

Libraries

Available to

Applications

Application

Driver

State

Serializers

Unmodified JPF components

Modified JPF components

New components

Figure 2: Waler’s architecture.

Figure 2. In this figure, dark gray boxes represent new
modules that we implemented, while dotted (light gray)
boxes represent parts of JPF that we had to extend.

JPF overview. JPF is an open-source, explicit-state
model checker that implements a JVM. It systemati-
cally explores an application’s state space by executing
its bytecode. JPF consists of a number of configurable
components. For example, the specific way in which an
application’s state space is explored depends on a cho-
sen Search Strategy – JPF core distribution includes a
number of basic strategies. The State Serializer compo-
nent defines how an application state is stored, matched
against others, and restored. JPF also comes with a num-
ber of interfaces that allow for its functionality to be ex-
tended and modified in arbitrary ways.

In general, JPF is capable of executing any Java class-
file that does not depend on platform-specific native
code, and many of the Java standard library classes can
run on top of JPF unmodified. However, in JPF, some of
the Java library classes are replaced with their model ver-
sions to reduce the complexity of their real implementa-
tions and/or to enable additional features. For example,
Java classes that have native method calls (such as file
I/O) have to be replaced by their models, which either
emulate the required functionality or delegate the native
calls to the actual JVM on top of which JPF is executed.

6

Also, JPF comes with a number of extensions that pro-
vide additional functionality on top of JPF. Below, we
discuss the JPF-SE extension for JPF, which we lever-
aged in Waler to enable symbolic execution.
The JPF-SE Extension. The JPF-SE extension for JPF
enables symbolic execution of programs over unbounded
input when using explicit-state model checking [2]. With
this extension, the Java bytecode of an application needs
to be transformed so that all concrete basic types, such
as integers, floats, and strings, are replaced with the cor-
responding symbolic types. Similarly, concrete opera-
tions need to be replaced with the equivalent operations
on symbolic values. For example, all objects of type int

are replaced with objects of type Expression. An addition
of two integers is replaced with a call to the plus method
of the Expression class. Following the standard symbolic
execution approach, all newly-generated constraints are
added to the path condition (PC) over the current execu-
tion path. The generation of constraints is done in the
methods of symbolic classes, and it is transparent to the
application. Whenever the PC is updated, it is checked
for satisfiability with a constraint solver, and infeasible
paths are pruned from execution.

Unfortunately, we found that JPF-SE was missing a
considerable amount of functionality that needed to be
added to make the system suitable for real-world appli-
cations. For example, the classes implementing symbolic
string objects were missing a significant number of sym-
bolic methods with respect to the java.lang.String API,
which is used extensively in web applications. Also, in
order to execute an arbitrary application using JPF-SE,
symbolic versions of many standard Java libraries are re-
quired. These libraries were not provided with the ex-
tension. Finally, a tool to perform the necessary transfor-
mations of Java bytecode was not publicly available, and,
therefore, we implemented our own transformer by lever-
aging ASM [25], a Java bytecode engineering library.
Waler overview. In order to execute servlet-based web
applications and analyze them for logic errors, we had to
extend JPF in a number of ways. As shown in Figure 2,
we implemented from scratch four main components: the
Application Controller (AC), the Vulnerability Analysis

Strategies (VAS), the Program Checks Analyzer (PCA),
and the Likely Invariants Analyzer (LIA). The AC com-
ponent is responsible for loading, mapping, and system-
atically initiating execution of servlets in a servlet-based
application. As the analyzed application itself, it runs on
top of the JVM implemented by core-JPF and uses sym-
bolic versions of Java libraries.

The other three components are internal to JPF, i.e.,
they are not visible to web applications and do not rely
on model classes. The LIA component is responsible for
parsing Daikon-generated invariants and checking their
truth value as a program executes. The PCA component

keeps track of all the program checks performed by an
application on an execution path. Finally, the VAS com-
ponent provides various strategies for vulnerability de-
tection based on the information provided by LIA and
PCA. We provide more details on how these modules
work in the following sections.

In addition, we had to extend a number of existing JPF
components to address the needs of our analysis. In par-
ticular, we modified existing search strategies, state in-
formation tracking, and implemented some missing parts
of JPF-SE. Due to space limitations, we will not explain
all of the changes unless they are significant for under-
standing our approach.

Finally, we extended JPF with a set of 40 model
classes that provide the servlet API and related inter-
faces (such as the JSP API). These classes implement the
standard functionality of a servlet container, but instead
of reading and writing actual data from/to the network,
they operate on symbolic values. Our implementation is
based on the real implementation of the servlet container
for Tomcat.

4.2.2 Execution Model

To systematically analyze a web application for logic er-
rors, Waler needs to be able to model all possible user in-
teractions with the application. To achieve that, it needs
to find all possible entry points to the application and
execute all the possible sequences of invocations using
symbolic input.

In general, a user can interact with a web application
in different ways: one can either follow the links (leading
to URLs) presented by the application (as part of a web
page) or can directly point the browser to a certain URL.
On the server side, after (and if) a request URL is mapped
to a servlet-based application, the path part of the URL
is used to locate a particular servlet that will handle the
request. We call the set of all such URL paths that lead to
the invocation of a servlet the “application entry points.”

Thus, before a program can be analyzed, we need to
identify all possible application entry points. In the gen-
eral case, there can be an infinite number of URLs that
lead to an invocation of a servlet; however, for each par-
ticular application, there is a finite and well-defined num-
ber of possible mappings from a request URL pattern to
a servlet. Thus, for the analysis, it is sufficient to find all
such mappings. For example, if an application has the
URL /login mapped to the AuthManager servlet and the
URLs /cart and /checkout mapped to the CartManager

servlet, it can be said that the application has three entry
points. In servlet-based applications, it is also possible
to have wildcard mappings, such as account/*, mapped
to a servlet. In this case, all URL paths starting with
/account/ are mapped to the same servlet. We consider

7

150 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 151

such mappings to represent single entry points and sim-
ply treat the part of the URL that matches the “*” as a
symbolic input. This is consistent with our handling of
other request parameters accessed by servlets, which are
also represented by symbolic values.

To find all entry points, our system inspects the ap-
plication deployment descriptor (typically, the web.xml

file), which defines how URLs requested by a user are
mapped to servlets. When analyzing the URL-to-servlet
mapping, we take into account that not all servlets are
directly accessible to users (those servlets that are not
directly accessible are typically invoked internally by
other servlets). Following the standard servlet invocation
model, all URLs that point to accessible (public) servlets
are assumed to be possible entry points.

Once the application’s entry points are determined, the
Application Controller systematically explores the state
space of the application. To this end, it initiates execu-
tion of servlets by simulating all possible user choices of
URLs. For example, if the application has three servlets
mapped to the URLs /login, /cart, and /checkout, the ap-
plication controller attempts to execute all possible com-
binations (sequences) of these servlets. The actual or-
der in which servlets are explored depends on the chosen
search strategy. JPF offers a limited depth-first search
(DFS) and a heuristics-based breadth-first search (BFS)
strategy. We found that DFS works better for our sys-
tem because it requires significantly less memory dur-
ing model checking. With DFS, a path is explored until
the system reaches a specific (configurable) limit on the
number of entry points that are executed.

4.2.3 State Space Management

Similar to other model checkers, Waler faces the state
explosion problem. Thus, to make Waler scale to real-
world web applications, we had to take a number of steps
to manage (limit) the exponential growth of the appli-
cation’s state space. In particular, after careful analysis
of several servlet-based applications, we found that JPF
often fails to identify equivalent states. The two main
reasons for that are: (1) the constraints added to the sym-
bolic PC are never removed from it due to the design of
JPF-SE1, and (2), without domain-specific knowledge,
JPF is not able to identify “logically equivalent” states.
Here we present three techniques that we implemented
to overcome these problems.

States in JPF. JPF comes with some mechanisms to
identify equivalent states. A state in JPF is a snapshot
of the current execution status of a thread, and it con-
sists of the content of the stack, heap, and static variables
storage. This snapshot is created when a sequence of ex-
ecuted instructions reaches a choice point, i.e., a point
where there is more than one way to proceed from the

current instruction. Choice points are thread-scheduling
instructions, branching instructions that operate on sym-
bolic values, or instructions where a new application en-
try point needs to be chosen. Whenever JPF finds a
choice point, a snapshot of the current state is created.
Then, the serialized version of the state is compared to
hashes of previously-seen states. The execution path is
terminated when the same state has been seen before.

We found that the basic version of JPF performs
garbage collection and canonicalization of objects on the
heap before hashing a state. However, it does not per-
form any additional analysis of memory content when
comparing states for equality, as JPF has no knowledge
of the domain-specific semantics of the objects in mem-
ory. As a result, JPF fails to recognize certain states
as logically equivalent. This leads to a large number of
states that are created unnecessarily. We discuss exam-
ples of some cases in which the standard JPF mechanism
fails to identify equivalent states below.
States in Waler. In Waler, we extend the concept of
JPF state to a “logical state” using the domain-specific
knowledge that Waler has about web applications. In
particular, we observe that the only information that is
preserved between two user requests in a servlet-based
application are the content of user sessions, application-
level contexts, the symbolic PC (which stores constraints
on symbolic variables stored in sessions), and data on
persistent storage. Since we do not model persistent stor-
age in Waler and always return a new symbolic value
when it is accessed, we ignore this information in our
analysis. Thus, the logical state of servlet-based applica-
tion is defined as the content of user sessions and appli-
cation contexts, and the PC. This is the only information
that should be considered when comparing states after
execution of a user request is finished.
State space reduction. Given the design of JPF and us-
ing our concept of logical state, we implemented three
solutions to reduce the state space of a web application.

First of all, we implemented an additional analysis
step to remove a constraint from the PC when it includes
at least one variable that is no longer live2. This is espe-
cially important when the execution of a user request is
finished, because, in a web application, input received by
one servlet is independent from input received by another
servlet, and, unless parts of it are stored in a persistent
storage, any constraints on previous input are unrelated
to the new one. The implemented solution is safe (it does
not affect the soundness of the analysis) and allows our
system to identify many states that are equivalent.

The second solution to reduce an application state
space is to prune many “irrelevant” paths from state
exploration. Consider, for example, an /error servlet,
which simply displays an error message, or a /products

servlet, which displays a list of available products. Exe-

8

1 public void _jspService(HttpServletRequest req,
2 HttpServletResponse res) {
3

4 User user = (User) session.getAttribute("User");
5 if(user==null) {
6 User.adminLogin(request,response);
7 return;
8 }
9 ...

10 if(request.getMethod().equalsIgnoreCase("post")) {
11 result = website.variables.
12 insert(new Variable(req));
13 }
14 }

/admin/variables/Add.jsp

1 public void _jspService(HttpServletRequest req,
2 HttpServletResponse res) {
3

4 User user = (User) session.getAttribute("User");
5 if(user==null || (!user.isAdmin())) {
6 User.adminLogin(request,response);
7 return;
8 }
9 ...

10 out.println("<a href=\"admin/variables/\
11 Add.jsp\">Add New");
12 }

/admin/variables/index.jsp

Figure 3: Simplified version of an unauthorized access vulnerability in the JspCart application.

cuting such servlets often results in changes to the state
of the memory, for example, due to different Java classes
that must be loaded. However, once such a servlet is ex-
ecuted, the application is still in the same logical state.
Also, the state after executing, for example, the servlet
/login will be logically equivalent to the state resulting
from the execution of the sequence of servlets [/error,

/login]. From this observation, it is clear that it would be
beneficial to identify servlets whose executions do not
modify the logical state of the application. The reason
is that there is no need to consider them for vulnerabil-
ity analysis. Therefore, after a servlet is executed, we
analyze the content of the application’s memory to de-
termine whether the application logical state has been
changed (for example, because of changes to the content
of the user session). When no changes are detected, the
exploration of the current execution path is terminated.
This modification also does not compromise the sound-
ness of the analysis, assuming that the memory analysis
takes into the account all the component of the applica-
tion logical state.

A third technique to limit the state space explosion
problem is to identify irrelevant entry points, so that the
servlets mapped to these URLs do not need to be ex-
ecuted. More precisely, during model checking, when
our analysis determines that a servlet does neither read
from nor write to the application’s logical state at all, the
execution of this page can be ignored for all other exe-
cution paths. The pruning of irrelevant servlets is espe-
cially helpful in large applications, where the execution
of a servlet over symbolic inputs can take several min-
utes (and thus, can result in days of model checking time
if the servlet is executed on multiple paths).

To summarize, the state explosion problem that can
rise in the model checking of web applications can be
significantly improved in many cases. In particular, we
developed the following three techniques to limit the
growth of an application’s state space: we improved the
existing JPF state hashing algorithm to disregard a path

condition when its variables are out of scope, we found
a way to prune the exploration of irrelevant paths, and
we identify irrelevant servlets and discard them from our
vulnerability analysis. We found that these techniques
often allow for a significant reduction in the number of
states explored by Waler. For example, running Waler on
the Jebbo-2 application (described in Section 5) without
using any of our state reduction techniques resulted in
the execution of 322,637 states, and it took around 223
minutes to terminate. When the same application was
executed using our three heuristics, Waler terminated in
about a minute and needed to explore only 529 states to
obtain the same result.

4.3 Vulnerability Detection
As described in the previous section, Waler uses model
checking to systematically explore the state space of an
application. During the model checking process, the sys-
tem checks whether the likely invariants generated by
Daikon for a program point hold whenever that point is
reached. In our current implementation, we only con-
sider likely invariants that are generated for exit points
of methods (note that we differentiate between different
exit points). The reason is that methods often check their
parameters inside the function body (rather than in the
caller). As a result, entry invariants are typically less sig-
nificant.

To see an example of invariants that can be produced
by our system, consider the code in Figure 3, which
shows a vulnerability that Waler found in the JspCart ap-
plications (see Section 5). The left listing shows the code
of the /admin/variables/Add.jsp servlet, which is a privi-
leged servlet that should only be invoked by an adminis-
trator. This is reflected by the set of likely invariants that
are generated for the exit point on Line 14 for Add.jsp

3:
(1) session.User != null
(2) session.User.isAdmin == true
(3) session.User.txtUsername == "admin@jspcart.com"

It can be seen that the first two invariants are part of
the “true” program specification, while the third invariant

9

152 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 153

is spurious (an artifact of the limited test coverage). As
a side note, the invariant for the exit point at Add.jsp:

Line 7 would be session.User == null.
To help us to determine whether a likely invariant

holds or fails on a path, we implemented the Program

Checks Analyzer module that keeps information about
all the checks performed on an execution path. When
a comparison instruction is executed, the PCA records
the names of the variables involved and the result of the
comparison. Also, the PCA keeps track of all variable
assignments in the program. As a result, whenever the
PCA encounters a check that operates on local variables,
it can determine how this check constrains (affects) non-
local variables. Recall that Daikon does not generate in-
variants for local variables, and, therefore, we are not in-
terested in comparisons over local variables unless they
store session data or method parameters.

Consider now what happens when Waler analyzes the
Add.jsp servlet. After Waler executes the if-statement on
Line 5, information about a new check is added to the
set of current constraints accumulated by the PCA. If the
user is authenticated, the value stored in the session
object under the key User is not null. In this case,
the PCA adds session.User != null to the set of
checks along the current execution path, and the execu-
tion proceeds at Line 94. Otherwise, the PCA records the
fact session.User == null, and execution proceeds
at Line 6.

Once the Line 14 of Add.jsp is reached, Waler checks
whether all likely invariants generated for this point hold.
A likely invariant holds on the current path if we can
determine that the relationship among the involved vari-
ables is true. An invariant fails otherwise. To determine
whether a likely invariant holds, we check whether the
truth of this invariant can be determined directly given
the current application state (i.e., the invariant involves
concrete values). If not, we check whether the set of
constraints accumulated on the current path implies the
relationship defined by the invariant using the constraint
solver employed by the JPF-SE.

Following the example, it can be seen that the first in-
variant for Line 14 always holds (because of the check on
Line 5), while the other two might fail on some paths. In
principle, we could immediately report the violations of
the last two invariants as a potential program flaw. How-
ever, this would raise too many false positives, due to
spurious invariants. In the following sections, we intro-
duce two techniques to identify those invariants that are
relevant to the detection of web application logic flaws.

4.3.1 Supported Invariants

The first technique to identify real invariants is based on
the insight that many vulnerabilities are due to developer

oversights. That is, a developer introduces checks that
enforce the correct behavior on most program paths, but
misses an unexpected case where the correct behavior
can be violated.

To capture this intuition, we defined a technique that
keeps track of which paths contain checks that support an
invariant and which paths are lacking such checks. More
precisely, an execution path on which a likely invariant
holds and it is supported by a set of checks on that path
is added to the set of supporting paths for this invariant.
That is, along a supporting path, the program contains
checks that ensure that an invariant is true. A path on
which a likely invariant can fail is added to the set of
violating paths. When a likely invariant holds on all pro-
gram paths to a given program point, then we know that
it holds for all executions and there is no bug. When all
paths can possibly violate a likely invariant, then we as-
sume that the programmer did not intend this invariant
to be part of the actual program specification, and it is
likely an artifact of the limited test coverage. An appli-
cation logic error is only reported by Waler if at least one
supporting path and at least one violating path are found
for an invariant at a program point.

Let us revisit the example of Figure 3. Waler deter-
mines that the first invariant on Line 14 of Add.jsp
always holds. The third one is never supported, and,
thus, it is correctly discarded as spurious. Moreover,
Waler finds a violating path for the second invariant
(session.User.isAdmin == true) by calling the
Add.jsp servlet with a user in non-administrative role.
However, the system also inspects the path where in-

dex.jsp is called first, which reflects the normal, in-
tended flow of the application. This servlet, shown on
the right of Figure 3, contains a check on Line 5 that
adds the fact session.User.isAdmin == true to
the PC (assuming that the user is authenticated as an
administrator). In this case, when Add.jsp is invoked
after index.jsp, the system determines that the invari-
ant session.User.isAdmin == true holds and is
supported. Thus, Waler finds a supporting path for this
invariant. As a result, the fact that one can execute the
main method of Add.jsp directly, violating its exit invari-
ant session.User.isAdmin == true, is correctly
recognized as an unauthorized access vulnerability.

We found that checking for supported invariants works
well in practice. However, it can produce false posi-
tives and is not capable of capturing all possible logic
flaws. The main source of false positives stems from the
problem that the violation of an invariant, even when it
is supported by a program check on some paths, does
not necessarily result in a security vulnerability. For ex-
ample, access to a normally protected page does not al-
ways result in a vulnerability because either (1) a sensi-
tive operation performed by the page fails if a set of pre-

10

1 public void _jspService(HttpServletRequest req,
2 HttpServletResponse res) {
3

4 if(req.getMethod() == "GET") {
5 ...
6 out.println("<form method=post"
7 + " action=\"edituser.jsp\">");
8 out.println("<input type=hidden"
9 + " name=\"username\" value="

10 + session.getAttribute("username") + ">");
11 ...
12 out.println("</form>");
13 }
14 if(req.getMethod() == "POST") {
15 ...
16 stmt = conn.prepareStatement("UPDATE users SET"
17 + " password = ?, name = ? WHERE username = ?");
18 stmt.setString(1, req.getParameter("password"));
19 stmt.setString(2, req.getParameter("name"));
20 stmt.setString(3, req.getParameter("username"));
21 stmt.executeUpdate();
22 }
23 }

edituser.jsp

Figure 4: Simplified user profile editing vulnerability
(Jebbo-6).

1 public void doPost(HttpServletRequest req,
2 HttpServletResponse res) {
3 ...
4 sess = request.getSession(true);
5 if(action.equals("/editpost")){
6 s = conn.prepareStatement("UPDATE posts SET"
7 + " author= ?, title = ?, entry = ?"
8 + " WHERE id = ?");
9 s.setString(1, (String)sess.getAttribute("auth"));

10 s.setString(2, req.getParameter("title"));
11 s.setString(3, req.getParameter("entry"));
12 s.setString(4, req.getParameter("id"));
13 s.executeUpdate();
14 }
15 }

PostController.java

Figure 5: Simplified post editing vulnerability (Jebbo-5).

conditions, uncontrolled by an attacker, is not satisfied,
or (2) there is no sensitive operation on the path executed
during the access. Reasoning about these cases is ex-
tremely hard for any automated tool. However, we found
that such false positives often indicate non-security bugs
in the code, and, thus, they are still useful for a developer.
This technique also fails to identify logic vulnerabilities
when the programmer does not introduce any checks for
a security-relevant invariant at all. In such cases, Wa-
ler incorrectly concludes that an invariant is spurious be-
cause it cannot find any support in the code. To improve
this limitation, we introduce an additional technique in
the following section.

4.3.2 Internal Consistency

As mentioned previously, Waler will discard invariants
as spurious when they are not supported by at least one
check along a program path. This can lead to missed

vulnerabilities when the invariant is actually security-
relevant. To address this problem, we leverage general
domain knowledge about web applications and identify
a class of invariants that we always consider significant,
regardless of the presence of checks in the program.

We consider a likely invariant to be significant when
it relates data stored in the user session with data that
is used to query a database. Capturing this type of re-
lationships is important because both the user session
object and the database are the primary mechanism to
store (persistent) information related to the logical state
of the application. Moreover, we do not allow any arbi-
trary relationships: instead, we require that the invariant
be an equality relationship. Such relationships are rarely
coincidental because, by design, session objects and the
database often replicate the same data.

Whenever Waler finds a path through the application
that violates a significant invariant, it reports a logic
vulnerability. To implement this technique, the system
needed to be extended in two ways. First, we instru-
mented database queries so that the variables used in cre-
ating SQL queries are captured by Daikon and included
into the invariant generation process. To this end, for
each SQL query in the web application, we introduced a
“dummy” function. The parameters of each function rep-
resent the variables used in the corresponding database
query, and the function body is empty. The purpose of
introducing this function is to force Daikon to consider
the parameters for invariant generation at the function’s
exit point. Second, we require a mechanism to iden-
tify significant invariants. This was done in a straight-
forward fashion by inspecting equality invariants for the
presence of variables that are related to the session object
and database queries.

To see how the internal consistency technique can be
used to identify a vulnerability, consider the code shown
in Figure 4. This figure shows a snippet of code taken
from the edituser.jsp servlet in one of the Jebbo applica-
tions (see Section 5)5. The purpose of this servlet is to
allow users to edit and update their profiles. When the
user invokes the servlet with a GET request, the applica-
tion outputs a form, pre-filled with the user’s current in-
formation. As part of this form, the application includes
the user’s name in the hidden field username, which is
retrieved from the session object (shown in the upper half
of Figure 4). When the user has finished updating her in-
formation, the form is submitted to the same servlet via a
POST request. When this request is received, the appli-
cation extracts the name of the user from the username
parameter and performs a database query (lower half of
Figure 4).

For this servlet, the dynamic analysis step (Dai-
kon) generates the invariant session.username ==
db query.parameter3, which expresses the fact

11

154 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 155

that a user can only update her own profile. Unfortu-
nately, it is possible that a malicious client tampers with
the hidden field username before submitting the form.
In this case, the profile of an arbitrary user can be mod-
ified. Waler detects this vulnerability because it deter-
mines that there exists a path in the program where the
aforementioned invariant is violated (as the parameter
username is not checked by the code that handles the
POST request). Since this invariant is considered signif-
icant, a logic flaw is reported.

The idea of checking the consistency of parameters to
database queries can be further extended to also take into
account the fields of the database that are affected by a
query, but that do not appear explicitly in the query’s pa-
rameters. Consider, for example, a message board ap-
plication that allows users to update their own entries.
It is possible that the corresponding database query uses
only the identifier of the message entry to perform the
update. However, when looking at the rows that are af-
fected by legitimate updates, one can see that the name of
the owner of a posting is always identical to the user who
performs the update. To capture such consistency invari-
ants, we extended the parameters of the “dummy” func-
tion to not only consider the inputs to the database query
but to also include the values of all database fields that
the query affects (before the query is executed). When
multiple database rows are affected, the “dummy” func-
tion is invoked for each row, allowing Daikon to capture
aggregated values of fields.

By extending the “dummy” function as outlined pre-
viously, Daikon can directly generate invariants that in-
clude fields stored in the database, even when these fields
are not directly specified in the query parameters. Again,
we consider invariants as significant if they introduce an
equality relationship between database contents and ses-
sion variables. The intuition is that these invariants im-
ply a constraint on the database contents that can be ac-
cessed/modified by the query. If it was possible to violate
such invariants, an attacker could modify records of the
database that should not be affected by the query.

For example, this allows us to detect vulnerabilities
where an attacker can modify the messages of other users
in the Jebbo application. Consider the doPost func-
tion shown in Figure 5. The problem is that an au-
thenticated user is able to edit the message of any other
user by simply providing the application with a valid
message id. During the dynamic analysis, the invari-
ant db.posts author == session.auth is gener-
ated, even though the posts author field is not used
as part of the update query. During model checking, we
determine that this invariant can be violated (and report
an alert) because there is no check on the id parameter
that would enforce that only the messages written by the
current user can be modified.

4.3.3 Vulnerability Reporting

For each detected bug, Waler generates a vulnerability
report. This report contains the likely invariant that was
violated, the program point where this invariant belongs
to, and the path on which the invariant was violated
(given as a sequence of servlets and corresponding meth-
ods that were invoked). This information makes it quite
easy for a developer or analyst to verify vulnerabilities.
Currently, vulnerabilities are simply grouped by program
points. Given the low number of false positives, this al-
lows for an effective analysis of all reports. However, not
every alert generated by Waler currently maps directly
to a vulnerability or a false positive. We found several
situations where several invariant violations referred to
the same vulnerabilities (or a false positives) in applica-
tion code. For example, Waler generated several alerts in
situations when (conceptually) the same invariant is vi-
olated at different program points or when two distinct
invariants refer to the same application’s concept. Find-
ing better techniques to aggregate and triage reports in
such situations is an interesting topic of research, which
we plan to investigate in the future.

4.3.4 Limitations

Our approach aims at detecting logic vulnerabilities in
a general, application-independent way. However, the
current prototype version of Waler has a number of lim-
itations, many of which, we believe, can be solved with
more engineering. First, the types of vulnerabilities that
can be identified by Waler are limited by the set of
currently-implemented heuristics. For example, if an ap-
plication allows the user to include a negative number of
items in the shopping cart, we would be able to identify
this issue only if the developer checked for that number
to be non-negative on at least one program path leading
to that program point. In addition, this check needs to be
in a direct if -comparison6 between variables. Conditions
deriving from switch instructions or resulting from com-
plex operations (such as regular expression matching) are
not currently implemented.

Another limitation stems from the fact that we need a
tool to derive approximations of program specifications.
As a result, the detection rate of Waler is bounded by the
capabilities of such a tool. In the current implementation,
we chose to use Daikon. While Daikon is able to derive a
wide variety of complex relationships between program
variables, it has a limited support for some complex data
structures. For example, if the isAdmin flag value is
stored in a hash table, and it is not passed as an argument
to any application function, Daikon will not be able to
generate invariants based on that value. This limitation
could be improved by implementing a smarter explo-
ration technique for complex objects and/or by tracing

12

local and temporary variables for the purpose of likely
invariant generation. However, care needs to be exer-
cised in this case to avoid an explosion in the number of
invariants generated.

Another issue that we faced when working with Dai-
kon was scalability: in its current implementation, Dai-
kon creates a huge data structure in main memory when
processing an execution trace. As a result, using Daikon
on a larger application requires a large amount of RAM.
We worked around this limitation by partitioning the ap-
plication into subsets of classes and by performing the
likely invariant generation on each subset separately.

A more import limitation of Daikon is that invariants
generated by the tool cannot capture all possible rela-
tions. For example, the currently supported by Daikon
invariants do not directly capture such temporal relations,
as “operation A has to precede operation B.” To address
these limitations, different “intended behavior” capturing
tools (such as [1]) could be employed by Waler in the
first step of the analysis, although we leave this research
direction for future work.

Another, more general, limitation of the first step of
our analysis is the fact that we need to exercise the ap-
plication in a “normal” way (i.e., not deviating from the
developer’s intended behavior). This part cannot be fully
automated and needs human assistance. Nevertheless,
many tools exist to ease the task of recording and script-
ing browsing user activity, such as Selenium [31].

Finally, the state explosion problem is one of the main
limitations of the chosen model checking approach. We
have already described several heuristics that help Waler
limiting the state space of an application, and currently,
we are working on implementing a combination of con-
crete and symbolic execution techniques to further im-
prove scalability.

5 Evaluation

We evaluated the effectiveness of our system in detecting
logic vulnerabilities on twelve applications: four real-
world applications, (namely, Easy JSP Forum, JspCart

7,
GIMS and JaCoB), which we download from the Source-
Forge repository [28], and eight servlet-based applica-
tions written by senior-level undergraduate students as
part of a class project, named Jebbo. When choosing
the applications, we were looking for the ones that could
potentially contain interesting logic vulnerabilities, were
small-enough to scale with the current prototype of Wa-
ler, and did not use any additional frameworks (such as
Struts or Faces). While we show that it is possible to
scale Waler to real-world applications, its scalability is
still a work in progress as it is based on two tools, JPF
and Daikon, that were not designed to work on large ap-
plications.

All chosen applications were analyzed following the
techniques introduced in Section 4. During the model
checking phase, we explored paths until a depth of 6 (that
is, the limit for the depth-first search of JPF was set to 6).
Note that all vulnerabilities reported below were found at
depth of three or less; we then doubled the search depth
to let Waler check for deeper bugs. All tests were per-
formed on a PC with a Pentium 4 CPU (3.6 GHz) and 2
Gigabytes of RAM.

The results of our analysis are shown in Table 1. Wa-
ler found 29 previously-unknown vulnerabilities in four
real-world applications and 18 previously-unknown vul-
nerabilities in eight Jebbo applications. It also produced
a low number of false positives. In Table 1, the columns
Lines of Code and Bytecode Instructions show the size of
the applications in terms of the number of lines of Java
code (JSP pages were first compiled into their servlet
representations) and of the number of bytecode instruc-
tions, respectively. The column Entry Points shows how
many entry points were found and analyzed by Waler and
the column States Explored shows how many states were
covered. The columns Likely Invariants and Invariants

Violated respectively show how many invariants were
generated by Daikon and how many of them were re-
ported as violated by Waler. The numbers in the column
Alerts represent the (manual) aggregation of the reported
invariants violations (as it is discussed in Section 4.3.3).
The columns Vulnerabilities, Bugs, and False Positives

show the aggregated number of vulnerabilities, security-
unrelated bugs, and false alarms that were produced by
Waler. Note that the numbers on these columns are based
on the analysis of the aggregated alerts. Finally, the col-
umn Running Time shows the time required for the anal-
ysis.

5.1 Vulnerabilities

Easy JSP Forum: The first application that we ana-
lyzed is the Easy JSP Forum application, a community
forum written in JSP. Using Waler, we found that any
authenticated user can edit or delete any post in a fo-
rum. To enforce access control, the Forum application
does not show a “delete” or “edit link” for a post if the
current user does not have moderator’s privileges for the
current forum but fails to check these privileges when
a delete or an edit request is received. Thus, if a user
forges a delete/edit request to the application using a
valid post id (all ids can be obtained from the source
code of web pages accessible by all users), a post will
be deleted/modified.
GIMS: The second application that we analyzed is the
Global Internship Management System (GIMS) web ap-
plication, a human resource management software. Us-
ing Waler, we found that many of the pages in the ap-

13

156 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 157

Application Lines Bytecode Entry States Likely Invariants Alerts Vulne- Bugs False Runtime
of Code Instructions Points Explored Invariants Violated rabilities Positives (min)

Easy JSP Forum 2,416 7,348 2 251,657 5,824 6 3 2 0 1 319
GIMS 6,153 11,269 40 36,228 6,993 55 27 23 2 2 88
JaCoB 8,924 15,129 38 26,809 81,832 0 0 0 0 0 79
JspCart 21,294 45,765 86 1,152,661 34,286 5 5 5 0 0 4,576
Jebbo

1 1,027 2,304 16 1,725 8,777 2 2 2 0 0 1.5
2 1,882 4,227 20 529 7,767 3 2 0 0 2 1
3 1,438 2,993 17 195 7,388 2 2 2 0 0 1
4 1,182 2,709 8 73 4,474 3 3 0 2 1 0.5
5 804 2,025 8 59 2,792 3 3 1 0 2 0.5
6 1,524 3,709 19 268 5,159 9 9 6 3 0 0.5
7 1,499 2,826 15 398 3,342 10 5 4 1 0 0.5
8 1,463 2,782 15 1,031 8,468 15 6 3 3 0 1.2

Table 1: Experimental results.

plication do not have sufficient protection from unautho-
rized access. In particular, our tool correctly identified
14 servlets that can be accessed by an unauthenticated
user (a user that is not logged in at all). Most of these
pages do contain a check that ensures that there is some
user data in a session (which is only true for authenti-
cated users). When a check fails, the application gener-
ates output that redirects the client’s browser to a login
page. Unfortunately, at this point, the application does
not stop to process the request due to a missing return
statement. Moreover, we found that certain pages in the
GIMS application that should only be accessible to users
with administrative privileges do not have checks to con-
firm the role of the current user. As a result, nine admin-
istrative pages were correctly reported as vulnerable.

JaCoB: The third application is JaCoB, a community
message board application that supports posting and
viewing of messages by registered users. For this pro-
gram, our tool neither found any vulnerabilities nor did
it generate any false alert. However, closer analysis of
the application revealed two security flaws, which could
not be identified with the techniques used by Waler. For
example, when a user registers with the message board or
logs in, she is expected to provide a username and a pass-
word. Unfortunately, when this information is processed
by the application, the password is simply ignored. Also,
in this application, a list of all its users and their private
information is publicly available. These two problems
represent serious security issues; however, they cannot
be detected by Waler because the program specification
that can be inferred from the application’s behavior does
not contain any discrepancies with respect to the appli-
cation’s code.

JspCart: The fourth test application is JspCart, which is
a typical online store. Waler identified a number of pages
in its administrative interface that can be accessed by
unauthorized users. In JspCart, all pages available to an
admin user are protected by checks that examine the User

object in the session. More precisely, the application ver-

ifies that a user is authenticated and that the user has ad-
ministrative privileges. However, Waler found that four
out of 45 pages are missing the second check. Therefore,
any user that has a regular account with the store can ac-
cess administrative pages and add, modify, or delete set-
tings (e.g., the processing charge for purchases). A sim-
plified version of one of these vulnerabilities is shown
in Figure 3. Waler also found a logic vulnerability that
allows an authenticated user to edit the personal informa-
tion of another user by submitting a valid email address
of an existing user. This vulnerability is similar to the
one shown in Figure 4.

Jebbo: We analyzed a set of eight Jebbo applications that
were written by senior-level undergraduate students as a
class project. Jebbo is a message board application that
allows its users to open accounts, post public messages,
and update their own messages and personal information.
Some of the applications also implement a message rat-
ing functionality. For this project, all students were pro-
vided with a description of the application to implement
along with a set of rules (including security constraints)
that were expected to be enforced by the application.

After running Waler on this set of applications, we
found that six out of eight applications contained one or
more logic flaws. Examples of the vulnerabilities found
by Waler include the fact that unauthenticated users can
post a message to the board, and the lack of authoriza-
tion checks when users rate an existing message (e.g., in
order to avoid for a user to rate its own messages). Iron-
ically, most of the student followed the provided specifi-
cation carefully and were checking that access to certain
pages is limited to authenticated users only; however, due
to various mistakes, the enforcing checks were not al-
ways sufficient. For example, common problems that we
found are missing return statements on an error path and
a failure to foresee all possible paths available to a user
to access a certain functionality.

Waler identified a number of application logic flaws
that are associated with unauthorized data modification,

14

such as the possibility to edit personal information or
posts belonging to another user. Some of the examples of
these vulnerabilities are shown in Figure 4 and Figure 5.
These vulnerabilities are classic examples of inconsis-
tent usage of data by the application. It is interesting to
observe that even though the students were aware of pos-
sible parameter tampering vulnerabilities, and, in many
cases, they were very careful about checking user input
for validity, they often failed to apply this knowledge to
cases where there were multiple paths to the same pro-
gram point.

The results for the Jebbo application demonstrate that
logic flaws are hard to avoid, even in simple web appli-
cations. Almost all applications in this set were found
to be vulnerable despite the fact that the students were
given a clear program specification and knew basic web
security practices. Given the class level of the students
who were enrolled in the class, it is reasonable to assume
that their programming skills are not far off from those
of entry-level programmers. This, together with the fact
that the complexity of real-world applications is much
higher than the complexity of the Jebbo application, can
be seen as an indication of how wide-spread web appli-
cation logic flaws are. Moreover, it can be argued that
many real-world application are, at least partially, writ-
ten by students who are widely employed year-round as
interns.

5.2 Discussion

As it is shown in Table 1, Waler generated a low number
of false positives. Careful analysis of the alerts which did
not represent a vulnerability revealed that the majority
of them represent true weaknesses in code. These alerts
were classified as bugs. We found that these bugs were
either potential vulnerabilities that turned out to be unex-
ploitable in particular situations or were not interesting
for exploitation. For example, an unauthenticated user
might be able to access a certain page, but this access
does not contain any sensitive information. We classified
the rest of the alerts as false positives.

We also carefully analyzed the applications for false
negatives. We found that Waler missed some security
problems, like the ones in JaCoB, but we consider these
vulnerabilities to be out of scope as they cannot be de-
tected using our approach. We also identified several
cases where Waler missed vulnerabilities that should be
detectable using the described approach. The main rea-
son for such false negatives is the incomplete modeling
of all application features in the current version of Waler.
For example, Waler only identifies program checks in the
form of if -statements, but in real applications, checks can
be implemented using, for instance, database queries and

regular expressions. Precise modeling of such constructs
is left for future work.

The other way to evaluate the false negatives rate of
Waler would be to run it on an application that has some
known logic vulnerabilities. Unfortunately, we found a
very limited number of such applications to be available,
and none of them met all of our current selection criteria
for test applications.

6 Related Work

Our work is related to several areas of active research,
such as deriving application specifications, using specifi-
cations for bug finding, and vulnerability analysis of web
applications. However, due to the limited space avail-
able, in this section we will only highlight the research
that, in our opinion, is most related.

First, our approach is related to a number of ap-
proaches that combine dynamically-generated invariants
with static analysis. For example, Nimmer and Ernst ex-
plore how to integrate dynamic detection of program in-
variants and their static verification on a set of simple
stand-alone applications using Daikon and the ESC/Java
static checker [27]. The invariants that are verified by
the static checker on all paths are determined to be the
real invariants for an application, and the invariants that
could not be statically verified are shown as warnings
to the user. The main goal of this research is to show
the feasibility of the proposed approach rather than to
find bugs. Another work that explores benefits of com-
bining Daikon-generated invariants with static analysis is
the DSD-Crasher tool by Csallner and Smaragdakis [8].
The main goal of this system is to decrease the false pos-
itives rate of a static bug-finding tool for stand-alone Java
applications. Dynamically-generated invariants are used
by the CnC tool (also based on ESC/Java) as assump-
tions on methods arguments and return values to narrow
the domain searched by the static analyzer. In Waler, in
contrast to both approaches, we do not assume that the
invariants generated by Daikon are correct, and we only
consider them to be clues for vulnerability analysis. In-
troducing our two additional techniques to differentiate
between real and spurious invariants allows us to avoid
many of the false positives due to limitations of the dy-
namic analysis step.

Our work is also related to the research on using an
application’s code to infer application-specific properties
that can be used for guided bug finding. To the best of our
knowledge, one of the first techniques that uses inferred
specifications to search for application-specific errors is
the work by Engler et al. [10]. Their goal is similar to
ours in the sense that both works are trying to identify vi-
olations of likely invariants in applications. The way it is
achieved, though, is very different in the two approaches.

15

158 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 159

While we infer specifications from dynamic analysis and
check for possible violations in the code via symbolic ex-
ecution, Engler’s work carries out all the steps via static
analysis: a set of given templates is used to extract a set
of “beliefs” from the code. Afterward, patterns contra-
dicting these “beliefs” are identified in the code. While
some of the templates may be useful for web applica-
tions, most of the bugs they try to identify are relative to
kernel and memory-unsafe programming languages op-
erations. Moreover, we believe that having an additional
source of information (i.e., dynamic traces) for applica-
tion invariants makes our system more robust.

There is also recent work that uses statistical analysis
and program code to learn certain properties of the appli-
cation, with the goal of searching for application-specific
bugs. For example, Kremenek et al. propose a statistical
approach, based on factor graphs, to automatically infer
which program functions return or claim ownership of
a resource [21]. The AutoISES tool applies the idea of
using statically-inferred specifications to the detection of
vulnerabilities in the implementations of access control
mechanisms for OS-level code [34]. The differences be-
tween these approaches and ours are similar to the ones
with the Engler’s work. Both approaches use statistical
analysis to find violations of properties that must hold
for all program points, and they do not require reasoning
about the values of variables.

Learning invariants through dynamic analysis has al-
ready found application security purposes, mostly in or-
der to train an Intrusion Detection System. Baliga et
al. [4] employ Daikon to extract invariants on kernel
structures from periodic memory snapshot of a non-
compromised running system. After the training phase,
these learned invariants are used to detect the presence of
kernel rootkits that may have altered vital kernel struc-
tures. A conceptually similar approach has also been ap-
plied by Bond et al. [6] to Java code through instrumen-
tation of the Java Virtual Machine. An initial learning
phase is employed to record the calling context and call
history for security-sensitive functions. Afterwards, the
collected information is used to identify function invoca-
tions with an anomalous context. An anomalous context
or history is considered an indicator of an attempt to di-
vert the intended flow of the application, possibly by the
exploitation of a logic error in the code. In that case, an
alert is triggered or the execution is aborted.

Although both the techniques proposed by Baliga and
Bong share with ours an initial dynamic learning phase,
how the information is leveraged differs. For example,
unlike the two approaches above, we do not assume that
the likely invariants generated by the first phase are real
invariants, rather we simply use them as hints for further
analysis. In addition, while in our second phase we try to
identify logic errors in the code by means of static anal-

ysis, they instead try to detect attacks being performed
on a live system. Such run-time detection imposes an
overhead, which results in the requirement for dedicated
hardware for [4] and a 2%-9% penalty in performance
for [6]. The authors of the latter work, in particular,
traded some coverage of the code (limiting to security-
related functions) in order to retain acceptable perfor-
mance. Even though they focused on logic errors, a di-
rect comparison with their evaluation environment was
not possible, because of the different targets of the anal-
ysis. More precisely, they looked for bugs in the Java
libraries triggered by Java applets, rather than bugs in
Java-based web applications.

Another direction of research deals with protection of
web service components against malicious and/or com-
promised clients. Guha et al. [15] employ static anal-
ysis on JavaScript client code in order to extract an ex-
pected client behavior as seen by the server. The server is
then protected by a proxy that filters possibly malicious
clients which do not conform to the extracted behavior.

Finally, our work is related to a large corpus of work,
such as [16, 5, 7, 17, 18, 22, 26, 30, 33, 36, 23, 29], in the
area of vulnerability analysis of web applications. How-
ever, most of these research works focus on the detec-
tion of or the protection against input-validation attacks,
which do not require any knowledge of application-
specific rules.

Among the approaches cited above, Swaddler [7] and
MiMoSA [5] are tools developed by our group that look
for workflow violation attacks in PHP-based web appli-
cations, using a number of different techniques (includ-
ing Daikon-generated invariants). However, Waler’s ap-
proach is more general and is able to identify any kind of
a policy violation that is either reflected by a check in the
application or that violates a consistency constraint.

Our work is also related to the QED tool presented
in [23]. QED uses concrete model checking (with a set
of predefined concrete inputs) to identify taint-based vul-
nerabilities in servlet-based applications. The main sim-
ilarity between the two tools is that they both use a set
of heuristics to limit an application’s state space during
model checking. Heuristics used by QED, however, are
more specific to the taint-propagation problem and re-
quire an additional analysis step.

7 Conclusions

In this paper, we have presented a novel approach to the
identification of a class of application logic vulnerabil-
ities, in the context of web applications. Our approach
uses a composition of dynamic analysis and symbolic
model checking to identify invariants that are a part of the
“intended” program specification, but are not enforced
on all paths in the code of a web application.

16

We implemented the proposed approaches in a tool,
called Waler, that analyzes servlet-based web applica-
tions. We used Waler to identify a number of previously-
unknown application logic vulnerabilities in several real-
world applications and in a number of senior undergrad-
uate projects.

To the best of our knowledge, Waler is the first tool
that is able to automatically detect complex web appli-
cation logic flaws without the need for a substantial hu-
man (annotation) effort or the use of ad hoc, manually-
specified heuristics.

Future work will focus on extending the class of ap-
plication logic vulnerabilities that we can identify. In ad-
dition, we plan to extend Waler to deal with a number of
frameworks, such as Struts and Faces. This will require
creating “symbolic” versions of the libraries included in
these frameworks. This initial development effort will
allow us to apply our tool to a much larger set of web ap-
plications, since most large-scale, servlet-based web ap-
plications rely on one of these popular frameworks, and
the lack of their support in Waler was a serious limit-
ing factor when choosing real-world applications for the
evaluation described in this paper.

8 Acknowledgments

We want to thank David Evans, Vinod Ganapathy,
Somesh Jha, and a number of anonymous reviewers who
gave us very useful feedback on a previous version of
this paper.

References
[1] AMMONS, G., BODÍK, R., AND LARUS, J. Mining specifica-

tions. In Proceedings of the 29th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages (2002), ACM,
pp. 4–16.

[2] ANAND, S., PASAREANU, C., AND VISSER, W. JPF-SE: A
Symbolic Execution Extension to Java PathFinder. In Proceed-

ings of the International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS) (2007),
Springer.

[3] ANLEY, C. Advanced SQL Injection in SQL Server Applica-
tions. Tech. rep., Next Generation Security Software, Ltd, 2002.

[4] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Automatic In-
ference and Enforcement of Kernel Data Structure Invariants. In
Computer Security Applications Conference, 2008. ACSAC 2008.

Annual (2008), pp. 77–86.

[5] BALZAROTTI, D., COVA, M., FELMETSGER, V., AND VIGNA,
G. Multi-module Vulnerability Analysis of Web-based Applica-
tions. In Proceedings of the ACM conference on Computer and

Communications Security (CCS) (2007), pp. 25–35.

[6] BOND, M., SRIVASTAVA, V., MCKINLEY, K., AND
SHMATIKOV, V. Efficient, Context-Sensitive Detection of Se-
mantic Attacks. Tech. Rep. TR-09-14, UT Austin Computer Sci-
ences, 2009.

[7] COVA, M., BALZAROTTI, D., FELMETSGER, V., AND VIGNA,
G. Swaddler: An Approach for the Anomaly-based Detection of
State Violations in Web Applications. In Proceedings of the Inter-

national Symposium on Recent Advances in Intrusion Detection

(RAID) (2007), pp. 63–86.

[8] CSALLNER, C., SMARAGDAKIS, Y., AND XIE, T. Article 8 (37
pages)-DSD-Crasher: A Hybrid Analysis Tool for Bug Finding.
In ACM Transactions on Software Engineering and Methodology

(TOSEM) (April 2008).

[9] The Daikon invariant detector. http://groups.csail.
mit.edu/pag/daikon/.

[10] ENGLER, D., CHEN, D., HALLEM, S., CHOU, A., AND CHELF,
B. Bugs as deviant behavior: a general approach to inferring
errors in systems code. ACM SIGOPS Operating Systems Review

35, 5 (2001), 57–72.

[11] ERNST, M., PERKINS, J., GUO, P., MCCAMANT, S.,
PACHECO, C., TSCHANTZ, M., AND XIAO, C. The Daikon
System for Dynamic Detection of Likely Invariants. Science of

Computer Programming 69, 1–3 (Dec. 2007), 35–45.

[12] FOSSI, M. Symantec Global Internet Security Threat Report.
Tech. rep., Symantec, April 2009. Volume XIV.

[13] FOUNDATION, T. A. S. Apache Tomcat. http://tomcat.
apache.org/.

[14] GROSSMAN, J. Seven Business Logic Flaws That Put Your
Website at Risk. http://www.whitehatsec.com/home/
assets/WP bizlogic092407.pdf, September 2007.

[15] GUHA, A., KRISHNAMURTHI, S., AND JIM, T. Using static
analysis for Ajax intrusion detection. In Proceedings of the 18th

international conference on World wide web (2009), ACM New
York, NY, USA, pp. 561–570.

[16] HALFOND, W., AND ORSO, A. AMNESIA: Analysis and Moni-
toring for NEutralizing SQL-Injection Attacks. In Proceedings of

the International Conference on Automated Software Engineer-

ing (ASE) (November 2005), pp. 174–183.

[17] HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D.,
AND KUO, S.-Y. Securing Web Application Code by Static
Analysis and Runtime Protection. In Proceedings of the Interna-

tional World Wide Web Conference (WWW) (May 2004), pp. 40–
52.

[18] JOVANOVIC, N., KRUEGEL, C., AND KIRDA, E. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities. In
Proceedings of the IEEE Symposium on Security and Privacy

(May 2006).

[19] Java pathfinder. http://javapathfinder.
sourceforge.net/.

[20] KLEIN, A. Cross Site Scripting Explained. Tech. rep., Sanctum
Inc., June 2002.

[21] KREMENEK, T., TWOHEY, P., BACK, G., NG, A., AND EN-
GLER, D. From Uncertainty to Belief: Inferring the Specification
Within. In Proceedings of the Symposium on Operating Systems

Design and Implementation (OSDI) (November 2006), pp. 161–
176.

[22] LIVSHITS, V., AND LAM, M. Finding Security Vulnerabilities
in Java Applications with Static Analysis. In Proceedings of the

USENIX Security Symposium (August 2005), pp. 271–286.

[23] MARTIN, M., AND LAM, M. Automatic Generation of XSS
and SQL Injection Attacks with Goal-Directed Model Checking.
In Proceedings of the USENIX Security Symposium (July 2008),
pp. 31–43.

[24] MICROSYSTEMS, S. Java Servlet Specification Version
2.4. http://java.sun.com/products/servlet/
reference/api/index.html, 2003.

17

160 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 161

[25] MIDDLEWARE, O. W. O. S. ASM. http://asm.
objectweb.org/.

[26] NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D., AND
EVANS, D. Automatically Hardening Web Applications Using
Precise Tainting. In Proceedings of the International Information

Security Conference (SEC) (May 2005), pp. 372–382.

[27] NIMMER, J., AND ERNST, M. Static verification of dynamically
detected program invariants: Integrating Daikon and ESC/Java.
In Proceedings of RV’01, First Workshop on Runtime Verification

(2001).

[28] OPEN SOURCE SOFTWARE. SourceForge. http://
sourceforge.net.

[29] PALEARI, R., MARRONE, D., BRUSCHI, D., AND MONGA, M.
On race vulnerabilities in web applications. In Proceedings of the

Conference on Detection of Intrusions and Malware & Vulnera-

bility Assessment (DIMVA) (July 2008).

[30] PIETRASZEK, T., AND BERGHE, C. V. Defending against In-
jection Attacks through Context-Sensitive String Evaluation. In
Proceedings of the International Symposium on Recent Advances

in Intrusion Detections (RAID) (2005), pp. 372–382.

[31] SELENIUM DEVELOPMENT TEAM. Selenium: Web Application
Testing System. http://seleniumhq.org.

[32] SPETT, K. Blind SQL Injection. Tech. rep., SPI Dynamics, 2003.

[33] SU, Z., AND WASSERMANN, G. The Essence of Command
Injection Attacks in Web Applications. In Proceedings of the

Annual Symposium on Principles of Programming Languages

(POPL) (2006), pp. 372–382.

[34] TAN, L., ZHANG, X., MA, X., XIONG, W., AND ZHOU, Y.
AutoISES: Automatically Inferring Security Specifications and
Detecting Violations. In Proceedings of the USENIX Security

Symposium (July 2008), pp. 379–394.

[35] VISSER, W., HAVELUND, K., BRAT, G., PARK, S., AND
LERDA, F. Model Checking Programs. Automated Software En-

gineering Journal 10, 2 (Apr. 2003).

[36] XIE, Y., AND AIKEN, A. Static Detection of Security Vulner-
abilities in Scripting Languages. In Proceedings of the USENIX

Security Symposium (August 2006).

Notes
1As a consequence of that, JPF includes constraints that are no

longer relevant to the current execution into the application’s state, pre-
venting it from detecting otherwise equivalent states.

2Note that by using the simple strategy of removing all constraints
that reference no longer live variables, we might potentially lose some
of the implied constraints in the PC. This can reduce the effectiveness
of the reduction of the state space, but it does not interfere with the
soundness of the analysis.

3The names of the variables are generated as explained in Sec-
tion 4.1.

4When session data is accessed on a path, the PCA records that
fact, along with the key that was used. This is done by storing the
item session.<key> in an attribute of the memory location that holds
the reference to the object. The information is then propagated by JPF
with each bytecode instruction that accesses this memory location.

5A similar vulnerability was found by Waler in the JspCart applica-
tion. We use Jebbo as a simpler example.

6Note that our tool works on Java bytecode rather than source code.
Therefore, loop exit conditions are implicitly included, as they are im-
plemented in terms of IF opcodes.

7The code for the JspCart application is located in the SourceForge
repository under the name B2B eCommerce Project.

18

Baaz: A System for Detecting Access Control Misconfigurations

Tathagata Das

Microsoft Research India

tathadas@microsoft.com

Ranjita Bhagwan

Microsoft Research India

bhagwan@microsoft.com

Prasad Naldurg

Microsoft Research India

prasadn@microsoft.com

Abstract

Maintaining correct access control to shared resources

such as file servers, wikis, and databases is an important

part of enterprise network management. A combination

of many factors, including high rates of churn in organi-

zational roles, policy changes, and dynamic information-

sharing scenarios, can trigger frequent updates to user

permissions, leading to potential inconsistencies. With

Baaz, we present a distributed system that monitors up-

dates to access control metadata, analyzes this informa-

tion to alert administrators about potential security and

accessibility issues, and recommends suitable changes.

Baaz detects misconfigurations that manifest as small in-

consistencies in user permissions that are different from

what their peers are entitled to, and prevents integrity and

confidentiality vulnerabilities that could lead to insider

attacks. In a deployment of our system on an organiza-

tional file server that stored confidential data, we found

10 high level security issues that impacted 1639 out of

105682 directories. These were promptly rectified.

1 Introduction

In present-day enterprise networks, shared resources

such as file servers, web-based services such as wikis,

and federated computing resources are becoming in-

creasingly prevalent. Managing such shared resources

requires not only timely availability of data, but also cor-

rect enforcement of enterprise security policies.

Ideally, all access should be managed through a per-

fectly engineered role-based access control (RBAC) sys-

tem. Individuals in an organization should have well-

defined and precise roles, and access control to all re-

sources should be based purely on these roles. When

a user changes her role, her access rights to all shared

resources should automatically change according to the

new role with immediate effect.

In reality though, several organizations use disjoint ac-

cess control mechanisms which are not kept consistent.

Often, access is granted to individual users rather than to

appropriate roles. To make matters worse, administrators

and resource owners manually provide and revoke access

on an as-needed and sometimes ad-hoc basis. As access

requirements and rights of individuals in the enterprise

change over time, it is widely recognized [19, 12, 5] that

maintaining consistent permissions to shared resources

in compliance with organizational policy is a significant

operational challenge.

Incorrect access permissions, or access control mis-

configurations, can lead to both security and accessibility

issues. Security misconfigurations arise when a user who

should not have access to a certain resource according to

organizational policy, does indeed have access. Accord-

ing to a recent report [12], 50 to 90% of the employees in

4 large financial organizations had permissions in excess

to what was entitled to their organizational role, opening

a window of opportunity for insider attacks that can lead

to disclosure of confidential information for profit, data

theft, or data integrity violations. The 2007 Price Water-

house Cooper survey on the global state of information

security found that 69% of database breaches were by

insiders [24]. On the other hand, accessibility misconfig-

urations arise when a user who should legitimately have

access to an object, does not. Such misconfigurations, in

addition to being annoyances, impact user productivity.

Security and accessibility misconfigurations occur due

to several reasons. One contributing factor is the high

rate of churn in organizations, and in organizational roles

among existing employees, which necessitate changes

in access permissions. In the same report [12], it was

estimated that in one business group of 3000 people,

1000 organizational changes were observed over a pe-

riod of few months. Another factor is the dynamic na-

ture of information sharing workflows, where employ-

ees work together across organizational groups on short-

term collaborations. When permissions are granted to

shared resources for such collaborations, they are rarely

revoked. In longer time-scales, organizations also update

their policies in response to changing protection needs.

Very often, these policies are not explicitly written down

and system administrators, who have an operational view

of security, may not have a global view of organizational

needs, and may not be able to make these changes in a

timely manner.

To make matters worse, very often, no complete high-

level manifests exist, which correctly assign access per-

missions for a resource according to organizational pol-

icy. Consequently, given the large numbers of shared re-

sources, different access control mechanisms and enter-

prise churn, it is difficult for administrators to manually

162 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 163

manage access control.

To address these limitations of existing access control

management systems, we present Baaz, a system that

monitors access control metadata of various shared re-

sources across an enterprise, finds security and acces-

sibility misconfigurations using fast and efficient algo-

rithms, and suggests suitable changes.

To our knowledge, Baaz is the first system that helps

an administrator audit access control mechanisms and

discover critical security and accessibility vulnerabilities

in access control without using a high-level policy mani-

fest. To do this, Baaz uses two novel algorithms: Group

Mapping, which correlates two different access control

or group membership datasets to find discrepancies, and

Object Clustering, which uses statistical techniques to

find slight differences in access control between users in

the same dataset.

We do not claim that techniques we use in Baaz will

find all misconfigurations, as the notion of policy itself is

not defined in most of our deployment settings. Also,

given that access permissions change very organically

over time and several of these changes are linked to ad-

hoc and one-off access requirements, it is very difficult

for an automated system to deduce the exact and com-

plete list of all misconfigurations. However, our deploy-

ment experiences with real datasets have shown Baaz to

be very effective at flagging high-value security and ac-

cessibility misconfigurations.

The operational context and main characteristics of

Baaz are:

• No assumption of well-defined policy: Baaz does

not require a high-level policy manifest, though it

can exploit one if it exists. Rather than checking for

“correct” access control, it checks for “consistent”

access control by comparing users’ access permis-

sions and memberships across different resources.

• Proactive vs Reactive: Baaz takes as input static

permissions, such as access control lists, rather than

access logs. This approach helps fix misconfigura-

tions before they can be exploited, reducing chances

of insider attacks. However, the system can be eas-

ily augmented to process access logs if required.

• Timeliness: Baaz continuously monitors access

control, so it can be configured to detect and report

misconfigurations on sensitive data items as they

occur, or just present periodic reports for less sensi-

tive data.

We present results from Baaz deployments on three

heterogeneous resources across two organizations, We

interacted with system administrators of both organiza-

tions to validate the reports and found a number of high-

value security and accessibility misconfigurations, some

of which were fixed immediately by the respective sys-

tem administrators. In all these organizations, no pol-

icy manifest was readily available. Before we deployed

Baaz, these administrators had to examine thousands of

individual or group permissions to validate whether these

permissions were intended. The utility of Baaz can be

gauged to some extent from some comments we received

from administrators:

“This report is very useful. I didn’t even know

these folks had access!”

“This output tells me how many issues there

are. Now I HAVE to figure out what to do in

the future to handle access control better.”

“I did not realize that our policy change had

not been implemented!”

Our Baaz deployment in one organization found 10 se-

curity and 8 accessibility misconfigurations in confiden-

tial data stored on a shared file server. The security mis-

configurations were providing 7 users unwarranted ac-

cess to 1639 directories.

The rest of the paper is organized as follows: Section 2

describes our problem scope and assumptions. Section 3

presents the system architecture of Baaz, as well as an

overview of our algorithm workflow. Section 4 explains

our Matrix Reduction procedure for generating summary

statements and reference groups, followed by Sections 5

and 6, in which we present our Group Mapping and Ob-

ject Clustering algorithms. In Section 7, we outline more

detailed issues we encountered while designing the sys-

tem, and in Section 8, we describe our implementation,

deployment and evaluation of the Baaz prototype. Re-

lated work is presented in Section 9, and Section 10 sum-

marizes the paper.

2 System Assumptions

The main goal of Baaz is to find misconfigurations in ac-

cess control permissions (as in ACLs) typically caused

by inadvertent misconfigurations, which are difficult for

an administrator to detect and rectify manually. We

do not detect misconfigurations of access permissions

caused by manipulation by active adversaries. We as-

sume that the inputs to our tool, such as the ACLs and

well-known user groups, are not tampered. In many or-

ganizations, only administrators or resource owners will

be able to view and modify these metadata in the first

place, so this assumption is reasonable.

In our target environment, a definition of correct pol-

icy is not explicitly available. Therefore, rather than

checking for correct access control, which we believe is

difficult, the system checks for consistent access control.

Essentially, Baaz finds relatively small inconsistencies in

�����������

�����

����������

�������

�������

�����	������

������

���

���������

������

��������

����������

�����

�������

���������

������

�������

������

����������

�����������������

�������������������

��������������������

������������������

����������������

����������

���

���

���
���� ������

Figure 1: Baaz System Architecture

user permissions by comparing different sets of access

control lists, or by comparing user permissions within

the same access control list. We assume that large differ-

ences in access control are not indicative of misconfig-

urations. Clearly, our definition of small inconsistencies

and large differences (provided in Sections 5 and 6) will

govern the set of misconfigurations we find. It is possi-

ble that this may lead to the system missing some gen-

uine problems which is an inherent limitation. In fact, as

described in Section 8.2, our deployment of Baaz missed

detecting some valid misconfigurations. However, ad-

ministrators can tune these parameters to keep the output

concise and useful.

3 System Overview

In this section, we present an overview of the system

components of Baaz. At the heart of our system, as

shown in Figure 1, is a central server that collects ac-

cess permission and membership change events from dis-

tributed stubs attached to shared resources. This server

runs the misconfiguration detection algorithm when it re-

ceives these change events, and generates a report. An

administrator/resource owner can decides whether each

misconfiguration tuple that Baaz reports is valid, invalid,

or an intentional exception. Administrators/owners will

need to fix the valid misconfigurations manually. We

now provide an overview of the client stubs and server

functions.

3.1 Baaz Client Stubs

Baaz stubs continuously monitor access control permis-

sions on shared resources such as file servers, wikis,

version-control systems, and databases, and they monitor

updates to memberships in departmental groups, email

lists, etc. Each stub translates the access permissions for

a shared resource into a binary relation matrix, an ex-

ample of which is shown in Figure 2. Each such matrix

captures relations specific to the resource that the stub

runs on. For example, a file server stub captures the user-

file access relationship, relating which users can access

given files. On a database that stores organizational hi-

erarchy, the Baaz stubs capture the user-group member-

ship relation, relating which users are members of given

groups. We shall refer to an element in the relation ma-

trix M as Mi,j . A “1” in the ith row and the jth column

of M indicates the relation holds between the entity at

row i with the entity at column j, e.g., user i can read file

j, or user i belongs to group j, whereas a “0” indicates

that the relation does not hold.

Each Baaz stub sends Mi,j to the Baaz server either

periodically, or in response to a change in the relation-

ship. Section 7.2 further describes various issues that

we need to consider while designing and implementing

stubs.

3.2 Baaz Server

At initial setup, an administrator registers pairs of sub-

ject datasets and reference datasets with the server,

which form inputs to the server’s misconfiguration detec-

tion algorithm. The subject dataset is the access control

dataset which an administrator wants to inspect for mis-

configurations. A reference dataset is a separate access

control or group membership dataset that Baaz treats as

a baseline against which it compares the subject. In a

sense, one can view the subject dataset as the implemen-

tation, and the reference dataset as an approximate pol-

icy, and the process of misconfiguration detection com-

pares the implementation with the approximate policy.

Figure 2 shows an example subject dataset relation

matrix of ten users (labeled as A to J) and 16 objects

(labeled as 1 to 16), and Figure 3 shows an example ref-

erence dataset relation matrix of the same set of users

164 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 165

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1

F 1 1 1 1 1 1 1

G 1 1 1 1 1 1 1

H 1 1 1 1 1

I 1

J

Figure 2: Example subject dataset’s relation matrix

� � � �

� � �

� � �

� � � � �

� � �

� �

� �

� �

� �

�

� �

Figure 3: Example reference dataset’s relation matrix

and 4 groups (labeled as W to Z). We will use these ex-

ample inputs to illustrate our misconfiguration detection

algorithm.

Administrators can register multiple subject-reference

pairs with the server, and each pair is processed inde-

pendently, with the server periodically generating one

misconfiguration report for each. If any changes are de-

tected in matrices corresponding to a registered subject-

reference pair, the server runs the misconfiguration de-

tection algorithm, which has three steps:

Matrix Reduction: In the first step, the server re-

duces the subject and reference datasets’ relation matri-

ces to summary statements that capture sets of users that

have similar access permissions and group memberships.

Each summary statement can be thought of as a high-

level statement of policy intent, gleaned entirely from the

low-level relation matrices. We explain this procedure in

Section 4.

Group Mapping: In this step, our goal is to uncover

access permissions in the subject dataset that seem in-

consistent with patterns in the reference dataset. Con-

sider an example where the subject is a file server, and

a reference is a list of departmental groups, as shown in

Figure 1. Say a directory hierarchy on the file server can

be accessed by all members in the human resources de-

partment in an organization, and by only one member of

the facilities department. This has a high likelihood of

being a security misconfiguration. Section 5 explains

this procedure.

Object Clustering: Finally, in the Object Clustering

phase, Baaz finds potential inconsistencies in the subject

dataset by comparing summary statements for the sub-

ject that are “similar”, but not the same. The main idea is

that a user whose access permissions differ only slightly

from that of a larger set of users could potentially be a

misconfiguration. For example, if 10 users in the subject

dataset can access a given set of 100 files, but say an 11th

user can access only 99 of these files, Baaz flags a candi-

date accessibility misconfiguration. We describe this in

Section 6.

The system reports security candidates as “A user set

U MAY NOT need access to object set O” . Accessibility

candidates are of the form “A user set U MAY need ac-

cess to object set O” At this point, the administrator will

need to identify reported misconfiguration candidates as

“valid”, “invalid”, or “intentional exceptions”, which are

defined as follows.

Valid: The misconfiguration candidate is correct, and the

administrator needs to make the recommended changes.

Invalid: The misconfiguration candidate is incorrect,

and the administrator should not make the recommended

changes.

Intentional Exception: The administrator should not

make the recommended changes, but the candidate pro-

vides useful information to the administrator.

The intentional exception category captures all re-

ported misconfigurations that correspond to exceptions

which appear out of the ordinary but are legitimate. Ad-

ministrators found these exceptions to be useful as they

help check compliance and may, over time, become valid

misconfigurations. An example of an intentional excep-

tion is a user who has just changed roles. To help with

the transition, he still has access to some documents re-

lated to his previous role. Hence while his access should

not be revoked at the current time, it should probably be

in the near future.

The server archives candidates marked as invalid, and

does not explicitly display them in future reports. The re-

ports will, however, display intentional exceptions. Sec-

tion 7.1 describes more specific issues related to server

design and evaluation.

One of the important properties of our algorithms is

that the misconfiguration candidates converge to a steady

state. That is, if we run our Group Mapping and Ob-

ject Clustering algorithms repeatedly starting from a

given raw configuration, and if we resolve our miscon-

figurations as suggested, we will eventually (and fairly

quickly) reach a state where no new candidates appear.

This guarantee is what we call internal consistency. We

will illustrate this through our examples in Sections 4 and

� � � � � � � � � �� �� �� �� �� �� ��

� � � � � �

� � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � �

 �

�

Subject Dataset Summary Statements

1. {C,D} → {15, 16}
2. {C,D,E, F,G} → {6, 7}
3. {A,B, C,D} → {9, 10, 11, 12}
4. {A,B, C,D, I} → {13}
5. {C,D,E, F,G,H} → {1, 2, 3, 4, 5}

Figure 4: The result of the matrix reduction step on our

example subject dataset’s matrix.

5. The detailed proof is available on our webpage 1. In

the next three sections, we describe the server algorithm

in detail.

4 Matrix Reduction

We apply the matrix reduction procedure on the rela-

tion matrices of both the subject and reference datasets.

The goal of this step, in the context of the subject

dataset, is to find summary statements relating sets of

users (user-sets) that can access the same sets of ob-

jects (object-sets). Given a relation matrix, different

kinds of summaries can be generated. Role mining al-

gorithms [22, 25, 18, 28, 10], for example, try to find

minimal overlapping sets of users and objects that have

common permissions. In contrast, we find user-sets that

have access to disjoint object-sets, as required by our

misconfiguration detection algorithms. For the reference

dataset, we find group membership summaries in a simi-

lar manner.

4.1 Subject Dataset

Our algorithm takes the relation matrix for the subject

dataset as input, and examines each column, grouping

together all objects that have identical column vectors.

Essentially, it groups all objects that are accessible to an

identical set of users.

Figure 4 shows the summary statements that our Ma-

trix Reduction algorithm finds for the example shown

earlier in Figure 2. Each greyscale coloring within the

matrix represents a distinct summary statement. The list

of summary statements that our algorithm yields is also

shown in the figure. The first statement arises from users

C and D having identical access rights, since they both

1http://research.microsoft.com/baaz

� � � �

� � �

� � �

� � � � �

� � �

� �

� �

� �

� �

�

� �

Reference Dataset Summary Statements

1. G1 : {C,D,E, F,G,H, J} → {X}
2. G2 : {A,B, C} → {W,Y }
3. G3 : {C,D} → {Z}

Figure 5: The result of the matrix reduction step on our

example reference dataset’s matrix.

have access to objects 15 and 16, and to no other object.

We therefore interpret this in the following way: Users

C and D have exclusive access to objects 15 and 16, i.e.

no other user has access to these objects.

The Baaz server finds all such summary statements to

completely capture the matrix. Next, it explicitly filters

out all summary statements that involve only one user

since our algorithm only looks for misconfigurations in-

volving objects that are shared between more than one

user. Figure 6 presents this algorithm in detail.

Complexity: Since the algorithm simply involves one

sweep through the subject’s relation matrix, grouping to-

gether identical columns, it runs in O(nm) time, where n
is the number of users in the matrix and m is the number

of objects.

EXTRACT SUMMARY STATEMENTS

Input: M {binary relation matrix of all users U and all objects O}
Output: S {set of summary statements [Uk → Ok]}
Uses: H {hashtable, indexed by sets of users, stores sets of ob-
jects}
1: S = φ,H = φ
2: for all o ∈ O do
3: U = Get User Set(M, o) // gets the set of users who can

access o
4: if H.contains(U) then
5: OU = H.get(U)
6: H.put(U,OU

⋃
{o})

7: else
8: H.put(U, {o})
9: end if

10: end for
11: for all Uk ∈ H.keys do
12: Ok = H.get(Uk)
13: S = S

⋃
{[Uk → Ok]}

14: end for
15: return S

Figure 6: Algorithm to extract summary statements

given the users and the access control matrix

166 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 167

C, D

G3

C, D, E, F, G

G1 - H - J

A, B, C, D

G2

A, B, C, D, I

G2

C, D, E, F, G, H

G1 - JD D, I

User-set 1 User-set 2 User-set 3 User-set 4 User-set 5

Figure 7: The result of the Group Mapping algorithm on the example subject matrix.

4.2 Reference Dataset

We apply the same process on the matrix for the refer-

ence dataset. The summary statements that our algo-

rithm finds for the reference dataset relation matrix are

shown in Figure 5. We call the user-set in each summary

statement obtained from the reference dataset a reference

group. The reference groups for our example are:

G1 = {C,D,E, F,G,H, J}
G2 = {A,B,C}
G3 = {C,D}

The objects W,X, Y, Z are merely used to find the ref-

erence groups, and are not used by future phases of our

algorithm.

5 Group Mapping

In this section, we describe the Group Mapping algo-

rithm, that takes as input the user-sets representing the

subject dataset, and the reference groups discovered from

the reference dataset, and finds the best mapping from the

each user-set to the reference groups. The server uses

these maps to flag outliers (users) as misconfiguration

candidates. We first explain why Group Mapping is a

useful step in finding misconfigurations. Next, we ex-

plain how Group Mapping works on our example data,

and then we present the algorithm in detail.

5.1 Algorithm

Now we describe the Group Mapping algorithm in more

detail. Table 1 summarizes the list of symbols and vari-

ables we use here, and in the description of the Object

Clustering algorithm.

5.2 Intuition and Definitions

The Group Mapping algorithm for finding misconfigura-

tions relies on the following two assumptions:

1. Users in the same reference group should have same

access permissions.

2. Given a set of reference groups that have the same

access permissions, any user who is not a member

of these reference groups should not have the same

access permissions as users within these reference

groups.

Based on these two assumptions, we define misconfig-

uration candidates for the algorithm to find as follows:

Accessibility (based on Assumption 1): If a majority

of the members of a reference group all have ac-

cess to a set of objects, and a minority do not have

access to the same set of objects, then we flag the

users without access as accessibility misconfigura-

tion candidates.

Security (based on Assumption 2): Of all users in a

user-set, if a majority of them form one or more ref-

erence groups, and a minority of users do not form

any reference groups, we flag the minority of users

as security misconfiguration candidates.

Following these definitions, the first thing to do is to

find a mapping from user-sets to reference groups. How-

ever, since we are looking for outliers, we do not restrict

the algorithm to finding an exact and complete mapping.

Our goal is to find the “best-effort” mapping from user-

sets to reference groups. In this process, some users in

the user-sets may not map to any reference group, or a

user-set may map to a reference group that has some ex-

traneous users, who are not part of the user-set.

To illustrate with our running example, our Group

Mapping algorithm maps the five user-sets in the sum-

mary statements we found in Figure 4 to the reference

groups found in the Section 4.2 as shown in Figure 7.

For the user-set of summary statement 1, the mapping is

exact. For the user-set for statement 2, the best map is

G1, which covers all users but also includes users H and

J who are not in the user-set. For the user-set in sum-

mary statement 4, the best map is G2, while users D and

I remain unmapped.

From this mapping, using the assumptions and defini-

tions stated above, we infer the following misconfigura-

tion candidates:

1. From summary statement 2, users H and J MAY

need access to objects 6, 7.

2. From summary statement 3, user D MAY NOT need

access to objects 9, 10, 11, and 12.

3. From summary statement 4, users D and I MAY

NOT need access to object 13.

4. From summary statement 5, user J MAY need access

to objects 1, 2, 3, 4, and 5.

Symbol Definition

n number of users

m number of objects

l number of summary statements/user-sets from subject dataset

g number of reference groups from reference dataset

Ui → Oi ithsummary statement for subject, with Ui being the user-set and Oi being the object-set

Gj jth reference group

Ci set of groups used to cover user-set Ui

Ti list of uncovered users in user-set Ui after covering it by Ci

∆Gj list of users in Gj but not in user-set Ui, where Gj ∈ Ci

Table 1: Table summarizing all symbols used to explain Group Mapping and Object Clustering

The second and third are security misconfiguration

candidates, while the first and fourth are accessibility

misconfiguration candidates. User-set 1 does not gen-

erate a misconfiguration candidate because the mapping

is exact.

Fixing these misconfigurations will improve the map-

ping from user-sets to reference groups in future runs of

the algorithm. For example, if the administrator removes

user D’s access to objects 9, 10, 11 and 12, the next time

the algorithm runs, the summary statement 3 will reduce

to {A,B,C} → {9, 10, 11, 12}. Group mapping will

exactly map the new user-set to G2, and hence the num-

ber of misconfiguration candidates will reduce. This is

what we mean by our algorithm reaching an internally

consistent state, as mentioned in Section 3.2.

Note that in flagging these candidates, we may have

missed some misconfigurations. For example, it is cer-

tainly possible that users C and D (forming group G3)

should not have access to objects 15 and 16. But given

that there is no definition of correct policy, a complete

and correct list of misconfigurations cannot be expected.

However, Baaz does ensure that the permissions are con-

sistent across user-sets and the reference groups they

map to.

Baaz can use role mining algorithms in the Matrix Re-

duction step to find possibly a larger number of sum-

mary statements. However, our definitions of miscon-

figuration and our algorithms hinge on the property of

object-sets being disjoint, without which the system may

find conflicting misconfiguration candidates. For ex-

ample, if summary statement 3 included object 15, i.e.

{A,B,C,D} → {9, 10, 11, 12, 15}, the object 15 would

be common to the object-sets of summary statements 1

and 3. Then, from summary statement 3, Group Mapping

would suggest that D should not have access to object

15, but the exact Group Map for summary statement 1

indicates that D should have access to object 15. Hence,

while Baaz could use role mining algorithms, and lever-

age richer and larger numbers of user-sets, it would need

to include more logic to resolve such conflicts. Instead,

we go with the approach of using the simple Matrix Re-

duction algorithm that provides object-disjoint user-sets.

In spite of its procedural limitations, administrators

and resource owners in various domains have found

Baaz’s techniques very useful in finding genuine high-

value misconfigurations. We show this through our eval-

uation in Section 8,

Say the Matrix Reduction step from Section 4 out-

puts a total of l summary statements and g reference

groups. The input to the Group Mapping step is the

set of user-sets U = {U1, U2, · · · , Ul} from the sum-

mary statements, and the set of reference groups G =
{G1,G2, · · · ,Gg}. Our objective can now be expressed

in terms of finding a set cover for each user-set Ui using a

subset of the groups in G. A set cover, in its usual sense,

implies that the union of the covering subsets is exactly

equal to the set to be covered. But, we are interested in

finding an approximate set cover, where the cover need

not be exhaustive, and reference groups could include

members that are not in the user-set. The idea is to find

a maximal overlap between the subject dataset user-sets

and the reference groups. This approximate set cover Ci

may contain a group Gj such that some users in Gj are

absent in Ui, as shown in Figure 7 with user-sets 2 and 5.

Also, it is not necessary that Ci covers every user in Ui,

as shown with user-sets 3 and 4. We refer to the set of un-

covered users in Ui as Ti, i.e., is Ti = Ui−
⋃

∀Gj∈Ci
Gj.

We choose an approximate set cover based on the min-

imum description length (MDL) principle [11], which en-

sures that the overlap is large, while the leftover set of

uncovered users is small. In other words, |Ci| + |Ti| is

minimum over all possible approximate set covers. The

minimum set cover problem is known to be NP-Hard, as

it can take running time that is exponential on the set of

users. By the same logic, the problem of finding approx-

imate set cover with minimum description length is also

NP-Hard. In practice, we have found that if the num-

ber of reference groups is less than 20, then it is fea-

sible to solve it exactly on our testbed computers. For

larger reference datasets, we use a well-known greedy

approximation algorithm [16], which picks the set that

has the maximal overlap, removes it from the reference

set, and repeats the process. This is known to work

within O(log m) of optimal, where m is the number of

168 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 169

GROUP MAPPING

Input: S {summary statements}, G {reference groups}
Output:
GAM {accessibility misconfigs [users,objects]},
GSM {security misconfigs [users,objects]}

1: GAM = φ ; GSM = φ
2: U = all user-sets in the extracted summary statements S
3: for all Ui ∈ U do
4: (Ci, Ti) = Map Groups (Ui,G)
5: for all Gj ∈ Ci do

6: if
|Gj−Ui|

|Ui|
< 0.5 then

7: GAM = GAM
⋃

{[Gj − Ui, Oi]}
8: end if
9: end for

10: if
|Ti|
|Ui|

< 0.5 then

11: GSM = GSM
⋃

{[Ti, Oi]}
12: end if
13: end for
14: return GAM,GSM

MAP GROUPS (APPROXIMATE)
Input: Ui {set to be covered}, G {Groups}
Output: Ci {cover from G}, Ti {uncovered users in Ui}

1: Ci = φ ; Ti = φ ; G′ = φ ; U ′
i
= Ui

2: for all G ∈ G do

3: if
|Gj−Ui|

|Ui|
< 0.5 then

4: G′ = G′ ∪ {G}
5: end if
6: end for
7: repeat
8: MDLmin = MDL(Ui, Ci) ; Gmin = φ
9: for all G ∈ G′ do

10: if MDL(Ui, Ci ∪ {G}) < MDLmin then
11: Gmin = G

12: MDLmin = MDL(Ui, Ci ∪ {Gmin})
13: end if
14: end for
15: if Gmin = φ then
16: return Ci, U

′
i

17: end if
18: Ci = Ci

⋃
{Gmin} ; U ′

i
= U ′

i
−Gmin

19: until U ′
i
= φ

20: return Ci, φ

Figure 8: Group Mapping Algorithm.

users in the user set, for the original minimum set cover

problem. We modify this algorithm suitably to gener-

ate the approximate set cover with minimum description

length.

Figure 8 shows the pseudocode for our Group Map-

ping algorithm. The main steps of the algorithm for a

given list of user-sets {U1, U2, · · · , Ul} can be summa-

rized as follows:

Step 1: For each user-set, first eliminate all groups in

which more than half of the users are not members

of the user-set (lines 2–6 in MAP GROUPS, Fig-

ure 8). Since less than half of the users in these

reference group intersect with the user-set, this ref-

erence group will not figure in either security or ac-

cessibility misconfiguration candidates as defined in

Section 5.2.

Step 2: When the number of groups in G is less than

20, we exhaustively search for all set covers and

use the minimum. For larger G, we use a modi-

fied version of the greedy set-cover algorithm to do

the matching, as shown in Figure 8. For each user-

set Ui, we pick a group G that overlaps maximally

with Ui (pick any one in case of ties). To apply

the minimum description length principle, we de-

fine the description length for Ui in terms of G as

|Ui − G| + |G − Ui|. For example, in user-set 2,

two potential mappings are G1 as shown in the ex-

ample, or G3, which contains users C and D. In

the former case, |U2 − G1| is 0, and |G1 − U2| is

2, since G1 contains two extraneous users, H and

J . In the latter mapping, |U2 −G3| is 3, since G3

covers C and D and does not include E, F and G.

Also, |G3−U2| is 0. Therefore the MDL metric for

the former cover is 2, while in the latter case it is 3.

Hence our algorithm picks G1 as the cover. Refer

to lines 8–14 in MAP GROUPS, Figure 8.

Add this selected group to the cover Ci. Remove

the covered users from Ui to get U ′
i and repeat until

all users are covered, and the ones that cannot be

covered by any group are output as Ti. Refer to

lines 15–19 in MAP GROUPS, Figure 8.

Using this mapping, we can find both security and

accessibility misconfigurations for each user set Ui ex-

tracted from the summary statements (Ui → Oi), as

shown in lines 4–14 GROUP MAPPING, Figure 8. The

summary statement can be rewritten as:

{G
′

1 ∪ · · · ∪G
′

c ∪ Ti} → Oi.

where G
′

j = Gj ∩ Ui, ∀Gj ∈ Ci. Let ∆Gj be the

users in Gj who are not in Ui. Note that Step 1 en-

sures that
|∆Gj|
|Gj|

< 0.5, that is ∆Gj is a minority in Gj.

Based on the intuition provided in the previous section,

we infer that users in ∆Gj (if any) may require access

to the objects Oi. Hence, the intended access should be

{G1 ∪ · · · ∪ Gc ∪ Ti} → Oi and for each Gj ∈ Ci

such that corresponding ∆Gj �= φ, the system reports

accessibility misconfiguration candidate as:

users in ∆Gj MAY need access to Oi

Finding security misconfiguration candidates is a

slightly different process. Again, for a given user-set Ui,

the users in Ti are those that do not match any of the ref-

erence groups but still have access to Oi. If these users

form a minority of the users in the user-set Ui, that is

|Ti|
|Ui|

< 0.5 and Ti �= φ, then the system infers that the in-

tended access should be {G1 ∪ · · · ∪Gc} → Oi and all

users in Ti are reported to be security misconfiguration

candidates as:

users in Ti MAY NOT need access to Oi

Note that while we use metrics based on simple ma-

jority and minority to detect misconfiguration candi-

dates, our prototype implementation supports any thresh-

old value between 0 and 1. A higher threshold may find

more valid misconfigurations but may also increase the

number of false alarms.

Complexity: The group mapping run time is bounded as

O(k2lg), where k is the maximum number of users in a

reference group, g is the number of reference groups and

l is the number of summary statements.

5.3 Misconfiguration Prioritization

When Baaz presents the misconfiguration report to the

administrator, it lists the candidates in a priority order.

Prioritization of candidate misconfigurations is impor-

tant because administrators may not have the time to vali-

date all misconfiguration candidates that Baaz outputs, as

in Dataset 2 in Section 8. In such cases, a ranking func-

tion helps them focus their attention on the high-value

candidates.

The main intuition behind our ranking function is that

when the mismatches between a user-set and its covering

reference group is smaller, the possibility of the miscon-

figuration candidate being a valid issue is higher. The

formula used for prioritization of both accessibility and

security candidates capture this measure of difference in

similarity between a user-set and its cover.

For accessibility misconfigurations, for a given Ui, the

system computes a priority over each reference groupGj

in Ci, as:

P(accessibility misconfig) = 1−

∑c

j=1 |∆Gj|

|Ui|

For security misconfiguration candidates, we use the

fraction of potentially unauthorized users to prioritize as

follows. The smaller the fraction of uncovered users, the

higher the priority.

P(security misconfig) = 1−
|Ti|

|Ui|

6 Object Clustering

Our second technique for finding misconfiguration can-

didates is Object Clustering. This procedure uses only

the summary statements as input and is therefore partic-

ularly useful in the absence of suitable reference groups.

� � � � � � � � � �� �� �� �� �� �� ��

� � � � � �

� � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

 �

�

����������������� �����

�������������������� ����� �������������

���

� ���

����������������� �����

�������������� ����� ������������

��

� ��

Figure 9: The result of the Object Clustering algorithm

on the example subject matrix.

6.1 Intuition

We first present the intuition behind our Object Cluster-

ing algorithm. When the access permissions for a small

user-set is only slightly different from the access control

for a much larger user-set, this may indicate a misconfig-

uration.

Figure 9 explains this intuition using our example. Ob-

serve that the user-sets for summary statements 3 and 4

differ in one user – I – because I has access to object

13, but does not have access to any of 9, 10, 11 and 12.

On the other hand, users A, B, C and D have access to

objects 9, 10, 11, 12 and 13. Therefore, Baaz suggests a

security misconfiguration candidate:

user I MAY NOT need access to object 13.

Similarly, summary statements 5 and 2 differ in only

one user – H – because H does not have access to objects

6 and 7. Users C, D, E, F and G have access to 1, 2,

3, 4, 5, 6 and 7. Therefore, as shown in the figure, Baaz

suggests an accessibility misconfiguration candidate:

user H MAY need access to objects 6 and 7.

The matrix in Figure 9 shows that if an administra-

tor or resource owner determines that these are indeed

valid misconfigurations and fixes them, the matrix be-

comes more uniform. A future iteration of matrix reduc-

tion will output fewer summary statements. In this ex-

ample, C, D, E, F , G and H now have identical access

and hence the reduction will remove summary statement

2. Similarly, since user I will no longer have access to

object 13, statement 4 will not be found in future itera-

tions. This will lead to our algorithms finding the same

number, or fewer misconfiguration candidates in the fu-

ture, if no changes are made to the input matrices. This

supports our claim of internal consistency in Section 3.2.

170 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 171

OBJECT CLUSTERING

Input: S {summary statements}
Output: OAM {accessibility misconfigurations [users, objects]},
OSM {security misconfigurations [users, objects]}

1: OAM = φ ; OSM = φ
2: for all pairs of summary statements in S , [U1, O1] & [U2, O2]

do

3: if
|U1−U2|

|U1|
< 0.5 and

|U2−U1|
|U1|

< 0.5 and
|O2|
|O1|

< 0.5 then

4: if U1 − U2 �= φ then

5: OAM = OAM
⋃

{[U1 − U2, O2]}
6: end if
7: if U2 − U1 �= φ then

8: OSM = OSM
⋃

{[U2 − U1, O2]}
9: end if

10: end if
11: end for
12: return OAM,OSM

Figure 10: Object Clustering algorithm.

The Group Mapping and Object Clustering phases do

not find disjoint sets of misconfigurations. For exam-

ple, both the above misconfigurations were also flagged

by Group Mapping. We intend to use Object Clustering

as a fallback in situations where there do not exist suit-

able reference groups to flag misconfiguration candidates

through Group Mapping.

6.2 Algorithm
We now describe the Object Clustering algorithm in de-

tail. We first look for pairs of summary statements with

the following template:

U1 → O1 and U2 → O2 such that
|U1−U2|

|U1|
< 0.5,

|U2−U1|
|U1|

< 0.5, and
|O2|
|O1|

< 0.5

Now, our definition of an object misconfiguration is as

follows: For the two summary statements, U1 → O1 and

U2 → O2 that match the template, say |U1 − U2|/|U1|
and |U2 −U1|/|U1| are both smaller than 0.5 (a majority

of users in U1 are in U2 and vice-versa), and |O2|/|O1| is

smaller than 0.5 (O2 is less than half the size of O1). We

characterize a security misconfiguration candidate as:

U2 − U1 MAY NOT need access to O2.

and an accessibility misconfiguration candidate is

given as:

U1 − U2 MAY need access to O2.

Complexity: Given that there are l summary statements,

n users, and m objects, the Object Clustering algorithm

runs in O(l2(n+m)) time.

6.3 Misconfiguration Prioritization
In the report, as in the case of Group Mapping, the Baaz

server prioritizes these misconfigurations using the intu-

ition that the more similar the user-sets U1 and U2, and

the smaller the size of O2, the higher the probability that

the candidate is a genuine misconfiguration. The metric

we use is the harmonic mean:

P(misconfig) = 0.5 ∗
(
(1− |∆U|

|U1|
) + (1− |O2|

|O1|
)
)

Here ∆U corresponds to U2 −U1 or U1−U2 depend-

ing on whether it is a security or an accessibility miscon-

figuration.

7 System Experiences
In this section, we describe issues that impact the quality

of the misconfiguration reports produced by Baaz, based

on our experiences in implementing and evaluating the

Baaz server and stubs for our prototype, and discuss how

we address them in our system design.

7.1 Server Design Issues
Here, we discuss our choice of reference dataset in our

deployment and how an administrator can tune report

time.

Choosing reference datasets: An administrator

needs to use domain knowledge to choose the right ref-

erence dataset for a given subject dataset. We observe

that the output reports vary depending on how rich or

rigid the reference groups are. Some reference datasets,

such as organizational group-membership relations, are

rigid and structured, and contain few reference groups,

potentially generating many misconfiguration candidates

in the Group Mapping step, several of which may be in-

valid. This is because fewer groups will yield more ap-

proximate covers.

On the other hand, if a reference dataset contains a

large number of reference groups, such as a set of email

distribution lists, the report will contain fewer candidates

because the chances of finding exact covers increases. As

a result, the algorithm may not detect some valid mis-

configurations. An administrator can decide which refer-

ence dataset to use, based on the sensitivity of the subject

dataset, trading manual effort of validation for caution.

For example, if a subject dataset folder is marked confi-

dential, the administrator may choose to compare it with

the organizational hierarchy, whereas email lists may be

a better choice for less sensitive information.

In our evaluation described in Section 8, we choose

email distribution lists as a reference dataset for two

datasets and organizational hierarchy as a reference for

one dataset, and our results verify our observations

above.

Tuning report time: Since change events trigger

Baaz’s misconfiguration detection algorithms, the server

may generate reports even in transient states while ad-

ministrators manually change permissions. To avoid

such spurious reports, each pair of subject and refer-

ence datasets has an associated report time (Tr): Baaz

includes a candidate in its report only if it has existed for

at least Tr time. The administrator can configure Tr to be

short for subjects that store highly sensitive data, while it

can be high for less important subjects. In our deployed

prototype, we found that we could generate a report as

fast as one second after a stub reports a change, or delay

its reporting using Tr, as required.

7.2 Stub Design Issues

We identify two design issues that directly play a role in

the quality of generated reports:

Modeling access control: The system’s misconfigu-

ration detection can only be as good as the data the stub

provides. Access control mechanisms can be compli-

cated [20], which sometimes makes capturing complete

semantics in a stub quite hard. In our stub implemen-

tations, we have used a conservative approach towards

modeling access control: if there is ambiguity of whether

an individual or group has access to an object, we assume

that they do indeed have access. This approach catches

more security candidates albeit at the risk of increasing

the number of false alarms. Previously proposed security

monitoring systems have tackled this problem [6] using

a similar strategy.

Stub customization: Access mechanisms of different

kinds of resources will require custom stub implemen-

tations that can specifically understand the underlying

access controls. Similarly, stubs may need to be cus-

tomized to different data layouts containing group mem-

bership data. However, some stubs can be reused across

resources. For example, in our prototype, we have imple-

mented a stub that can run on any SMB-based Windows

file share. We have also implemented customized stubs

to capture organizational hierarchy and email lists within

our enterprise, both of which reside on an Active Direc-

tory server [1] (an implementation of the Lightweight Di-

rectory Access Protocol, LDAP).

Access control permissions are not necessarily binary.

For example, in a file share, “read-only” access or “full

access” are only two of a number of different access

types possible. Consequently, our stub implementations

support various modes of operation. An administrator

can choose what a “1” in the binary relation matrix cap-

tures: full access, read-only access, any kind of access,

etc.

8 Evaluation

In this section, we first describe the implementation of

Baaz system components (Section 8.1). Next, we de-

scribe the results we achieve through our prototype de-

ployment (Section 8.2), followed by a description of the

collection, analysis, and validation of misconfiguration

reports from two other datasets (Section 8.3). Finally,

we present performance evaluation microbenchmarks for

demonstrating the scalability (Section 8.4) of the miscon-

figuration detection algorithms.

8.1 Implementation

We have implemented the Baaz server in C# using 2707

lines of code. We have also implemented Baaz stubs for

an SMB-based Windows file server, for organizational

groups in Active Directory [1], and for email distribu-

tion lists also stored in Active Directory. The Windows

file server stub is entirely event-based: it traps changes in

access control through the FileSystemWatcher [8] library

and reports these changes immediately to the server. Cur-

rently, we only trap changes to access control for direc-

tories, but we can easily extend this to capture changes

for individual files. The Active Directory stubs, on the

other hand, poll the database every 8 minutes since we

do not have the right permissions or mechanisms to build

an event-based stub for Active Directory. The file server

stub used 830 lines of C# code and the Active Directory

stub, which used a common code base for both the orga-

nizational groups and email lists, was 1327 lines of C#

code.

8.2 Evaluation Through Deployment

We have deployed Baaz within our organization, with

stubs continuously monitoring two resources within our

organization since August 19th, 2009. The stubs mon-

itor read access permissions for directories on a Win-

dows SMB file server that the employees use to share

confidential data, and an Active Directory server storing

email distribution lists relevant to the organization. Var-

ious groups within the organization actively use the file

server to share documents, hence we found significant

usage of access control capabilities on it.

The objective of our deployment was to see whether

Baaz could help find valid access control misconfigura-

tions on this file server. We therefore registered the file

server as the subject dataset and the email distribution list

as the reference dataset with the server. We decided to

use email distribution lists as opposed to organizational

hierarchy since our administrator observed that only or-

ganizational groups might not capture the various user

sets that actively use the file server.

We show our results in three steps: first, we show

how Baaz’s first report in the deployment was effective

in finding misconfigurations. Second, we show the util-

ity of continuously monitoring changes in access con-

trol to find misconfigurations. Third, we compare our

results with the ground-truth we established by manually

inspecting directory permissions on the file server, to de-

tect how many actual misconfigurations Baaz was able to

flag.

First-time report: Row 1 in Table 2 provides details

on this dataset, and row 1 in Table 3 gives the classifica-

172 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 173

Dataset Subject Reference Users Objects Ref Groups Summ Stmts

1 File Server Email Lists 119 105682 237 39

2 Shared Web Pages Email Lists 1794 1917 3385 307

3 Email Lists Org Grps 115 243 11 205

Table 2: Datasets used to evaluate Baaz.

Set Security Accessibility

Group Mapping Object Clustering Group Mapping Object Clustering

Tot. Val. Exc. Inv. Tot. Val. Exc. Inv. Tot. Val. Exc. Inv. Tot. Val. Exc. Inv.

1 11 10 0 1 11 7 1 3 8 8 0 0 9 0 0 9

2 7 3 0 4 0 0 0 0 9 4 1 4 0 0 0 0

3 18 6 5 7 0 0 0 0 33 6 0 27 0 0 0 0

Table 3: Misconfiguration analysis for each report generated by Baaz.

tion of the first-time report that Baaz generated using the

relation matrices that the stubs sent to the Baaz server

initially. The total number of users in the organization

is 149, the number of objects (directories) in the subject

data set’s relation matrix is 105682, and the total num-

ber of reference groups (or unique distribution lists) is

237. The matrix reduction phase on the subject dataset

produced 39 summary statements.

Baaz flagged a total of 39 misconfiguration candidates.

To validate these, we involved the system administrator

and the respective resource owners of the directories in

question.

Security: Of the 11 security candidates that Baaz

found through Group Mapping, 10 were valid secu-

rity issues which the administrator considered important

enough to fix immediately. Object Clustering found 7 of

these 10 security misconfigurations, showing that Baaz

would have been helpful in flagging security issues even

if reference groups were not available to it. However

it is clear that Group Mapping works more effectively

than Object Clustering when a suitable reference dataset

is available.

Accessibility: Baaz found 8 accessibility candidates

through Group Mapping, all of which were valid. All 9

accessibility issues that Object Clustering flagged were

invalid, showing that, with this dataset, while Group

Mapping worked well in bringing out both security and

accessibility issues, Object Clustering did well only with

the security misconfigurations. Object Clustering was

not effective in flagging valid accessibility issues since

the difference between the summary statements were un-

expectedly large.

Baaz found a total of 18 valid misconfigurations.

There were 10 security misconfigurations involving 7

users which, when corrected, fixed access permissions on

1639 out of 105682 directories on the file server. There

were 8 accessibility misconfigurations that affected 6

users and 163 directories.

Our deployment also helped us understand some of the

reasons for why misconfigurations occur in access con-

trol lists, which we summarize below.

• In most cases, the misconfigurations arise because

of employees changing their roles or, as in some ac-

cessibility issues, from new employees joining the

organization.

• One of the security misconfigurations was caused

by a policy change within the organization, which

had only been partially implemented. Certain older

employees had greater degree of access than newer

employees since the administrator had inadvertently

applied the policy change only to employees who

had joined after the change was announced.

• A resource owner misspelt the name of one of the

users they wanted to provide access to, inadver-

tently providing access to a completely unrelated

employee.

Real-time report: In our deployment, the stubs and

the server are running continuously, monitoring access

control and group membership changes and subsequently

running the misconfiguration detection algorithm. On

September 20th, 2009, an employee within the organi-

zation adopted a new role, which was reflected by his ad-

dition to certain email distribution lists. The Baaz stub

reported these changes to the server, following which

the server reported one new accessibility misconfigu-

ration candidate within one second. The administrator

considered this accessibility misconfiguration important

enough to rectify promptly. This emphasizes the value of

Baaz’s continuous monitoring approach since it enables

administrators to detect misconfigurations in a nearly

real-time fashion, just after they occur.

Comparison to Ground-Truth: To understand how

close Baaz was to finding all misconfigurations for this

file server, we manually examined access permissions of

all directories on the file server from the root down to

three levels. Beyond the third level, we only examined

directories whose access permissions differed from their

parent directories. We examined a total of 276 directo-

ries.

For each directory, we asked the directory owner two

questions: If any user permissions to the directory should

be revoked (security misconfiguration), and if anyone

else should be provided access (accessibility misconfig-

uration). This procedure took two days to complete be-

cause of the manual effort involved. While we cannot

claim that even this procedure would find all possible

misconfigurations, we felt this exercise formed a good

base-line to compare against Baaz.

We found that Baaz missed 4 security misconfigura-

tions and 1 accessibility misconfiguration. Two secu-

rity issues went undetected because an email list rele-

vant to these issues was marked as private by the owner,

and hence our Active Directory stub could not read the

members. If we had the permission to run the stub with

administrator privileges, Baaz would have flagged these

issues. The other 3 issues (2 security and 1 accessibility)

were genuinely missed by Baaz since there were no ref-

erence groups that matched the user-set, and the number

of users involved in the misconfiguration (2) were more

than half the size of the user-set (3).

Hence, while Baaz genuinely missed 3 misconfigura-

tions, it did flag 18 valid misconfigurations which the ad-

ministrator found very useful.

8.3 Snapshot Evaluation

We evaluated Baaz on two other subject and reference

data pairs. We wrote stubs to gather snapshots of ac-

cess control and group memberships from these datasets

and generated a one-time report. Rows 2 and 3 of Ta-

ble 2 describe the datasets and Table 3 summarize our

findings. Dataset 2’s subject is a server hosting shared

internal web pages for projects and groups across an or-

ganization. The stub for this subject reads access per-

missions stored in an XML file in a custom format. The

reference was, again, a set of email distribution lists cre-

ated for this organization. This subject dataset comprised

1794 users and 1917 objects. For this dataset alone, the

administrator decided to concentrate on misconfiguration

candidates with priority more than 0.8.

In Dataset 3, the subject dataset is the set of email lists

used as reference in Dataset 1, and the reference is the

set of organizational groups. Here, each organizational

group consists of a manager and all employees who re-

port directly to the manager. As we have mentioned ear-

lier, a reference dataset in Baaz may itself be inaccurate.

Hence, this evaluation helps us check how stale the mem-

berships to these email lists are. The number of users in

this Dataset is 115 and the number of objects is 243. The

slight discrepancy in the number of users in Datasets 1

and 3 is due to organizational churn in the period be-

tween when we ran the two experiments.

Baaz found many valid misconfigurations in all these

datasets. Across all datasets, most security misconfigu-

rations resulted due to role changes. Other security mis-

configurations arose because an individual user, who had

full permissions to an object, had inadvertently given ac-

cess to another user who should not have had access.

The causes of accessibility misconfigurations, similarly,

were moves across organizations or inadvertent mistakes

on the part of the individual manually assigning permis-

sions.

We now summarize some other insights we acquired

through this evaluation.

Administrator input: Baaz can only make recom-

mendations. Only an administrator, or someone who has

semantic knowledge about access requirements, needs to

make the final decision of whether a misconfiguration is

valid, an exception or invalid. For distributed access con-

trol systems such as Windows file servers, the validation

will have to be through querying multiple people in the

organization since objects involved in the misconfigura-

tion can have different owners. This is not a simple task.

Despite this difficulty, overall, the administrators and

resource owners found the system very useful since it

found several valid security and accessibility misconfig-

urations. Moreover, what the administrators appreciated

was that, instead of tracking down correct access for po-

tentially thousands of objects, they needed to concentrate

on a much smaller set of misconfiguration candidates

that Baaz reports. For Datasets 1 and 3, the validation

was mostly through conversation and email, and took ap-

proximately one hour. For Dataset 2, it took a total of

three days turnaround time since we communicated only

through email with resource owners who were at a re-

mote site to complete the validation. Note that these are

total turnaround times: it does not mean that an admin-

istrator spent three complete days just on the validation

procedure.

Group Mapping vs Object Clustering: While Group

Mapping is universally effective at finding misconfigura-

tions, the Object Clustering approach is effective only in

datasets which have a lot of statistical similarity. This

is because Object Clustering relies on finding small de-

viations from a regular and often-repeated pattern of ac-

cess control permissions. Datasets 2 and 3 do not have

a regular pattern since most project web pages and email

distribution lists had unique access permissions. Conse-

quently, Object Clustering does not report any miscon-

figurations for these datasets. On the other hand, it does

find misconfigurations for the file server (Dataset 1) since

there were many directories on the file servers we evalu-

ated with the same access permissions.

Invalid Misconfigurations: The number of invalid

misconfigurations varies significantly across the different

datasets. This is related to our discussion in Section 7.1.

174 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 175

 0

 50

 100

 150

 200

 250

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

A
lg

o
ri
th

m
 r

u
n
ti
m

e
 (

m
s
)

Subject matrix size

ref. groups = 1296
ref. groups = 324

ref. groups = 81

Figure 11: Scalability of the Baaz Algorithm

The organizational groups form a rigid reference dataset,

so in Dataset 3, we see a large number of invalid miscon-

figurations. Across the datasets however, the number of

invalid misconfigurations were small enough not to dis-

courage an administrator in adopting our tool.

8.4 Algorithm Performance

In this Section, we concentrate on the performance and

scalability of the server algorithm. We used Dataset 1

described in Table 2 for this experiment.

We ran the misconfiguration detection algorithm on

the dataset while varying the subject relation matrix size,

keeping the number of reference groups constant. To in-

crease the matrix size, we increased the directory depth

up to which we included objects into the subject’s re-

lation matrix, consequently increasing the number of ob-

jects, and therefore, the number of columns in the matrix.

Figure 11 shows the results of our experiments. Each

line represents the algorithm’s total run time which in-

cludes all three phases – Matrix Reduction, Group Map-

ping and Object Clustering – with different numbers of

reference groups. We varied the number of reference

groups by adding artificially created groups to the ref-

erence dataset while ensuring that the additional groups

follow the same size distribution as the real reference

groups. Every point in the graph is averaged across 20

runs. We ran all the experiments on a machine with a 3

GHz Intel Core 2 Duo CPU and 4 GB Memory, running

a 64-bit version of Windows Server 2008.

With a matrix size of 2.7 million, and with 1296 ref-

erence groups, the misconfiguration detection takes a to-

tal of 246 ms to run. The increase in time is fairly lin-

ear in the matrix size because the Matrix Reduction step

dominates the total run-time of the algorithm. For the

same data point, where Matrix Reduction needs to in-

spect roughly 2.7 million cells in the subject’s relation

matrix, Group Mapping needed to process only 24 sum-

mary statements and 1296 reference groups, and Ob-

ject Clustering processed 24C2 = 276 summary statement

pairs.

Projecting from this graph, for a subject dataset rep-

resenting 100,000 employees and 100,000 objects, i.e.,

a matrix size of 1010, and a reference dataset involving

1296 groups, the misconfiguration detection would take

approximately 340 seconds to run. Our experiments indi-

cate that the algorithm can scale to large datasets (much

larger than encountered in our deployments as shown in

Table 2), and run fast enough to provide prompt miscon-

figuration reports.

9 Related Work

In this section, we discuss our work in the context of

related research.

Recent work by Baker et al. in detecting policy mis-

configurations [4] uses data mining to infer association-

rules between groups of resources that can be accessed

by common sets of users, based on an off-line analysis

of access attempts in log files. The authors use the pro-

file and frequency of granted requests to predict and fix

operational accessibility issues. For example, if a user

belonging to such a common set inadvertently does not

have access to a particular resource, their tool will flag

this as a misconfiguration, and refer this to an appropri-

ate resource owner.

Baaz on the other hand operates on access permis-

sions. Consequently, in most cases, Baaz can flag and

suggest fixes for misconfigurations before they can be

exercised operationally. While access log analysis is an

extremely useful mechanism in detecting security and

accessibility issues, the approach is inherently comple-

mentary to the approach of analyzing access control per-

missions. Ideally, the two should be used in tandem.

Also, Baaz primarily uses a different technique, Group

Mapping, whereby the system compares subject and ref-

erence datasets: several of the misconfigurations that the

Group Mapping algorithm found in our evaluation could

not have been found using association rules alone. These

include the examples presented in Section 8.2 where

users change roles, or new employees join an organiza-

tion, and have not accessed any resources yet. In ad-

dition, Baaz finds both security and accessibility issues

whereas Baker et al. concentrate only on accessibility

issues.

Finally, the goal of their misconfiguration detection is

similar in intent to Baaz’s Object Clustering algorithm.

While Baaz focuses on identifying sets of users that can

access disjoint sets of objects, they identify all possible

sets of users who have common access permissions to

(possibly overlapping) sets of objects. In Baaz, we

chose to focus on disjoint object-sets for reasons ex-

plained earlier.

Network intrusion prevention and detection systems

also have a similar operational view of misconfigura-

tions [15, 14]. An attempt is made to characterize nor-

mal behavior, as opposed to anomalous behavior, and

any deviation from this characterization is flagged as a

potential vulnerability. In contrast, research on automat-

ically discovering attack graphs [2, 23], by correlating in-

formation across lists of known software-vulnerabilities,

improper access controls, and network misconfigura-

tion issues, have a forensic flavor. This aspect is fur-

ther explored in more recent work such as HeatRay [6],

which explores identity-snowball attacks based on over-

entitled user privileges across a networked enterprise.

The HeatRay tool outputs suggestions to administrators

to prune privilege-lists on particular machines, maximiz-

ing security versus availability tradeoffs, using machine

learning and combinatorial optimization techniques. A

system such as Baaz can help an administrator decide

whether to remove access permissions as suggested by

HeatRay.

Other related work on policy anomaly detection in-

cludes the work on access control spaces [13] where the

authors describe a policy-authoring tool called Gokyo

that can help discover policy coverage issues.While

Gokyo assumes a high-level policy manifest exists, Baaz

works in scenarios where such manifests are not avail-

able.

Role-based access control (RBAC) [21] is widely cited

as a useful management tool to control access permis-

sions by separating out the user-role and role-permission

relationships. However, RBAC is known to be difficult

to implement in practice [5, 12]. The problem of role

mining [22, 25, 18, 28, 10] is related to Baaz’s matrix

reduction step (Section 4), where we find related user

and object groups. In role-mining, the user-object access

matrix is analyzed to find maximal overlapping group-

ings of users and objects that have the same permissions.

In contrast, in Baaz, we are interested in misconfigura-

tions on shared-object permissions, as opposed to dis-

covering common patterns of access across user groups.

Nevertheless, like organizational groups, email groups,

and distribution lists, the output of a role-mining algo-

rithm, specifically the user-role mappings, can be used

as an input to our group mapping phase. We believe that

even if organizations adopt some flavor of RBAC, a sys-

tem like Baaz is useful in discovering misconfigurations

caused by exceptions and role changes. There is also a

wealth of related work on the topic of clustering in gen-

eral, and a summary of this is outside the scope of this

work.

Policy anomaly detection is also a popular subject of

study in the firewall and network configuration space.

Here, existing tools [27] explore the semantics of differ-

ent filtering rules and firewall policies. Testing and static

analysis techniques [26, 17, 3] have been proposed to ex-

plore and understand how policy configurations satisfy

properties such as redundancy and contradiction. How-

ever, all of these techniques are specific to firewall con-

figurations and are inherently different from Baaz which

uses comparison across ACL datasets and within the

same dataset to find misconfigurations.

Several network security scanning tools are actively

used by network administrators to find vulnerabilities

such as open ports, vulnerable applications and poor

passwords [7, 9]. Baaz’s purpose and techniques target

a different problem – finding access control misconfigu-

rations – and are therefore complementary to the intent

of these tools. In fact, a number of such tools and sys-

tems should be used in tandem to ensure a high level of

security for all enterprise resources.

10 Conclusion

In this paper, we have described the design, implementa-

tion and evaluation of Baaz, a system used to detect ac-

cess control misconfigurations in shared resources. Baaz

continuously monitors access permissions and group

memberships, and through the use of two techniques –

Group Mapping and Object Clustering – finds candidate

misconfigurations in the access permissions. Our eval-

uation shows that Baaz is very effective at finding real

security and accessibility misconfigurations, which are

useful to administrators.

Acknowledgments

We would like to thank our shepherd, Somesh Jha, for

his valuable comments and suggestions. We would also

like to thank Ohil Manyam for testing and optimizing

the prototype Baaz system, Rashmi K. Y, Geoffry Nord-

lund, and Chuck Needham for help with evaluating Baaz,

and Geoffrey Voelker, Venkat Padmanabhan and Vishnu

Navda for providing insightful comments that improved

earlier drafts of this paper.

References

[1] Active Directory. http://www.microsoft.com/win

dowsserver2003/technologies/directory/activedire-

ctory/.

[2] P. Ammann, D. Wijesekera, and S. Kaushik. Scal-

able, graph-based network vulnerability analysis.

In Proceedings of the 9th ACM conference on Com-

puter and communications security, 2002.

[3] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Fir-

mato: A novel firewall management toolkit. ACM

Trans. Comput. Syst., 22(4):381–420, 2004.

[4] L. Bauer, S. Garriss, and M. K. Reiter. Detecting

and resolving policy misconfigurations in access-

control systems. In Proc. SACMAT ’08, pages 185–

194, New York, NY, USA, 2008. ACM.

[5] Bruce Schneier, Real-World Access Control.

http://www.schneier.com/crypto-gram-0909.html.

176 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 177

[6] J. Dunagan, A. X. Zheng, and D. R. Simon. Heat-

ray: Combating identity snowball attacks using ma-

chine learning, combinatorial optimization and at-

tack graphs. SIGOPS Oper. Syst. Rev., 2009.

[7] D. Farmer and E. H. Spafford. The COPS secu-

rity checker system. In Proceedings of the Summer

Usenix Conference, 1990.

[8] File System Watcher Class.

http://msdn.microsoft.com/en-us/library/system.io.

filesystemwatcher.aspx.

[9] S. S. A. T. for Analyzing Networks.

http://www.porcupine.org/satan.

[10] M. Frank, D. Basin, and J. M. Buchmann. A class

of probabilistic models for role engineering. In

CCS ’08. ACM, 2008.

[11] P. D. Grunwald. The Minimum Description Length

Principle. The MIT Press, 2007.

[12] Information Risk in the Professional Services-

Field Study Results from Financial In-

stitutions and a Roadmap for Research.

http://mba.tuck.dartmouth.edu/digital/Research/

ResearchProjects/DataFinancial.pdf.

[13] T. Jaeger, X. Zhang, and A. Edwards. Policy man-

agement using access control spaces. ACM Trans.

Inf. Syst. Secur., 6(3):327–364, 2003.

[14] A. Joshi, S. T. King, G. W. Dunlap, and P. M.

Chen. Detecting past and present intrusions

through vulnerability-specific predicates. SIGOPS

Oper. Syst. Rev., 39(5):91–104, 2005.

[15] S. T. King and P. M. Chen. Backtracking intrusions.

SIGOPS Oper. Syst. Rev., 37(5):223–236, 2003.

[16] C. Lund and M. Yannakakis. On the hardness of

approximating minimization problems. J. ACM,

41(5):960–981, 1994.

[17] A. Mayer, A. Wool, and E. Ziskind. Fang: A fire-

wall analysis engine. In SP ’00: Proceedings of

the 2000 IEEE Symposium on Security and Pri-

vacy, page 177, Washington, DC, USA, 2000. IEEE

Computer Society.

[18] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li,

E. Bertino, S. Calo, and J. Lobo. Mining roles

with semantic meanings. In Proceedings of the

13th ACM symposium on Access control models

and technologies, 2008.

[19] Privileged Password Management: combat-

ing the insider threat and meeting com-

pliance regulations for the enterprise.

http://www.cyber-ark.com/constants/white-

papers.asp?dload=IDC White Paper.pdf.

[20] M. Russinovich, D. Solomon, and A. Ionescu. Win-

dows Internals, 5th Edition. Microsoft Press, 2009.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and

C. E. Youman. Role-based access control models.

Computer, 29(2):38–47, 1996.

[22] J. Schlegelmilch and U. Steffens. Role mining with

orca. In Proc. SACMAT ’05, pages 168–176, 2005.

[23] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and

J. M. Wing. Automated generation and analysis of

attack graphs. In Proceedings of the 2002 IEEE

Symposium on Security and Privacy, 2002.

[24] The insider threat: automated identity

and access controls can help organiza-

tions mitigate risks to important data.

http://findarticles.com/p/articles/mi m4153/is 2 65/

ai n25449309.

[25] J. Vaidya, V. Atluri, and J. Warner. Roleminer: min-

ing roles using subset enumeration. In CCS ’06,

pages 144–153. ACM, 2006.

[26] A. Wool. Architecting the lumeta firewall analyzer.

In SSYM’01: Proceedings of the 10th conference on

USENIX Security Symposium, pages 7–7, Berkeley,

CA, USA, 2001. USENIX Association.

[27] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah,

and P. Mohapatra. Fireman: A toolkit for firewall

modeling and analysis. In Proceedings of the 2006

IEEE Symposium on Security and Privacy. IEEE

Computer Society, 2006.

[28] D. Zhang, K. Ramamohanarao, and T. Ebringer.

Role engineering using graph optimisation. In SAC-

MAT ’07, pages 139–144. ACM, 2007.

Cling: A Memory Allocator to Mitigate Dangling Pointers

Periklis Akritidis

Niometrics, Singapore, and
University of Cambridge, UK

Abstract
Use-after-free vulnerabilities exploiting so-called dan-
gling pointers to deallocated objects are just as dangerous
as buffer overflows: they may enable arbitrary code exe-
cution. Unfortunately, state-of-the-art defenses against
use-after-free vulnerabilities require compiler support,
pervasive source code modifications, or incur high per-
formance overheads. This paper presents and evaluates
Cling, a memory allocator designed to thwart these at-
tacks at runtime. Cling utilizes more address space, a
plentiful resource on modern machines, to prevent type-
unsafe address space reuse among objects of different
types. It infers type information about allocated objects
at runtime by inspecting the call stack of memory allo-
cation routines. Cling disrupts a large class of attacks
against use-after-free vulnerabilities, notably including
those hijacking the C++ virtual function dispatch mecha-
nism, with low CPU and physical memory overhead even
for allocation intensive applications.

1 Introduction

Dangling pointers are pointers left pointing to deallo-
cated memory after the object they used to point to has
been freed. Attackers may use appropriately crafted in-
puts to manipulate programs containing use-after-free
vulnerabilities [18] into accessing memory through dan-
gling pointers. When accessing memory through a dan-
gling pointer, the compromised program assumes it op-
erates on an object of the type formerly occupying the
memory, but will actually operate on whatever data hap-
pens to be occupying the memory at that time.

The potential security impact of these, so called, tem-
poral memory safety violations is just as serious as that of
the better known spatial memory safety violations, such
as buffer overflows. In practice, however, use-after-free
vulnerabilities were often dismissed as mere denial-of-
service threats, because successful exploitation for arbi-
trary code execution requires sophisticated control over

the layout of heap memory. In one well publicized case,
flaw CVE-2005-4360 [17] in Microsoft IIS remained un-
patched for almost two years after being discovered and
classified as low-risk in December 2005.

Use-after-free vulnerabilities, however, are receiving
increasing attention by security researchers and attack-
ers alike. Researchers have been demonstrating exploita-
tion techniques, such as heap spraying and heap feng
shui [21, 1], that achieve the control over heap layout
necessary for reliable attacks, and several use-after-free
vulnerabilities have been recently discovered and fixed
by security researchers and software vendors. By now
far from a theoretical risk, use-after-free vulnerabilities
have been used against Microsoft IE in the wild, such
as CVE-2008-4844, and more recently CVE-2010-0249
in the well publicized attack on Google’s corporate net-
work.

Such attacks exploiting use-after-free vulnerabilities
may become more widespread. Dangling pointers likely
abound in programs using manual memory management,
because consistent manual memory management across
large programs is notoriously error prone. Some dan-
gling pointer bugs cause crashes and can be discovered
during early testing, but others may go unnoticed be-
cause the dangling pointer is either not created or not
dereferenced in typical execution scenarios, or it is deref-
erenced before the pointed-to memory has been reused
for other objects. Nevertheless, attackers can still trigger
unsafe dangling pointer dereferences by using appropri-
ate inputs to cause a particular sequence of allocation and
deallocation requests.

Unlike omitted bounds checks that in many cases are
easy to spot through local code inspection, use-after-free
bugs are hard to find through code review, because they
require reasoning about the state of memory accessed
by a pointer. This state depends on previously executed
code, potentially in a different network request. For the
same reasons, use-after-free bugs are also hard to find
through automated code analysis. Moreover, the combi-

178 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 179

nation of manual memory management and object ori-
ented programming in C++ provides fertile ground for
attacks, because, as we will explain in Section 2.1, the
virtual function dispatch mechanism is an ideal target for
dangling pointer attacks.

While other memory management related security
problems, including invalid frees, double frees, and heap
metadata overwrites, have been addressed efficiently and
transparently to the programmer in state-of-the-art mem-
ory allocators, existing defenses against use-after-free
vulnerabilities incur high overheads or require compiler
support and pervasive source code modifications.

In this paper we describe and evaluate Cling, a mem-
ory allocator designed to harden programs against use-
after-free vulnerabilities transparently and with low over-
head. Cling constrains memory allocation to allow ad-
dress space reuse only among objects of the same type.
Allocation requests are inferred to be for objects of the
same type by inspecting the allocation routine’s call stack
under the assumption that an allocation site (i.e. a call site
of malloc or new) allocates objects of a single type
or arrays of objects of a single type. Simple wrapper
functions around memory allocation routines (for exam-
ple, the typical my malloc or safe malloc wrap-
pers checking the return value of malloc for NULL)
can be detected at runtime and unwound to recover a
meaningful allocation site. Constraining memory allo-
cation this way thwarts most dangling pointer attacks
—importantly— including those attacking the C++ vir-
tual function dispatch mechanism, and has low CPU and
memory overhead even for allocation intensive applica-
tions.

These benefits are achieved at the cost of using addi-
tional address space. Fortunately, sufficient amounts of
address space are available in modern 64-bit machines,
and Cling does not leak address space over time, because
the number of memory allocation sites in a program is
constant. Moreover, for machines with limited address
space, a mechanism to recover address space is sketched
in Section 3.6. Although we did not encounter a case
where the address space of 32-bit machines was insuf-
ficient in practice, the margins are clearly narrow, and
some applications are bound to exceed them. In the rest
of this paper we assume a 64-bit address space—a rea-
sonable requirement given the current state of technol-
ogy.

The rest of the paper is organized as follows. Section 2
describes the mechanics of dangling pointer attacks and
how type-safe memory reuse defeats the majority of at-
tacks. Section 3 describes the design and implementa-
tion of Cling, our memory allocator that enforces type-
safe address space reuse at runtime. Section 4 evaluates
the performance of Cling on CPU bound benchmarks
with many allocation requests, as well as the Firefox web

browser (web browsers have been the main target of use-
after-free attacks so far). Finally, we survey related work
in Section 5 and conclude in Section 6.

2 Background

2.1 Dangling Pointer Attacks
Use-after-free errors are, so called, temporal memory
safety violations, accessing memory that is no longer
valid. They are duals of the better known spatial memory
safety violations, such as buffer overflows, that access
memory outside prescribed bounds. Temporal memory
safety violations are just as dangerous as spatial memory
safety violations. Both can be used to corrupt memory
with unintended memory writes, or leak secrets through
unintended memory reads.

When a program accesses memory through a dangling
pointer during an attack, it may access the contents of
some other object that happens to occupy the memory
at the time. This new object may even contain data le-
gitimately controlled by the attacker, e.g. content from
a malicious web page. The attacker can exploit this to
hijack critical fields in the old object by forcing the pro-
gram to read attacker supplied values through the dan-
gling pointer instead.

Time

M
em

ory

Raw data

Object 2
of type B

Pointer field

Object 1
of type A

Pointer field

Object 3
of type A

t1t0

Figure 1: Unsafe memory reuse with dangling pointer.

For example, if a pointer that used to point to an ob-
ject with a function pointer field (e.g. object 1 at time t0
in Figure 1) is dereferenced to access the function pointer
after the object has been freed, the value read for the
function pointer will be whatever value happens to oc-
cupy the object’s memory at the moment (e.g. raw data
from object 2 at time t1 in Figure 1). One way to ex-
ploit this is for the attacker to arrange his data to end up
in the memory previously occupied by the object pointed
by the dangling pointer and supply an appropriate value
within his data to be read in place of the function pointer.
By triggering the program to dereference the dangling
pointer, the attacker data will be interpreted as a function
pointer, diverting program control flow to the location

dictated by the attacker, e.g. to shellcode (attacker code
smuggled into the process as data).

Placing a buffer with attacker supplied data to the ex-
act location pointed by a danging pointer is complicated
by unpredictability in heap memory allocation. However,
the technique of heap spraying can address this chal-
lenge with high probability of success by allocating large
amounts of heap memory in the hope that some of it will
end up at the right memory location. Alternatively, the
attacker may let the program dereference a random func-
tion pointer, and similarly to uninitialized memory ac-
cess exploits, use heap spraying to fill large amounts of
memory with shellcode, hoping that the random location
where control flow will land will be occupied by attacker
code.

Attacks are not limited to hijacking function pointers
fields in heap objects. Unfortunately, object oriented pro-
gramming with manual memory management is inviting
use-after-free attacks: C++ objects contain pointers to
virtual tables (vtables) used for resolving virtual func-
tions. In turn, these vtables contain pointers to virtual
functions of the object’s class. Attackers can hijack the
vtable pointers diverting virtual function calls made
through dangling pointers to a bogus vtable, and exe-
cute attacker code. Such vtable pointers abound in the
heap memory of C++ programs.

Attackers may have to overcome an obstacle: the
vtable pointer in a freed object is often aligned with
the vtable pointer in the new object occupying the
freed object’s memory. This situation is likely, because
the vtable pointer typically occupies the first word of
an object’s memory, and hence will be likely aligned
with the vtable pointer of a new object allocated in its
place right after the original object was freed. The attack
is disrupted because the attacker lacks sufficient control
over the new object’s vtable pointer value that is main-
tained by the language runtime, and always points to a
genuine, even if belonging to the wrong type, vtable,
rather than arbitrary, attacker-controlled data. Attackers
may overcome this problem by exploiting objects using
multiple inheritance that have multiple vtable pointers
located at various offsets, or objects derived from a base
class with no virtual functions that do not have vtable
pointers at offset zero, or by manipulating the heap to
achieve an exploitable alignment through an appropriate
sequence of allocations and deallocations. We will see
that our defense prevents attackers from achieving such
exploitable alignments.

Attacks are not limited to subverting control flow; they
can also hijack data fields [7]. Hijacked data pointers, for
instance, can be exploited to overwrite other targets, in-
cluding function pointers, indirectly: if a program writes
through a data pointer field of a deallocated object, an
attacker controlling the memory contents of the deallo-

cated object can divert the write to an arbitrary mem-
ory location. Other potential attacks include information
leaks through reading the contents of a dangling pointer
now pointing to sensitive information, and privilege es-
calation by hijacking data fields holding credentials.

Under certain memory allocator designs, dangling
pointer bugs can be exploited without memory having
to be reused by another object. Memory allocator meta-
data stored in free memory, such as pointers chaining free
memory chunks into free lists, can play the role of the
other object. When the deallocated object is referenced
through a dangling pointer, the heap metadata occupy-
ing its memory will be interpreted as its fields. For ex-
ample, a free list pointer may point to a chunk of free
memory that contains leftover attacker data, such as a
bogus vtable. Calling a virtual function through the
dangling pointer would divert control to an arbitrary lo-
cation of the attacker’s choice. We must consider such
attacks when designing a memory allocator to mitigate
use-after-free vulnerabilities.

Finally, in all the above scenarios, attackers exploit
reads through dangling pointers, but writes through a
dangling pointer could also be exploited, by corrupt-
ing the object, or allocator metadata, now occupying the
freed object’s memory.

Time

M
e
m

o
ry

Raw data

Object 2
of type B

Pointer field

Object 1
of type A

Pointer field

Object 3
of type A

Figure 2: No memory reuse (very safe but expensive).

2.2 Naive Defense
A straight forward defense against use-after-free vul-
nerabilities that takes advantage of the abundant ad-
dress space of modern 64-bit machines is avoiding any
address space reuse. Excessive memory consumption
can be avoided by reusing freed memory via the op-
erating system’s virtual memory mechanisms (e.g. re-

180 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 181

linquishing physical memory using madvise with the
MADV DONTNEED option on Linux, or other OS specific
mechanisms). This simple solution, illustrated in Fig-
ure 2, protects against all the attacks discussed in Sec-
tion 2.1, but has three shortcomings.

First, address space will eventually be exhausted. By
then, however, the memory allocator could wrap around
and reuse the address space without significant risk.

The second problem is more important. Memory frag-
mentation limits the amount of physical memory that can
be reused through virtual memory mechanisms. Operat-
ing systems manage physical memory in units of several
Kilobytes in the best case, thus, each small allocation can
hold back several Kilobytes of physical memory in adja-
cent free objects from being reused. In Section 4, we
show that the memory overhead of this solution is too
high.

Finally, this solution suffers from a high rate of sys-
tem calls to relinquish physical memory, and attempting
to reduce this rate by increasing the block size of mem-
ory relinquished with a single system call leads to even
higher memory consumption.

Time

M
e
m

o
ry

Raw data

Object 2
of type B

Pointer field

Object 1
of type A

Pointer field

Object 3
of type A

Figure 3: Type-safe memory reuse.

2.3 Type-Safe Memory Reuse

Type-safe memory reuse, proposed by Dhurjati et al. [9],
allows some memory reuse while preserving type safety.
It allows dangling pointers, but constrains them to point
to objects of the same type and alignment. This way,
dereferencing a dangling pointer cannot cause a type vi-
olation, rendering use-after-free bugs hard to exploit in
practice. As illustrated in Figure 3, with type-safe mem-
ory reuse, memory formerly occupied by pointer fields
cannot be reused for raw data, preventing attacks as the
one in Figure 1.

Moreover, memory formerly occupied by pointer
fields can only overlap with the corresponding pointer

fields in objects of the same type. This means, for ex-
ample, that a hijacked function pointer can only be di-
verted to some other function address used for the same
field in a different object, precluding diverting function
pointers to attacker injected code, and almost certainly
thwarting return-to-libc [20] attacks diverting function
pointers to legitimate but suitable executable code in the
process. More importantly, objects of the same type
share vtables and their vtable pointers are at the
same offsets, thus type-safe memory reuse completely
prevents hijacking of vtable pointers. This is simi-
lar to the attacker constraint discussed in Section 2.1,
where the old vtable pointer happens to be aligned
with another vtable pointer, except that attackers are
even more constrained now: they cannot exploit differ-
ences in inheritance relationships or evade the obstacle
by manipulating the heap.

These cases cover generic exploitation techniques and
attacks observed in the wild. The remaining attacks are
less practical but may be exploitable in some cases, de-
pending on the application and its use of data. Some
constraints may still be useful; for example, attacks that
hijack data pointers are constrained to only access mem-
ory in the corresponding field of another object of the
same type. In some cases, this may prevent dangerous
corruption or data leakage. However, reusing memory of
an object’s data fields for another instance of the same
type may still enable attacks, including privilege escala-
tion attacks, e.g. when data structures holding credentials
or access control information for different users are over-
lapped in time. Another potential exploitation avenue are
inconsistencies in the program’s data structures that may
lead to other memory errors, e.g. a buffer may become in-
consistent with its size stored in a different object when
either is accessed through a dangling pointer. Interest-
ingly, this inconsistency can be detected if spatial pro-
tection mechanisms, such as bounds checking, are used
in tandem.

3 Cling Memory Allocator

The Cling memory allocator is a drop-in replacement for
malloc designed to satisfy three requirements: (i) it
does not reuse free memory for its metadata, (ii) only al-
lows address space reuse among objects of the same type
and alignment, and (iii) achieves these without sacrific-
ing performance. Cling combines several solutions from
existing memory allocators to achieve its requirements.

3.1 Out-of-Band Heap Metadata
The first requirement protects against use-after-free vul-
nerabilities with dangling pointers to free, not yet reallo-
cated, memory. As we saw in Section 2.1, if the memory

allocator uses freed memory for metadata, such as free
list pointers, these allocator metadata can be interpreted
as object fields, e.g. vtable pointers, when free mem-
ory is referenced through a dangling pointer.

Memory allocator designers have considered using
out-of-band metadata before, because attackers targeted
in-band heap metadata in several ways: attacker con-
trolled data in freed objects can be interpreted as heap-
metadata through double-free vulnerabilities, and heap-
based overflows can corrupt allocator metadata adjacent
to heap-based buffers. If the allocator uses corrupt heap
metadata during its linked list operations, attackers can
write an arbitrary value to an arbitrary location.

Although out-of-band heap metadata can solve these
problems, some memory allocators mitigate heap meta-
data corruption without resorting to this solution. For
example, attacks corrupting heap metadata can be ad-
dressed by detecting the use of corrupted metadata with
sanity checks on free list pointers before unlinking a free
chunk or using heap canaries [19] to detect corruption
due to heap-based buffer overflows. In some cases, cor-
ruption can be prevented in the first place, e.g. by detect-
ing attempts to free objects already in a free list. These
techniques avoid the memory overhead of out-of-band
metadata, but are insufficient for preventing use-after-
free vulnerabilities, where no corruption of heap meta-
data takes place.

An approach to address this problem in allocator de-
signs reusing free memory for heap metadata is to ensure
that these metadata point to invalid memory if interpreted
as pointers by the application. Merely randomizing the
metadata by XORing with a secret value may not be suf-
ficient in the face of heap spraying. One option is setting
the top bit of every metadata word to ensure it points to
protected kernel memory, raising a hardware fault if the
program dereferences a dangling pointer to heap meta-
data, while the allocator would flip the top bit before
using the metadata. However, it is still possible that
the attacker can tamper with the dangling pointer before
dereferencing it. This approach may be preferred when
modifying an existing allocator design, but for Cling, we
chose to keep metadata out-of-band instead.

An allocator can keep its metadata outside deallo-
cated memory using non-intrusive linked lists (next and
prev pointers stored outside objects) or bitmaps. Non-
intrusive linked lists can have significant memory over-
head for small allocations, thus Cling uses a two-level
allocation scheme where non-intrusive linked lists chain
large memory chunks into free lists and small allocations
are carved out of buckets holding objects of the same
size class using bitmaps. Bitmap allocation schemes
have been used successfully in popular memory alloca-
tors aiming for performance [10], so they should not pose
an inherent performance limitation.

3.2 Type-Safe Address Space Reuse

The second requirement protects against use-after-free
vulnerabilities where the memory pointed by the dan-
gling pointer has been reused by some other object.
As we saw in Section 2.3, constraining dangling point-
ers to objects within pools of the same type and align-
ment thwarts a large class of attacks exploiting use-after-
free vulnerabilities, including all those used in real at-
tacks. A runtime memory allocator, however, must ad-
dress two challenges to achieve this. First, it must bridge
the semantic gap between type information available to
the compiler at compile time and memory allocation re-
quests received at runtime that only specify the number
of bytes to allocate. Second, it must address the memory
overheads caused by constraining memory reuse within
pools. Dhurjati et al. [9], who proposed type-safe mem-
ory reuse for security, preclude an efficient implemen-
tation without using a compile time pointer and region
analysis.

To solve the first challenge, we observe that security
is maintained even if memory reuse is over-constrained,
i.e. several allocation pools may exist for the same type,
as long as memory reuse across objects of different types
is prevented. Another key observation is that in C/C++
programs, an allocation site typically allocates objects of
a single type or arrays of objects of a single type, which
can safely share a pool. Moreover, the allocation site
is available to the allocation routines by inspecting their
call stack. While different allocation sites may allocate
objects of the same type that could also safely share the
same pool, Cling’s inability to infer this could only af-
fect performance—not security. Section 4 shows that
in spite of this pessimization, acceptable performance is
achieved.

The immediate caller of a memory allocation routine
can be efficiently retrieved from the call stack by inspect-
ing the saved return address. However, multiple tail-call
optimizations in a single routine, elaborate control flow,
and simple wrappers around allocation routines may ob-
scure the true allocation site. The first two issues are suf-
ficiently rare to not undermine the security of the scheme
in general. These problems are elaborated in Section 3.6,
and ways to address simple wrappers are described in
Section 3.5.

A further complication, illustrated in Figure 4, is
caused by array allocations and the lack of knowledge of
array element sizes. As discussed, all new objects must
be aligned to previously allocated objects, to ensure their
fields are aligned one to one. This requirement also ap-
plies to array elements. Figure 4, however, illustrates
that this constraint can be violated if part of the mem-
ory previously used by an array is subsequently reused
by an allocation placed at an arbitrary offset relative to

182 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 183

Time

M
em

ory

Array 1

Elem 0

Elem 1

Elem 2

Elem 3

Elem 4
Elem 1

Elem 0

Array 2

16K Block

16K Block

Figure 4: Example of unsafe reuse of array memory, even
with allocation pooling, due to not preserving allocation
offsets.

the start of the old allocation. Reusing memory from
a pool dedicated to objects of the same type is not suf-
ficient for preventing this problem. Memory reuse must
also preserve offsets within allocated memory. One solu-
tion is to always reuse memory chunks at the same offset
within all subsequent allocations. A more constraining
but simpler solution, used by Cling, is to allow memory
reuse only among allocations of the same size-class, thus
ensuring that previously allocated array elements will be
properly aligned with array elements subsequently occu-
pying their memory.

This constraint also addresses the variable sized struct
idiom, where the final field of a structure, such the fol-
lowing one, is used to access additional, variable size
memory allocated at the end of the structure:

1 struct {
2 void (*fp)();
3 int len;
4 char buffer[1];
5 };

By only reusing memory among instances of such struc-
tures that fall into the same size-class, and always align-
ing such structures at the start of this memory, Cling pre-
vents the structure’s fields, e.g. the function pointer fp in
this example, from overlapping after their deallocation
with buffer contents of some other object of the same
type.

The second challenge is to address the memory over-
head incurred by pooling allocations. Dhurjati et al. [8]
observe that the worst-case memory use increase for a
program with N pools would be roughly a factor of
N − 1: when a program first allocates data of type A,
frees all of it, then allocates data of type B, frees all of
it, and so on. This situation is even worse for Cling, be-

cause it has one pool per size-class per allocation site,
instead of just one pool per type.

The key observation to avoid excessive memory over-
head is that physical memory, unlike address space, can
be safely reused across pools. Cling borrows ideas from
previous memory allocators [11] designed to manage
physical memory in blocks (via mmap) rather than mono-
tonically growing the heap (via sbrk). These allocators
return individual blocks of memory to the operating sys-
tem as soon as they are completely free. This technique
allows Cling to reuse blocks of memory across different
pools.

Cling manages memory in blocks of 16K bytes, satis-
fying large allocations using contiguous ranges of blocks
directly, while carving smaller allocations out of homo-
geneous blocks called buckets. Cling uses an OS prim-
itive (e.g. madvise) to inform the OS it can reuse the
physical memory of freed blocks.

Deallocated memory accessed through a dangling
pointer will either continue to hold the data of the in-
tended object, or will be zero-filled by the OS, trigger-
ing a fault if a pointer field stored in it is dereferenced.
It is also possible to page protect address ranges after
relinquishing their memory (e.g. using mechanisms like
mprotect on top of madvise).

Cling does not suffer from fragmentation as the naive
scheme described in Section 2.2, because it allows imme-
diate reuse of small allocations’ memory within a pool.
Address space consumption is also more reasonable: it
is proportional to the number of allocation sites in the
program, so it does not leak over time as in the naive
solution, and is easily manageable in modern 64-bit ma-
chines.

3.3 Heap Organization

Cling’s main heap is divided into blocks of 16K bytes.
As illustrated in Figure 5, a smaller address range,
dubbed the meta-heap, is reserved for holding block de-
scriptors, one for each 16K address space block. Block
descriptors contain fields for maintaining free lists of
block ranges, storing the size of the block range, asso-
ciating the block with a pool, and pointers to metadata
for blocks holding small allocations. Metadata for block
ranges are only set for the first block in the range—the
head block. When address space is exhausted and the
heap is grown, the meta-heap is grown correspondingly.
The purpose of this meta-heap is to keep heap metadata
separate, allowing reuse of the heap’s physical memory
previously holding allocated data without discarding its
metadata stored in the meta-heap.

While memory in the heap area can be relinquished
using madvise, metadata about address space must be
kept in the meta-heap area, thus contributing to the mem-

ory overhead of the scheme. This overhead is small. A
block descriptor can be under 32 bytes in the current im-
plementation, and with a block size of 16K, this corre-
sponds to memory overhead less than 0.2% of the ad-
dress space used, which is small enough for the address
space usage observed in our evaluation. Moreover, a
hashtable could be employed to further reduce this over-
head if necessary.

Both blocks and block descriptors are arranged in
corresponding linear arrays, as illustrated in Figure 5,
so Cling can map between address space blocks and
their corresponding block descriptors using operations
on their addresses. This allows Cling to efficiently re-
cover the appropriate block descriptor when deallocating
memory.

Block
Descriptors
(Never Scrapped)

16 KiB
Block

Heap

Meta Heap...

...

Resident Block

Scrapped Block

Figure 5: Heap comprised of blocks and meta-heap of
block descriptors. The physical memory of deallocated
blocks can be scrapped and reused to back blocks in other
pools.

Cling pools allocations based on their allocation
site. To achieve this, Cling’s public memory al-
location routines (e.g. malloc and new) retrieve
their call site using the return address saved on the
stack. Since Cling’s routines have complete con-
trol over their prologues, the return address can al-
ways be retrieved reliably and efficiently (e.g. using the
__builtin_return_address GCC primitive). At
first, this return address is used to distinguish between
memory allocation sites. Section 3.5 describes how to
discover and unwind simple allocation routine wrappers
in the program, which is necessary for obtaining a mean-
ingful allocation site in those cases.

Cling uses a hashtable to map allocation sites to pools
at runtime. An alternative design to avoid hash table
lookups could be to generate a trampoline for each call
site and rewrite the call site at hand to use its dedicated
trampoline instead of directly calling the memory allo-
cation routine. The trampoline could then call a version
of the memory allocation routine accepting an explicit

pool parameter. The hash table, however, was preferred
because it is less intrusive and handles gracefully cor-
ner cases including calling malloc through a function
pointer. Moreover, since this hash table is accessed fre-
quently but updated infrequently, optimizations such as
constructing perfect hashes can be applied in the future,
if necessary.

Pools are organized around pool descriptors. The rel-
evant data structures are illustrated in Figure 6. Each
pool descriptor contains a table with free lists for block
ranges. Each free list links together the head blocks of
block ranges belonging to the same size-class (a power of
two). These are blocks of memory that have been deal-
located and are now reusable only within the pool. Pool
descriptors also contain lists of blocks holding small al-
locations, called buckets. Section 3.4 discusses small ob-
ject allocation in detail.

Initially, memory is not assigned to any pool. Larger
allocations are directly satisfied using a power-of-two
range of 16K blocks. A suitable free range is reused from
the pool if possible, otherwise, a block range is allocated
by incrementing a pointer towards the end of the heap,
and it is assigned to the pool. If necessary, the heap is
grown using a system call. When these large allocations
are deallocated, they are inserted to the appropriate pool
descriptor’s table of free lists according to their size. The
free list pointers are embedded in block descriptors, al-
lowing the underlying physical memory for the block to
be relinquished using madvise.

3.4 Small Allocations

Allocations less than 8K in size (half the block size) are
stored in slots inside blocks called buckets. Pool de-
scriptors point to a table with entries to manage buck-
ets for allocations belonging to the same size class. Size
classes start from a minimum of 16 bytes, increase by 16
bytes up to 128 bytes, and then increase exponentially
up to the maximum of 8K, with 4 additional classes in
between each pair of powers-of-two. Each bucket is as-
sociated with a free slot bitmap, its element size, and a
bump pointer used for fast allocation when the block is
first used, as described next.

Using bitmaps for small allocations seems to be a
design requirement for keeping memory overhead low
without reusing free memory for allocator metadata, so
it is critical to ensure that bitmaps are efficient com-
pared to free-list based implementations. Some effort
has been put into making sure Cling uses bitmaps ef-
ficiently. Cling borrows ideas from reaps [5] to avoid
bitmap scanning when many objects are allocated from
an allocation site in bursts. This case degenerates to just
bumping a pointer to allocate consecutive memory slots.
All empty buckets are initially used in bump mode, and

184 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 185

512K
256K
128K
64K
32K
16K

Pool

96
80
64
48
32
16

Small
Allocations

Large
Allocations

New
Bucket

Non-full
Bucket

Empy
Bucket

Empty
Bucket

Empty
Bucket

Full
Bucket

bitmap

bitmap

bitmap

bitmap

Hot
Bucket
Queue

Empty
Bucket

.

.

.

.

.

.

Head
Block

Head
Block

Head
Block

Head
Block

Head
Block

Empty
Bucket

Empty
Bucket

Cold Buckets

Empty Buckets

Hot Buckets
From

Other Pools

Full Buckets

Head
Block

Free Block Ranges

Used Block Range

Hot Buckets

Non-full
Buckets

Pool Pool

.

.

.

.

.

.

Pool Hashtable

Bucket in
Bump Mode

Figure 6: Pool organization illustrating free lists of blocks available for reuse within the pool and the global hot bucket queue
that delays reclamation of empty bucket memory. Linked list pointers are not stored inside blocks, as implied by the figure, but
rather in their block descriptors stored in the meta-heap. Blocks shaded light gray have had their physical memory reclaimed.

stay in that mode until the bump pointer reaches the end
of the bucket. Memory released while in bump mode is
marked in the bucket’s bitmap but is not used for satis-
fying allocation requests while the bump pointer can be
used.

A pool has at most one bucket in bump mode per size
class, pointed by a field of the corresponding table entry,
as illustrated in Figure 6. Cling first attempts to satisfy an
allocation request using that bucket, if available. Buck-
ets maintain the number of freed elements in a counter. A
bucket whose bump pointer reaches the end of the bucket
is unlinked from the table entry and, if the counter in-
dicates it has free slots, inserted into a list of non-full
buckets. If no bucket in bump mode is available, Cling
attempts to use the first bucket from this list, scanning
its bitmap to find a free slot. If the counter indicates the
bucket is full after an allocation request, the bucket is

unlinked from the list of non-full buckets, to avoid ob-
stracting allocations.

Conversely, if the counter of free elements is zero prior
to a deallocation, the bucket is re-inserted into the list of
non-full buckets. If the counter indicates that the bucket
is completely empty after deallocation, it is inserted to a
list of empty buckets queuing for memory reuse. This ap-
plies even for buckets in bump mode (and was important
for keeping memory overhead low). This list of empty
buckets is consulted on allocation if there is neither a
bucket in bump mode, nor a non-full bucket. If this list is
also empty, a new bucket is created using fresh address
space, and initialized in bump mode.

Empty buckets are inserted into a global queue of hot
buckets, shown at the bottom of Figure 6. This queue has
a configurable maximum size (10% of non-empty buck-
ets worked well in our experiments). When the queue

size threshold is reached after inserting an empty bucket
to the head of the queue, a hot bucket is removed from
the tail of the queue, and becomes cold: its bitmap is
deallocated, and its associated 16K of memory reused
via an madvise system call. If a cold bucket is en-
countered when allocating from the empty bucket list of
a pool, a new bitmap is allocated and initialized. The
hot bucket queue is important for reducing the number
of system calls by trading some memory overhead, con-
trollable through the queue size threshold.

3.5 Unwinding Malloc Wrappers

Wrappers around memory allocation routines may con-
ceal real allocation sites. Many programs wrap malloc
simply to check its return value or collect statistics. Such
programs could be ported to Cling by making sure that
the few such wrappers call macro versions of Cling’s al-
location routines that capture the real allocation site, i.e.
the wrapper’s call site. That is not necessary, however,
because Cling can detect and handle many such wrap-
pers automatically, and recover the real allocation site by
unwinding the stack. This must be implemented care-
fully because stack unwinding is normally intended for
use in slow, error handing code paths.

To detect simple allocation wrappers, Cling initiates
a probing mechanism after observing a single allocation
site requesting multiple allocation sizes. This probing
first uses a costly but reliable unwind of the caller’s stack
frame (using libunwind) to discover the stack loca-
tion of the suspected wrapper function’s return address.
Then, after saving the original value, Cling overwrites
the wrapper’s return address on the stack with the ad-
dress of a special assembler routine that will be inter-
posed when the suspected wrapper returns. After Cling
returns to the caller, and, in turn, the caller returns, the
overwritten return address transfers control to the inter-
posed routine. This routine compares the suspected al-
location wrapper’s return value with the address of the
memory allocated by Cling, also saved when the probe
was initiated. If the caller appears to return the address
just returned by Cling, it is assumed to be a simple wrap-
per around an allocation function.

To simplify the implementation, probing is aborted if
the potential wrapper function issues additional alloca-
tion requests before returning. This is not a problem in
practice, because simple malloc wrappers usually per-
form a single allocation. Moreover, a more thorough im-
plementation can easily address this.

The probing mechanism is only initiated when multi-
ple allocation sizes are requested from a single alloca-
tion site, potentially delaying wrapper identification. It
is unlikely, however, that an attacker could exploit this
window of opportunity in large programs. Furthermore,

this rule helps prevent misidentifying typical functions
encapsulating the allocation and initialization of objects
of a single type, because these request objects of a sin-
gle size. Sometimes, such functions allocate arrays of
various sizes, and can be misidentified. Nevertheless,
these false positives are harmless for security; they only
introduce more pools that affect performance by over-
constraining allocation, and the performance impact in
our benchmarks was small.

Similarly, the current implementation identifies func-
tions such as strdup as allocation wrappers. While we
could safely pool their allocations (they are of the same
type), the performance impact in our benchmarks was
again small, so we do not handle them in any special
way.

While this probing mechanism handles well the com-
mon case of malloc wrappers that return the allocated
memory through their function return value, it would not
detect a wrapper that uses some other mechanism to re-
turn the memory, such as modifying a pointer argument
passed to the wrapper by reference. Fortunately, such
malloc wrappers are unusual.

Allocation sites identified as potential wrappers
through this probing mechanism are marked as such in
the hashtable mapping allocation site addresses to their
pools, so Cling can unwind one more stack level to get
the real allocation site whenever allocation requests from
such an allocation site are encountered, and associate it
with a distinct pool.

Stack unwinding is platform specific and, in general,
expensive. In 32-bit x86 systems, the frame pointer reg-
ister ebp links stacks frames together, making unwind-
ing reasonably fast, but this register may be re-purposed
in optimized builds. Heuristics can still be used with
optimized code, e.g. looking for a value in the stack
that points into the text segment, but they are slower.
Data-driven stack unwinding on 64-bit AMD64 systems
is more reliable but, again, expensive. Cling uses the
libunwind library to encapsulate platform specific de-
tails of stack unwinding, but caches the stack offset of
wrappers’ return addresses to allow fast unwinding when
possible, as described next, and gives up unwinding if
not.

Care must be taken when using a cached stack offset to
retrieve the real allocation site, because the cached value
may become invalid for functions with a variable frame
size, e.g. those using alloca, resulting in the retrieval
of a bogus address. To guard against this, whenever a
new allocation site is encountered that was retrieved us-
ing a cached stack offset, a slow but reliable unwind (us-
ing libunwind) is performed to confirm the allocation
site’s validity. If the check fails, the wrapper must have
a variable frame size, and Cling falls back to allocating
all memory requested through that wrapper from a single

186 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 187

pool. In practice, typical malloc wrappers are simple
functions with constant frame sizes.

3.6 Limitations

Cling prevents vtable hijacking, the standard exploita-
tion technique for use-after-free vulnerabilities, and its
constraints on function and data pointers are likely to
prevent their exploitation, but it may not be able to pre-
vent use-after-free attacks targeting data such as creden-
tials and access control lists stored in objects of a single
type. For example, a dangling pointer that used to point
to the credentials of one user may end up pointing to the
credentials of another user.

Another theoretical attack may involve data structure
inconsistencies, when accessed through dangling point-
ers. For example, if a buffer and a variable holding its
length are in separate objects, and one of them is read
through a dangling pointer accessing an unrelated object,
the length variable may be inconsistent with the actual
buffer length, allowing dangerous bound violations. In-
terestingly, this can be detected if Cling is used in con-
junction with a defense offering spatial protection.

Cling relies on mapping allocation sites to object
types. A program with contrived flow of control, how-
ever, such as in the following example, would obscure
the type of allocation requests:

1 int size = condition ? sizeof(←↩
struct A) : sizeof(struct B);

2 void *obj = malloc(size);

Fortunately, this situation is less likely when allocating
memory using the C++ operator new that requires a type
argument.

A similar problem occurs when the allocated object is
a union: objects allocated at the same program location
may still have different types of data at the same offset.

Tail-call optimizations can also obscure allocation
sites. Tail-call optimization is applicable when the call to
malloc is the last instruction before a function returns.
The compiler can then replace the call instruction with
a simple control-flow transfer to the allocation routine,
avoiding pushing a return address to the stack. In this
case, Cling would retrieve the return address of the func-
tion calling malloc. Fortunately, in most cases where
this situation might appear, using the available return ad-
dress still identifies the allocation site uniquely.

Cling cannot prevent unsafe reuse of stack allocated
objects, for example when a function erroneously returns
a pointer to a local variable. This could be addressed by
using Cling as part of a compiler-based solution, by mov-
ing dangerous (e.g. address taken) stack based variables
to the heap at compile time.

Custom memory allocators are a big concern. They al-
locate memory in huge chunks from the system allocator,
and chop them up to satisfy allocation requests for indi-
vidual objects, concealing the real allocation sites of the
program. Fortunately, many custom allocators are used
for performance when allocating many objects of a sin-
gle type. Thus, pooling such custom allocator’s requests
to the system allocator, as done for any other allocation
site, is sufficient to maintain type-safe memory reuse. It
is also worth pointing that roll-your-own general purpose
memory allocators have become a serious security liabil-
ity due to a number of exploitable memory management
bugs beyond use-after-free (invalid frees, double frees,
and heap metadata corruption in general). Therefore, us-
ing a custom allocator in new projects is not a decision
to be taken lightly.

Usability in 32-bit platforms with scarce address space
is limited. This is less of a concern for high-end and fu-
ture machines. If necessary, however, Cling can be com-
bined with a simple conservative collector that scans all
words in used physical memory blocks for pointers to
used address space blocks. This solution avoids some
performance and compatibility problems of conservative
garbage collection by relying on information about ex-
plicit deallocations. Once address space is exhausted,
only memory that is in use needs to be scanned and
any 16K block of freed memory that is not pointed by
any word in the scanned memory can be reused. The
chief compatibility problem of conservative garbage col-
lection, namely hidden pointers (manufactured pointers
invisible to the collector), cannot cause premature deal-
locations, because only explicitly deallocated memory
would be garbage collected in this scheme. Neverthe-
less, relying on the abundant address space of modern
machines instead, is more attractive, because garbage
collection may introduce unpredictability or expose the
program to attacks using hidden dangling pointers.

3.7 Implementation
Cling comes as a shared library providing implementa-
tions for the malloc and the C++ operator new alloca-
tion interfaces. It can be preloaded with platform specific
mechanisms (e.g. the LD PRELOAD environment vari-
able on most Unix-based systems) to override the sys-
tem’s memory allocation routines at program load time.

4 Experimental Evaluation

4.1 Methodology
We measured Cling’s CPU, physical memory, and vir-
tual address space overheads relative to the default GNU
libc memory allocator on a 2.66GHz Intel Core 2 Q9400

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4M1M256K64K16K4K1K256641641

Fr
ac

tio
n

of
 A

llo
ca

tio
n

R
eq

ue
st

s

Allocation Request Size (Bytes)

gzip
vpr
gcc

parser
equake

Figure 7: Cumulative distribution function of memory
allocation sizes for gzip, vpr, gcc, parser, and
equake.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4M1M256K64K16K4K1K256641641

Fr
ac

tio
n

of
 A

llo
ca

tio
n

R
eq

ue
st

s

Allocation Request Size (Bytes)

perlbmk
vortex

twolf
espresso

gobmk

Figure 8: Cumulative distribution function of mem-
ory allocation sizes for perlbmk, vortex, twolf,
espresso, and gobmk.

CPU with 4GB of RAM, running x86 64 GNU/Linux
with a version 2.6 Linux kernel. We also measured two
variations of Cling: without wrapper unwinding and us-
ing a single pool.

We used benchmarks from the SPEC CPU 2000
and (when not already included in CPU 2000) 2006
benchmark suites [22]. Programs with few alloca-
tions and deallocations have practically no overhead
with Cling, thus we present results for SPEC bench-
marks with at least 100,000 allocation requests. We also
used espresso, an allocation intensive program that
is widely used in memory management studies, and is
useful when comparing against related work. Finally,
in addition to CPU bound benchmarks, we also evalu-
ated Cling with a current version of the Mozilla Firefox
web browser. Web browsers like Firefox are typical at-
tack targets for use-after-free exploits via malicious web

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4M1M256K64K16K4K1K256641641

Fr
ac

tio
n

of
 A

llo
ca

tio
n

R
eq

ue
st

s

Allocation Request Size (Bytes)

hmmer
h264ref

omnetpp
astar
dealII

Figure 9: Cumulative distribution function of mem-
ory allocation sizes for hmmer, h264ref, omnetpp,
astar, and dealII.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4M1M256K64K16K4K1K256641641

Fr
ac

tio
n

of
 A

llo
ca

tio
n

R
eq

ue
st

s

Allocation Request Size (Bytes)

sphinx3
soplex
povray

xalancbmk
firefox

Figure 10: Cumulative distribution function of mem-
ory allocation sizes for sphinx3, soplex, povray,
xalancbmk, and Firefox.

sites; moreover, unlike many benchmarks, Firefox is an
application of realistic size and running time.

Some programs use custom allocators, defeating
Cling’s protection and masking its overhead. For these
experiments, we disabled a custom allocator implemen-
tation in parser. The gcc benchmark also uses a
custom allocation scheme (obstack) with different
semantics from malloc that cannot be readily dis-
abled. We include it to contrast its allocation size
distribution with those of other benchmarks. Recent
versions of Firefox also use a custom allocator [10]
that was disabled by compiling from source with the
--disable-jemalloc configuration option.

The SPEC programs come with prescribed input data.
For espresso, we generated a uniformly random input
file with 15 inputs and 15 outputs, totalling 32K lines.
For Firefox, we used a list of 200 websites retrieved from
our browsing history, and replayed it using the -remote

188 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 189

Allocation Sites Allocation Requests Deallocation Requests
Benchmark Not Wrappers Wrappers Unwound Small Large Small Large
CPU2000

gzip 3 0 0 419,724 16,483 419,724 16,463
vpr 11 2 59 107,184 547 103,390 42
gcc 5 1 66 194,871 4,922 166,317 4,922

parser 218 3 3 787,695,542 46,532 787,523,051 46,532
equake 31 0 0 1,335,048 19 0 0

perlbmk 10 3 90 31,399,586 33,088 30,704,104 32,732
vortex 5 0 0 4,594,278 28,094 4,374,712 26,373
twolf 3 1 129 574,552 15 492,722 5

CPU2006
gobmk 50 5 15 621,144 20 621,109 0
hmmer 8 4 107 2,405,928 10,595 2,405,928 10,595
dealII 285 0 0 151,324,612 7,701 151,324,610 7,701

sphinx3 25 2 6 14,160,472 64,086 13,959,978 63,910
h264ref 342 0 0 168,634 9,145 168,631 9,142
omnetpp 158 1 17 267,167,577 895 267,101,325 895
soplex 285 6 25 190,986 44,959 190,984 44,959
povray 44 0 0 2,414,082 268 2,413,942 268
astar 102 0 0 4,797,794 2,161 4,797,794 2,161

xalancbmk 304 1 1 135,037,352 118,205 135,037,352 118,205
Other

espresso 49 7 14 3,877,784 77,711 3,877,783 77,711
firefox 2101 51 595 22,579,058 464,565 22,255,963 464536

Table 1: Memory allocation sites and requests in benchmarks and Firefox browser.

option to direct a continuously running Firefox instance
under measurement to a new web site every 10 seconds.

We report memory consumption using information ob-
tained through the /proc/self/status Linux inter-
face. When reporting physical memory consumption, the
sum of the VmRSS and VmPTE fields is used. The lat-
ter measures the size of the page tables used by the pro-
cess, which increases with Cling due to the larger address
space. In most cases, however, it was still very small in
absolute value. The VmSize field is used to measure
address space size. The VmPeak and VmHWM fields are
used to obtain peak values for the VmSize and VmRSS
fields respectively.

The reported CPU times are averages over three runs
with small variance. CPU times are not reported for Fire-
fox, because the experiment was IO bound with signifi-
cant variance.

4.2 Benchmark Characterization
Figures 7–10 illustrate the size distribution of alloca-
tion requests made by any given benchmark running with
their respective input data. We observe that most bench-
marks request a wide range of allocation sizes, but the
gcc benchmark that uses a custom allocator mostly re-
quests memory in chunks of 4K.

Table 1 provides information on the number of static
allocation sites in the benchmarks and the absolute num-
ber of allocation and deallocation requests at runtime.
For allocation sites, the first column is the number of al-
location sites that are not wrappers, the second column is

the number of allocation sites that are presumed to be in
allocation routine wrappers (such as safe_malloc in
twolf, my_malloc in vpr, and xmalloc in gcc),
and the third column is the number of call sites of these
wrappers, that have to be unwound. We observe that
Firefox has an order of magnitude more allocation sites
than the rest.

The number of allocation and deallocation requests for
small (less than 8K) and large allocations are reported
separately. The vast majority of allocation requests are
for small objects and thus the performance of the bucket
allocation scheme is crucial. In fact, no attempt was
made to optimize large allocations in this work.

4.3 Results
Table 2 tabulates the results of our performance measure-
ments. We observe that the runtime overhead is modest
even for programs with a higher rate of allocation and
deallocation requests. With the exception of espresso
(16%), parser (12%), and dealII (8%), the over-
head is less than 2%. Many other benchmarks with few
allocation and deallocation requests, not presented here,
have even less overhead—an interesting benefit of this
approach, which, unlike solutions interposing on mem-
ory accesses, does not tax programs not making heavy
use of dynamic memory.

In fact, many benchmarks with a significant num-
ber of allocations run faster with Cling. For example
xalancbmk, a notorious allocator abuser, runs 25%
faster. In many cases we observed that by tuning allo-

Benchmark

Execution time Peak memory usage Peak VM usage

Orig. (Sec.)
Cling Ratio

Orig. (MiB)
Cling Ratio

Orig. (MiB)
Cling Ratio

Pools No No Pools No No PoolsUnwind Pools Unwind Pools
CPU2000

gzip 95.7 1.00 1.00 1.00 181.91 1.00 1.00 1.00 196.39 1.10
vpr 76.5 1.00 0.99 0.99 48.01 1.06 1.06 1.06 62.63 1.54
gcc 43.29 1.01 1.01 1.01 157.05 0.98 0.98 0.98 171.42 1.21

parser 152.6 1.12 1.08 1.05 21.43 1.14 1.13 1.05 35.99 2.26
equake 47.3 0.98 1.00 0.99 49.85 0.99 0.99 0.99 64.16 1.14

perlbmk 68.18 1.02 0.99 1.00 132.47 0.96 0.95 0.95 146.69 1.16
vortex 72.19 0.99 0.99 0.99 73.09 0.91 0.91 0.91 88.18 1.74
twolf 101.31 1.01 1.00 1.00 6.85 0.93 0.91 0.90 21.15 1.19

CPU2006
gobmk 628.6 1.00 1.0 1.00 28.96 1.01 1.00 1.00 44.69 1.64
hmmer 542.15 1.02 1.02 1.01 25.75 1.02 1.01 1.01 40.31 1.79
dealII 476.74 1.08 1.07 1.06 793.39 1.02 1.02 1.02 809.46 1.70

sphinx3 1143.6 1.00 1.00 0.99 43.45 1.01 1.01 1.01 59.93 1.37
h264ref 934.71 1.00 1.01 1.01 64.54 0.97 0.97 0.96 80.18 1.52
omnetpp 573.7 0.83 0.83 0.87 169.58 0.97 0.97 0.97 183.45 1.03
soplex 524.01 1.01 1.01 1.01 421.8 1.27 1.27 1.27 639.51 2.31
povray 272.54 1.00 1.00 0.99 4.79 1.33 1.33 1.29 34.1 0.77
astar 656.09 0.93 0.93 0.92 325.77 0.94 0.94 0.94 345.51 1.56

xalancbmk 421.03 0.75 0.75 0.77 419.93 1.03 1.03 1.14 436.54 1.45
Other

espresso 25.21 1.16 1.07 1.10 4.63 1.13 1.06 1.02 19.36 2.08

Table 2: Experimental evaluation results for the benchmarks.

cator parameters such as the block size and the length of
the hot bucket queue, we were able to trade memory for
speed and vice versa. In particular, with different block
sizes, xalancbmk would run twice as fast, but with a
memory overhead around 40%.

In order to factor out the effects of allocator design
and tuning as much as possible, Table 2 also includes
columns for CPU and memory overhead using Cling
with a single pool (which implies no unwinding over-
head as well). We observe that in some cases Cling
with a single pool is faster and uses less memory than
the system allocator, hiding the non-zero overheads of
pooling allocations in the full version of Cling. On the
other hand, for some benchmarks with higher overhead,
such as dealII and parser, some of the overhead re-
mains even without using pools. For these cases, both
slow and fast, it makes sense to compare the overhead
against Cling with a single pool. A few programs, how-
ever, like xalancbmk, use more memory or run slower
with a single pool. As mentioned earlier, this benchmark
is quite sensitive to allocator tweaks.

Table 2 also includes columns for CPU and memory
overhead using Cling with many pools but without un-
winding wrappers. We observe that for espresso and
parser, some of the runtime overhead is due to this
unwinding.

Peak memory consumption was also low for most
benchmarks, except for parser (14%), soplex
(27%), povray (33%), and espresso (13%). Inter-
estingly, for soplex and povray, this overhead is not

because of allocation pooling: these benchmarks incur
similar memory overheads when running with a single
pool. In the case of soplex, we were able to deter-
mine that the overhead is due to a few large realloc
requests, whose current implementation in Cling is sub-
optimal. The allocation intensive benchmarks parser
and espresso, on the other hand, do appear to incur
memory overhead due to pooling allocations. Disabling
unwinding also affects memory use by reducing the num-
ber of pools.

The last two columns of Table 2 report virtual ad-
dress space usage. We observe that Cling’s address
space usage is well within the capabilities of modern 64-
bit machines, with the worst increase less than 150%.
Although 64-bit architectures can support much larger
address spaces, excessive address space usage would
cost in page table memory. Interestingly, in all cases,
the address space increase did not prohibit running the
programs on 32-bit machines. Admittedly, however, it
would be pushing up against the limits.

In the final set of experiments, we ran Cling with Fire-
fox. Since, due to the size of the program, this is the
most interesting experiment, we provide a detailed plot
of memory usage as a function of time (measured in al-
located Megabytes of memory), and we also compare
against the naive solution of Section 2.2.

The naive solution was implemented by preventing
Cling from reusing memory and changing the memory
block size to 4K, which is optimal in terms of mem-
ory reuse. (It does increase the system call rate how-

190 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 191

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

M
em

or
y

U
sa

ge
 (M

iB
)

Requested Memory (MiB)

Cling
System

Cling (1 Pool)
Naive

Figure 11: Firefox memory usage over time (measured in
requested memory).

ever.) The naive solution could be further optimized by
not using segregated storage classes, but this would not
affect the memory usage significantly, as the overhead
of rounding small allocation requests to size classes in
Cling is at most 25%—and much less in practice.

Figure 11 graphs memory use for Firefox. We ob-
serve that Cling (with pools) uses similar memory to the
system’s default allocator. Using pools does incur some
overhead, however, as we can see by comparing against
Cling using a single pool (which is more memory effi-
cient than the default allocator). Even after considering
this, Cling’s approach of safe address space reuse ap-
pears usable with large, real applications. We observe
that Cling’s memory usage fluctuates more than the de-
fault allocator’s because it aggressively returns memory
to the operating system. These graphs also show that the
naive solution has excessive memory overhead.

Finally, Figure 12 graphs address space usage for Fire-
fox. It illustrates the importance of returning memory
to the operating system; without doing so, the scheme’s
memory overhead would be equal to its address space
use. We observe that this implied memory usage with
Firefox may not be prohibitively large, but many of the
benchmarks evaluated earlier show that there are cases
where it can be excessive. As for the address space usage
of the naive solution, it quickly goes off the chart because
it is linear with requested memory. The naive solution
was also the only case where the page table overhead
had a significant contribution during our evaluation: in
this experiment, the system allocator used 0.99 MiB in
page tables, Cling used 1.48 MiB, and the naive solu-
tion 19.43 MiB.

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000

Ad
dr

es
s

Sp
ac

e
U

sa
ge

 (M
iB

)

Requested Memory (MiB)

Cling
System

Cling (1 Pool)
Naive

Figure 12: Firefox address space usage over time (mea-
sured in requested memory).

5 Related Work

Programs written in high-level languages using garbage
collection are safe from use-after-free vulnerabilities, be-
cause the garbage collector never reuses memory while
there is a pointer to it. Garbage collecting unsafe lan-
guages like C and C++ is more challenging. Neverthe-
less, conservative garbage collection [6] is possible, and
can address use-after-free vulnerabilities. Conservative
garbage collection, however, has unpredictable runtime
and memory overheads that may hinder adoption, and is
not entirely transparent to the programmer: some port-
ing may be required to eliminate pointers hidden from
the garbage collector.

DieHard [4] and Archipelago [16] are memory alloca-
tors designed to survive memory errors, including dan-
gling pointer dereferences, with high probability. They
can survive dangling pointer errors by preserving the
contents of freed objects for a random period of time.
Archipelago improves on DieHard by trading address
space to decrease physical memory consumption. These
solutions are similar to the naive solution of Section 2.2,
but address some of its performance problems by even-
tually reusing memory. Security, however, is compro-
mised: while their probabilistic guarantees are suitable
for addressing reliability, they are insufficient against at-
tackers who can adapt their attacks. Moreover, these so-
lutions have considerable runtime overhead for alloca-
tion intensive applications. DieHard (without its replica-
tion feature) has 12% average overhead but up to 48.8%
for perlbmk and 109% for twolf. Archipelago has
6% runtime overhead across a set of server applications
with low allocation rates and few live objects, but the
allocation intensive espresso benchmark runs 7.32
times slower than using the GNU libc allocator. Cling
offers deterministic protection against dangling pointers

(but not spatial violations), with significantly lower over-
head (e.g. 16% runtime overhead for the allocation in-
tensive espresso benchmark) thanks to allowing type-
safe reuse within pools.

Dangling pointer accesses can be detected using
compile-time instrumentation to interpose on every
memory access [3, 24]. This approach guarantees com-
plete temporal safety (sharing most of the cost with spa-
tial safety), but has much higher overhead than Cling.

Region-based memory management (e.g. [14]) is a
language-based solution for safe and efficient memory
management. Object allocations are maintained in a lex-
ical stack, and are freed when the enclosing block goes
out of scope. To prevent dangling pointers, objects can
only refer to other objects in the same region or regions
higher up the stack. It may still have to be combined with
garbage collection to address long-lived regions. Its per-
formance is better than using garbage collection alone,
but it is not transparent to programmers.

A program can be manually modified to use reference-
counted smart pointers to prevent reusing memory of ob-
jects with remaining references. This, however, requires
major changes to application code. HeapSafe [12], on
the other hand, is a solution that applies reference count-
ing to legacy code automatically. It has reasonable over-
head over a number of CPU bound benchmarks (geomet-
ric mean of 11%), but requires recompilation and some
source code tweaking.

Debugging tools, such as Electric Fence, use a new
virtual page for each allocation of the program and
rely on page protection mechanisms to detect dangling
pointer accesses. The physical memory overheads due
to padding allocations to page boundaries make this ap-
proach impractical for production use. Dhurjati et al. [8]
devised a mechanism to transform memory overhead to
address space overhead by wrapping the memory allo-
cator and returning a pointer to a dedicated new virtual
page for each allocation but mapping it to the physical
page used by the original allocator. The solution’s run-
time overhead for Unix servers is less than 4%, and for
other Unix utilities less than 15%, but incurs up to 11×
slowdown for allocation intensive benchmarks.

Interestingly, type-safe memory reuse (dubbed type-
stable memory management [13]) was first used to sim-
plify the implementation of non-blocking synchroniza-
tion algorithms by preventing type errors during specu-
lative execution. In that case, however, it was not applied
indiscriminately, and memory could be safely reused af-
ter some time bound; thus, performance issues addressed
in this work were absent.

Dynamic pool allocation based on allocation site in-
formation retrieved by malloc through the call stack
has been used for dynamic memory optimization [25].
That work aimed to improve performance by laying out

objects allocated from the same allocation site consecu-
tively in memory, in combination with data prefetching
instructions inserted into binary code.

Dhurjati et al. [9] introduced type-homogeneity as a
weaker form of temporal memory safety. Their solution
uses automatic pool allocation at compile-time to seg-
regate objects into pools of the same type, only reusing
memory within pools. Their approach is transparent to
the programmer and preserves address space, but relies
on imprecise, whole-program analysis.

WIT [2] enforces an approximation of memory safety.
It thwarts some dangling pointer attacks by constraining
writes and calls through hijacked pointer fields in struc-
tures accessed through dangling pointers. It has an aver-
age runtime overhead of 10% for SPEC benchmarks, but
relies on imprecise, whole-program analysis.

Many previous systems only address the spatial di-
mension of memory safety (e.g. bounds checking sys-
tems like [15]). These can be complemented with Cling
to address both spatial and temporal memory safety.

Finally, address space layout randomization (ASLR)
and data execution prevention (DEP) are widely used
mechanisms designed to thwart exploitation of memory
errors in general, including use-after-free vulnerabilities.
These are practical defenses with low overhead, but they
can be evaded. For example, a non-executable heap can
be bypassed with, so called, return-to-libc attacks [20]
diverting control-flow to legitimate executable code in
the process image. ASLR can obscure the locations of
such code, but relies on secret values, which a lucky or
determined attacker might guess. Moreover, buffer over-
reads [23] can be exploited to read parts of the memory
contents of a process running a vulnerable application,
breaking the secrecy assumptions of ASLR.

6 Conclusions

Pragmatic defenses against low-level memory corrup-
tion attacks have gained considerable acceptance within
the software industry. Techniques such as stack ca-
naries, address space layout randomization, and safe ex-
ception handling —thanks to their low overhead and
transparency for the programmer— have been read-
ily employed by software vendors. In particular, at-
tacks corrupting metadata pointers used by the mem-
ory management mechanisms, such as invalid frees, dou-
ble frees, and heap metadata overwrites, have been ad-
dressed with resilient memory allocator designs, benefit-
ing many programs transparently. Similar in spirit, Cling
is a pragmatic memory allocator modification for defend-
ing against use-after-free vulnerabilities that is readily
applicable to real programs and has low overhead.

We found that many of Cling’s design requirements
could be satisfied by combining mechanisms from suc-

192 19th USENIX Security Symposium USENIX Association

cessful previous allocator designs, and are not inherently
detrimental for performance. The overhead of mapping
allocation sites to allocation pools was found acceptable
in practice, and could be further addressed in future im-
plementations. Finally, closer integration with the lan-
guage by using compile-time libraries is possible, espe-
cially for C++, and can eliminate the semantic gap be-
tween the language and the memory allocator by for-
warding type information to the allocator, increasing se-
curity and flexibility in memory reuse. Nevertheless, the
current instantiation has the advantage of being readily
applicable to a problem with no practical solutions.

Acknowledgments

We would like to thank Amitabha Roy for his suggestion
of intercepting returning functions to discover potential
allocation routine wrappers, Asia Slowinska for fruitful
early discussions, and the anonymous reviewers for use-
ful, to-the-point comments.

References
[1] AFEK, J., AND SHARABANI, A. Dangling pointer: Smashing

the pointer for fun and profit. In Black Hat USA Briefings (Aug.
2007).

[2] AKRITIDIS, P., CADAR, C., RAICIU, C., COSTA, M., AND
CASTRO, M. Preventing memory error exploits with WIT.
In Proceedings of the IEEE Symposium on Security and Pri-
vacy (Los Alamitos, CA, USA, 2008), IEEE Computer Society,
pp. 263–277.

[3] AUSTIN, T. M., BREACH, S. E., AND SOHI, G. S. Efficient
detection of all pointer and array access errors. In Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (New York, NY, USA, 1994),
ACM, pp. 290–301.

[4] BERGER, E. D., AND ZORN, B. G. DieHard: probabilistic mem-
ory safety for unsafe languages. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation (PLDI) (New York, NY, USA, 2006), ACM, pp. 158–
168.

[5] BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S. Re-
considering custom memory allocation. SIGPLAN Not. 37, 11
(2002), 1–12.

[6] BOEHM, H.-J., AND WEISER, M. Garbage collection in an
uncooperative environment. In Software Practice & Experience
(New York, NY, USA, 1988), vol. 18, John Wiley & Sons, Inc.,
pp. 807–820.

[7] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-control-data attacks are realistic threats. In Pro-
ceedings of the 14th USENIX Security Symposium (Berkeley, CA,
USA, 2005), USENIX Association, pp. 177–192.

[8] DHURJATI, D., AND ADVE, V. Efficiently detecting all dan-
gling pointer uses in production servers. In Proceedings of the
International Conference on Dependable Systems and Networks
(DSN) (Washington, DC, USA, 2006), IEEE Computer Society,
pp. 269–280.

[9] DHURJATI, D., KOWSHIK, S., ADVE, V., AND LATTNER, C.
Memory safety without runtime checks or garbage collection.
In Proceedings of the ACM SIGPLAN Conference on Language,
Compiler, and Tool for Embedded Systems (LCTES) (2003),
pp. 69–80.

[10] EVANS, J. A scalable concurrent malloc(3) implementation for
FreeBSD. BSDCan, Apr. 2006.

[11] FENG, Y., AND BERGER, E. D. A locality-improving dynamic
memory allocator. In Proceedings of the Workshop on Memory
System Performance (MSP) (New York, NY, USA, 2005), ACM,
pp. 68–77.

[12] GAY, D., ENNALS, R., AND BREWER, E. Safe manual memory
management. In Proceedings of the 6th International Symposium
on Memory Management (ISMM) (New York, NY, USA, 2007),
ACM, pp. 2–14.

[13] GREENWALD, M., AND CHERITON, D. The synergy between
non-blocking synchronization and operating system structure.
SIGOPS Oper. Syst. Rev. 30, SI (1996), 123–136.

[14] GROSSMAN, D., MORRISETT, G., JIM, T., HICKS, M., WANG,
Y., AND CHENEY, J. Region-based memory management in Cy-
clone. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI) (New
York, NY, USA, 2002), ACM, pp. 282–293.

[15] JONES, R. W. M., AND KELLY, P. H. J. Backwards-compatible
bounds checking for arrays and pointers in C programs. In Pro-
ceedings of the 3rd International Workshop on Automatic Debug-
ging (AADEBUG) (1997), pp. 13–26.

[16] LVIN, V. B., NOVARK, G., BERGER, E. D., AND ZORN, B. G.
Archipelago: trading address space for reliability and security.
SIGOPS Oper. Syst. Rev. 42, 2 (2008), 115–124.

[17] MITRE CORPORATION. Common vulnerabilities and exposures
(CVE). http://cve.mitre.org.

[18] MITRE CORPORATION. CWE-416: Use After Free. http:
//cwe.mitre.org/data/definitions/416.html.

[19] ROBERTSON, W., KRUEGEL, C., MUTZ, D., AND VALEUR, F.
Run-time detection of heap-based overflows. In Proceedings of
the 17th USENIX Conference on System Administration (LISA)
(Berkeley, CA, USA, 2003), USENIX Association, pp. 51–60.

[20] SOLAR DESIGNER. “return-to-libc” attack. Bugtraq, Aug. 1997.

[21] SOTIROV, A. Heap feng shui in JavaScript. In Black Hat Europe
Briefings (Feb. 2007).

[22] STANDARD PERFORMANCE EVALUATION CORPORATION.
SPEC Benchmarks. http://www.spec.org.

[23] STRACKX, R., YOUNAN, Y., PHILIPPAERTS, P., PIESSENS,
F., LACHMUND, S., AND WALTER, T. Breaking the memory
secrecy assumption. In Proceedings of the Second European
Workshop on System Security (EUROSEC) (New York, NY, USA,
2009), ACM, pp. 1–8.

[24] XU, W., DUVARNEY, D. C., AND SEKAR, R. An efficient and
backwards-compatible transformation to ensure memory safety
of C programs. In Proceedings of the 12th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering
(SIGSOFT/FSE) (New York, NY, USA, 2004), ACM, pp. 117–
126.

[25] ZHAO, Q., RABBAH, R., AND WONG, W.-F. Dynamic memory
optimization using pool allocation and prefetching. SIGARCH
Comput. Archit. News 33, 5 (2005), 27–32.

USENIX Association 19th USENIX Security Symposium 193

ZKPDL: A Language-Based System for Efficient Zero-Knowledge Proofs
and Electronic Cash

Sarah Meiklejohn
University of California, San Diego
smeiklej@cs.ucsd.edu

C. Chris Erway
Brown University
cce@cs.brown.edu

Alptekin Küpçü
Brown University

kupcu@cs.brown.edu

Theodora Hinkle
University of Wisconsin, Madison

thea@cs.wisc.edu

Anna Lysyanskaya
Brown University

anna@cs.brown.edu

Abstract
In recent years, many advances have been made in

cryptography, as well as in the performance of commu-
nication networks and processors. As a result, many ad-
vanced cryptographic protocols are now efficient enough
to be considered practical, yet research in the area re-
mains largely theoretical and little work has been done
to use these protocols in practice, despite a wealth of po-
tential applications.

This paper introduces a simple description language,
ZKPDL, and an interpreter for this language. ZKPDL
implements non-interactive zero-knowledge proofs of
knowledge, a primitive which has received much atten-
tion in recent years. Using our language, a single pro-
gram may specify the computation required by both the
prover and verifier of a zero-knowledge protocol, while
our interpreter performs a number of optimizations to
lower both computational and space overhead.

Our motivating application for ZKPDL has been the
efficient implementation of electronic cash. As such,
we have used our language to develop a cryptographic
library, Cashlib, that provides an interface for using e-
cash and fair exchange protocols without requiring ex-
pert knowledge from the programmer.

1 Introduction
Modern cryptographic protocols are complicated,

computationally intensive, and, given their security re-
quirements, require great care to implement. However,
one cannot expect all good cryptographers to be good
programmers, or vice versa. As a result, many newly pro-
posed protocols—often described as efficient enough for
deployment by their authors—are left unimplemented,
despite the potentially useful primitives they offer to sys-
tem designers. We believe that a lack of high-level soft-
ware support (such as that provided by OpenSSL, which
provides basic encryption and hashing) presents a barrier
to the implementation and deployment of advanced cryp-

tographic protocols, and in this work attempt to remove
this obstacle.

One particular area of recent cryptographic research
which has applications for privacy-preserving systems is
zero-knowledge proofs [46, 45, 16, 38], which provide
a way of proving that a statement is true without re-
vealing anything beyond the validity of the statement.
Among the applications of zero-knowledge proofs are
electronic voting [48, 55, 37, 50], anonymous authenti-
cation [20, 35, 61], anonymous electronic ticketing for
public transportation [49], verifiable outsourced compu-
tation [8, 42], and essentially any system in which hon-
esty needs to be enforced without sacrificing privacy.
Much recent attention has been paid to protocols based
on anonymous credentials [29, 34, 23, 25, 10, 7], which
allow users to anonymously prove possession of a valid
credential (e.g., a driver’s license), or prove relationships
based on data associated with that credential (e.g., that a
user’s age lies within a certain range) without revealing
their identity or other data. These protocols also prevent
the person verifying a credential and the credential’s is-
suer from colluding to link activity to specific users. As
corporations and governments move to put an increas-
ing amount of personal information online, the need for
efficient privacy-preserving systems has become increas-
ingly important and a major focus of recent research.

Another application of zero-knowledge proofs is elec-
tronic cash. The primary aim of our work has been to
enable the efficient deployment of secure, anonymous
electronic cash (e-cash) in network applications. Like
physical coins, e-coins cannot be forged; furthermore,
given two e-coins it is impossible to tell who spent them,
or even if they came from the same user. For this rea-
son, e-cash holds promise for use in anonymous settings
and privacy-preserving applications, where free-riding
by users may threaten a system’s stability.

Actions in any e-cash system can be characterized
as in Figure 1. There are two centralized entities: the
bank and the arbiter. The bank keeps track of users’ ac-

194 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 195

Figure 1: An overview of the entities involved in our e-cash
system. Users may engage in buy or barter transactions, with-
draw and deposit coins as necessary, and consult the arbiter for
resolution only in the case of a dispute.

count balances, lets the users withdraw money, and ac-
cepts coin deposits. The arbiter (a trusted third party) re-
solves any disputes that arise between users in the course
of their fair exchanges. Once the users have obtained
money from the bank, they are free to exchange coins for
items (or just barter for items) and in this way create an
economy.

In previous work [9] we describe a privacy-preserving
P2P system based on BitTorrent that uses our e-cash
and fair exchange protocols to incentivize users to share
data. Here, the application of e-cash provides protection
against selfish peers, as well as an incentive to upload for
peers who have completed their download and thus have
no need to continue participating. This system has been
realized by our work on the Buy and Barter protocols,
described in Section 6.2, which allow a user to fairly ex-
change e-coins for blocks of data, or barter one block of
data for another.

These e-cash protocols can also be used for payments
in other systems that face free-riding problems, such as
anonymous onion routing [26]. In such a system, routers
would be paid for forwarding messages using e-cash,
thus providing incentives to route traffic on behalf of oth-
ers in a manner similar to that proposed by Androulaki et
al. [1]. Since P2P systems like these require each user to
perform many cryptographic exchanges, the need to pro-
vide high performance for repeated executions of these
protocols is paramount.

1.1 Our contribution
In this paper, we hope to bridge the gap between de-

sign and deployment by providing a language, ZKPDL
(Zero-Knowledge Proof Description Language), that en-
ables programmers and cryptographers to more easily

implement privacy-preserving protocols. We also pro-
vide a library, Cashlib, that builds upon our language to
provide simple access to cryptographic protocols such as
electronic cash, blind signatures, verifiable encryption,
and fair exchange.

The design and implementation of our language and
library were motivated by collaborations with systems
researchers interested in employing e-cash in high-
throughput applications, such as the P2P systems de-
scribed earlier. The resulting performance concerns, and
the complexity of the protocols required, motivated our
library’s focus on performance and ease of use for both
the cryptographers designing the protocols and the sys-
tems programmers charged with putting them into prac-
tice. These twin concerns led to our language-based ap-
proach and work on the interpreter.

The high-level nature of our language brings two ben-
efits. First, it frees the programmer from having to worry
about the implementation of cryptographic primitives,
efficient mathematical operations, generating and pro-
cessing messages, etc.; instead, ZKPDL allows the spec-
ification of a protocol in a manner similar to that of theo-
retical descriptions. Second, it allows our library to make
performance optimizations based on analysis of the pro-
tocol description itself.

ZKPDL permits the specification of many widely-
used zero-knowledge proofs. We also provide an in-
terpreter that generates and verifies proofs for protocols
described by our language. The interpreter performs
optimizations such as precomputation of expected ex-
ponentiations, translations to prevent redundant proofs,
and caching compiled versions of programs to be loaded
when they are used again on different inputs. More de-
tails on these optimizations are provided in Section 4.2.

Our e-cash library, Cashlib, described in Section 6, sits
atop our language to provide simple access to higher-
level cryptographic primitives such as e-cash [26], blind
signatures [24], verifiable encryption [27], and optimistic
fair exchange [9, 51]. Because of the modular nature of
our language, we believe that the set of primitives pro-
vided by our library can be easily extended to include
other zero-knowledge protocols.

Finally, we hope that our efforts will encourage pro-
grammers to use (and extend) our library to implement
their cryptographic protocols, and that our language will
make their job easier; we welcome contribution by our
fellow researchers in this effort. Documentation and
source code for our library can be found online at http:
//github.com/brownie/cashlib.

2 Cryptographic Background
There are two main modern cryptographic primitives

used in our framework: commitment schemes and zero-

knowledge proofs. Briefly, a commitment scheme can
be thought of as cryptographically analogous to an enve-
lope. When a user Alice wants to commit to a value, she
puts the value in the envelope and seals it. Upon receiv-
ing a commitment, a second user Bob cannot tell which
value is in the envelope; this property is called hiding (in
this analogy, let’s assume Alice is the only one who can
open the envelope). Furthermore, because the envelope
is sealed, Alice cannot sneak another value into the enve-
lope without Bob knowing: this property is called bind-
ing. To eventually reveal the value inside the envelope,
all Alice has to do is open it (cryptographically, she does
this by revealing the private value and any randomness
used to form the commitment; this collection of values is
aptly referred to as the opening of the commitment). We
employ both Pedersen commitments [64] and Fujisaki-
Okamoto commitments [41, 36], which rely on the secu-
rity of the Discrete Log assumption and the Strong RSA
assumption respectively.

Zero-knowledge proofs [46, 45] provide a way of
proving that a statement is true to someone without that
person learning anything beyond the validity of the state-
ment. For example, if the statement were “I have access
to this sytem” then the verifier would learn only that I
really do have access, and not, for example, how I gain
access or what my access code is. In our library, we make
use of sigma proofs [33], which are three-message proofs
that achieve a weaker variant of zero-knowledge known
as honest-verifier zero-knowledge. We do not implement
sigma protocols directly; instead, we use the Fiat-Shamir
heuristic [40] that transforms sigma protocols into non-
interactive (fully) zero-knowledge proofs, secure in the
random oracle model [12].

A primitive similar to zero-knowledge is the idea of a
proof of knowledge [11], in which the prover not only
proves that a statement is true, but also proves that it
knows a reason why the statement is true. Extending
the above example, this would be equivalent to proving
the statement “I have access to the system, and I know a
password that makes this true.”

In addition to these cryptographic primitives, our li-
brary also makes uses of hash functions (both univer-
sal one-way hashes [60] and Merkle hashes [59]), digital
signatures [47], pseudo-random functions [44], and sym-
metric encryption [32]. The security of the protocols in
our library relies on the security of each of these individ-
ual components, as well as the security of any commit-
ment schemes or zero-knowledge proofs used.

3 Design
The design of our library and language arose from our

initial goal of providing a high-performance implemen-
tation of protocols for e-cash and fair exchange for use

in applications such as those described in the introduc-
tion. For these applications, the need to support many
repeated interactions of the same protocol efficiently is a
paramount concern for both the bank and the users. In the
bank’s case, it must conduct withdraw and deposit pro-
tocols with every user in the system, while in the user’s
case it is possible that a user would want to conduct many
transactions using the same system parameters.

Motivated by these performance requirements, we ini-
tially developed a more straightforward implementation
of our protocols using C++ and GMP [43], but found
that our ability to modify and optimize our implementa-
tion was hampered by the complexity of our protocols.
High-level changes to protocols required significant ef-
fort to re-implement; meanwhile, potentially useful per-
formance optimizations became difficult to implement,
and there was no way to easily extend the functionality
of the library.

VerifierProver

ZKPDL
Program

Interpreter
Prover

Interpreter
Verifier

compile()

public values (security
parameters, public keys,
groups, generators, etc)

private values
to be proved

ZKProof
Message

Proof verified?
(true/false)

serialization

Figure 2: Usage of a ZKPDL program: the same program is
compiled separately by the prover and verifier, who may also
be provided with a set of fixed public parameters. This pro-
duces an Interpreter object, which can be used by the prover to
prove to a verifier that his private values satisfy a certain set of
relationships. Serialization and processing of proof messages
are provided by the library. Once compiled, an interpreter can
be re-used on different private inputs, using the same public
parameters that were originally provided.

These difficulties led to our current design, illustrated
in Figure 2. Our system allows a pseudocode-like de-
scription of a protocol to be developed using our descrip-
tion language, ZKPDL. This program is compiled by our
interpreter, and optionally provided a list of public pa-
rameters, which are “compiled in” to the program. At
compile time, a number of transformations and optimiza-
tions are performed on the abstract syntax tree produced
by our parser, which we developed using the ANTLR
parser generator [63]. Once compiled, these interpreter
objects can be used repeatedly by the prover to generate
zero-knowledge proofs about private values, or by the

196 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 197

verifier to verify these proofs.
Key to our approach is the simplicity of our language.

It is not Turing-complete and does not allow for branch-
ing or conditionals; it simply describes the variables,
equations, and relationships required by a protocol, leav-
ing the implementation details up to the interpreter and
language framework. This framework, described in the
following section, provides C++ classes that parse, ana-
lyze, optimize, and interpret ZKPDL programs, employ-
ing many common compiler techniques (e.g., constant
substitution and propagation, type-checking, providing
error messages when undefined variables are used, etc.)
in the process. We are able to understand and transform
mathematical expressions into forms that provide better
performance (e.g., through techniques for fixed-base ex-
ponentiation), and recognize relationships between val-
ues to be proved in zero-knowledge. All of these low-
level optimizations, as well as our high-level primitives,
should enable a programmer to quickly implement and
evaluate the efficiency of a protocol.

We also provide a number of C++ classes that wrap
ZKPDL programs into interfaces for generating and ver-
ifying proofs, as well as marshaling them between com-
puters. We build upon these wrappers to additionally
provide Cashlib, a collection of interfaces that allows a
programmer to assume the role of buyer, seller, bank,
or arbiter in a fair exchange system based on endorsed
e-cash [26], as seen in Figure 1 and described in Sec-
tion 5.3.

4 Implementation of ZKPDL
To enable implementation of the cryptographic prim-

itives discussed in Section 2, we have designed a pro-
gramming language for specifying zero-knowledge pro-
tocols, as well as an interpreter for this language. The
interpreter is implemented in C++ and consists of ap-
proximately 6000 lines of code. On the prover side, the
interpreter will output a zero-knowledge proof for the re-
lations specified in the program; on the verifier side, the
interpreter will be given a proof and verify whether or
not it is correct. Therefore, the output of the interpreter
depends on the role of the user, although the program
provided to the interpreter is the same for both.

4.1 Overview
Here we provide a brief overview of some fundamen-

tal language features to give an idea of how programs are
written; a full grammar for our language, containing all
of its features, can be found in our documentation avail-
able online, and further sample programs can be found
in Section 5. A program can be broken down into two
blocks: a computation block and a proof block. Each of
these blocks is optional: if a user just wants a calculator

for modular (or even just integer) arithmetic then he will
specify just the computation block; if, on the other hand,
he has all the input values pre-computed and justs wants a
zero-knowledge proof of relations between these values,
he will specify just the proof block. Here is a sample pro-
gram written in our language (indentations are included
for readability, and are not required syntax).

sample.zkp
1 computation: // compute values required for proof
2 given: // declarations
3 group: G = <g,h>
4 exponents in G: x[2:3]
5 compute: // declarations and assignments
6 random exponents in G: r[1:3]
7 x_1 := x_2 * x_3
8 for(i, 1:3, c_i := g^x_i * h^r_i)
9

10 proof:
11 given: // declarations of public values
12 group: G = <g,h>
13 elements in G: c[1:3]
14 for(i, 1:3, commitment to x_i: c_i = g^x_i * h^r_i)
15 prove knowledge of: // declarations of private values
16 exponents in G: x[1:3], r[1:3]
17 such that: // protocol specification; i.e. relations
18 x_1 = x_2 * x_3

In this example, we are proving that the value x1 con-
tained within the commitment c1 is the product of the
two values x2 and x3 contained in the commitments c2

and c3. The program can be broken down in terms of how
variables are declared and used, and the computation and
proof specifications. Note that some lines are repeated
across the computation and proof blocks, as both are op-
tional and hence considered independently.

4.1.1 Variable declaration
Two types of variables can be declared: group objects

and numerical objects. Names of groups must start with
a letter and cannot have any subscripts; sample group
declarations can be seen in lines 3 and 12 of the above
program. In these lines, we also declare the group gen-
erators, although this declaration is optional (as we will
see later on in Section 5, it is also optional to name the
group modulus).

Numerical objects can be declared in two ways. The
first is in a list of variables, where their type is specified
by the user. Valid types are element, exponent (which
refer respectively to elements within a finite-order group
and the corresponding exponents for that group), and
integer; it should be noted that for the first two of these
types a corresponding group must also be specified in the
type information (see lines 4 and 13 for an example). The
other way in which variables can be declared is in the
compute block, where they are declared as they are be-
ing assigned (meaning they appear on the left-hand side
of an equation), which we can see in lines 7 and 8. In this
case, the type is inferred by the values on the right-hand
side of the equation; a compile-time exception will be
thrown if the types do not match up (for example, if el-
ements from two different groups are being multiplied).

Numerical variables must start with a letter and are al-
lowed to have subscripts.

4.1.2 Computation
The computation block breaks down into two blocks

of its own: the given block and the compute block. The
given block specifies the parameters, as well as any val-
ues that have already been computed by the user and are
necessary for the computation (in the example, the group
G can be considered a system parameter and the values
x_2 and x_3 are just needed for the computation).

The compute block carries out the specified compu-
tations. There are two types of computations: picking a
random value, and defining a value by setting it equal to
the right-hand side of an equation. We can see an ex-
ample of the former in line 6 of our sample program;
in this case, we are picking three random exponents in
a group (note r[1:3] is just syntactic sugar for writing
r_1, r_2, r_3). We also support picking a random in-
teger from a specified range, and picking a random prime
of a specified length (examples of these can be found
in Section 5). As already noted, lines 7 and 8 provide
examples of lines for computing equations. In line 8,
the for syntax is again just syntactic sugar; this time
to succintly specify the relations c_1 = g^x_1*h^r_1,
c_2 = g^x_2*h^r_2, and c_3 = g^x_3*h^r_3. We
have a similar for syntax for specifying products or
sums (much like

∏
or

∑
in conventional mathemati-

cal notation), but neither of these for macros should be
confused with a for loop in a conventional programming
language.

4.1.3 Proof specification
The proof block is comprised of three blocks: the
given block, the prove knowledge of block, and the
such that block. In the given block, the parame-
ters for the proof are specified, as well as the public
inputs known to both the prover and verifier for the
zero-knowledge protocol. In the prove knowledge of
block, the prover’s private inputs are specified. Finally,
the such that block specifies the desired relations be-
tween all the values; the zero-knowledge proof will be
a proof that these relations are satisfied. We currently
support four main types of relations:

• Proving knowledge of the opening of a commit-
ment [66]. We can prove openings of Pedersen [64]
or Fujisaki-Okamoto commitments [41, 36]. In both
cases we allow for commitments to multiple values.

• Proving equality of the openings of different com-
mitments. Given any number of commitments, we
can prove the equality of any subset of the values
contained within the commitments.

• Proving that a committed value is the product of two

other committed values [36, 17]. As seen in our
sample program, we can prove that a value x con-
tained within a commitment is the product of two
other values y, z contained within two other com-
mitments; i.e., x = y · z. As a special case, we can
also prove that x = y2.

• Proving that a committed value is contained within
a public range [17, 54]. We can prove that the
value x contained within a given commitment sat-
isfies lo ≤ x < hi , where lo and hi are both public
values.

There are a number of other zero-knowledge proof
types (e.g., proving a value is a Blum integer, proving
that committed values satisfy some polynomial relation-
ship, etc.), but we chose these four based on their wide
usage in applications, in particular in e-cash and anony-
mous credentials. We note, however, that adding other
proof types to the language should require little work (as
mentioned in Section 4.2), as we specifically designed
the language and interpreter with modularity in mind.

4.1.4 Sample usage
In addition to showing a sample program, we would

also like to demonstrate a sample usage of our interpreter
API. In order to use the sample ZKPDL program from
Section 4.1, one could use the following C++ code (as-
suming there are already numerical variables named x2
and x3, and a group named G):

group_map g;
variable_map v;
g["G"] = G;
v["x_2"] = x2;
v["x_3"] = x3;
InterpreterProver prover;
// compiles program with groups
prover.check("sample.zkp", g);
// computes intermediate values needed for proof
prover.compute(v);
// computes and outputs proof
ProofMessage proofMsg = (prover.getPublicVariables(),

prover.computeProof());

The method is the same for all programs: any nec-
essary groups and/or variables are inserted into the ap-
propriate maps, which are then passed to the interpreter.
Note that the group map in this case is passed to the in-
terpreter at “compile time” so that it may pre-compute
powers of group generators to be used for exponentia-
tion optimizations (described in the next section); how-
ever, both the group and variable maps may be provided
at “compute time.” Any syntactic errors will be caught at
compile time, but if the inputs provided at compute time
are not valid for the relations being proved, the proof will
be computed anyway and the error will be caught by the
verifier. The ProofMessage is a serializable container

198 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 199

for the zero-knowledge proof and any intermediate val-
ues (e.g., commitments and group bases) that the verifier
might need to verify the proof.

The method is almost identical for the verifier:

group_map g;
variable_map v;
g["G"] = G;
InterpreterVerifier verifier;
verifier.check("sample.zkp", g);
verifier.compute(v, proofMsg.publics);
bool verified = verifier.verify(proofMsg.proof);

As we can see, the main difference is that the verifier
uses both its own public inputs and the prover’s public
values at compute time (with its own inputs always tak-
ing precedence over the ProofMessage inputs), but still
takes in the proof to be checked afterwards so that the
actions of the prover and verifier remain symmetric.

4.2 Optimizations
In our interpreter, we have incorporated a number of

optimizations that make using our language not only
more convenient but also more efficient. Here we de-
scribe the most significant optimizations, which include
removing any redundancy when multiple proofs are com-
bined and performing multi-exponentiations on cached
bases when the same bases are used frequently. Other
improvements specific to existing protocols can be found
in Section 5.

4.2.1 Translation
To eliminate redundancy between different proofs, we

first translate each proof described in Section 4.1.3 into
a “fundamental discrete logarithm form.” In this form,
each proof can be represented by a collection of equa-
tions of the form A = Bx · Cy . For example, if the
prover would like to prove that the value x contained
within Cx = gxhrx is equal to the product of the values
y and z contained within Cy = gyhry and Cz = gzhrz

respectively, this is equivalent to a proof of knowledge
of the discrete logarithm equalities Cy = gyhry and
Cx = Cz

yhrx−zry .
Our sample program in the previous section is first

translated into this discrete logarithm form. During run-
time, the values provided to the prover are then used to
generate the zero-knowledge proof. In addition to elim-
inating redundancy between proofs of different relations
in the program, this technique also allows our language
to easily add new types of proofs as they become avail-
able. To add any proof that can be broken down into this
discrete logarithm form, we need to add only a transla-
tion function and a rule in the grammar for how we would
like to specify this proof in a program, and the rest of the
work will be handled by our existing framework.

4.2.2 Multi-exponentiation
The computational performance of many crypto-

graphic protocols, especially those used by our library,
is often dominated by the need to perform many modular
exponentiation operations on large integers. These op-
erations typically involve the use of systems parameters
as bases, with exponents chosen at random or provided
as private inputs (e.g., Pedersen commitments, which re-
quire computation of gx · hr, where g and h are publicly
known). Algorithms for simultaneous multiple expo-
nentiation allow the result of multi-base exponentiations
such as these to be computed without performing each
intermediate exponentiation individually; an overview of
these protocols can be found in Section 14.6 of Menezes
et al. [58].

Our interpreter leverages the descriptions of mathe-
matical expressions in ZKPDL programs to recognize
when fixed-base exponentiation operations occur, allow-
ing it to precompute lookup tables at compile time that
can speed up these computations dramatically. In addi-
tion to single-table multi-exponentiation techniques (i.e.,
the 2w-ary method [58]), we offer programmers who
expect to run the same protocol many times the abil-
ity to take advantage of time/space tradeoffs by gener-
ating large lookup tables of precomputed powers. This
allows a programmer to choose parameters that balance
the memory requirements of the interpreter against the
need for fast exponentiation.

For single-base exponentiation, we employ window-
based precomputation techniques similar to those used
by PBC [56] to cache powers of fixed bases. For multi-
base exponentiation of k exponents, we currently extend
the 2w-ary method to store 2kw-sized lookup tables for
each w-bit window of the expected exponent length, so
that multi-exponentiations on exponents of length n re-
quire only n/w multiplications of stored values. While
we are also evaluating other algorithms offering similar
time-space tradeoffs, we demonstrate the performance
gains afforded by these techniques later in Table 1.

4.2.3 Interpreter caching
We also cache the parsed, compiled environments of

ZKPDL programs when they are first run. Because we
accept system parameters at compile time, we are able to
evaluate and propagate any subexpressions made up of
fixed constants and perform exponentiation precomputa-
tions before these expressions are fully evaluated at run-
time. Even without the use of large tables for fixed-based
exponentiation, this optimization proves useful when re-
peated executions of the same program must be per-
formed; e.g., for a bank dealing with e-coin deposits. In
this case, a bank must invoke the interpreter for each coin
deposited; looking ahead to Table 1 we see that, on aver-
age, this operation takes the bank 83ms. If our program

were re-parsed each time, it would take an extra 10ms,
as opposed to the fraction of a millisecond required to
load a cached interpreter environment, saving the bank
approximately 10% of computation time per transaction
by avoiding parsing overhead.

5 Sample Programs and Performance
Using our language, we have written programs for a

wide variety of cryptographic primitives, including blind
signatures [24], verifiable encryption [27], and endorsed
e-cash [26]. In the following sections, we provide our
programs for these three primitives; in addition, perfor-
mance benchmarks for all of them can be found at the
end of the section.

5.1 CL signatures
Using our language, we have implemented the

blind signature scheme due to Camenisch and Lysyan-
skaya [24]; as we will see in Section 5.3, CL signatures
are integral to endorsed e-cash. Briefly, a blind signa-
ture, as introduced by Chaum [28], enables a signature
issuer to sign a message without learning the contents of
the message. A CL signature works in two main phases:
an issuing phase, in which a user actually obtains the sig-
nature, and a proving phase, in which the user is able to
prove (in zero-knowledge) to other users that he does in
fact possess a valid CL signature.

The issuing phase is a one-round interaction between
the recipient and the issuer, at the end of which the recip-
ient obtains the blind signature on her message(s). Be-
cause the protocol is interactive, we present one program
for each stage of the protocol. At the end of this first
stage, the signature issuer will return a partial signature
to the recipient, who will then use this signature to com-
pute the full signature on the hidden message.

cl-recipient-proof.zkp
1 computation:
2 given:
3 group: pkGroup = <fprime, gprime[1:L+k], hprime>
4 exponents in pkGroup: x[1:L]
5 integers: stat, modSize
6 compute:
7 random integer in [0,2^(modSize+stat)): vprime
8 C := hprime^vprime * for(i, 1:L, *, gprime_i^x_i)
9

10 proof:
11 given:
12 group: pkGroup = <fprime, gprime[1:L+k], hprime>
13 group: comGroup = <f, g, h, h1, h2>
14 element in pkGroup: C
15 elements in comGroup: c[1:L]
16 for(i, 1:L, commitment to x_i: c_i=g^x_i*h^r_i)
17 integer: l_x
18 prove knowledge of:
19 integers: x[1:L]
20 exponents in comGroup: r[1:L]
21 exponent in pkGroup: vprime
22 such that:
23 for(i, 1:l, range: (-(2^l_x-1)) <= x_i < 2^l_x)
24 C = hprime^vprime * for(i, 1:L, gprime_i^x_i)
25 for(i, 1:L, c_i = g^x_i * h^r_i)

Next, the issuer must prove the partial signature is
computed correctly, as in the following program.

cl-issuer-proof.zkp
1 computation:
2 given:
3 group: pkGroup = <f, g[1:L+k], h>
4 element in pkGroup: C
5 exponents in pkGroup: x[1:k+L]
6 integers: stat, modSize, lx
7 compute:
8 random integer in [0,2^(modSize+lx+stat)): vpp
9 random prime of length lx+2: e

10 einverse := 1/e
11 A := (f*C*h^vpp * for(i,L+1:k+L,*,g_i^x_i))^einverse
12

13 proof:
14 given:
15 group: pkGroup = <f, g[1:L+k], h>
16 elements in pkGroup: A, C
17 exponents in pkGroup: e, vpp, x[L+1:k]
18 prove knowledge of:
19 exponents in pkGroup: einverse
20 such that:
21 A = (f*C*h^vpp * for(i,L+1:k+L,*,g_i^x_i))^einverse

Once the recipient obtains the partial signature, she
can unblind it to obtain a full signature; this step com-
pletes the issuing phase.

Now, the owner of a CL signature needs a way to prove
that she has a signature, without revealing either the sig-
nature or the values. To accomplish this, the prover first
randomizes the CL signature and then attaches a zero-
knowledge proof of knowledge that the randomized sig-
nature corresponds to the original signature on the com-
mitted message.

cl-possession-proof.zkp
1 computation:
2 given:
3 group: pkGroup = <fprime, gprime[1:L+k], hprime>
4 element in pkGroup: A
5 exponents in pkGroup: e, v, x[1:L]
6 integers: modSize, stat
7 compute:
8 random integers in [0,2^(modSize+stat)): r, r_C
9 vprime := v + r*e

10 Aprime := A * hprime^r
11 C := h^r_C * for(i, 1:L, *, gprime_i^x_i)
12 D := for(i, L+1:L+k, *, gprime_i^x_i)
13 fCD := f * C * D
14

15 proof:
16 given:
17 group: pkGroup = <fprime, gprime[1:L+k], hprime>
18 group: comGroup = <f, g, h, h1, h2>
19 elements in pkGroup: C, D, Aprime, fCD
20 elements in comGroup: c[1:L]
21 for(i, 1:L, commitment to x_i: c_i=g^x_i*h^r_i)
22 exponents in pkGroup: x[L+1:L+k]
23 integer: l_x
24 prove knowledge of:
25 integers: x[1:L]
26 exponents in comGroup: r[1:L]
27 exponents in pkGroup: e, vprime, r_C
28 such that:
29 for(i, 1:L, range: (-(2^l_x - 1)) <= x_i < 2^l_x)
30 C = hprime^r_C * for(i, 1:l, *, gprime_i^x_i)
31 for(i, 1:L, c_i = g^x_i * h^r_i)
32 fCD = (Aprime^e) * hprime^(r_C - vprime)

200 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 201

5.2 Verifiable encryption
Briefly, verifiable encryption consists of a ciphertext

under the public key of some trusted third party (in our
case, the arbiter) and a zero-knowledge proof that the val-
ues inside the ciphertext satisfy some relation; this pair is
often referred to as a verifiable escrow. Our implementa-
tion of verifiable encryption is based on the construction
of Camenisch and Shoup [27]. The main use of verifi-
able encryption in e-cash is to allow a user to verifiably
encrypt the opening of a commitment under the public
key of the arbiter. A recipient of such a verifiable escrow
can then verify that the encrypted values correspond to
the opening of the commitment.

verifiable-encryption.zkp
1 computation:
2 given:
3 group: secondGroup = <g[1:m], h>
4 group: RSAGroup
5 modulus: N
6 group: G
7 group: cashGroup = <f_3, gprime, hprime, f_1, f_2>
8 exponents in G: x[1:m]
9 elements in G: u[1:m], v, w

10 compute:
11 random integer in [0,N/4): s
12 random exponents in secondGroup: r[1:m]
13 for(i, 1:m, c_i := g_1^x_i * g_2^r_i)
14 Xprime := for(i, 1:m, *, g_i^x_i) * h^s
15 vsquared := v^2
16 wsquared := w^2
17 for(i, 1:m, usquared_i := u_i^2)
18

19 proof:
20 given:
21 group: secondGroup = <g[1:m], h>
22 group: G
23 group: RSAGroup
24 modulus: N
25 group: cashGroup = <f_3, gprime, hprime, f_1, f_2>
26 element in cashGroup: X
27 elements in secondGroup: Xprime, c[1:m]
28 for(i,1:m,commitment to x_i: c_i=g_1^x_i*g_2^r_i)
29 elements in G: a[1:m], b, d, e, f, usquared[1:m],
30 vsquared, wsquared
31 prove knowledge of:
32 integers: x[1;M], r
33 exponent in G: hash
34 exponents in secondGroup: r[1:m], s
35 such that:
36 for(i, 1:m, range: -N/2 + 1 <= x_i < N/2)
37 vsquared = f^(2*r)
38 wsquared = (d * e^hash)^(2*r)
39 for(i, 1:m, usquared_i = b^(2*x_i) * a_i^(2*r))
40 X = for(i, 1:m, *, f_i^x_i)
41 Xprime = for(i, 1:m, *, g_i^x_i) * h^s

5.3 E-cash
Electronic cash, or e-cash for short, was first intro-

duced by Chaum [28] and can be thought of as the
electronic equivalent of cash; i.e., an electronic cur-
rency that preserves users’ anonymity, as opposed to
electronic checks [30] or credit cards. We implement
endorsed e-cash, due to Camenisch, Lysyanskaya, and
Meyerovich [26] (which is an extension of compact e-
cash [21]), for two main reasons. Our first reason is
that an endorsed e-coin can be split up into two parts, its
endorsement and an unendorsed component; only with

both of these parts can the coin be considered complete.
As we will see in Section 6.2.1, this property enables
efficient fair exchange. The second reason for choos-
ing endorsed e-cash is that it is offline, which means
the bank does not need to be active in every transac-
tion; this significantly reduces the burden placed on the
bank. Although the bank does not check the coin in
every interaction, endorsed e-cash has the property that
double-spenders (i.e., users who try to spend the same
coin twice) can be caught by the bank at the time of de-
posit and punished accordingly. Because e-cash is meant
to preserve privacy, however, a user is also guaranteed
that unless she double spends a coin, her identity will be
kept secret.

During the withdrawal phase of endorsed e-cash, a
user contacts the bank. Before withdrawing, the user will
have registered with the bank by storing a commitment.
In order to prove her identity, then, the user will provide
a proof that she knows the opening of the registered com-
mitment. This can be accomplished using the following
simple program:

user-id-proof.zkp
1 proof:
2 given:
3 group: cashGroup = <f,g,h,h1,h2>
4 elements in cashGroup: A, pk_u
5 commitment to sk_u: A = g^sk_u * h^r_u
6 prove knowledge of:
7 exponents in cashGroup: sk_u, r_u
8 such that:
9 pk_u = g^sk_u

10 A = g^sk_u * h^r_u

Once the bank has verified this proof, the user and the
bank will run a protocol to obtain a CL signature (us-
ing the programs we saw in Section 5.1) on the user’s
identity and two pseudo-random function seeds. These
private values and the signature on them define a wallet
that contains W coins (where W is a system-wide public
parameter).

When a user wishes to spend one of her coins, she
splits it up into its unendorsed part and the endorsement.
She then sends the unendorsed component to a merchant
and proves it is valid. If the merchant then sends her what
she wanted to buy, she will follow up with the endorse-
ment to complete the coin and the transaction is com-
plete. The following program is used for proving the va-
lidity of a coin.

coin-proof.zkp
1 computation:
2 given:
3 group: cashGroup = <f, g, h, h1, h2>
4 exponents in cashGroup: s, t, sk_u
5 integer: J
6 compute:
7 random exponents in cashGroup: r_B, r_C, r_D, x1,
8 x2, r_y, R
9 alpha := 1 / (s + J)

10 beta := 1 / (t + J)
11 C := g^s * h^r_C

12 D := g^t * h^r_D
13 y := h1^x1 * h2^x2 * f^r_y
14 B := g^sk_u * h^r_B
15 S := g^alpha * g^x1
16 T := g^sk_u * (g^R)^beta * g^x2
17

18 proof:
19 given:
20 group: cashGroup = <f, g, h, h1, h2>
21 elements in cashGroup: y, S, T, B, C, D
22 commitment to sk_u: B = g^sk_u * h^r_B
23 commitment to s: C = g^s * h^r_C
24 commitment to t: D = g^t * h^r_D
25 integer: J
26 prove knowledge of:
27 exponents in cashGroup: x1, x2, r_y, sk_u, alpha,
28 beta, s, t, r_B, r_C, r_D, R
29 such that:
30 y = h1^x1 * h2^x2 * f^r_y
31 S = g^alpha * g^x1
32 T = g^sk_u * (g^R)^beta * g^x2
33 g = (g^J * C)^alpha * h^(-r_C / (s+J))
34 g = (g^J * D)^beta * h^(-r_D / (t+J))

5.4 Performance
Here we measure the communication and computa-

tional resources used by our system when running each
of the programs above. The benchmarks presented in Ta-
ble 1 were collected on a MacBook Pro with a 2.53GHz
Intel Core 2 Duo processor and 4GB of RAM running
OS X 10.6; we therefore expect that these results will
reflect those of a typical home user with no special cryp-
tographic hardware support.

As for speed, caching exponents of fixed bases re-
sults in a significant performance increase, making it
an important optimization for applications that require
repeated protocol executions. The only caveat is that
the exponent cache required for complex protocols can
grow to hundreds of megabytes (using faster-performing
parameters), and so our library allows users to choose
whether to use caching, and if so how much of the cache
should be used by this optimization.

The time taken for the higher-level protocols provides
a clear view of the complexity of each protocol. For ex-
ample, the marked difference between the time required
to generate a CL issuer proof and a CL possession proof
can be attributed to the fact that a CL issuer proof re-
quires proving only one discrete log relation, while a CL
possession proof on three private values requires three
range proofs and five more discrete log relations.

Table 1 also shows that verifiable encryption is by
far the biggest bottleneck, requiring almost three times
as much time to compute as any other step. As seen
in the program in Section 5.2, there is one range proof
performed for each value contained in the verifiable es-
crow. In order to perform a range proof, the value con-
tained in the range must be decomposed as a sum of four
squares [65]. Because the values used in our verifiable
encryption program are much larger than the ones used
in CL signatures (about 1024 vs. 160 bits, to get 80-bit
security for both), this decomposition often takes con-

siderably more time for verifiable encryption than it does
for CL signatures. Furthermore, since the values being
verifiably encrypted are different each time, caching the
decomposition of the values wouldn’t be of any use.

A final observation on computational performance is
that proving possession of a CL signature completely
dominates the time required to prove the validity of a
coin, since the timings for the two proofs are within mil-
liseconds. This suggests that the only way to signifi-
cantly improve the performance of e-coins and verifiable
encryption would be to develop more efficient techniques
for range proofs (which has in fact been the subject of
some recent cryptographic research [48, 18, 67]).

In terms of proof size, range proofs are much larger
than proofs for discrete logarithms or multiplication.
This is to be expected, as translating a range proof into
discrete logarithm form (as described in Section 4.2) re-
quires eleven equations, whereas a single DLR proof re-
quires only one, and a multiplication proof requires two.

6 Implementation of Cashlib
Using the primitives described in the previous section,

we wrote a cryptographic library designed for optimistic
fair exchange protocols. Fair exchange [31] involves a
situation in which a buyer wants to make sure that she
doesn’t pay a merchant unless she gets what she is buy-
ing, while the merchant doesn’t want to give away his
goods unless he is guaranteed to be paid. It is known
that fair exchange cannot be done without a trusted third
party [62], but optimistic fair exchange [2, 3] describes
the cases in which the trusted third party has to get in-
volved only in the case of a dispute.

The library was written in C++ and consists of approx-
imately 11000 lines of code in addition to the interpreter.
A previous version of the library in which all the pro-
tocols and proofs were hand-coded (i.e., the interpreter
was not used) consisted of approximately 20000 lines
of code, meaning that the use of roughly 400 lines of
ZKPDL was able to replace 9000 lines of our original
C++ code (and, as we will see, make our operations more
efficient as well).

6.1 Endorsed e-cash
A description of endorsed e-cash can be found in Sec-

tion 5.3; the version used in our library, however, con-
tains a number of optimizations. Just as with real cash,
we now allow for different coin denominations. Each
coin denomination corresponds to a different bank pub-
lic key, so once the user requests a certain denomination,
the wallet is then signed using the corresponding public
key. A coin generated from such a wallet will verify only
when the same public key of the bank is used, and thus
the merchant can check for himself the denomination of

202 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 203

Program type Prover (ms) Verifier (ms) Proof size
(bytes)

Cache size
(Mbytes)

Multi-exps
With cache Without With cache Without Prover Verifier

DLR proof 3.07 3.08 1.26 1.25 511 0 2 1
Multiplication proof 2.03 4.07 1.66 2.32 848 33.5 8 2

Range proof 36.36 74.52 21.63 31.54 5455 33.5 31 11
CL recipient proof 119.92 248.31 70.76 112.13 19189 134.2 104 39

CL issuer proof 7.29 7.38 1.73 1.73 1097 0 2 1
CL possession proof 125.89 253.17 78.19 117.67 19979 134.2 109 40
Verifiable encryption 416.09 617.61 121.87 162.77 24501 190.2 113 42

Coin 134.37 271.34 83.01 121.83 22526 223.7 122 45

Table 1: Time (in milliseconds) and size (in bytes) required for each of our proofs, averaged over twenty runs. Timings are
considered from both the prover and verifier sides, as are the number of multi-exponentiations, and are considered both with and
without caching for fixed-based exponentiations; the size of the cache is also measured (in megabytes). As we can see, using
caching results on average in a 48% speed improvement for the prover, and a 31% improvement for the verifier.

the coin.
The program in Section 5.3 also reflects our decision

to randomize the user’s spending order rather than hav-
ing them perform a range proof that the coin index was
contained within the proper range. As the random spend-
ing order does not reveal how many coins are left in the
wallet, the user’s privacy is still protected even though
the index is publicly available. Furthermore, because
range proofs are slow and require a fair amount of space
(see Table 1 for a reminder), this optimization resulted in
coins that were 20% smaller and 21% faster to generate
and verify.

Finally, endorsed e-cash requires a random value con-
tributed by both the merchant and the user. Since e-coin
transactions should be done over a secure channel, in
practice we expect that SSL connections will be used be-
tween the user and the merchant. One useful feature of
an SSL connection is that it already provides both parties
with shared randomness, and thus this randomness can
be used in our library to eliminate the need for a redun-
dant message.

6.2 Buying and Bartering
Our library implements two efficient optimistic fair

exchange protocols for use with e-cash. Belenkiy et
al. [9] provide a buy protocol for exchanging a coin
with a file, while Küpçü and Lysyanksaya [51] provide
a barter protocol for exchanging two files or blocks. The
two protocols serve different purposes (buy vs. barter)
and so we have implemented both.

Two of the main usage scenarios of fair exchange pro-
tocols are e-commerce and peer-to-peer file sharing [9].
In e-commerce, one needs to employ a buy protocol to
ensure that both the user and the merchant are protected;
the user receives her item while the merchant receives
his payment. In a peer-to-peer file sharing scenario, peers
exchange files or blocks of files. In this setting, it is more
beneficial to barter for the blocks than to buy them one at
a time; for an exchange of n blocks, buying all the blocks

requires O(n) verifiable escrow operations (which, as
discussed in Section 5.4, are quite costly), whereas bar-
tering for the blocks requires only one such operation,
regardless of the number of blocks exchanged.

Although the solution might seem to be to barter all
the time and never buy, Belenkiy et al. suggest that both
protocols are useful in a peer-to-peer file sharing sce-
nario. Peers who have nothing to offer but would still like
to download can offer to buy the files, while peers who
would like only to upload and have no interest in down-
loading can act as the merchant and earn e-cash. Due to
the resource considerations mentioned above, however,
bartering should always be used if possible.

Because peers do not always know beforehand if they
want to buy or barter for a file, we have modified the buy
protocol to match up with the barter protocol in the first
two messages. This modification, as well as outlines of
both the protocols, can be seen in Figure 3. We further
modified both protocols to let them exchange multiple
blocks at once, so that one block of the fair exchange
protocol might correspond to multiple blocks of the un-
derlying file.

We give an overview of each protocol below, with the
optimizations we have added. We have also implemented
the trusted third parties (the bank and the arbiter) neces-
sary for e-cash and fair exchange. Although we do not
describe in detail the resolution and bank interaction pro-
tocols, these can be found in the original papers [9, 51]
and we provide performance benchmarks for the bank in
Table 2.

6.2.1 Buying
The modified buy protocol is depicted on the left in

Figure 3, although we also allow for the users to partici-
pate in the original buy protocol (in which the messages
appear in a slightly different order). To initiate the mod-
ified buy protocol, the buyer sends a “setup” message,
which consists of an unendorsed coin and a verifiable es-
crow on its corresponding endorsement. Upon receiving

Figure 3: This figure provides outlines of both our buy and
barter protocols [9, 51]. Until the decision to buy or barter,
the two protocols are identical; the main difference is that in
a buy protocol, the setup message must be sent for each file
exchange, which results in a linear efficiency loss as compared
to bartering.

this message, the seller will use the programs in Section 5
to check the validity of the coin and the escrow. If these
proofs verify, the seller will proceed by sending back an
encrypted version of his file (or file block). Upon receiv-
ing this ciphertext, the buyer will store it (and a Merkle
hash of it, for use with the arbiter in case the protocol
goes wrong later on) and send back a contract, which
consists of a hash of the seller’s file and some session
information. The seller will check this contract and, if
satisfied with the details of the agreement, send back its
decryption key. The buyer can then use this key to de-
crypt the ciphertext it received in the second message of
the protocol. If the decryption is successful, the buyer
will send back his endorsement on the coin. If in these
last steps either party is unsatisfied (for example, the file
does not decrypt or the endorsement isn’t valid for the
coin from the setup message), they can proceed to con-
tact the arbiter and run resolution protocols [9].

6.2.2 Bartering
This protocol is depicted on the right in Figure 3; be-

cause the first two messages of the barter protocol (the
setup message and the encrypted data) are identical to
those in the buy protocol described in the previous sec-
tion, we do not describe them again here and instead
jump directly to the third message. Because bartering
involves an exchange of data, the initiator will respond
to the receipt of the ciphertext with a ciphertext of her
own, corresponding to an encryption of her file. She will
also send a contract, which is similar to the buy contract

but also contains hash information for her file. The re-
sponder will then check this contract as the seller did in
the buy protocol, and if satisfied with the agreement will
send back his decryption key. If the ciphertext decrypts
correctly (i.e., decrypts to the file described in the con-
tract) then the initiator can respond in turn with her own
decryption key. If this decryption key is also valid, both
parties have successfully obtained the desired files and
the barter protocol can be considered complete. If nei-
ther party had to contact the arbiter (for similar reasons
as in the buy protocol; i.e., a file did not decrypt cor-
rectly) then they are free to engage in future barter proto-
cols without the overhead of an additional setup message.
Otherwise, they need to resolve with the arbiter [51].

6.3 Library performance
In Table 2, we can see the computation time and size

complexity for the steps described above, as well as com-
putation and communication overhead for the withdraw
and deposit protocols involving the bank. The numbers
in the table were computed on the same computer as
those in Section 5.4.

The numbers in Table 2 clearly demonstrate our earlier
observation that bartering is considerably more efficient
than buying, both in terms of computation and commu-
nication overhead. The setup message for both buying
and bartering takes about 600ms to generate and approx-
imately 46kB of space. In contrast, the rest of the barter
protocol takes very little time; on the order of millisec-
onds for both parties (and about 1.5kB of total overhead).

In addition, we consider the same protocols run us-
ing a previous “naïve” version of our library, which pro-
vided the same e-cash API and employed some multi-
exponentation optimizations, but did not use ZKPDL.
Using the optimizations available to the interpreter is
considerably faster over our previous approach, mean-
ing that our interpreter has not only made developing our
protocols more convenient, but has also helped to im-
prove efficiency.

7 Related work
Similar to our approach, FairPlayMP [13] (and its pre-

decessor, FairPlay [57]) provides a language-based sys-
tem for secure multi-party computation, allowing multi-
ple parties to jointly compute a function on private inputs
while revealing nothing but the resulting value. At the
heart of FairPlayMP is a programming language, SFDL
2.0 (short for Secure Function Definition Language), that
allows programmers to specify a multi-party computa-
tion. The authors provide a compiler that transforms
SFDL programs into boolean circuits, and an engine that
securely evaluates these circuits and distributes the re-
sulting values among the involved parties. Although

204 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 205

Operation Time (ms) “Naïve” time (ms) Size (B)
Withdraw (user) 126.35 290.79 20093
Withdraw (bank) 83.36 140.02 1167
Deposit (bank) 82.11 128.36 22526

Buying a block (buyer) 628.49 901.04 47286
Buying a block (seller) 211.89 275.94 203
Barter setup message 608.29 881.32 46934

Checking setup message 210.61 276.98 n/a
Barter after setup (initiator) 18.02 18.28 1280

Barter after setup (responder) 1.11 1.18 204

Table 2: Average time required and network overhead, in milliseconds and bytes respectively, for each stage in our e-cash imple-
mentation. The timings were averaged over twenty runs, and caching and compression optimizations were used. For the naïve
timings, an older version of the library was used, which uses some multi-exponentation optimization techniques but not the inter-
preter; we can see a clear improvement when using ZKPDL. Parameters were used to provide a security level of 80 bits (160-bit
SHA-1 hashing, 128-bit AES encryption, 1024-bit RSA moduli, and 1024-bit DSA signatures).

this is a very useful tool, it uses generic circuit tech-
niques, and thus from an efficiency standpoint it is often
desirable to instead develop a multi-party computation
scheme specific to the intended application.

IBM’s Idemix (identity mixer) project [19, 14] has
independently developed a library for zero-knowledge
proofs and anonymous credentials using Java. Idemix
has focused on supporting the deployment of anonymous
credentials in privacy-preserving identity systems, and
provides a system for obtaining, proving, and verifying
credentials using XML messages. The Idemix team has
also developed a high-level language for zero-knowledge
protocols, and describe a proof-of-concept compiler that
can output Java or LATEX code from these descriptions [5,
4]. However they do not provide performance bench-
marks, and many implementation details are left as fu-
ture work; neither the language nor the compiler appear
in the released Idemix library. While Idemix and our
work both provide implementations of anonymous cre-
dentials and CL signatures, in contrast, our focus on ef-
ficient, repeated execution of e-cash transactions has led
us to pursue an alternate language-based strategy and de-
velop a performance-optimized interpreter engine. We
believe our runtime engine, ease of extensibility, and per-
formance optimizations provide greater support to cryp-
tographic researchers and systems programmers seeking
a framework for deploying zero-knowledge protocols.

There are also compilers available [15, 6] for the gen-
eration of proofs of security and correctness for crypto-
graphic protocols. While this is an interesting and impor-
tant area of research, these tools largely focus on static
analysis of protocols rather than performance. Perhaps
more similar to our work, the languages Cryptol [53]
and Stupid [52] provide a simple interface for develop-
ing low-level implementations of cryptographic primi-
tives (such as hash functions) which can then be analyzed
and translated into native code on different platforms.

8 Conclusions and Future Work
In this paper we have introduced a language for gener-

ating (and verifying) widely-used zero-knowledge proofs
of knowledge. Through sample programs, we have
demonstrated how our language is used to express ad-
vanced cryptographic primitives such as blind signatures,
verifiable encryption, and endorsed e-cash. We presented
optimizations provided by our language’s interpreter and
have shown they provide significant benefit.

Atop our language framework, we built a library that
provides optimistic fair exchange protocols based on
electronic cash. We have further presented optimizations
for the protocols provided by Cashlib and argued for their
practicality in network-based applications.

Much future work is possible for the ZKPDL lan-
guage and interpreter. There are many other cryp-
tographic primitives which could be incorporated into
the language (e.g., encryption, signatures, hash func-
tions), and other zero-knowledge protocols that could be
added as relations (e.g., alternate and “fuzzy” schemes
for range proofs). Incorporating these primitives, per-
haps by allowing for subroutines and the composabil-
ity of ZKPDL programs, would allow our library to be
more easily extended and potentially have applicability
to a broader range of secure systems. The analysis of
ZKPDL programs—e.g., to automatically verify proto-
cols and identify security errors through type analysis or
formal verification techniques—provides another inter-
esting area of study.

For increased performance on multicore architectures,
we are working on analyzing dependencies among the
expressions evaluated by our interpreter. The simplic-
ity of our language, e.g., in compute blocks, allows a
coarse-grained approach, as the only dependencies that
arise between lines of ZKPDL are from variables which
have been declared and assigned in previous lines.

Finally, in terms of extending Cashlib, to improve a
bank’s efficiency it might also be possible to speed up
coin verification time by supporting batch verification
techniques [22, 39] for CL signatures; we leave this as
one of many interesting open problems.

Acknowledgments
We gratefully acknowledge George Danezis, our shep-

herd, and our anonymous reviewers for their valuable
feedback on earlier versions of this paper. We also would
like to thank Gabriel Bender and Alex Hutter for their
work developing earlier versions of Cashlib, Carleton
Coffrin for assistance with ANTLR, and Jan Camenisch
for his helpful discussions regarding the IBM Idemix
Project. This work is supported in part by NSF Cy-
berTrust grant 0627553.

References
[1] ANDROULAKI, E., RAYKOVA, M., SRIVATSAN, S., STAVROU,

A., AND BELLOVIN, S. PAR: payment for anonymous routing.
In Privacy Enhancing Technologies Symposium (PETS) (2008),
vol. 5134 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 219–236.

[2] ASOKAN, N., SHOUP, V., AND WAIDNER, M. Optimistic fair
exchange of digital signatures. In Proc. Eurocrypt ’98 (1998),
vol. 1403 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 591–606.

[3] AVOINE, G., AND VAUDENAY, S. Optimistic fair exchange
based on publicly verifiable secret sharing. In ACISP (2004),
vol. 3108 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 74–85.

[4] BANGERTER, E., BARZAN, S., KRENN, S., SADEGHI, A.-R.,
SCHNEIDER, T., AND TSAY, J.-K. Bringing zero-knowledge
proofs of knowledge to practice. In 17th International Workshop
on Security Protocols (2009).

[5] BANGERTER, E., CAMENISCH, J., KRENN, S., SADEGHI,
A.-R., AND SCHNEIDER, T. Automatic generation of sound
zero-knowledge protocols. Cryptology ePrint Archive, Report
2008/471, 2008. http://eprint.iacr.org/2004/064.

[6] BARBOSA, M., NOAD, R., PAGE, D., AND SMART, N. First
steps toward a cryptography-aware language and compiler. Cryp-
tology ePrint Archive, Report 2005/160, 2005. http://eprint.
iacr.org/2005/160.

[7] BELENKIY, M., CAMENISCH, J., CHASE, M., KOHLWEISS,
M., LYSYANSKAYA, A., AND SHACHAM, H. Delegatable
anonymous credentials. In Proc. Crypto ’09 (2009), vol. 5677
of Lecture Notes in Computer Science, Springer-Verlag, pp. 108–
125.

[8] BELENKIY, M., CHASE, M., ERWAY, C., JANNOTTI, J.,
KÜPÇÜ, A., AND LYSYANSKAYA, A. Incentivizing outsourced
computation. In NetEcon (2008), pp. 85–90.

[9] BELENKIY, M., CHASE, M., ERWAY, C., JANNOTTI, J.,
KÜPÇÜ, A., LYSYANSKAYA, A., AND RACHLIN, E. Making
P2P accountable without losing privacy. In WPES (2007), ACM,
pp. 31–40.

[10] BELENKIY, M., CHASE, M., KOHLWEISS, M., AND LYSYAN-
SKAYA, A. Non-interactive anonymous credentials. In Proc. 5th
Theory of Cryptography Conference (TCC) (2008), pp. 356–374.

[11] BELLARE, M., AND GOLDREICH, O. On defining proofs of
knowledge. In Proc. Crypto ’92 (1992), vol. 740 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 390–420.

[12] BELLARE, M., AND ROGAWAY, P. Random oracles are practical:
a paradigm for designing efficient protocols. In ACM Conference
on Computer and Communications Security (CCS) ’93 (1993),
pp. 62–73.

[13] BEN-DAVID, A., NISAN, N., AND PINKAS, B. FairplayMP: a
system for secure multi-party computation. In ACM Conference
on Computer and Communications Security (CCS) ’08 (2008),
pp. 257–266.

[14] BICHSEL, P., BINDING, C., CAMENISCH, J., GROSS, T.,
HEYDT-BENJAMIN, T., SOMMER, D., AND ZAVERUCHA, G.
Cryptographic protocols of the identity mixer library, v. 1.0. IBM
Research Report RZ3730, 2009.

[15] BLANCHET, B., AND POINTCHEVAL, D. Automated security
proofs with sequences of games. In Proc. Crypto ’06 (2006),
vol. 4117 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 537–554.

[16] BLUM, M., DE SANTIS, A., MICALI, S., AND PERSIANO, G.
Non-interactive zero-knowledge. SIAM Journal of Computing 20,
6 (1991), 1084–1118.

[17] BOUDOT, F. Efficient proofs that a committed number lies in
an interval. In Proc. Eurocrypt ’00 (2000), vol. 1807 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 431–444.

[18] CAMENISCH, J., CHAABOUNI, R., AND ABHI SHELAT. Effi-
cient protocols for set membership and range proofs. In Proc.
Asiacrypt ’08 (2008), pp. 234–252.

[19] CAMENISCH, J., AND HERREWEGHEN, E. V. Design and im-
plementation of the idemix anonymous credential system. In
ACM Conference on Computer and Communications Security
(CCS) ’02 (2002), ACM, pp. 21–30.

[20] CAMENISCH, J., HOHENBERGER, S., KOHLWEISS, M.,
LYSYANSKAYA, A., AND MEYEROVICH, M. How to win the
clonewars: efficient periodic n-times anonymous authentication.
In ACM Conference on Computer and Communications Security
(CCS) ’06 (2006), pp. 201–210.

[21] CAMENISCH, J., HOHENBERGER, S., AND LYSYANSKAYA, A.
Compact e-cash. In Proc. Eurocrypt ’05 (2005), vol. 3494 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 302–
321.

[22] CAMENISCH, J., HOHENBERGER, S., AND PEDERSEN, M. Ø.
Batch verification of short signatures. In Proc. Eurocrypt
’07 (2007), vol. 4515 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 246–263.

[23] CAMENISCH, J., AND LYSYANSKAYA, A. An efficient sys-
tem for non-transferable anonymous credentials with optional
anonymity revocation. In Proc. Eurocrypt ’01 (2001), vol. 2045
of Lecture Notes in Computer Science, Springer-Verlag, pp. 93–
118.

[24] CAMENISCH, J., AND LYSYANSKAYA, A. A signature scheme
with efficient protocols. In Proc. SCN ’02 (2002), vol. 2576 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 268–
289.

[25] CAMENISCH, J., AND LYSYANSKAYA, A. Signature schemes
and anonymous credentials from bilinear maps. In Proc. Crypto
’04 (2004), vol. 3152 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 56–72.

[26] CAMENISCH, J., LYSYANSKAYA, A., AND MEYEROVICH, M.
Endorsed e-cash. In IEEE Symposium on Security and Privacy
(2007), pp. 101–115.

206 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 207

[27] CAMENISCH, J., AND SHOUP, V. Practical verifiable encryp-
tion and decryption of discrete logarithms. In Proc. Crypto
’03 (2003), vol. 2729 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 126–144.

[28] CHAUM, D. Blind signatures for untraceable payments. In Proc.
Crypto ’82 (1982), Lecture Notes in Computer Science, Springer-
Verlag, pp. 199–203.

[29] CHAUM, D. Security without identification: transaction systems
to make big brother obsolete. Communications of the ACM 28,
10 (1985), 1030–1044.

[30] CHAUM, D., DEN BOER, B., VAN HEYST, E., MJØLSNES,
S. F., AND STEENBEEK, A. Efficient offline electronic checks
(extended abstract). In Proc. Eurocrypt ’89 (1989), pp. 294–301.

[31] COX, B., TYGAR, J., AND SIRBU, M. Netbill security and
transaction protocol. In Proc. 1st Usenix Workshop on Electronic
Commerce (1995), pp. 77–88.

[32] DAEMEN, J., AND RIJMEN, V. Rijndael: AES – The Advanced
Encryption Standard. Springer-Verlag, 2002.

[33] DAMGÅRD, I. On sigma protocols. http://www.daimi.au.
dk/ivan/Sigma.pdf.

[34] DAMGÅRD, I. Payment systems and credential mechanism with
provable security against abuse by individuals. In Proc. Crypto
’88 (1988), vol. 403 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 328–335.

[35] DAMGÅRD, I., DUPONT, K., AND PEDERSEN, M. Ø. Un-
clonable group identification. In Proc. Eurocrypt ’06 (2006),
vol. 4004 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 555–572.

[36] DAMGÅRD, I., AND FUJISAKI, E. A statistically-hiding integer
commitment scheme based on groups with hidden order. In Proc.
Asiacrypt ’02 (2002), vol. 2501 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 125–142.

[37] DAMGÅRD, I., GROTH, J., AND SALOMONSEN, G. The the-
ory and implementation of an electronic voting system. In Proc.
Secure Electronic Voting (SEC) (2003), pp. 77–100.

[38] FEIGE, U., LAPIDOT, D., AND SHAMIR, A. Multiple non-
interactive zero-knowledge proofs based on a single random
string. In Proc. 31st Symposium on Theory of Computing (STOC)
(1990), pp. 308–317.

[39] FERRARA, A. L., GREEN, M., HOHENBERGER, S., AND PED-
ERSEN, M. Ø. Practical short signature batch verification. In
Proc. CT-RSA (2009), pp. 309–324.

[40] FIAT, A., AND SHAMIR, A. How to prove yourself: practi-
cal solutions to identification and signature problems. In Proc.
Crypto ’86 (1986), vol. 263 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 186–194.

[41] FUJISAKI, E., AND OKAMOTO, T. Statistical zero knowledge
protocols to prove modular polynomial relations. In Proc. Crypto
’97 (1997), vol. 1294 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 16–30.

[42] GENNARO, R., GENTRY, C., AND PARNO, B. Non-interactive
verifiable computing: outsourcing computation to untrusted
workers. Cryptology ePrint Archive, Report 2009/547, 2009.
http://eprint.iacr.org/2009/547.

[43] GMP. The GNU MP Bignum library. http://gmplib.org.

[44] GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to
construct random functions (extended abstract). In Proc. 25th
Symposium on the Foundations of Computer Science (FOCS)
(1984), pp. 464–479.

[45] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. Proofs
that yield nothing but their validity or all languages in NP have
zero-knowledge proof systems. J. ACM 38, 3 (1991), 691–729.

[46] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowl-
edge complexity of interactive proof systems. In Proc. 17th Sym-
posium on the Theory of Computing (STOC) (1985), pp. 186–208.

[47] GOLDWASSER, S., MICALI, S., AND RIVEST, R. A digital sig-
nature scheme secure against adaptive chosen-message attacks.
SIAM Journal of Computing 17, 2 (1988), 281–308.

[48] GROTH, J. Non-interactive zero-knowledge arguments for vot-
ing. In ACNS (2005), vol. 3531 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 467–482.

[49] HEYDT-BENJAMIN, T., CHAE, H.-J., DEFEND, B., AND FU,
K. Privacy for public transportation. In Privacy Enhancing Tech-
nologies Symposium (PETS) (2006), pp. 1–19.

[50] ISHIDA, N., MATSUO, S., AND OGATA, W. Divisible voting
scheme. In Proc. ISC ’03 (2003), vol. 2851 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 137–150.

[51] KÜPÇÜ, A., AND LYSYANSKAYA, A. Usable optimistic fair ex-
change. In Proc. CT-RSA ’10 (2010), vol. 5985 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 252–267.

[52] LAURIE, B., AND CLIFFORD, B. Stupid: a meta-
language for cryptography, 2010. http://code.google.com/
p/stupid-crypto.

[53] LEWIS, J., AND MARTIN, B. Cryptol: high assurance, retar-
getable crypto development, and validation. In Proc. Military
Communications Conference ’03 (2003), pp. 820–825.

[54] LIPMAA, H. On Diophantine complexity and statistical zero-
knowledge arguments. In Proc. Asiacrypt ’03 (2003), vol. 2894
of Lecture Notes in Computer Science, Springer-Verlag, pp. 398–
415.

[55] LIPMAA, H., ASOKAN, N., AND NIEMI, V. Secure vickrey
auctions without threshold trust. In Proc. Financial Cryptogra-
phy ’02 (2002), vol. 2357 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 87–101.

[56] LYNN, B. PBC (pairing-based cryptography) library. http://
crypto.stanford.edu/pbc.

[57] MALKHI, D., NISAN, N., PINKAS, B., AND SELLA, Y. Fairplay
- a secure two-party computation system. In USENIX Security
Symposium (2004), pp. 287–302.

[58] MENEZES, A. J., VAN OORSCHOT, P., AND VANSTONE, S.
Handbook of Applied Cryptography. CRC Press, 1997.

[59] MERKLE, R. A digital signature based on a conventional encryp-
tion function. In Proc. Crypto ’88 (1987), vol. 293 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 369–378.

[60] NAOR, M., AND YUNG, M. Universal one-way hash functions
and their cryptographic applications. In Proc. 21st Symposium on
Theory of Computing (STOC) (1989), pp. 33–43.

[61] NGUYEN, L., AND SAFAVI-NAINI, R. Dynamic k-times anony-
mous authentication. In ACNS (2005), vol. 3531 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 318–333.

[62] PAGNIA, H., AND GÄRTNER, F. On the impossibility of fair ex-
change without a trusted third party. Darmstadt University Tech-
nical Report TUD-BS-1999-02, 1999.

[63] PARR, T. ANTLR parser generator. http://www.antlr.org.

[64] PEDERSEN, T. P. Non-interactive and information-theoretic
secure verifiable secret sharing. In Proc. Crypto ’91 (1992),
vol. 576 of Lecture Notes in Computer Science, Springer-Verlag.

[65] RABIN, M., AND SHALLIT, J. Randomized algorithms in num-
ber theory. Communications on Pure and Applied Mathematics
39, 1 (1986), 239–256.

[66] SCHNORR, C.-P. Efficient signature generation by smart cards.
Journal of Cryptology 4, 3 (1991), 161–174.

[67] SCHOENMAKERS, B. Interval proofs revisited. In International
Workshop on Frontiers in Electronic Elections (2005).

P4P: Practical Large-Scale Privacy-Preserving Distributed Computation
Robust against Malicious Users

Yitao Duan
NetEase Youdao
Beijing, China

duan@rd.netease.com

John Canny
Computer Science Division

University of California, Berkeley
jfc@cs.berkeley.edu

Justin Zhan
National Center for the Protection of Financial Infrastructure

South Dakota, USA
justin.zhan@ncpfi.org

Abstract
In this paper we introduce a framework for privacy-
preserving distributed computation that is practical for
many real-world applications. The framework is called
Peers for Privacy (P4P) and features a novel heteroge-
neous architecture and a number of efficient tools for
performing private computation and ensuring security at
large scale. It maintains the following properties: (1)
Provably strong privacy; (2) Adequate efficiency at rea-
sonably large scale; and (3) Robustness against realis-
tic adversaries. The framework gains its practicality by
decomposing data mining algorithms into a sequence of
vector addition steps that can be privately evaluated us-
ing a new verifiable secret sharing (VSS) scheme over
small field (e.g., 32 or 64 bits), which has the same cost
as regular, non-private arithmetic. This paradigm sup-
ports a large number of statistical learning algorithms in-
cluding SVD, PCA, k-means, ID3, EM-based machine
learning algorithms, etc., and all algorithms in the sta-
tistical query model [36]. As a concrete example, we
show how singular value decomposition (SVD), which
is an extremely useful algorithm and the core of many
data mining tasks, can be done efficiently with privacy
in P4P. Using real-world data and actual implementation
we demonstrate that P4P is orders of magnitude faster
than existing solutions.

1 Introduction

Imagine the scenario where a large group of users want
to mine their collective data. This could be a community
of movie fans extracting recommendations from their rat-
ings, or a social network voting for their favorite mem-
bers. In all the cases, the users may wish not to reveal
their private data, not even to a “trusted” service provider,
but still obtain verifiably accurate results. The major
issues that make this kind of tasks challenging are the
scale of the problem and the need to deal with cheat-

ing users. Typically the quality of the result increases
with the size of the data (both the size of the user group
and the dimensionality of per user data). Nowadays it
is common for commercial service providers to run al-
gorithms on data set collected from thousands or even
millions of users. For example, the well-publicized Net-
flix Prize (http://www.netflixprize.com/) data set consists
of roughly 100M ratings of 17,770 movies contributed
by 480K users. At such a scale, both private computa-
tion and verifying proper behavior become impractical
(more on this). In other words, privacy technologies fail
to catch up with data mining algorithms’s appetite and
processing capability for large data sets.

We strive to change this. Our goal is to provide a pri-
vacy solution that is practical for many (but not all) real-
world applications at reasonably large scale. We intro-
duce a framework called Peers for Privacy (P4P) which
is guided by the natural incentives of users/vendors and
today’s computing reality. On a typical computer today
there is a six orders of magnitude difference between the
crypto operations in large field needed for secure homo-
morphic computation (order of milliseconds) and regu-
lar arithmetic operations in small (32- or 64-bit) fields
(fraction of a nano-second). Existing privacy solutions
such as [11, 29] make heavy use of public-key operations
for information hiding or verification. While they have
the same asymptotic complexity as the standard algo-
rithms for those problems, the constant factors imposed
by public-key operations are prohibitive for large-scale
systems. We show in section 3.3 and section 7.2 that
they cannot be fixed with trivial changes to support ap-
plications at our scale. In contrast, P4P’s main compu-
tation is based on verifiable secret sharing (VSS) over
small field. This allows private arithmetic operations
to have the same cost as regular, non-private arithmetic
since both are manipulating the same-sized numbers with
similar complexity. Moreover, such a paradigm admits
extremely efficient zero-knowledge (ZK) tools that are
practical even at large scale. Such tools are indispens-

208 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 209

able in dealing with cheating participants.
Some of techniques used in P4P were initially intro-

duced in [21]. However, the focus of [21] is to develop
an efficient zero-knowledge proof (ZKP) (for detecting
cheating users) and prove its effectiveness. It leaves open
how the ZKP should be incorporated into the computa-
tion to force proper behavior. As we will show, this is not
trivial and requires additional tools, probably tailored to
each application. In particular, [21] does not deal with
the threat of cheating users changing their data during
the computation. This could cause the computation to
produce incorrect results. Such practical issues are not
addressed in [21].
We fill in the missing pieces and provide a comprehen-

sive solution. The contributions of this paper are: (1) We
identify three key qualifications a practical privacy solu-
tion must possess, examine them in light of the changes
in large-scale distributed computing, and formulate our
design. The analysis not only provides rationales for our
scheme, but also can serve as a guideline for practitioners
to appraise the cost for obtaining privacy in their appli-
cations. (2) We introduce a new ZK protocol that ver-
ifies the consistency of user’s data during the computa-
tion. This protocol complements the work of [21] and
ensures the correctness of the computation in the pres-
ence of active user cheating. (3) We demonstrate the
practicality of the framework with a concrete example,
a private singular value decomposition (SVD) protocol.
Prior to our work, there is no privacy solution provid-
ing comparable performance at such large scales. The
example also serves as a tutorial showing how the frame-
work can be adapted to different applications. (4) We
have implemented the framework and performed evalu-
ations against alternative privacy solutions on real-world
data. Our experiments show a dramatic performance im-
provement. Furthermore, we have made the code freely
available and are continuing to improve it. We believe
that, like other secure computation implementations such
as [46, 39, 5, 40], P4P is a very useful tool for devel-
oping privacy-preserving systems and represents a sig-
nificant step towards making privacy a practical goal in
real-world applications.

2 Preliminaries

We say that an adversary is passive, or semi-honest, if
it tries to compute additional information about other
player’s data but still follows the protocol. An active,
or malicious adversary, on the other hand, can deviate
arbitrarily from the protocol, including inputting bogus
data, producing incorrect computation, and aborting the
protocol prematurely. Clearly active adversary is much
more difficult to handle than passive ones. Our scheme
is secure against a hybrid threat model that includes both

passive and active adversaries. We introduce the model
in section 4.

The privacy guarantee P4P provides is differential pri-
vacy, a notion of privacy introduced in [25], further re-
fined by [24, 23], and adopted by many latest works such
as [9, 43, 42, 8, 41]. Differential privacymodels the leak-
age caused by releasing some function computed over a
data set. It captures the intuition that the function is pri-
vate if the risk to one’s privacy does not substantially in-
crease as a result of participating in the data set. Formally
it is defined as:

Definition 1 (Differential Privacy [25, 24]) ∀ǫ, δ ≥ 0,
an algorithm A gives (ǫ, δ)-differential privacy if for all
S ⊆ Range(A), for all data sets D, D′ such that D and
D′ differ by a single record

Pr[A(D) ∈ S] ≤ exp(ǫ) Pr[A(D′) ∈ S] + δ

There are several solutions achieving differential privacy
for some machine learning and data mining algorithms
(e.g., [24, 9, 43, 42, 8, 41]). Most require a trusted server
hosting the entire data set. Our scheme removes such a
requirement and also provides tools for handling a more
adversarial setting where the data sources may be mali-
cious. [4] is also a distributed and differentially private
scheme for binary sum functions but it is only secure in
a semi-honest model.

Differential privacy is widely used in the database pri-
vacy community to model the leakage caused by answer-
ing queries. P4P’s reliance on differential privacy is as
follows: During the computation, certain aggregate in-
formation (including the final result) is released (other
information is kept hidden using cryptographic means).
This is also modeled as query responses computed over
the entire data set. Measuring such leakage against dif-
ferential privacy allows us to have a rigorous formulation
of the risk each individual user faces. By tuning the pa-
rameters ǫ and δ we can control such risk and obtain a
system with adequate privacy as well as high efficiency.
Another nice property of using differential privacy is that
it can cover the final results (in contrast secure MPC in
cryptography does not) therefore the protection is com-
plete. Integrating differential privacy into secure compu-
tation has been accepted by the cryptography community
[4] and our work can been seen as a concrete and highly
efficient instantiation of such an approach to secure com-
putation of some algorithms.

3 Design Considerations

Our design was motivated by careful evaluation of goals,
available resources, and alternative solutions.

2

3.1 Design Goals
Our goal is to provide practical privacy solutions for
some real-world applications. To this end, we identify
three properties that are essential to a practical privacy
solution:

1. Provable Privacy: Its privacy must be rigorously
proven against well formulated privacy definitions.

2. Efficiency and Scalability: It must have adequate
efficiency at reasonably large scale, which is an ab-
solute necessity for many of today’s data mining ap-
plications. The scale we are targeting is unprece-
dented: to support real-world application both the
number of users and the number of data items per
user are assumed to be in millions.

3. Robustness: It must be secure against realistic ad-
versaries. Many computations either involve the
participation of users, or collect data from them.
Cheating of a small number of users is a realistic
threat that the system must handle.

To the best of our knowledge, no existing works, or triv-
ial composition of them, attain all three. Ours is the first,
with open-source code, supporting all these properties.

3.2 Available Resources
During the past few years the landscape of large-scale
distributed computing has changed dramatically. Many
new resources and paradigms are available at very low
cost and many computations that were infeasible at large
scale in the past are now running routinely. One notable
trend is the rapid growth of “cloud computing”, which
refers to the model where clients purchase computing cy-
cles and/or storage from a third-party provider over the
Internet. Vendors are sharing their infrastructures and
allowing general users access to gigantic computing ca-
pability. Industrial giants such as Microsoft, IBM, Ya-
hoo!, and Google are all key players in the game. Some
of the cloud services (e.g., Amazon’s Elastic Compute
Cloud, http://aws.amazon.com/ec2.) are already avail-
able to general public at very cheap price.

The growth of cloud computing symbolizes the in-
creased availability of large-scale computing power. We
believe it is time to re-think the issue of privacy preserv-
ing data mining in light of such changes. There are sev-
eral significant differences:

1. Could computing providers have very different in-
centives. Unlike traditional e-commerce vendors
who are naturally interested in users data (e.g.,
purchase history), the cloud computing providers’s

commodity (CPU cycles and disk space) is orthogo-
nal to users’ computation. Providers do not benefit
directly from knowing the data or computation re-
sults, other than ensuring that they are correct.

2. The traditional image of client-server paradigm has
changed. In particular, the users have much more
control over the data and the computation. In fact in
many cases the cloud servers will be running code
written by the customers. This is to be contrasted
with traditional e-commere where there is a tremen-
dous power imbalance between the service provider,
who possesses all the information and controls what
computation to perform, and the client users.

3. The servers are now clusters of hundreds or even
thousands of machines capable of handling huge
amount of data. They are not bottlenecks anymore.

Discrepancy of incentives and power imbalance have
been identified as two major obstacles for the adoption
of privacy technology by researchers examining privacy
issues from legal and economic perspectives [26, 1]. In-
terestingly, both are greatly mitigated with the dawn of
cloud computing. While traditional e-commerce ven-
dors are reluctant to adopt privacy technologies, cloud
providers would happily comply with customers instruc-
tions regarding what computation to perform. And once
a treasure for the traditional e-commerce vendors, user
data is now almost a burden for the cloud computing
providers: storing the data not only costs disk space, but
also may entail certain liability such as hosting illegal in-
formation. Some cloud providersmay even choose not to
store the data. For example, with Amazon’s EC2 service,
user data only persists during the computation.
We believe that cloud computing offers an extremely

valuable opportunity for developing a new paradigm of
practical privacy-preserving distributed computation: the
existence of highly available, highly reputable, legally
bounded service providers also provides a very important
source of security. In particular, they make it realistic
to treat some participants as passive adversaries. (The
rests are still handled as active adversaries. The model
is therefore a heterogenous one.) By tapping into this
resource, we can build a heterogeneous system that can
have privacy, scalability and robustness all at once.

3.3 The Alternatives
Existing privacy solutions for distributed data mining can
be classified into two models: distributed and server-
based. The former is represented by a large amount of
work in the area of secure multiparty computation (MPC)
in cryptography. The latter includes mostly homomor-
phic encryption-based schemes such as [11, 22, 51].

3

210 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 211

Generic MPC: MPC allows n players to compute a
function over their collective data without compromising
the privacy of their inputs or the correctness of the out-
puts even when some players are corrupted by the same
adversary. The problem dates back to Yao [52] and Gol-
dreich et al. [31], and has been extensively studied in
cryptography [6, 2, 33]. Recent years see some signifi-
cant improvement in efficiency. Some protocols achieve
nearly optimal asymptotic complexity [3, 16] while some
work in small field [12].
From practitioners’ perspective, however, these

generic MPC protocols are mostly of theoretical interest.
Reducing asymptotic complexity does not automatically
make the schemes practical. These schemes tend to be
complex which imposes a huge barrier for developers not
familiar with this area. Trying to support generic compu-
tation, most of them compile an algorithm into a (boolean
or arithmetic) circuit. Not only the depth of such a cir-
cuit can be huge for complex algorithms, it is also very
difficult, if not entirely impossible, to incorporate exist-
ing infrastructures and tools (e.g., ARPACK, LAPACK,
MapReduce, etc.), into such computation. These tools
are indispensable part of our daily computing life and
symbolize the work of many talents over many years.
Re-building production-ready implementations is costly
and error-prone and generally not an option for most
companies in our fast-pacing modern world.

Recently there are several systems that implemented
some of the MPC protocols. While this reflects a plausi-
ble attempt to bridge the gap between theory and prac-
tice, unfortunately, performance-wise none of the sys-
tems came close to providing satisfactory solutions for
most large-scale real-world applications. Table 1 shows
some representative benchmarks obtained by these im-
plementations. Using FairplayMP [5] as an example,
adding two 64-bit integers is compiled into a circuit of
628 gates and 756 wires using its SFDL compiler. Ac-
cording to [5]’s benchmark, evaluating such a circuit
between two players takes about 7 seconds. With this
performance, adding 106 vectors of dimensionality 106

each, which constitutes one iteration in our framework,
takes 7 × 1012 seconds, or 221,969 years.
ECC and a single server: It has been shown that con-
ventional client-server paradigm can be augmented with
homomorphic encryption to perform some computations
with privacy (e.g., [11, 22, 51]). Still, such schemes are
only marginally feasible for small to medium scale prob-
lems due to the need to perform at least linear number of
large field operations even in purely semi-honest model.
Using elliptic curve cryptography (ECC) canmitigate the
problem as ECC can reduce the size of the cryptographic
field (e.g., a 160-bit ECC key provides the same level
of security as a 1024-bit RSA key). ECC cryptosystems
such as [44] are (+, +)-homomorphic which is ideal for

private computation. However, ECC point addition re-
quires 1 field inversion and several field multiplications.
The operation is still orders of magnitude slower than
adding 64-bit or 32-bit integers directly. According to
our benchmark, inversion and multiplication in a 160-bit
field take 0.0224 and 0.001 milliseconds, respectively.
Adding 1 million 106-element vectors takes 260 days.
Lesson learned: For large-scale problems, privacy and
security must be addedwith negligible cost. In particular,
those steps that dominate the computation should not be
burdened with public-key cryptographic operations (even
those “efficient” ones such as ECC) simply because they
have to be performed so many times. This is the major
principle that guides our design. In our scheme, the main
computation is always performed in small field, while
verifications are done via random projection techniques
to reduce the number of cryptographic operations. As
our experiments show, this approach is effective. When
the number of cryptographic operations are insignificant,
even using the traditional ElGamal encryption (or com-
mitment) with 1024-bit key the performance is adequate
for large scale problems.

4 P4P’s Architecture

Our approach is called Peers for Privacy, or P4P. The
name comes from the feature that, during the computa-
tion, certain aggregate information is released. This is a
very important technique that allows the private protocol
to have high efficiency. We show that publishing such
aggregate information does not harm privacy: individual
traits are masked out in the aggregates and releasing them
is safe. In other words, peers data mutually protects each
other within the aggregates.
Let κ > 1 be a small integer. We assume

that there are κ servers belonging to differ-
ent service providers (e.g., Amazon’s EC2 ser-
vice and Microsoft’s Azure Services Platform,
http://www.microsoft.com/azure/default.mspx). We
define a server as all the computation units under the
control of a single entity. It can be a cluster of thousands
of machines so that it has the capability to support a
large number of users.
Threat Model Let α ∈ [0, 0.5) be the upper bound on
the fraction of the dishonest users in the system. 1 Our
scheme is robust against a computationally bounded ad-
versary whose capability of corrupting parties is mod-
eled as follows:

1. The adversary may actively corrupt at most ⌊αn⌋
users where n is the number of users.

2. In addition to 1, we also allow the same adversary
to passively corrupt κ − 1 server(s).

4

Table 1: Performance Comparison of Existing MPC Implementations
System Adversary Model Benchmark Run Time (sec)
Fairplay [40] Semi-honest Billionaires 1.25
FairplayMP [5] Semi-honest Binary Tree Circuit (512 Gates) 6.25
PSSW [46] Semi-honest AES Encryption of 128-bit block 7
LPS [39] Malicious 16-bit Integer Comparison 135

This model was proposed in [21] and is a special
case of the general adversary structure introduced in
[28, 34, 35] in that some of the participants are actively
corrupted while some others are passively corrupted by
the same adversary at the same time. Our model does not
satisfy the feasibility requirements of [34, 35] and [28].
We avoid the impossibility by considering addition only
computation.

The model models realistic threats in our target appli-
cations. In general, users are not trustworthy. Some may
be incentivized to bias the computation, some may have
their machines corrupted. So we model them as active
adversaries and our protocol ensures that active cheat-
ing of a small number of users will not exert large in-
fluence on the computation. This greatly improves over
existing privacy-preserving data mining solutions (e.g.
[38, 51, 49]) and many current MPC implementations
which handle only purely passive adversary. The servers,
on the other hand, are selling CPU cycles and disk space,
something that is not related to user’s computation or
data. Deviating from the protocol causes them penalty
(e.g., loss of revenue for incorrect results) but little ben-
efit. Their threat is therefore passive. (Corrupted servers
are allowed to share data with corrupted users)

Treating “large institutional” servers as semi-honest,
non-colluding has already been established by various
previous work [38, 51, 50, 49]. However, in most of
the models, the servers are not only semi-honest, but
also “trusted”, in that some user data is exposed to at
least one of the servers (vertical or horizontal partitioned
database). Our model does not have this type of trust re-
quirement as each server only holds a random share of
the user data. This further reduces the server’s incentive
to try to benefit from user data (e.g., reselling it) because
the information it has are just random numbers without
the other shares. A compromise requires the collusion
of all servers which is a much more difficult endeavor.
This also works for the servers’ benefit: they are relieved
of the liability of hosting secret or illegal computation,
a problem that someone [18] envisions cloud providers
will be facing.

5 The P4P Framework

Let n be the number of users. Let φ be a small (e.g., 32-
or 64-bit) integer. We write Zφ for the additive group
of integers modulo φ. Let ai be private user data for
user i and I be public information. Both can be matri-
ces of arbitrary dimensions with elements from arbitrary
domains. Our scheme supports any iterative algorithms
whose (t + 1)-th update can be expressed as

I(t+1) = f(
n∑

i=1

d
(t)
i , I(t))

where d
(t)
i = g(ai, I

(t)) ∈ Zm
φ is an m-dimensional

data vector for user i computed locally. Typical values
for both m and n can range from thousands to millions.
Both f and g are in general non-linear. In the SVD ex-
ample that we will present, I(t) is the vector returned by
ARPACK, g is matrix-vector product, and f is the inter-
nal computation performed by ARPACK.

This simple primitive is a surprisingly powerful model
supporting a large number of popular data mining and
machine learning algorithms, including Linear Regres-
sion, Naive Bayes, PCA, k-means, ID3, and EM etc.,
as has been demonstrated by numerous previous work
such as [11, 13, 17, 10, 22]. It has been shown that all
algorithms in the statistical query model [36] can be ex-
pressed in this form. Moreover, addition is extremely
easy to parallelize so aggregating a large amount of num-
bers on a cluster is straightforward.

5.1 Private Computation
In the following we only describe the protocol for one
iteration since the entire algorithm is simply a sequen-
tial invocations of the same protocol. The superscript is
thus dropped from the notation. For simplicity, we only
describe the protocol for the case of κ = 2. It is straight-
forward to extend it to support κ > 2 servers (by sub-
stituting the (2, 2)-threshold secret sharing scheme with
a (κ, κ) one). Using more servers strengthens the pri-
vacy protection but also incurs additional cost. We do
not expect the scheme will be used with a large number
of servers. This arrangement simplifies matters such as
synchronization and agreement. Let S1 and S2 denote

5

212 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 213

the two servers. Leaving out validity and consistency
check which will be illustrated using the SVD example,
the basic computation is carried out as follows:

1. User i generates a uniformly random vector ui ∈
Zm

φ and computes vi = di − ui mod φ. She sends
ui to S1 and vi to S2.

2. S1 computes µ =
∑n

i=1 ui mod φ and S2 com-
putes ν =

∑n

i=1 vi mod φ. S2 sends ν to S1.
3. S1 updates I with f((µ + ν) mod φ, I).

It is straightforward to verify that if both servers follow
the protocol, then the final result is indeed the sum of the
user data vectors mod φ. This result will be correct if
every user’s vector lies in the specified bounds for L2-
norm, which is checked by the ZKP in [21].

5.2 Provable Privacy
Theorem 1 P4P’s computation protocol leaks no infor-
mation beyond the intermediate and final aggregates, if
no more than κ − 1 servers are corrupted.

The proof follows easily the fact that both the secret shar-
ing scheme (for the computation) and the Pedersen com-
mitment scheme [45, 15] used in the ZK protocols are
information-theoretic private, as the adversary’s view of
the protocol is uniformly random and contains no infor-
mation about user data. We refer the readers to [30] for
details and formal definition of information-theoretic pri-
vacy.
As for the leakage caused by the released sums, first,

for SVD, and some other algorithms, we are able to show
the sums can be approximated from the final result so
they do not leak more information. For general compu-
tation, we draw on the works on differential privacy. [20]
has shown that, using well-established results from sta-
tistical database privacy [7, 19, 25], under certain condi-
tions, releasing the vector sums still maintains differen-
tial privacy.
In some situations verifying the conditions of [20] pri-

vately is non-trivial but this difficulty is not essential in
our scheme. There are well-established results that prove
that differential privacy, as well as adequate accuracy,
can be maintained as long as the sums are perturbed by
independent noise with variance calibrated to the number
of iterations and the sensitivity of the function [7, 19, 25].
In our settings, it is trivial to introduce noise into our
framework – each server, which is semi-honest, can add
the appropriate amount of noise to their partial sums af-
ter all the vectors from users are aggregated. Calibrating
noise level is also easy: All one needs are the parameters
ǫ, δ, the total number of queries (mT in our case where
T is the number of iterations), and the sensitivity of the

function f , which is summation in our case, defined as
[25]:

S(f) = max
D,D′

�f(D) − f(D′)�1

where D and D′ are two data sets differing by a sin-
gle record and � · �1 denotes the L1-norm of a vector.
Cauchy’s Inequality states that

(
m∑

i=1

xiyi)2 ≤ (
m∑

i=1

x2
i)(

m∑
i=1

y2
i)

For a user vector a = [a1, . . . , am], let xi = |ai|, yi = 1,
we have

�a�2
1 = (

m∑
i=1

|ai|)2 ≤ (
m∑

i=1

a2
i)m = �a�2

2m

Since our framework bounds the L2-norm of a user’s
vector to below L, this means the sensitivity of the com-
putation is at most

√
mTL.

Note that the perturbation does not interfere with our
ZK verification protocols in any way, as the latter is per-
formed between each user and the servers on the original
data. Whether noise is necessary or not is dependent on
the algorithm. For simplicity we will not describe the
noise process in our protocol explicitly. We stress again
that the SVD example we will present next does not need
any noise at all. See section 6.6.

6 Private Large-Scale SVD

In the following we use a concrete example, a private
SVD scheme, to demonstrate how the P4P framework
can be used to support private computation of popular
algorithms.

6.1 Basics
Recall that for a matrix A ∈ Rn×m, there exists a factor-
ization of the form

A = UΣV T (1)

where U and V are n × n and m × m, respectively, and
both have orthonormal columns. Σ is n×m with nonneg-
ative real numbers on the diagonal sorted in descending
order and zeros off the diagonal. Such a factorization is
called a singular value decomposition of A. The diago-
nal entries of Σ are called the the singular values of A.
The columns of U and V are left- resp. right-singular
vectors for the corresponding singular values.
SVD is a very powerful technique that forms the core

of many data mining and machine learning algorithms.
Let r = rank(A) and ui, vi be the column vectors of
U and V , respectively. Equation 1 can be rewritten as

6

A = UΣV T =
∑r

i=1 σiuiv
T
i where σi is the ith singu-

lar value of A. Let k ≤ r be an integer parameter, we
can approximateA by Ak = UkΣkV T

k =
∑k

i=1 σiuiv
T
i .

It is known that of all rank-k approximations, Ak is op-
timal in Frobenius norm sense. The k columns of Uk

(resp. Vk) give the optimal k-dimensional approxima-
tion to the columnspace (resp. rowspace) of A. This
dimensionality reduction preserves the structure of orig-
inal data while considers only essential components of
the matrix. It usually filters out noise and improves the
performance of data mining tasks.
Our implementation uses a popular eigensolver,

ARPACK [37] (ARnoldi PACKage), and its parallel
version PARPACK. ARPACK consists of a collection
of Fortran77 subroutines for solving large-scale eigen-
value problems. The package implements the Implic-
itly Restarted Arnoldi Method (IRAM) and allows one
to compute a few, say k, eigenvalues and eigenvectors
with user specified features such as those of largest mag-
nitude. Its storage complexity is nO(k) + O(k2) where
n is the size of the matrix. ARPACK is a freely-available
yet powerful tool. It is best suited for applications whose
matrices are either sparse or not explicitly available: it
only requires the user code to perform some “action”
on a vector, supplied by the solver, at every IRAM it-
eration. This action is simply matrix-vector product in
our case. Such a reverse communication interface works
seamlessly with P4P’s aggregation protocol.

6.2 The Private SVD Scheme
In our setting the rows of A are distributed across all
users. We use Ai∗ ∈ Rm to denote the m-dimensional
row vector owned by user i. From equation 1, and
the fact that both U and V are orthonormal, it is clear
that AT A = V Σ2V T which implies that AT AV =
V Σ2. A straightforward way is then to compute AT A =∑n

i=1 AT
i∗Ai∗ and solve for the eigenpairs of AT A. The

aggregate can be computed using our private vector ad-
dition framework. This is a distributed version of the
method proposed in [7] and does not require the con-
sistency protocol that we will introduce later. Unfortu-
nately, this approach is not scalable as the cost for each
user is O(m2). Suppose m = 106, and each element
is a 64-bit integer, then AT

i∗Ai∗ is 8 × 1012 bytes, or
about 8 TB. The communication cost for each user is
then 16 TB (she must send shares to two servers). This is
a huge overhead, both communication- and computation-
wise. Usually the data is very sparse and it is a common
practice to reduce cost by utilizing the sparsity. Unfor-
tunately, sparsity does not help in a privacy-respecting
application: revealing which elements are non-zero is a
huge privacy breach and the users are forced to use the
dense format. We propose the following scheme which

...

ARPACK

P4P

Figure 1: Private SVD with P4P

reduces the cost dramatically. We involve the users in
the iteration and the total communication (and computa-
tion) cost per iteration is only O(m) for each user. The
number of iterations required ranges from tens to over
a thousand. This translates to a maximum of a few GB
data communicated for each user for the entire protocol
which is much more manageable.
One server, say S1, will host an ARPACK engine and

interact with its reverse communication interface. In
our case, since AT A is symmetric, the server will use
dsaupd, ARPACK’s double precision routine for sym-
metric problems, and asks for k largest (in magnitude)
eigenvalues. At each iteration, dsaupd returns a vector v
to the server code and asks for the matrix-vector product
AT Av. Notice that

AT Av =
n∑

i=1

AT
i∗Ai∗v

Each term in the summation is computable by each user
locally in O(m) time (by computing the inner product
Ai∗ · v first) and the result is an m-vector. The vec-
tor can then be input to the P4P computation which ag-
gregates them across all users privately. The aggregate
is the matrix-vector product which can be returned to
ARPACK for another iteration. This process is illustrated
in figure 1.

The above method is known to have sensitivity prob-
lem, i.e., a small perturbation to the input could cause
large error in the output. In particular, the error is
O(�A�2/σk) [48]. Fortunately, most applications (e.g.,
PCA) only need the k largest singular values (and
their singular vectors). It is usually not a problem for
those applications since for the principal components
O(�A�2/σk) is small. There is no noticeable inaccuracy
in our test applications (latent semantic analysis for doc-
ument retrieval). For general problems the stable way is

7

214 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 215

to compute the eigenpairs of the matrix

H =
[
0 AT

A 0

]

It is straightforward to adopt our private vector addition
framework to compute matrix-vector product with H .
For simplicity we will not elaborate on this.

6.3 Enforcing Data Consistency
During the iteration, user i should input di = AT

i∗Ai∗v.
However, a cheating user could input something com-
pletely different. This threat is different from inputting
bogus (but in the allowable range) data at the beginning
(and using it consistently throughout the iterations). The
latter only introduces noise to the computation but gener-
ally does not affect the convergence. The L2-norm ZKP
introduced in [21], which verifies that the L-2 norm of a
user’s vector is bounded by a public constant, is effective
in bounding the noise but does not help in enforcing con-
sistency. The former, on the other hand, may cause the
computation not to converge at all. This generally is a
problem for iterative algorithms and is more than simply
testing the equality of vectors: The task is complicated
by the local function that each user uses to evaluate on
her data, i.e., she is not simply inputting her private data
vector, but some (possibly non-linear) function of it. In
the case of SVD, the system needs to ensure that user i
uses the same Ai∗ (to compute di = AT

i∗Ai∗v) in all the
iterations, not that she inputs the same vector.

We provide a novel zero-knowledge tool that ensures
that the correct data is used. The protocol is probabilis-
tic and relies on random projection. That is, the user is
asked to project her original vector and her result of the
current round onto some random direction. It then tests
the relation of the two projections. We will show that this
method catches cheating with high probability but only
involves very few expensive large field operations.

6.3.1 Tools

The consistency protocol uses some standard crypto-
graphic primitives. Detailed construction and proofs can
be found in [45, 15, 11]. We summarize only their key
properties here. All values used in these primitives lie in
the multiplicative group Z∗

q , or in the additive group of
exponents for this group, where q is a 1024 or 2048-bit
prime. They rely on RSA or discrete log functions for
cryptographic protection of information.

• Homomorphic commitment: A homomorphic
commitment to an integer a with randomness r is
written as C(a, r). It is homomorphic in the sense
that C(a, r)C(b, s) = C(a+ b, r+ s). It is infeasible

to determine a given C(a, r). We say that a prover
“opens” the commitment if it reveals a and r.

• ZKP of knowledge: A prover who knows a and
r (i.e., who knows how to open A = C(a, r)) can
demonstrate that it has this knowledge to a verifier
who knows only the commitment A. The proof re-
veals nothing about a or r.

• ZKP for equivalence: Let A = C(a, r) and B =
C(a, s) be two commitments to the same value a. A
prover who knows how to openA andB can demon-
strate to a verifier in zero knowledge that they com-
mit to the same value.

• ZKP for product: LetA, B and C be commitments
to a, b, c respectively, where c = ab. A prover
who knows how to open A, B, C can prove in zero
knowledge to a verifier who has only the commit-
ments that the relationship c = ab holds among the
values they commit to. If say a is made public, this
primitive can be used to prove that C encodes a num-
ber that is multiple of a.

6.3.2 The Protocol

The consistency check protocol is summarized in the fol-
lowing. Since the protocol is identical for all users, we
drop the user subscript for the rest of the paper whenever
there is no confusion. Let a ∈ Zm

φ be a user’s original
vector (i.e., her row in the matrix A). The correct user
input to this round should be d = aT av. For two vectors
x and y, we use x · y to denote their scalar product.

1. After the user inputs her vector d, in the form of two
random vectors d(1) and d(2) in Zm

φ , one to each
server, s.t. d = d(1) + d(2) mod φ, S1 broadcasts a
random number r. Using r as the seed and a public
PRG (pseudo-random generator), all players gener-
ate a random vector c ∈R Zm

φ .

2. For j ∈ {1, 2}, the user computes x(j) = c · a(j)

mod φ, y(j) = a(j) ·v mod φ. Let x = x(1)+x(2),
y = y(1) + y(2), z = xy. Let w = (c · a)(a · v) −
xy. The user commits X (j) to x(j), Y(j) to y(j), Z
to z, and W to w. She also construct two ZKPs:
(1) W encodes a number that is multiple of φ. (2)
Z encodes a number that is the product of the two
numbers encoded in X and Y where X = X (1)X (2)

and Y = Y(1)Y(2). She sends all commitments and
ZKPs to both servers.

3. The user opens X (j) and Y(j) to Sj who verifies
that both are computed correctly. Both servers ver-
ify the ZKPs. If any of them fails, the user is marked
as FAIL and the servers terminate the protocol with
her.

8

4. For j ∈ {1, 2}, the user computes z̃(j) = c · d(j)

mod φ, z̃ = z̃(1) + z̃(2) and w̃ = c ·d− z̃. She com-
mits Z̃(1) to z̃(1), Z̃(2) to z̃(2), and W̃ to w̃. She
constructs the following two ZKPs: (1) W̃ encodes
a number that is multiple of φ and (2)Z̃W̃ and ZW
encode the same value. She sends all the commit-
ments and ZKPs to both servers.

5. The user opens Z̃(j) to Sj who verifies that it is
computed correctly. Both servers verify the two
ZKPs. They mark the user as FAIL if any of the
verifications fails and terminate the protocol with
her.

6. Both servers output PASS.

Group Sizes
There are three groups/fields involved in the protocol:
the large, multiplicative group Z∗

q used for commitments
and ZKPs, the “small” groupZφ used for additive secret-
sharing, and the group of all integers. All the commit-
ments such as X (j) and Y(j) are computed in Z∗

q so stan-
dard cryptographic tools can be used. The inputs to the
commitments, which can be user’s data or some inter-
mediate results, are either in Zφ or in the integer group
(without bounding their values). Restricting commit-
ment inputs to small field/group does not compromise
the security of the scheme since the outputs are still in
the large field. Using Pederson’s commitment as an ex-
ample, the hiding property is guaranteed by the random
numbers that are generated in the large field for each
commitments. And breaking the binding property is still
equivalent to solving the discrete logarithm problem in
Z∗

q . See [45].
The protocol makes it explicit which group a number

is in using the mod φ operator (i.e., x = g(y) mod φ
restricts x to be in Zφ while x = g(y) means x can be
in the whole integer range). The protocol assumes that
q ≫ φ. This ensures that the numbers that are in the
integer group (x, y, z, w in step 2 and z̃ and w̃ in step 4)
are much less than q to avoid modular reduction when
their commitments are produced. This is true for most
realistic deployment, since φ is typically 64 bits or less
while q is 1024 bits or more. Theorem 2 proves that the
transition from Zφ to integer fields and Z∗

q only causes
the protocol to fail with extremely low probability:

Theorem 2 Let O be the output of the Consistency
Check protocol. Then

Pr(O = PASS|d = aT av) = 1

and
Pr(O = PASS|d �= aT av) ≤ 1

φ

Furthermore, the protocol is zero-knowledge.

Proof If computed correctly, both w and w̃ are multiples
of φ due to modular reduction. Because of homomor-
phism, the equivalence ZKP that Z̃W̃ and ZW encode
the same value is to verify that c · d = c · (aT av).

Completeness: If the user performs the computation
correctly, she should input d = aT av into this round
of computation. All the verifications should pass. The
protocol outputs PASS with probability 1.
Soundness: Suppose d �= aaT v. The user is forced

to compute the commitments X (1),X (2),Y(1),Y(2), and
Z̃(1), Z̃(2) faithfully since she has to open them to at
least to one of the servers. The product ZKP at step 2
forces the number encoded in Z to be xy which differs
from c · (aT av) by w. Due to homomorphism, at step
4, Z̃ encodes a number that differs from c · d by w̃. The
user could cheat by lying about w or w̃, i.e., she could
encode some other values in W and W̃ to adjust for the
difference between c · d and c · (aT av), hoping to pass
the equivalence ZKP. However, assuming the soundness
of the ZKPs used, the protocol forces both to be multiple
of φ (steps 2 and 4), so she could succeed only when the
difference between c ·d, which she actually inputs to this
round, and c · (aT av), which she should input, is some
multiple of φ. Since c is made known to her after she
inputs d, the two numbers are totally unpredictable and
random to her. The probability that c · d− c · (aT av) is a
multiple of φ is only 1/φ which is the probability of her
success.
Finally, the protocol consists of a sequential invoca-

tion of some well-established ZKPs. By the sequential
composition theorem of [32], the whole protocol is also
zero-knowledge.
As a side note, all the ZKPs can be made non-

interactive using the Fiat-Shamir paradigm [27]. The
user could upload her data in a batch without further in-
teraction. This makes it easier to deploy the scheme. It
is also much more light-weight than the L2-norm ZKP
[21]: the number of large field operations is constant, as
opposed to O(log m) in the L2-norm ZKP. The private
SVD computation thus involves only one L2-norm ZKP
at first round, and one light verification for each of the
subsequent rounds.

6.4 Dealing with Real Numbers
In their simplest forms, the cryptographic tools only sup-
port computation on integers. In most domains, however,
applications typically have to handle real numbers. In
the case of SVD, even if the original input matrix con-
tains only integer entries, it is likely that real numbers
appear in the intermediate (e.g., the vectors returned by
ARPACK) and the final results.
Because of the linearity of the P4P computation, we

can use a simple linear digitization scheme to convert

9

216 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 217

between real numbers in the application domain and Zφ,
P4P’s integer field. Let R > 0 be the bound of the
maximum absolute value application data can take, i.e.,
all numbers produced by the application are between
[−R, R]. The integer field provides |φ| bits resolution.
This means the maximum quantization error for one vari-
able is R/φ = 2|R|−|φ|. Summing across all n users, the
worst case absolute error is bounded by n2|R|−|φ|. In
practice |φ| can be 64, and |R| can be around e.g., 20
(this gives a range of [−220, 220]). With n = 106, this
gives a maximum absolute error of under 1 over a mil-
lion.

6.5 The Protocol
Let Q be the set of qualified users initialized to the set of
all users. The entire private SVD method is summarized
as follows:

1. Input The user first provides an L2-norm ZKP [21]
on a with a bound L, i.e., she submits a ZKP that
�a�2 < L. This step also forces the user to commit
to the vector a. Specifically, at the end of this step,
S1 and S2 have a(1) ∈ Zφ and a(2) ∈ Zφ, respec-
tively, such that a = a(1)+a(2) mod φ. Users who
fail this ZKP are excluded from subsequent compu-
tation.

2. Repeat the following steps until the ARPACK rou-
tine indicates convergence or stops after certain
number of iterations:

(a) Consistency Check When dsaupd returns
control to S1 with a vector, the server con-
verts the vector to v ∈ Zm

φ and sends it to
all users. The servers execute the consistency
check protocol for each user.

(b) Aggregate For any users who are marked as
FAIL, or fail to respond, the servers simply ig-
nore their data and exclude them from subse-
quent computation. Q is updated accordingly.
For this round they compute s =

∑
i∈Q di and

S1 returns it as the matrix-vector product to
dsaupd which runs another iteration.

3. Output S1 outputs

Σk = diag(σ1, σ2, . . . , σk) ∈ Rk×k

Vk = [v1, v2, . . . , vk,] ∈ Rm×k

with σi =
√

λi where λi is the ith eigenvalue
and vi the corresponding eigenvector computed by
ARPACK, i = 1, . . . , k, and λ1 ≥ λ2 . . . ≥ λk.

For accuracy of the result produced by this protocol in
the presence of actively cheating users, we have

Theorem 3 Let nc be the number of cheating users. We
use ·̃ to denote perturbed quantity and σi the i-th singu-
lar value of matrix A. Assuming that honest users vector
L2-norms are uniformly random in [0, L) and nc ≪ n,
then √∑

i(σ̃i − σi)2∑
i σ2

i

< 2
√

nc

n

Proof The classic Weyl and Mirsky theorems [47] bound
the perturbation to A’s singular values in terms of the
Frobenius norm � · �F of E := A − Ã:

√∑
i

(σ̃i − σi)2 ≤ �E�F

In our case each row ai of A is held by a user, we have

�E�F =

√√√√
n∑

i=1

�ãi − ai�2
2

Since the protocol ensures that �ai�2 < L for all users,

√∑
i

(σ̃i − σi)2 ≤

√√√√
n∑

i=1

�ãi − ai�2
2 <

√
ncL

Let ξ =
√∑

i(σ̃i − σi)2/
√∑

i σ2
i , and assuming that

honest users vector L2-norms are uniformly random in
[0, L) and nc ≪ n, then

ξ =

√∑
i(σ̃i − σi)2

�A�F

<

√
ncL

0.5
√

(n − nc)L
≈ 2

√
nc

n

The scheme is also quite robust against users failures.
During our tests reported in section 7, we simulated a
fraction of random users “dropping out” of each itera-
tion. Even when up to 50% of the users dropped, for all
our test sets, the computation still converged without no-
ticeable loss of accuracy, measured by residual error (see
section 7.1) using the final matrix with failed users data
ignored. This allows us to handle malicious users who
actively try to disrupt the computation and those who fail
to response due to technical problems (e.g., network fail-
ure) in a uniform way.

6.6 Privacy Analysis
Note that the protocol does not compute Uk. This is in-
tentional. Uk contains information about user data: the
ith row of Uk encodes user i’s data in the k-dimensional
subspace and should not be revealed at all in a privacy-
respecting application. Vk, on the other hand, encodes
“item” data in the k-dimensional subspace (e.g., if A is a
user-by-movie rating matrix, the items will be movies).

10

In most applications the desired information can be com-
puted from the singular values (Σk) and the right singular
vectors (V T

k) (e.g., [11])
At each iteration, the protocol reveals the matrix-

vector product AT Av for some vectors v. This is not
a problem because the final results Σk and V T

k already
give an approximation of AT A (AT A = V Σ2V T). A
simulator with the final results can approximate the in-
termediate sums. Therefore the intermediate aggregates
do not reveal more information.

7 Implementation and Evaluation

The P4P framework, including the SVD protocol, has
been implemented in Java using JNI and a NativeBig-
Integer implementation from I2P (http://www.i2p2.de/).
We run several experiments. The server is a 2.50GHz
Xeon E5420 with 32GB memory, the clients are
2.00GHz Xeon E5405 with 800 MB memory allocated
to the tests. In all the experiments, φ is set to be a 62-bit
integer and q 1024-bit.

We evaluated our implementation on three data sets:
the Enron Email Data set [14], EachMovie (EM), and a
randomly generated dense matrix (RAND). The Enron
corpus contains email data from 150 users, spanning a
period of about 5 years (Jan. 1998 to Dec 2002). Our test
was run on the social graph defined by the email commu-
nications. The graph is represented as a 150 × 150 ma-
trix A with A(i, j) being the number of emails sent by
user i to user j. EachMovie is a well-known test data set
for collaborative filtering. It comprises ratings of 1648
movies by 74424 users. Each rating is a number in the
range [0, 1]. Both the Enron and EachMovie data sets are
very sparse, with densities 0.0736 and 0.0229, respec-
tively. To test the performance of our protocol on dense
matrices, we generated randomly a 2000 × 2000 matrix
with entries chosen in the range [−220, 220].

7.1 Precision and Round Complexity
We measured two quantities: N , the number of IRAM it-
erations until ARPACK indicates convergence, and ǫ, the
relative error. N is the number of matrix-vector compu-
tation that was required for the ARPACK to converge.
It is also the number of times P4P aggregation is in-
voked. The error ǫmeasures the maximum relative resid-
ual norm among all eigenpairs computed:

ǫ = max
i=1,...,k

�AT Avi − λivi�2

�vi�2

Table 2 summarizes the results. In all these tests,
we used machine precision as the tolerance input to
ARPACK. The accuracy we obtained is very good: ǫ re-
mains very small for all tests (10−12 to 10−8). In terms

of round complexity, N ranges from under 100 to a few
hundreds. For comparison, we also measured the num-
ber of iterations required by ARPACK when we perform
the matrix-vector multiplication directly without the P4P
aggregation. In all experiments, we found no difference
in N between this direct method and our private imple-
mentation.

7.2 Performance
We measured both running time and communication cost
of our scheme. We focused on server load since each user
only needs to handle her own data so is not a bottleneck.
We first present the case with κ = 2 servers. We mea-
sured the work on the server hosting the ARPACK engine
since it shares more load.
First, the implementation confirmed our observations

about the difference in costs for manipulating large and
small integers. With 1024-bit key length, one exponenti-
ation within the multiplicative group Z∗

q takes 5.86 mil-
liseconds. Addition and multiplication of two numbers,
also within the group, take 0.024 and 0.062 millisec-
onds, respectively. In contrast, adding two 64-bit inte-
gers, which is the basic operations P4P framework per-
forms, needs only 2.7× 10−6 milliseconds. The product
ZKP takes 35.7 ms verifier time and 24.3 ms prover time.
The equivalence ZKP takes no time since it is simply re-
vealing the difference of the two random numbers used in
the commitments [45]. For each consistency check, the
user needs to compute 9 commitments, 3 product ZKPs,
1 equivalence ZKP and 4 large integer multiplications.
The total cost is 178.63 milliseconds for each user. For
every user, each server needs to spend 212.83 millisec-
onds on verification.
For our test data sets, it takes 74.73 seconds of server

time to validate and aggregate all 150 Enron users data
on a single machine (each user needs to spend 726 mil-
liseconds to prepare the zero-knowledge proofs). This
translates into a total of 5000 seconds or 83 minutes
spent on private P4P aggregation to compute k = 10
singular-pairs. To compute the same number of singu-
lar pairs for EachMovie, aggregating all users data takes
about 6 hours (again on a single machine) and the to-
tal time for 70 rounds is 420 hours. Note that the total
includes both verification and computation so it is the
cost of a complete run. The server load appears large
but actually is very inexpensive. The aggregation pro-
cess is trivially parallelizable and using a cluster of, say
200 nodes, will reduce the running time to about 2 hours.
This amounts to a very insignificant cost for most service
providers: Using Amazon EC2’s price as a benchmark, it
costs $0.80 per hour for 20 EC2 Compute Units (8 virtual
cores with 2.5 EC2 Compute Units each). Data trans-
fer price is $0.100 per GB. The total cost for comput-

11

218 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 219

Table 2: Round Complexity and Precision
k 10 20 30 40 50 60 70 80 90 100

Enron N 67 97 122 162 109 137 172 167 171 169
ǫ(×10−8) 0.00049 0.0021 0.0046 0.0084 0.0158 0.0452 0.121 0.266 0.520 1.232
k 10 20 30 40 50 60 70 80 90 100

EM N 70 140 254 222 276 371 322 356 434 508
ǫ(×10−12) 0.470 0.902 1.160 1.272 1.526 1.649 1.687 2.027 2.124 2.254
k 10 20 30 40 50 60 70 80 90 100

RAND N 304 404 450 480 550 700 770 720 810 800
ǫ(×10−9) 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996

ing SVD for a system with 74424 users is merely about
$15, including data transfer and adjusted for difference
in CPU performance between our experiments and EC2.
To compare with alternative solutions, we imple-

mented a method based on homomorphic encryption
which is a popular private data mining technique (see
e.g., [11, 51]). We did not try other methods, such as
the “add/subtract random” approach, with players adding
their values to a running total, because they do not al-
low for verification of user data thus are insecure in our
model. We tested both ElGamal and Paillier encryptions
with the same security parameter as our P4P experiments
(i.e., 1024-bit key). With the homomorphic encryption
approach, it is almost impossible to execute the ZK ver-
ification (although there is a protocol [11]) as it takes
hours to verify one user. So we only compared the time
needed for computing the aggregates. Figure 2 shows the
ratios of running time between homomorphic encryption
and P4P for SVD on the three data sets. P4P is at least
8 orders of magnitude faster in all cases for both ElGa-
mal and Paillier. And this translates to tens of millions of
dollars of cost for the homomorphic encryption schemes
if the computation is done using Amazon’s EC2 service
not even counting data transfer expenses.

The communication overhead is also very small since
the protocol passes very few large integers. The extra
communication per client for one L2-norm ZKP is un-
der 50 kilobytes, and under 100 bytes for the consistency
check, while other solutions require some hundreds of
megabytes. This is significantly smaller than the size of
an average web page. The additional workload for the
server is less than serving an extra page to each user.

The case with κ > 2 servers: Although we do not ex-
pect the scheme to be deployed with a large number of
servers, we provide some analysis here in case stronger
protection is required. Each server’s work can be divided
into two parts: processing clients and communicating
with other servers. Most expensive interactions are with
the clients (including verifying the ZKPs etc.), which can
be performed on a single server and is independent of κ.
The interaction among servers is simply data exchange
and there is no complex computation involved.
Data exchange among the servers serves two purposes:

Enron EM RAND
0

1

2

3

4

5

6

7
x 109 Ratio of Running Times

ElGamal
Paillier

Figure 2: Running time ratios between homomorphic en-
cryption based solutions and P4P.

reconstructing shared secrets when necessary (the final
sum in the end of each iteration and the commitments
during the verification) and reaching agreement regard-
ing a user’s status (each server needs to verify that the
user computes a share of the commitments correctly).
And since each server is semi-honest, for the second part
they only need pass the final conclusion, verification of
the ZKPs can be done on only one of the servers.
For constructing the final sum, all servers must send

their shares to the server hosting ARPACK. The later
will receive a total of 8κm bytes (assuming data is en-
coded using double precision) which is about 8κ MB if
m = 106. For the consistency check, during each it-
eration, one server is selected as the “master”. All other
servers sends their shares of the commitments to the mas-
ter. This includes 3n large integers in Zq (3 for each
user) from each server. In addition, each non-master
server also sends to the master an n-bit bitmap, encod-
ing whether each user computes the commitments to the
shares correctly. The master will reconstruct the com-
plete commitments and verify the ZKPs. It then broad-
casts an n-bit bitmap encoding whether each user passes
the consistency check to all other servers. For the mas-
ter, the total communication cost is receiving 3n(κ − 1)
integers in Zq and κn-bit strings and sending (κ − 1)n
bits. With n = 106 and |q| = 1024, these amount to

12

384 (κ − 1) MB and approximately 0.1 (κ − 1) MB, re-
spectively. For other servers, the sending and receiving
costs are approximately 384 MB and 0.1 MB, respec-
tively. We believe such cost is practical for small κ (e.g.,
3 or 4). Note that the master does not have to be collo-
cated with the ARPACK engine so the servers can take
turns to serve as the master to share the load.

As for the computation associated with using κ servers
(the part that is independent of κ has been discussed
earlier and omitted here), the master needs to perform
3n(κ − 1) multiplications in Z∗

q . Using our benchmark,
this amounts to 0.186(κ− 1) seconds for n = 106 users.
Again we believe this is practical for small κ. The other
servers do not need to do any extra work.

7.3 Scalability

We also experimented with a few very large matrices,
with dimensionality ranging from tens of thousands to
over a hundred million. They are document-term or user-
query matrices that are used for latent semantic analysis.
To facilitate the tests, we did not include the data ver-
ification ZKPs, as our previous benchmarks show they
amount to an insignificant fraction of the cost. Due to
space and resource limit we did not test how performance
varies with dimensionality and other parameters. Rather,
these results are meant to demonstrate the capability of
our system, which we have shown to maintain privacy at
very low cost, to handle large data sets at various config-
urations.

Table 3 summarizes some of the results. The running
time measures the time of a complete run, i.e., from the
start of the job till the results are safely written to disk.
It includes both the computation time of the server (in-
cluding the time spent on invoking the ARPACK engine)
and the clients (which are running in parallel), and the
communication time. In the table, frontend processors
refer to the machines that interact with the users directly.
Large-scale systems usually use multiple frontend ma-
chines, each serving a subset of the users. This is also a
straightforward way to parallelize the aggregation pro-
cess, i.e., each frontend machine receives data from a
subset of users and aggregates them before forwarding
to the server. On one hand, the more frontend machines
the faster the sub-aggregates can be computed. On the
other hand, the server’s communication cost is linear in
the number of frontend processors. The optimal solution
must strike a balance between the two. Due to resource
limitation, we were not able to use the optimal configu-
ration for all our tests. The results are feasible even in
these sub-optimal cases.

8 Conclusion

In this paper we present a new framework for privacy-
preserving distributed data mining. Our protocol is based
on secret sharing over small field, achieving orders of
magnitude reduction in running time over alternative so-
lutions with large-scale data. The framework also admits
very efficient zero-knowledge tools that can be used to
verify user data. They provide practical solutions for
handling cheating users. P4P demonstrates that cryp-
tographic building blocks can work harmoniously with
existing tools, providing privacy without degrading their
efficiency. Most components described in this paper
have been implemented and the source code is avail-
able at http://bid.berkeley.edu/projects/p4p/. Our goal is
to make it a useful tool for developers in data mining
and others to build privacy preserving real-world appli-
cations.

References
[1] ALDERMAN, E., AND KENNEDY, C. The Right to Privacy. DI-

ANE Publishing Co., 1995.
[2] BEAVER, D., AND GOLDWASSER, S. Multiparty computation

with faulty majority. In CRYPTO ’89.
[3] BEERLIOVÁ-TRUB ÍNIOVÁ, Z., AND HIRT, M. Perfectly-secure

mpc with linear communication complexity. In TCC 2008 (2008),
Springer-Verlag, pp. 213–230.

[4] BEIMEL, A., NISSIM1, K., AND OMRI, E. Distributed private
data analysis: Simultaneously solving how and what. In CRYPTO
2008.

[5] BEN-DAVID, A., NISAN, N., AND PINKAS, B. Fairplaymp: a
system for secure multi-party computation. In CCS ’08 (2008),
ACM, pp. 257–266.

[6] BEN-OR, M., GOLDWASSER, S., AND WIGDERSON, A.
Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In STOC’88 (1988), ACM, pp. 1–10.

[7] BLUM, A., DWORK, C., MCSHERRY, F., AND NISSIM, K.
Practical privacy: the SuLQ framework. In PODS ’05 (2005),
ACM Press, pp. 128–138.

[8] BLUM, A., LIGETT, K., AND ROTH, A. A learning theory ap-
proach to non-interactive database privacy. In STOC 08.

[9] BOAZ BARAK, E. A. Privacy, accuracy, and consistency too: a
holistic solution to contingency table release. In PODS ’07.

[10] CANNY, J. Collaborative filtering with privacy via factor analy-
sis. In SIGIR ’02.

[11] CANNY, J. Collaborative filtering with privacy. In IEEE Sympo-
sium on Security and Privacy (2002), pp. 45–57.

[12] CHEN, H., AND CRAMER, R. Algebraic geometric secret shar-
ing schemes and secure multi-party computations over small
fields. In CRYPTO 2006.

[13] CHU, C.-T., KIM, S. K., LIN, Y.-A., YU, Y., BRADSKI, G.,
NG, A. Y., AND OLUKOTUN, K. Map-reduce for machine learn-
ing on multicore. In NIPS 2006 (2006).

[14] COHEN, W. W. Enron email dataset. http://www-
2.cs.cmu.edu/˜enron/.

[15] CRAMER, R., AND DAMGÅRD, I. Zero-knowledge proof for
finite field arithmetic, or: Can zero-knowledge be for free? In
CRYPTO ’98 (1998), Springer-Verlag.

13

220 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 221

Table 3: SVD of Large Matrices
n m k No. Frontend Processors Time (hours) Iterations

100,443 176,573 200 32 1.4 1287
12,046,488 440,208 200 128 6.0 354
149,519,201 478,967 250 128 8.3 1579
37,389,030 366,881 300 128 9.1 1839
1,363,716 2,611,186 200 1 14.8 1260
33,193,487 1,949,789 200 128 28.0 1470

[16] DAMGÅRD, I., ISHAI, Y., KRØIGAARD, M., NIELSEN, J. B.,
AND SMITH, A. Scalable multiparty computation with nearly op-
timal work and resilience. In CRYPTO 2008 (Berlin, Heidelberg,
2008), Springer-Verlag, pp. 241–261.

[17] DAS, A. S., DATAR, M., GARG, A., AND RAJARAM, S. Google
news personalization: scalable online collaborative filtering. In
WWW ’07 (2007), ACM Press, pp. 271–280.

[18] DHANJANI, N. Amazon’s elastic compute cloud
[ec2]: Initial thoughts on security implications.
http://www.dhanjani.com/archives/2008/04/.

[19] DINUR, I., AND NISSIM, K. Revealing information while pre-
serving privacy. In PODS ’03 (2003), pp. 202–210.

[20] DUAN, Y. Privacy without noise. In CIKM ’09.

[21] DUAN, Y., AND CANNY, J. Practical private computation
and zero-knowledge tools for privacy-preserving distributed data
mining. In SDM ’08 (2008).

[22] DUAN, Y., WANG, J., KAM, M., AND CANNY, J. A secure
online algorithm for link analysis on weighted graph. In Proc. of
the Workshop on Link Analysis, Counterterrorism and Security,
SDM 05, pp. 71–81.

[23] DWORK, C. Ask a better question, get a better answer a new
approach to private data analysis. In ICDT 2007 (2007), Springer,
pp. 18–27.

[24] DWORK, C., KENTHAPADI, K., MCSHERRY, F., MIRONOV, I.,
AND NAOR, M. Our data, ourselves: Privacy via distributed noise
generation. In EUROCRYPT 2006 (2006), Springer.

[25] DWORK, C., MCSHERRY, F., NISSIM, K., AND SMITH, A. Cal-
ibrating noise to sensitivity in private data analysis. In TCC 2006
(2006), Springer, pp. 265–284.

[26] FEIGENBAUM, J., NISAN, N., RAMACHANDRAN, V., SAMI,
R., AND SHENKER, S. Agents’ privacy in distributed algorithmic
mechanisms. In Workshop on Economics and Information Securit
(Berkeley, CA, May 2002).

[27] FIAT, A., AND SHAMIR, A. How to prove yourself: Practical
solutions to identification and signature problems. In CRYPTO
86.

[28] FITZI, M., HIRT, M., AND MAURER, U. General adversaries in
unconditional multi-party computation. In ASIACRYPT ’ 99.

[29] GENNARO, R., RABIN, M. O., AND RABIN, T. Simplified
vss and fast-track multiparty computations with applications to
threshold cryptography. In PODC ’98, pp. 101–111.

[30] GOLDREICH, O. Foundations of Cryptography: Volume 2 – Ba-
sic Applications. Cambridge University Press, 2004.

[31] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to
play any mental game. In STOC ’87.

[32] GOLDREICH, O., AND OREN, Y. Definitions and properties
of zero-knowledge proof systems. Journal of Cryptology 7, 1
(1994), 1–32.

[33] GOLDWASSER, S., AND LEVIN, L. Fair computation of gen-
eral functions in presence of immoral majority. In CRYPTO ’90
(1991), Springer-Verlag, pp. 77–93.

[34] HIRT, M., AND MAURER, U. Complete characterization of ad-
versaries tolerable in secure multi-party computation (extended
abstract). In PODC ’97.

[35] HIRT, M., AND MAURER, U. Player simulation and general
adversary structures in perfect multiparty computation. Journal
of Cryptology 13, 1 (2000), 31–60.

[36] KEARNS, M. Efficient noise-tolerant learning from statistical
queries. In STOC ’93 (1993), pp. 392–401.

[37] LEHOUCQ, R. B., SORENSEN, D. C., AND YANG, C. ARPACK
Users’ Guide: Solution of Large-Scale Eigenvalue Problems with
Implicitly Restarted Arnoldi Methods. SIAM, 1998.

[38] LINDELL, Y., AND PINKAS, B. Privacy preserving data mining.
Journal of cryptology 15, 3 (2002), 177–206.

[39] LINDELL, Y., PINKAS, B., AND SMART, N. P. Implementing
two-party computation efficiently with security against malicious
adversaries. In SCN ’08.

[40] MALKHI, D., NISAN, N., PINKAS, B., AND SELLA, Y.
Fairplay—a secure two-party computation system. In SSYM’04:
Proceedings of the 13th conference on USENIX Security Sympo-
sium (Berkeley, CA, USA, 2004), USENIX Association, pp. 20–
20.

[41] MCSHERRY, F., AND MIRONOV, I. Differentially private rec-
ommender systems: Building privacy into the netflix prize con-
tenders. In KDD ’09.

[42] MCSHERRY, F., AND TALWAR, K. Mechanism design via dif-
ferential privacy. In FOCS ’07.

[43] NISSIM, K., RASKHODNIKOVA, S., AND SMITH, A. Smooth
sensitivity and sampling in private data analysis. In STOC ’07
(2007), ACM, pp. 75–84.

[44] PAILLIER, P. Trapdooring discrete logarithms on elliptic curves
over rings. In ASIACRYPT ’00.

[45] PEDERSEN, T. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO ’91.

[46] PINKAS, B., SCHNEIDER, T., SMART, N., AND WILLIAMS,
S. Secure two-party computation is practical. Cryptology ePrint
Archive, Report 2009/314, 2009.

[47] STEWART, G. W., AND SUN, J.-G. Matrix Perturbation Theory.
Academic Press, 1990.

[48] TREFETHEN, L. N., AND III, D. B. Numerical Linear Algebra.
SIAM, 1997.

[49] VAIDYA, J., AND CLIFTON, C. Privacy-preserving k-means
clustering over vertically partitioned data. In KDD ’03.

[50] WRIGHT, R., AND YANG, Z. Privacy-preserving bayesian net-
work structure computation on distributed heterogeneous data. In
KDD ’04 (2004), pp. 713–718.

14

[51] YANG, Z., ZHONG, S., AND WRIGHT, R. N. Privacy-preserving
classification of customer data without loss of accuracy. In SDM
2005 (2005).

[52] YAO, A. C.-C. Protocols for secure computations. In FOCS ’82
(1982), IEEE, pp. 160–164.

Notes
1Most mining algorithms need to bound the amount of noise in the

data to produce meaningful results. This means that the fraction of
cheating users is usually below a much lower threshold (e.g. α <

20%).

15

USENIX Association 19th USENIX Security Symposium 223

SEPIA: Privacy-Preserving Aggregation

of Multi-Domain Network Events and Statistics

Martin Burkhart, Mario Strasser, Dilip Many, Xenofontas Dimitropoulos
ETH Zurich, Switzerland

{burkhart, strasser, dmany, fontas}@tik.ee.ethz.ch

Abstract

Secure multiparty computation (MPC) allows joint

privacy-preserving computations on data of multiple par-

ties. Although MPC has been studied substantially,

building solutions that are practical in terms of compu-

tation and communication cost is still a major challenge.

In this paper, we investigate the practical usefulness of

MPC for multi-domain network security and monitor-

ing. We first optimize MPC comparison operations for

processing high volume data in near real-time. We then

design privacy-preserving protocols for event correlation

and aggregation of network traffic statistics, such as ad-

dition of volume metrics, computation of feature entropy,

and distinct item count. Optimizing performance of par-

allel invocations, we implement our protocols along with

a complete set of basic operations in a library called

SEPIA. We evaluate the running time and bandwidth re-

quirements of our protocols in realistic settings on a lo-

cal cluster as well as on PlanetLab and show that they

work in near real-time for up to 140 input providers and

9 computation nodes. Compared to implementations us-

ing existing general-purpose MPC frameworks, our pro-

tocols are significantly faster, requiring, for example, 3

minutes for a task that takes 2 days with general-purpose

frameworks. This improvement paves the way for new

applications of MPC in the area of networking. Finally,

we run SEPIA’s protocols on real traffic traces of 17 net-

works and show how they provide new possibilities for

distributed troubleshooting and early anomaly detection.

1 Introduction

A number of network security and monitoring prob-

lems can substantially benefit if a group of involved or-

ganizations aggregates private data to jointly perform a

computation. For example, IDS alert correlation, e.g.,

with DOMINO [49], requires the joint analysis of pri-

vate alerts. Similary, aggregation of private data is useful

for alert signature extraction [30], collaborative anomaly

detection [34], multi-domain traffic engineering [27], de-

tecting traffic discrimination [45], and collecting net-

work performance statistics [42]. All these approaches

use either a trusted third party, e.g., a university research

group, or peer-to-peer techniques for data aggregation

and face a delicate privacy versus utility tradeoff [32].

Some private data typically have to be revealed, which

impedes privacy and prohibits the acquisition of many

data providers, while data anonymization, used to re-

move sensitive information, complicates or even pro-

hibits developing good solutions. Moreover, the ability

of anonymization techniques to effectively protect pri-

vacy is questioned by recent studies [29]. One possible

solution to this privacy-utility tradeoff is MPC.

For almost thirty years, MPC [48] techniques have

been studied for solving the problem of jointly running

computations on data distributed among multiple orga-

nizations, while provably preserving data privacy with-

out relying on a trusted third party. In theory, any com-

putable function on a distributed dataset is also securely

computable using MPC techniques [20]. However, de-

signing solutions that are practical in terms of running

time and communication overhead is non-trivial. For this

reason, MPC techniques have mainly attracted theoreti-

cal interest in the last decades. Recently, optimized ba-

sic primitives, such as comparisons [14, 28], make pro-

gressively possible the use of MPC in real-world applica-

tions, e.g., an actual sugar-beet auction [7] was demon-

strated in 2009.

Adopting MPC techniques to network monitoring and

security problems introduces the important challenge of

dealing with voluminous input data that require online

processing. For example, anomaly detection techniques

typically require the online generation of traffic volume

and distributions over port numbers or IP address ranges.

Such input data impose stricter requirements on the per-

formance of MPC protocols than, for example, the in-

put bids of a distributed MPC auction [7]. In particular,

network monitoring protocols should process potentially

224 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 225

Network 1

Network 3

Network n

101101

Measurement,

local data export
SEPIA

input peers

SEPIA privacy peers

(simulated TTP)

2. Privacy-preserving

computation

10010101

00101110

11011101

3. Publication of

aggregated data

Network

Management

011011

110101

1. Distribution of

input data shares

..
.

..
.

..
.

..
.

Figure 1: Deployment scenario for SEPIA.

thousands of input values while meeting near real-time

guarantees1. This is not presently possible with existing

general-purpose MPC frameworks.

In this work, we design, implement, and evaluate

SEPIA (Security through Private Information Aggrega-

tion), a library for efficiently aggregating multi-domain

network data using MPC. The foundation of SEPIA is

a set of optimized MPC operations, implemented with

performance of parallel execution in mind. By not en-

forcing protocols to run in a constant number of rounds,

we are able to design MPC comparison operations that

require up to 80 times less distributed multiplications

and, amortized over many parallel invocations, run much

faster than constant-round alternatives. On top of these

comparison operations, we design and implement novel

MPC protocols tailored for network security and moni-

toring applications. The event correlation protocol iden-

tifies events, such as IDS or firewall alerts, that occur

frequently in multiple domains. The protocol is generic

having several applications, for example, in alert corre-

lation for early exploit detection or in identification of

multi-domain network traffic heavy-hitters. In addition,

we introduce SEPIA’s entropy and distinct count proto-

cols that compute the entropy of traffic feature distribu-

tions and find the count of distinct feature values, respec-

tively. These metrics are used frequently in traffic anal-

ysis applications. In particular, the entropy of feature

distributions is used commonly in anomaly detection,

whereas distinct count metrics are important for identify-

ing scanning attacks, in firewalls, and for anomaly detec-

tion. We implement these protocols along with a vector

addition protocol to support additive operations on time-

series and histograms.

A typical setup for SEPIA is depicted in Fig. 1 where

individual networks are represented by one input peer

each. The input peers distribute shares of secret input

data among a (usually smaller) set of privacy peers us-

ing Shamir’s secret sharing scheme [40]. The privacy

peers perform the actual computation and can be hosted

by a subset of the networks running input peers but also

by external parties. Finally, the aggregate computation

result is sent back to the networks. We adopt the semi-

honest adversary model, hence privacy of local input data

is guaranteed as long as the majority of privacy peers is

honest. A detailed description of our security assump-

tions and a discussion of their implications is presented

in Section 4.

Our evaluation of SEPIA’s performance shows that

SEPIA runs in near real-time even with 140 input and

9 privacy peers. Moreover, we run SEPIA on traffic data

of 17 networks collected during the global Skype out-

age in August 2007 and show how the networks can use

SEPIA to troubleshoot and timely detect such anomalies.

Finally, we discuss novel applications in network secu-

rity and monitoring that SEPIA enables. In summary,

this paper makes the following contributions:

1. We introduce efficient MPC comparison operations,

which outperform constant-round alternatives for

many parallel invocations.

2. We design novel MPC protocols for event correla-

tion, entropy and distinct count computation.

3. We introduce the SEPIA library, in which we im-

plement our protocols along with a complete set of

basic operations, optimized for parallel execution.

SEPIA is made publicly available [39].

4. We extensively evaluate the performance of SEPIA

on realistic settings using synthetic and real traces

and show that it meets near real-time guarantees

even with 140 input and 9 privacy peers.

5. We run SEPIA on traffic from 17 networks and

show how it can be used to troubleshoot and timely

detect anomalies, exemplified by the Skype outage.

The paper is organized as follows: We specify the

computation scheme in the next section and present our

optimized comparison operations in Section 3. In Sec-

tion 4, we specify our adversary model and security as-

sumptions, and build the protocols for event correlation,

vector addition, entropy, and distinct count computation.

We evaluate the protocols and discuss SEPIA’s design in

Sections 5 and 6, respectively. Then, in Section 7 we

outline SEPIA’s applications and conduct a case study

on real network data that demonstrates SEPIA’s benefits

in distributed troubleshooting and early anomaly detec-

tion. Finally, we discuss related work in Section 8 and

conclude our paper in Section 9.

2 Preliminaries

Our implementation is based on Shamir secret shar-

ing [40]. In order to share a secret value s among a set of

m players, the dealer generates a random polynomial f
of degree t = ⌊(m− 1)/2⌋ over a prime field Zp with

p > s, such that f(0) = s. Each player i = 1 . . .m then

receives an evaluation point si = f(i) of f . si is called

the share of player i. The secret s can be reconstructed

from any t + 1 shares using Lagrange interpolation but

is completely undefined for t or less shares. To actually

reconstruct a secret, each player sends his shares to all

other players. Each player then locally interpolates the

secret. For simplicity of presentation, we use [s] to de-

note the vector of shares (s1, . . . , sm) and call it a shar-

ing of s. In addition, we use [s]i to refer to si. Unless

stated otherwise, we choose p with 62 bits such that arith-

metic operations on secrets and shares can be performed

by CPU instructions directly, not requiring software al-

gorithms to handle big integers.

Addition and Multiplication Given two sharings [a]
and [b], we can perform private addition and multiplica-

tion of the two values a and b. Because Shamir’s scheme

is linear, addition of two sharings, denoted by [a] + [b],
can be computed by having each player locally add his

shares of the two values: [a + b]i = [a]i + [b]i. Sim-

ilarly, local shares are subtracted to get a share of the

difference. To add a public constant c to a sharing [a],
denoted by [a] + c, each player just adds c to his share,

i.e., [a+c]i = [a]i+c. Similarly, for multiplying [a] by a

public constant c, denoted by c[a], each player multiplies

its share by c. Multiplication of two sharings requires an

extra round of communication to guarantee randomness

and to correct the degree of the new polynomial [4, 19].

In particular, to compute [a][b] = [ab], each player first

computes di = [a]i[b]i locally. He then shares di to get

[di]. Together, the players then perform a distributed La-

grange interpolation to compute [ab] =
∑

i λi[di] where

λi are the Lagrange coefficients. Thus, a distributed

multiplication requires a synchronization round with m2

messages, as each player i sends to each player j the

share [di]j . To specify protocols, composed of basic op-

erations, we use a shorthand notation. For instance, we

write foo([a], b) := ([a] + b)([a] + b), where foo is the

protocol name, followed by input parameters. Valid in-

put parameters are sharings and public constants. On the

right side, the function to be computed is given, a bino-

mial in that case. The output of foo is again a sharing

and can be used in subsequent computations. All opera-

tions in Zp are performed modulo p, therefore p must be

large enough to avoid modular reductions of intermedi-

ate results, e.g., if we compute [ab] = [a][b], then a, b,
and ab must be smaller than p.

Communication A set of independent multiplications,

e.g., [ab] and [cd], can be performed in parallel in a sin-

gle round. That is, intermediate results of all multipli-

cations are exchanged in a single synchronization step.

A round simply is a synchronization point where players

have to exchange intermediate results in order to con-

tinue computation. While the specification of the proto-

cols is synchronous, we do not assume the network to

be synchronous during runtime. In particular, the Inter-

net is better modeled as asynchronous, not guaranteeing

the delivery of a message before a certain time. Be-

cause we assume the semi-honest model, we only have

to protect against high delays of individual messages,

potentially leading to a reordering of message arrival.

In practice, we implement communication channels us-

ing SSL sockets over TCP/IP. TCP applies acknowledg-

ments, timeouts, and sequence numbers to preserve mes-

sage ordering and to retransmit lost messages, providing

FIFO channel semantics. We implement message syn-

chronization in parallel threads to minimize waiting time.

Each player proceeds to the next round immediately after

sending and receiving all intermediate values.

Security Properties All the protocols we devise are

compositions of the above introduced addition and mul-

tiplication primitives, which were proven correct and

information-theoretically secure by Ben-Or, Goldwasser,

and Wigderson [4]. In particular, they showed that in the

semi-honest model, where adversarial players follow the

protocol but try to learn as much as possible by sharing

the information they received, no set of t or less corrupt

players gets any additional information other than the fi-

nal function value. Also, these primitives are universally

composable, that is, the security properties remain in-

tact under stand-alone and concurrent composition [11].

Because the scheme is information-theoretically secure,

i.e., it is secure against computationally unbounded ad-

versaries, the confidentiality of secrets does not depend

on the field size p. For instance, regarding confidential-

ity, sharing a secret s in a field of size p > s is equivalent

to sharing each individual bit of s in a field of size p = 2.

Because we use SSL for implementing secure channels,

the overall system relies on PKI and is only computation-

ally secure.

226 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 227

3 Optimized Comparison Operations

Unlike addition and multiplication, comparison of two

shared secrets is a very expensive operation. There-

fore, we now devise optimized protocols for equality

check, less-than comparison and a short range check.

The complexity of an MPC protocol is typically assessed

counting the number of distributed multiplications and

rounds, because addition and multiplication with pub-

lic values only require local computation. Damgård

et al. introduced the bit-decomposition protocol [14]

that achieves comparison by decomposing shared se-

crets into a shared bit-wise representation. On shares

of individual bits, comparison is straight-forward. With

l = log2(p), the protocols in [14] achieve a comparison

with 205l + 188l log2 l multiplications in 44 rounds and

equality test with 98l + 94l log2 l multiplications in 39

rounds. Subsequently, Nishide and Ohta [28] have im-

proved these protocols by not decomposing the secrets

but using bitwise shared random numbers. They do com-

parison with 279l + 5 multiplications in 15 rounds and

equality test with 81l multiplications in 8 rounds. While

these are constant-round protocols as preferred in theo-

retical research, they still involve lots of multiplications.

For instance, an equality check of two shared IPv4 ad-

dresses (l = 32) with the protocols in [28] requires 2592
distributed multiplications, each triggering m2 messages

to be transmitted over the network.

Constant-round vs. number of multiplications Our

key observation for improving efficiency is the follow-

ing: For scenarios with many parallel protocol invoca-

tions it is possible to build much more practical protocols

by not enforcing the constant-round property. Constant-

round means that the number of rounds does not depend

on the input parameters. We design protocols that run

in O(l) rounds and are therefore not constant-round, al-

though, once the field size p is defined, the number of

rounds is also fixed, i.e., not varying at runtime. The

overall local running time of a protocol is determined by

i) the local CPU time spent on computations, ii) the time

to transfer intermediate values over the network, and iii)

delay experienced during synchronization. Designing

constant-round protocols aims at reducing the impact of

iii) by keeping the number of rounds fixed and usually

small. To achieve this, high multiplicative constants for

the number of multiplications are often accepted (e.g.,

279l). Yet, both i) and ii) directly depend on the num-

ber of multiplications. For applications with few parallel

operations, protocols with few rounds (usually constant-

round) are certainly faster. However, with many paral-

lel operations, as required by our scenarios, the impact

of network delay is amortized and the number of multi-

plications (the actual workload) becomes the dominating

factor. Our evaluation results in Section 5.1 and 5.4 con-

firm this and show that CPU time and network bandwidth

are the main constraining factors, calling for a reduction

of multiplications.

Equality Test In the field Zp with p prime, Fermat’s lit-

tle theorem states

cp−1 =

{
0 if c = 0

1 if c �= 0
(1)

Using (1) we define a protocol for equality test as fol-

lows:

equal([a], [b]) := 1− ([a]− [b])p−1

The output of equal is [1] in case of equality and [0] oth-

erwise and can hence be used in subsequent computa-

tions. Using square-and-multiply for the exponentiation,

we implement equal with l + k − 2 multiplications in l
rounds, where k denotes the number of bits set to 1 in

p − 1. By using carefully picked prime numbers with

k ≤ 3, we reduce the number of multiplications to l+ 1.

In the above example for comparing IPv4 addresses, this

reduces the multiplication count by a factor of 76 from

2592 to 34.

Besides having few 1-bits, p must be bigger than the

range of shared secrets, i.e., if 32-bit integers are shared,

an appropriate p will have at least 33 bits. For any secret

size below 64 bits it is easy to find appropriate ps with

k ≤ 3 within 3 additional bits.

Less Than For less-than comparison, we base our im-

plementation on Nishide’s protocol [28]. However, we

apply modifications to again reduce the overall number

of required multiplications by more than a factor of 10.

Nishide’s protocol is quite comprehensive and built on a

stack of subprotocols for least-significant bit extraction

(LSB), operations on bitwise-shared secrets, and (bit-

wise) random number sharing. The protocol uses the ob-

servation that a < b is determined by the three predicates

a < p/2, b < p/2, and a − b < p/2. Each predicate is

computed by a call of the LSB protocol for 2a, 2b, and

2(a − b). If a < p/2, no wrap-around modulo p occurs

when computing 2a, hence LSB(2a) = 0. However, if

a > p/2, a wrap-around will occur and LSB(2a) = 1.

Knowing one of the predicates in advance, e.g., because

b is not secret but publicly known, saves one of the three

LSB calls and hence 1/3 of the multiplications.

Due to space restrictions we omit to reproduce the

entire protocol but focus on the modifications we ap-

ply. An important subprotocol in Nishide’s construc-

tion is PrefixOr. Given a sequence of shared bits

[a1], . . . , [al] with ai ∈ {0, 1}, PrefixOr computes the

sequence [b1], . . . , [bl] such that bi = ∨i
j=1aj . Nishide’s

PrefixOr requires only 7 rounds but 17l multiplica-

tions. We implement PrefixOr based on the fact that

bi = bi−1 ∨ ai and b1 = a1. The logical OR (∨) can

be computed using a single multiplication: [x] ∨ [y] =
[x] + [y] − [x][y]. Thus, our PrefixOr requires l − 1
rounds and only l − 1 multiplications.

Without compromising security properties, we re-

place the PrefixOr in Nishide’s protocol by our opti-

mized version and call the resulting comparison proto-

col lessThan. A call of lessThan([a], [b]) outputs [1]
if a < b and [0] otherwise. The overall complexity of

lessThan is 24l+5 multiplications in 2l+10 rounds as

compared to Nishide’s version with 279l+ 5 multiplica-

tions in 15 rounds.

Short Range Check To further reduce multiplications

for comparing small numbers, we devise a check for

short ranges, based on our equal operation. Consider

one wanted to compute [a] < T , where T is a small

public constant, e.g., T = 10. Instead of invoking

lessThan([a], T) one can simply compute the polyno-

mial [φ] = [a]([a]−1)([a]−2) . . . ([a]− (T −1)). If the

value of a is between 0 and T − 1, exactly one term of

[φ] will be zero and hence [φ] will evaluate to [0]. Oth-

erwise, [φ] will be non-zero. Based on this, we define a

protocol for checking short public ranges that returns [1]
if x ≤ [a] ≤ y and [0] otherwise:

shortRange([a], x, y) := equal
(
0,

y∏
i=x

([a]− i)
)

The complexity of shortRange is (y − x) + l + k − 2
multiplications in l + log2(y − x) rounds. Computing

lessThan([a], y) requires 16l+5 multiplications (1/3 is

saved because y is public). Hence, regarding the number

of multiplications, computing shortRange([a], 0, y−1)
instead of lessThan([a], y) is beneficial roughly as long

as y ≤ 15l.

4 SEPIA Protocols

In this section, we compose the basic operations de-

fined above into full-blown protocols for network event

correlation and statistics aggregation. Each protocol is

designed to run on continuous streams of input traffic

data partitioned into time windows of a few minutes. For

sake of simplicity, the protocols are specified for a single

time window. We first define the basic setting of SEPIA

protocols as illustrated in Fig. 1 and then introduce the

protocols successively.

Our system has a set of n users called input peers. The

input peers want to jointly compute the value of a pub-

lic function f(x1, . . . , xn) on their private data xi with-

out disclosing anything about xi. In addition, we have

m players called privacy peers that perform the compu-

tation of f() by simulating a trusted third party (TTP).

Each entity can take both roles, acting only as an input

peer, privacy peer (PP) or both.

Adversary Model and Security Assumptions We use

the semi-honest (a.k.a. honest-but-curious) adversary

model for privacy peers. That is, honest privacy peers

follow the protocol and do not combine their informa-

tion. Semi-honest privacy peers do follow the proto-

col but try to infer as much as possible from the val-

ues (shares) they learn, also by combining their informa-

tion. The privacy and correctness guarantees provided

by our protocols are determined by Shamir’s secret shar-

ing scheme. In particular, the protocols are secure for

t < m/2 semi-honest privacy peers, i.e., as long as the

majority of privacy peers is honest. Even if some of the

input peers do not trust each other, we think it is realistic

to assume that they will agree on a set of most-trusted

participants (or external entities) for hosting the privacy

peers. Also, we think it is realistic to assume that the

privacy peers indeed follow the protocol. If they are op-

erated by input peers, they are likely interested in the

correct outcome of the computation themselves and will

therefore comply. External privacy peers are selected due

to their good reputation or are being payed for a service.

In both cases, they will do their best not to offend their

customers by tricking the protocol.

The function f() is specified as if a TTP was avail-

able. MPC guarantees that no information is leaked from

the computation process. However, just learning the re-

sulting value f() could allow to infer sensitive informa-

tion. For example, if the input bit of all input peers must

remain secret, computing the logical AND of all input

bits is insecure in itself: if the final result was 1, all in-

put bits must be 1 as well and are thus no longer secret.

It is the responsibility of the input peers to verify that

learning f() is acceptable, in the same way as they have

to verify this when using a real TTP. For example, we

assume input peers are not willing to reconstruct item

distributions but consider it safe to compute the overall

item count or entropy. To reduce the potential for de-

ducing information from f(), protocols can enforce the

submission of “valid” input data conforming to certain

rules. For instance, in our event correlation protocol, the

privacy peers verify that each input peer submits no du-

plicate events. More formally, the work on differential

privacy [17] systematically randomizes the output f() of

database queries to prevent inference of sensitive input

data.

Prior to running the protocols, the m privacy peers set

up a secure, i.e., confidential and authentic, channel to

each other. In addition, each input peer creates a secure

channel to each privacy peer. We assume that the re-

quired public keys and/or certificates have been securely

distributed beforehand.

228 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 229

Privacy-Performance Tradeoff Although the number

of privacy peers m has a quadratic impact on the total

communication and computation costs, there are also m
privacy peers sharing the load. That is, if the network ca-

pacity is sufficient, the overall running time of the proto-

cols will scale linearly with m rather than quadratically.

On the other hand, the number of tolerated colluding pri-

vacy peers also scales linearly with m. Hence, the choice

of m involves a privacy-performance tradeoff. The sep-

aration of roles into input and privacy peers allows to

tune this tradeoff independently of the number of input

providers.

4.1 Event Correlation

The first protocol we present enables the input peers to

privately aggregate arbitrary network events. An event e
is defined by a key-weight pair e = (k, w). This no-

tion is generic in the sense that keys can be defined to

represent arbitrary types of network events, which are

uniquely identifiable. The key k could for instance be

the source IP address of packets triggering IDS alerts,

or the source address concatenated with a specific alert

type or port number. It could also be the hash value of

extracted malicious payload or represent a uniquely iden-

tifiable object, such as popular URLs, of which the in-

put peers want to compute the total number of hits. The

weight w reflects the impact (count) of this event (ob-

ject), e.g., the frequency of the event in the current time

window or a classification on a severity scale.

Each input peer shares at most s local events per time

window. The goal of the protocol is to reconstruct an

event if and only if a minimum number of input peers

Tc report the same event and the aggregated weight is at

least Tw. The rationale behind this definition is that an

input peer does not want to reconstruct local events that

are unique in the set of all input peers, exposing sensitive

information asymmetrically. But if the input peer knew

that, for example, three other input peers report the same

event, e.g., a specific intrusion alert, he would be willing

to contribute his information and collaborate. Likewise,

an input peer might only be interested in reconstructing

events of a certain impact, having a non-negligible ag-

gregated weight.

More formally, let [eij] = ([kij], [wij]) be the shared

event j of input peer i with j ≤ s and i ≤ n. Then

we compute the aggregated count Cij and weight Wij

according to (2) and (3) and reconstruct eij iff (4) holds.

[Cij] :=
∑

i′ �=i,j′

equal([kij], [ki′j′]) (2)

[Wij] :=
∑

i′ �=i,j′

[wi′j′] · equal([kij], [ki′j′]) (3)

([Cij] ≥ Tc) ∧ ([Wij] ≥ Tw) (4)

Reconstruction of an event eij includes the reconstruc-

tion of kij , Cij , Wij , and the list of input peers reporting

it, but the wij remain secret. The detailed algorithm is

given in Fig. 2.

Input Verification In addition to merely implementing

the correlation logic, we devise two optional input ver-

ification steps. In particular, the PPs check that shared

weights are below a maximum weight wmax and that

each input peer shares distinct events. These verifica-

tions are not needed to secure the computation process,

but they serve two purposes. First, they protect from mis-

configured input peers and flawed input data. Secondly,

they protect against input peers that try to deduce infor-

mation from the final computation result. For instance,

an input peer could add an event Tc−1 times (with a total

weight of at least Tw) to find out whether any other in-

put peers report the same event. These input verifications

mitigate such attacks.

Probe Response Attacks If aggregated security events

are made publicly available, this enables probe response

attacks against the system [5]. The goal of probe re-

sponse attacks is not to learn private input data but

to identify the sensors of a distributed monitoring sys-

tem. To remain undiscovered, attackers then exclude

the known sensors from future attacks against the sys-

tem. While defending against this in general is an in-

tractable problem, [41] identified that the suppression of

low-density attacks provides some protection against ba-

sic probe response attacks. Filtering out low-density at-

tacks in our system can be achieved by setting the thresh-

olds Tc and Tw sufficiently high.

Complexity The overall complexity, including verifica-

tion steps, is summarized below in terms of operation

invocations and rounds:

equal: O
(
(n− Tc)ns

2
)

lessThan: (2n− Tc)s
shortRange: (n− Tc)s
multiplications: (n− Tc) · (ns

2 + s)
rounds: 7l + log2(n− Tc) + 26

The protocol is clearly dominated by the number of

equal operations required for the aggregation step. It

scales quadratically with s, however, depending on Tc,

it scales linearly or quadratically with n. For instance,

if Tc has a constant offset to n (e.g., Tc = n − 4), only

O(ns2) equals are required. However, if Tc = n/2,

O(n2s2) equals are necessary.

Optimizations To avoid the quadratic dependency on s,

we are working on an MPC-version of a binary search

algorithm that finds a secret [a] in a sorted list of se-

crets {[b1], . . . , [bs]} with log2 s comparisons by com-

1. Share Generation: Each input peer i shares s distinct events eij with wij < wmax among the privacy peers (PPs).

2. Weight Verification: Optionally, the PPs compute and reconstruct lessThan([wij], wmax) for all weights to verify that

they are smaller than wmax. Misbehaving input peers are disqualified.

3. Key Verification: Optionally, the PPs verify that each input peer i reports distinct events, i.e., for each event index a and b
with a < b they compute and reconstruct equal([kia], [kib]). Misbehaving input peers are disqualified.

4. Aggregation: The PPs compute [Cij] and [Wij] according to (2) and (3) for i ≤ î with î = min(n − Tc + 1, n). 2 All

required equal operations can be performed in parallel.

5. Reconstruction: For each event [eij], with i ≤ î, condition (4) has to be checked. Therefore, the PPs compute

[t1] = shortRange([Cij], Tc, n), [t2] = lessThan(Tw − 1, [Wij])

Then, the event is reconstructed iff [t1] · [t2] returns 1. The set of input peers with i > î reporting a reconstructed event

r = (k, w) is computed by reusing all the equal operations performed on r in the aggregation step. That is, input peer i′

reports r iff
∑

j
equal([k], [ki′j]) equals 1. This can be computed using local addition for each remaining input peer and

each reconstructed event. Finally, all reconstructed events are sent to all input peers.

Figure 2: Algorithm for event correlation protocol.

1. Share Generation: Each input peer i shares its in-

put vector di = (x1, x2, . . . , xr) among the PPs.

That is, the PPs obtain n vectors of sharings [di] =
([x1], [x2], . . . , [xr]).

2. Summation: The PPs compute the sum [D] =∑
n

i=1
[di].

3. Reconstruction: The PPs reconstruct all elements of

D and send them to all input peers.

Figure 3: Algorithm for vector addition protocol.

paring [a] to the element in the middle of the list, here

called [b∗]. We then construct a new list, being the

first or second half of the original list, depending on

lessThan([a], [b∗]). The procedure is repeated recur-

sively until the list has size 1. This allows us to compare

all events of two input peers with only O(s log2 s) in-

stead of O(s2) comparisons. To further reduce the num-

ber of equal operations, the protocol can be adapted to

receive incremental updates from input peers. That is, in-

put peers submit a list of events in each time window and

inform the PPs, which event entries have a different key

from the previous window. Then, only comparisons of

updated keys have to be performed and overall complex-

ity is reduced to O(u(n − Tc)s), where u is the number

of changed keys in that window. This requires, of course,

that information on input set dynamics is not considered

private.

4.2 Network Traffic Statistics

In this section, we present protocols for the compu-

tation of multi-domain traffic statistics including the ag-

gregation of additive traffic metrics, the computation of

feature entropy, and the computation of distinct item

count. These statistics find various applications in net-

work monitoring and management.

1. Share Generation: Each input peer holds an r-

dimensional private input vector si ∈ Z
r
p representing

the local item histogram, where r is the number of items

and sik is the count for item k. The input peers share all

elements of their si among the PPs.

2. Summation: The PPs compute the item counts [sk] =∑
n

i=1
[sik]. Also, the total count [S] =

∑
r

k=1
[sk] is

computed and reconstructed.

3. Exponentiation: The PPs compute [(sk)
q] using

square-and-multiply.

4. Entropy Computation: The PPs compute the sum

σ =
∑

k
[(sk)

q] and reconstruct σ. Finally, at least

one PP uses σ to (locally) compute the Tsallis entropy

Hq(Y) = 1

q−1
(1− σ/Sq).

Figure 4: Algorithm for entropy protocol.

4.2.1 Vector Addition

To support basic additive functionality on timeseries and

histograms, we implement a vector addition protocol.

Each input peer i holds a private r-dimensional input

vector di ∈ Z
r
p. Then, the vector addition protocol com-

putes the sum D =
∑n

i=1 di. We describe the corre-

sponding SEPIA protocol shortly in Fig. 3. This proto-

col requires no distributed multiplications and only one

round.

4.2.2 Entropy Computation

The computation of the entropy of feature distributions

has been successfully applied in network anomaly detec-

tion, e.g. [23, 9, 25, 50]. Commonly used feature distri-

butions are, for example, those of IP addresses, port num-

bers, flow sizes or host degrees. The Shannon entropy of

a feature distribution Y is H(Y) = −
∑

k pk · log2(pk),
where pk denotes the probability of an item k. If Y is

a distribution of port numbers, pk is the probability of

230 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 231

port k to appear in the traffic data. The number of flows

(or packets) containing item k is divided by the overall

flow (packet) count to calculate pk. Tsallis entropy is

a generalization of Shannon entropy that also finds ap-

plications in anomaly detection [50, 46]. It has been

substantially studied with a rich bibliography available

in [47]. The 1-parametric Tsallis entropy is defined as:

Hq(Y) =
1

q − 1

(
1−

∑
k

(pk)
q
)
. (5)

and has a direct interpretation in terms of moments of

order q of the distribution. In particular, the Tsallis en-

tropy is a generalized, non-extensive entropy that, up to

a multiplicative constant, equals the Shannon entropy for

q → 1. For generality, we select to design an MPC pro-

tocol for the Tsallis entropy.

Entropy Protocol A straight-forward approach to com-

pute entropy is to first find the overall feature distribu-

tion Y and then to compute the entropy of the distribu-

tion. In particular, let pk be the overall probability of

item k in the union of the private data and sik the local

count of item k at input peer i. If S is the total count of

the items, then pk = 1
S

∑n

i=1 s
i
k. Thus, to compute the

entropy, the input peers could simply use the addition

protocol to add all the sik’s and find the probabilities pk.

Each input peer could then compute H(Y) locally. How-

ever, the distribution Y can still be very sensitive as it

contains information for each item, e.g., per address pre-

fix. For this reason, we aim at computing H(Y) with-

out reconstructing any of the values sik or pk. Because

the rational numbers pk can not be shared directly over

a prime field, we perform the computation separately on

private numerators (sik) and the public overall item count

S. The entropy protocol achieves this goal as described

in Fig. 4. It is assured that sensitive intermediate results

are not leaked and that input and privacy peers only learn

the final entropy value Hq(Y) and the total count S. S
is not considered sensitive as it only represents the total

flow (or packet) count of all input peers together. This

can be easily computed by applying the addition protocol

to volume-based metrics. The complexity of this proto-

col is r log2 q multiplications in log2 q rounds.

4.2.3 Distinct Count

In this section, we devise a simple distinct count protocol

leaking no intermediate information. Let sik ∈ {0, 1} be

a boolean variable equal to 1 if input peer i sees item k
and 0 otherwise. We first compute the logical OR of the

boolean variables to find if an item was seen by any in-

put peer or not. Then, simply summing the number of

variables equal to 1 gives the distinct count of the items.

According to De Morgan’s Theorem, a∨b = ¬(¬a∧¬b).

1. Share Generation: Each input peer i shares its negated

local counts cik = ¬sik among the PPs.

2. Aggregation: For each item k, the PPs compute [ck] =
[c1k]∧ [c2k]∧ . . . [cnk]. This can be done in log

2
n rounds.

If an item k is reported by any input peer, then ck is 0.

3. Counting: Finally, the PPs build the sum [σ] =
∑

[ck]
over all items and reconstruct σ. The distinct count is

then given by K − σ, where K is the size of the item

domain.

Figure 5: Algorithm for distinct count protocol.

This means the logical OR can be realized by performing

a logical AND on the negated variables. This is conve-

nient, as the logical AND is simply the product of two

variables. Using this observation, we construct the pro-

tocol described in Fig. 5. This protocol guarantees that

only the distinct count is learned from the computation;

the set of items is not reconstructed. However, if the in-

put peers agree that the item set is not sensitive it can

easily be reconstructed after step 2. The complexity of

this protocol is (n−1)r multiplications in log2 n rounds.

5 Performance Evaluation

In this Section we evaluate the event correlation proto-

col and the protocols for network statistics. After that we

explore the impact of running selected protocols on Plan-

etLab where hardware, network delay, and bandwidth

are very heterogeneous. This section is concluded with

a performance comparison between SEPIA and existing

general-purpose MPC frameworks.

We assessed the CPU and network bandwidth require-

ments of our protocols, by running different aggregation

tasks with real and simulated network data. For each

protocol, we ran several experiments varying the most

important parameters. We varied the number of input

peers n between 5 and 25 and the number of privacy

peers m between 3 and 9, with m < n. The experiments

were conducted on a shared cluster comprised of sev-

eral public workstations; each workstation was equipped

with a 2x Pentium 4 CPU (3.2 GHz), 2 GB memory, and

100 Mb/s network. Each input and privacy peer was run

on a separate host. In our plots, each data point reflects

the average over 10 time windows. Background load due

to user activity could not be totally avoided. Section 5.3

discusses the impact of single slow hosts on the overall

running time.

5.1 Event Correlation

For the evaluation of the event correlation protocol,

we generated artificial event data. It is important to note

that our performance metrics do not depend on the actual

 0

 50

 100

 150

 200

 5 10 15 20 25

ru
n
n
in

g
 t

im
e
 [

s
]

input peers

3 privacy peers
5 privacy peers
7 privacy peers
9 privacy peers

(a) Average round time (s = 30).

 0

 50

 100

 150

 200

 250

 5 10 15 20 25

d
a
ta

 s
e
n
t

[M
B

]

input peers

3 privacy peers
5 privacy peers
7 privacy peers
9 privacy peers

(b) Data sent per PP (s = 30).

 0

 50

 100

 150

 200

 250

 300

 30 60 90 120 150

ru
n
n
in

g
 t

im
e
 [

s
]

events per input peer

(c) Round time vs. s (n=10, m=3).

Figure 6: Round statistics for event correlation with Tc = n/2. s is the number of events per input peer.

values used in the computation, hence artificial data is

just as good as real data for these purposes.

Running Time Fig. 6 shows evaluation results for event

correlation with s = 30 events per input peer, each with

24-bit keys for Tc = n/2. We ran the protocol in-

cluding weight and key verification. Fig. 6a shows that

the average running time per time window always stays

below 3.5 min and scales quadratically with n, as ex-

pected. Investigation of CPU statistics shows that with

increasing n also the average CPU load per privacy peer

grows. Thus, as long as CPUs are not used to capacity,

local parallelization manages to compensate parts of the

quadratical increase. With Tc = n − const, the running

time as well as the number of operations scale linearly

with n. Although the total communication cost grows

quadratically with m, the running time dependence on

m is rather linear, as long as the network is not satu-

rated. The dependence on the number of events per input

peer s is quadratic as expected without optimizations (see

Fig. 6c).

To study whether privacy peers spend most of their

time waiting due to synchronization, we measured the

user and system time of their hosts. All the privacy peers

were constantly busy with average CPU loads between

120% and 200% for the various operations.3 Communi-

cation and computation between PPs is implemented us-

ing separate threads to minimize the impact of synchro-

nization on the overall running time. Thus, SEPIA profits

from multi-core machines. Average load decreases with

increasing need for synchronization from multiplications

to equal, over lessThan to event correlation. Never-

theless, even with event correlation, processors are very

busy and not stalled by the network layer.

Bandwidth requirements Besides running time, the

communication overhead imposed on the network is an

important performance measure. Since data volume is

dominated by privacy peer messages, we show the av-

erage bytes sent per privacy peer in one time window

in Fig. 6b. Similar to running time, data volume scales

roughly quadratically with n and linearly with m. In

addition to the transmitted data, each privacy peer re-

ceives about the same amount of data from the other in-

put and private peers. If we assume a 5-minute clocking

of the event correlation protocol, an average bandwidth

between 0.4 Mbps (for n = 5, m = 3) and 13 Mbps

(for n = 25, m = 9) is needed per privacy peer. Assum-

ing a 5-minute interval and sufficient CPU/bandwidth re-

sources, the maximum number of supported input peers

before the system stops working in real-time ranges from

around 30 up to roughly 100, depending on protocol pa-

rameters.

5.2 Network statistics

For evaluating the network statistics protocols, we

used unsampled NetFlow data captured from the five

border routers of the Swiss academic and research net-

work (SWITCH), a medium-sized backbone operator,

connecting approximately 40 governmental institutions,

universities, and research labs to the Internet. We first

extracted traffic flows belonging to different customers

of SWITCH and assigned an independent input peer to

each organization’s trace. For each organization, we then

generated SEPIA input files, where each input field con-

tained either the values of volume metrics to be added or

the local histogram of feature distributions for collabora-

tive entropy (distinct count) calculation. In this section

we focus on the running time and bandwidth require-

ments only. We performed the following tasks over ten

5-minute windows:

1. Volume Metrics: Adding 21 volume metrics con-

taining flow, packet, and byte counts, both total and

separately filtered by protocol (TCP, UDP, ICMP)

and direction (incoming, outgoing). For example,

Fig. 10 in Section 7.2 plots the total and local num-

ber of incoming UDP flows of six organizations for

an 11-day period.

232 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 233

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25

ru
n
n
in

g
 t
im

e
 [
s
]

input peers

3 privacy peers
5 privacy peers
7 privacy peers
9 privacy peers

(a) Addition of port histogram.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25

ru
n
n
in

g
 t
im

e
 [
s
]

input peers

3 privacy peers
5 privacy peers
7 privacy peers
9 privacy peers

(b) Entropy of port distribution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25

ru
n
n
in

g
 t
im

e
 [
s
]

input peers

3 privacy peers
5 privacy peers
7 privacy peers
9 privacy peers

(c) Distinct AS count.

Figure 7: Network statistics: avg. running time per time window versus n and m, measured on a department-wide

cluster. All tasks were run with an input set size of 65k items.

2. Port Histogram: Adding the full destination port

histogram for incoming UDP flows. SEPIA input

files contained 65,535 fields, each indicating the

number of flows observed to the corresponding port.

These local histograms were aggregated using the

addition protocol.

3. Port Entropy: Computing the Tsallis entropy of

destination ports for incoming UDP flows. The lo-

cal SEPIA input files contained the same informa-

tion as for histogram aggregation. The Tsallis expo-

nent q was set to 2.

4. Distinct count of AS numbers: Aggregating the

count of distinct source AS numbers in incom-

ing UDP traffic. The input files contained 65,535

columns, each denoting if the corresponding source

AS number was observed. For this setting, we re-

duced the field size p to 31 bits because the expected

size of intermediate values is much smaller than for

the other tasks.

Running Time For task 1, the average running time was

below 1.6 s per time window for all configurations, even

with 25 input and 9 privacy peers. This confirms that

addition-only is very efficient for low volume input data.

Fig. 7 summarizes the running time for tasks 2 to 4. The

plots show on the y-axes the average running time per

time window versus the number of input peers on the x-

axes. In all cases, the running time for processing one

time window was below 1.5 minutes. The running time

clearly scales linearly with n. Assuming a 5-minute in-

terval, we can estimate by extrapolation the maximum

number of supported input peers before the system stops

working in real-time. For the conservative case with 9

privacy peers, the supported number of input peers is ap-

proximately 140 for histogram addition, 110 for entropy

computation, and 75 for distinct count computation. We

observe, that for single round protocols (addition and en-

tropy), the number of privacy peers has only little impact

on the running time. For the distinct count protocol, the

running time increases linearly with both n and m. Note

that the shortest running time for distinct count is even

lower than for histogram addition. This is due to the

reduced field size (p with 31 bits instead of 62), which

reduces both CPU and network load.

Bandwidth Requirements For all tasks, the data vol-

ume sent per privacy peer scales perfectly linear with n
and m. Therefore, we only report the maximum volume

with 25 input and 9 privacy peers. For addition of vol-

ume metrics, the data volume is 141 KB and increases to

4.7 MB for histogram addition. Entropy computation re-

quires 8.5 MB and finally the multi-round distinct count

requires 50.5 MB. For distinct count, to transfer the total

of 2 ·50.5 = 101MB within 5 minutes, an average band-

width of roughly 2.7 Mbps is needed per privacy peer.

5.3 Internet-wide Experiments

In our evaluation setting hosts have homogeneous

CPUs, network bandwidth and low round trip times

(RTT). In practice, however, SEPIA’s goal is to aggregate

traffic from remote network domains, possibly resulting

in a much more heterogeneous setting. For instance, high

delay and low bandwidth directly affect the waiting time

for messages. Once data has arrived, the CPU model and

clock rate determine how fast the data is processed and

can be distributed for the next round.

Recall from Section 4 that each operation and pro-

tocol in SEPIA is designed in rounds. Communication

and computation during each round run in parallel. But

before the next round can start, the privacy peers have

to synchronize intermediate results and therefore wait

for the slowest privacy peer to finish. The overall run-

ning time of SEPIA protocols is thus affected by the

slowest CPU, the highest delay, and the lowest band-

width rather than by the average performance of hosts

and links. Therefore we were interested to see whether

the performance of our protocols breaks down if we take

it out of the homogeneous LAN setting. Hence, we ran

LAN PlanetLab A PlanetLab B

Max. RTT 1 ms 320 ms 320 ms

Bandwidth 100 Mb/s ≥ 100Kb/s ≥ 100Kb/s

Slowest CPU 2 cores 2 cores 1 core

3.2 GHz 2.4 GHz 1.8 GHz

Running time 25.0 s 36.8 s 110.4 s

Table 1: Comparison of LAN and PlanetLab settings.

Framework SEPIA VIFF FairplayMP

Technique Shamir sh. Shamir sh. Bool. circuits

Platform Java Python Java

Multipl./s 82,730 326 1.6

Equals/s 2,070 2.4 2.3

LessThans/s 86 2.4 2.3

Table 2: Comparison of frameworks performance in oper-

ations per second with m = 5.

SEPIA on PlanetLab [31] and repeated task 4 (distinct

AS count) with 10 input and 5 privacy peers on globally

distributed PlanetLab nodes. Table 1 compares the LAN

setup with two PlanetLab setups A and B.

RTT was much higher and average bandwidth much

lower on PlanetLab. The only difference between Plan-

etLab A and B was the choice of some nodes with slower

CPUs. Despite the very heterogeneous and globally dis-

tributed setting, the distinct count protocol performed

well, at least in PlanetLab A. Most important, it still met

our near real-time requirements. From PlanetLab A to B,

running time went up by a factor of 3. However, this can

largely be explained by the slower CPUs. The distinct

count protocol consists of parallel multiplications, which

make efficient use of the CPU and local addition, which

is solely CPU-bound. Let us assume, for simplicity, that

clock rates translate directly into MIPS. Then, computa-

tional power in PlanetLab B is roughly 2.7 times lower

than in PlanetLab A. Of course, the more rounds a pro-

tocol has, the bigger is the impact of RTT. But in each

round, the network delay is only a constant offset and

can be amortized over the number of parallel operations

performed per round. For many operations, CPU and

bandwidth are the real bottlenecks.

While aggregation in a heterogeneous environment

is possible, SEPIA privacy peers should ideally be de-

ployed on dedicated hardware, to reduce background

load, and with similar CPU equipment, so that no single

host slows down the entire process.

5.4 Comparison with General-Purpose

Frameworks

In this section we compare the performance of ba-

sic SEPIA operations to those of general-purpose frame-

works such as FairplayMP [3] and VIFF v0.7.1 [15]. Be-

sides performance, one aspect to consider is, of course,

usability. Whereas the SEPIA library currently only pro-

vides an API to developers, FairplayMP allows to write

protocols in a high-level language called SFDL and VIFF

integrates nicely into the Python language. Furthermore,

VIFF implements asynchronous protocols and provides

additional functionality, such as security against mali-

cious adversaries and support of MPC based on homo-

morphic cryptosystems.

Tests were run on 2x Dual Core AMD Opteron 275

machines with 1Gb/s LAN connections. To guarantee a

fair comparison, we used the same settings for all frame-

works. In particular, the semi-honest model, 5 computa-

tion nodes, and 32 bit secrets were used. Unlike VIFF

and SEPIA, which use an information-theoretically se-

cure scheme, FairplayMP requires the choice of an ade-

quate security parameter k. We set k = 80, as suggested

by the authors in [3].

Table 2 shows the average number of parallel oper-

ations per second for each framework. SEPIA clearly

outperforms VIFF and FairplayMP for all operations and

is thus much better suited when performance of parallel

operations is of main importance. As an example, a run

of event correlation taking 3 minutes with SEPIA would

take roughly 2 days with VIFF. This extends the range

of practically runnable MPC protocols significantly. No-

tably, SEPIA’s equal operation is 24 times faster than

its lessThan, which requires 24 times more multipli-

cations, but at the same time also twice the number of

rounds. This confirms that with many parallel opera-

tions, the number of multiplications becomes the dom-

inating factor. Approximately 3/4 of the time spent

for lessThan is used for generating sharings of random

numbers used in the protocol. These random sharings

are independent from input data and could be generated

prior to the actual computation, allowing to perform 380

lessThans per second in the same setting.

Even for multiplications, SEPIA is faster than VIFF,

although both rely on the same scheme. We assume this

can largely be attributed to the completely asynchronous

protocols implemented in VIFF. Whereas asynchronous

protocols are very efficient for dealing with malicious

adversaries, they make it impossible to reduce network

overhead by exchanging intermediate results of all paral-

lel operations at once in a single big message. Also, there

seems to be a bottleneck in parallelizing large numbers

of operations. In fact, when benchmarking VIFF, we no-

ticed that after some point, adding more parallel opera-

tions significantly slowed down the average running time

per operation.

Sharemind [6] is another interesting MPC framework

using additive secret sharing to implement multiplica-

tions and greater-or-equal (GTE) comparison. The au-

thors implement it in C++ to maximize performance.

However, the use of additive secret sharing makes the im-

234 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 235

plementations of basic operations dependent on the num-

ber of computation nodes used. For this reason, Share-

mind is currently restricted to 3 computation nodes only.

Regarding performance, however, Sharemind is compa-

rable to SEPIA. According to [6], Sharemind performs

up to 160,000 multiplications and around 330 GTE op-

erations per second, with 3 computation nodes. With

3 PPs, SEPIA performs around 145,000 multiplications

and 145 lessThans per second (615 with pre-generated

randomness). Sharemind does not directly implement

equal, but it could be implemented using 2 invocations

of GTE, leading to ≈ 115 operations/s. SEPIA’s equal
is clearly faster with up to 3, 400 invocations/s. SEPIA

demonstrates that operations based on Shamir shares are

not necessarily slower than operations in the additive

sharing scheme. The key to performance is rather an im-

plementation, which is optimized for a large number of

parallel operations. Thus, SEPIA combines speed with

the flexibility of Shamir shares, which support any num-

ber of computation nodes and are to a certain degree ro-

bust against node failures.

6 Design and Implementation

The foundation of the SEPIA library is an implemen-

tation of the basic operations, such as multiplications

and optimized comparisons (see Section 3), along with

a communication layer for establishing SSL connections

between input and privacy peers. In order to limit the

impact of varying communication latencies and response

times, each connection, along with the corresponding

computation and communication tasks, is handled by a

separate thread. This also implies that SEPIA proto-

cols benefit from multi-core systems for computation-

intensive tasks. In order to reduce synchronization over-

head, intermediate results of parallel operations sent to

the same destination are collected and transfered in a sin-

gle big message instead of many small messages. On top

of the basic layers, the protocols from Section 4 are im-

plemented as standalone command-line (CLI) tools. The

CLI tools expect a local configuration file containing pri-

vacy peer addresses, paths to a folder with input data and

a Java keystore, as well as protocol-dependent parame-

ters. The tools write a log of the ongoing computation

and output files with aggregate results for each time win-

dow. The keystore holds certificates of trusted input and

privacy peers to establish SSL connections. It is possible

to delay the start of a computation until a minimum num-

ber of input and privacy peers are online. This gives the

input peers the ability to define an acceptable level of pri-

vacy by only participating in the computation if a certain

number of other input/privacy peers also participate.

SEPIA is written in Java to provide platform indepen-

dence. The source code of the basic library and the four

ShamirSharing sharing = new ShamirSharing();

sharing.setFieldPrime(1401085391); // 31 bit

sharing.setNrOfPrivacyPeers(nrOfPrivacyPeers);

sharing.init();

// Secret1: only a single value

long[] secrets = new long[]{1234567};

long[][] shares = sharing.generateShares(secrets);

// Send shares to each privacy peer

for(int i=0; i<nrOfPrivacyPeers; i++) {

connection[i].sendMessage(shares[i]);

}

Figure 8: Example code for an input peer that shares a

secret, e.g., a millionaire sharing his amount of wealth.

CLI tools is available under the LGPL license on the

SEPIA project web page [39]. The web page also pro-

vides pre-configured examples for the CLI tools and a

user manual. The user manual describes usage and con-

figuration of the CLI tools and includes a step-by-step

tutorial on how to use the library API to develop new

protocols. In the library API, all operations and sub-

protocols implement a common interface IOperation

and are easily composable. The class Protocol-

Primitives allows to schedule operations and takes

care of performing them in parallel, keeping track of

operation states. A base class for privacy peers imple-

ments the doOperations() method, which runs all

the necessary computation rounds and synchronizes data

between privacy peers in each round. Fig. 8 shows exam-

ple code for input peers that want to privately compare

their secrets. First, each input peer generates shares of

its secret. The shares are then sent to the PPs, for which

example code is shown in Fig. 9. The PPs first schedule

and execute lessThan comparisons for all combinations

of input secrets. In a second step, they run the recon-

struction operations and output the results.

Future Work Note that with Shamir shares, reconstruc-

tion of results is assured as long as t + 1 PPs are on-

line and responsive. This can be used directly to extend

SEPIA protocols with robustness against node failures.

Also, weak nodes slowing down the entire computation

could be excluded from the computation. We leave this

as a future extension.

The protocols support any number of input and pri-

vacy peers. Also, the item set sizes/events per input peer

are configurable and thus only limited by the available

CPU/bandwidth resources. However, running the net-

work statistics protocols (e.g., distinct count) on very

large distributions, such as the global IP address range,

requires to use sketches as proposed in [37] or binning

(e.g., use address prefixes instead of addresses). As an

example, we have recently used sketches in combination

with SEPIA to efficiently compute top-k reports for dis-

... // receive all the shares from input peers

ProtocolPrimitives primitives = new ProtocolPrimitives(fieldPrime, ...);

// Schedule comparisons of all the input peer’s secrets

int id1=1, id2=2, id3=3; // consecutive operation IDs

primitives.lessThan(id1, new long[]{shareOfSecret1, shareOfSecret2});

primitives.lessThan(id2, new long[]{shareOfSecret2, shareOfSecret3});

primitives.lessThan(id3, new long[]{shareOfSecret1, shareOfSecret3});

doOperations(); // Process operations and sychronize intermediate results

// Get shares of the comparison results

long shareOfLessThan12 = primitives.getResult(id1);

long shareOfLessThan23 = primitives.getResult(id2);

long shareOfLessThan13 = primitives.getResult(id3);

// Schedule and perform reconstruction of comparisons

primitives.reconstruct(id1, new long[]{shareOfLessThan12});

primitives.reconstruct(id2, new long[]{shareOfLessThan23});

primitives.reconstruct(id3, new long[]{shareOfLessThan13});

doOperations();

boolean secret1_lessThan_secret2 = (primitives.getResult(id1)==1);

boolean secret2_lessThan_secret3 = (primitives.getResult(id2)==1);

boolean secret1_lessThan_secret3 = (primitives.getResult(id3)==1);

Figure 9: Example code for a PP receiving shares of secrets from 3 input peers. It then compares the secrets privately,

e.g., to find which of the millionaires is the richest.

tributed IP address distributions with up to 180,000 dis-

tinct addresses [10].

As part of future work, we also plan to investigate

the applicability of polynomial set representation to our

statistics protocols, to reduce the linear dependency on

the input set domain. Polynomial set representation, in-

troduced by Freedman et al. [18] and extended by Kiss-

ner et al. [22], represents set elements as roots of a poly-

nomial and enables set operations that scale only loga-

rithmically with input domain size. However, these solu-

tions use homomorphic public-key cryptosystems, which

come with significant overhead for basic operations. Fur-

thermore, they do not trivially allow to separate roles

into input and privacy peers, as each input provider is re-

quired to perform certain non-delegable processing steps

on its own data.

7 Applications

We envision four distinct aggregation scenarios us-

ing SEPIA. The first scenario is aggregating informa-

tion coming from multiple domains of one large (inter-

national) organization. This aggregation is presently not

always possible due to privacy concerns and heteroge-

neous jurisdiction. The second scenario is analyzing pri-

vate data owned by independent organizations with a mu-

tual benefit in collaborating. Local ISPs, for example,

might collaborate to detect common attacks. A third sce-

nario provides access to researchers for evaluating and

validating traffic analysis or event correlation prototypes

over multi-domain network data. For example, national

research, educational, and university networks could pro-

vide SEPIA input and/or privacy peers that allow analyz-

ing local data according to submitted MPC scripts. Fi-

nally, one last scenario is the privacy-preserving analy-

sis of end-user data, i.e., end-user workstations can use

SEPIA to collaboratively analyze and cross-correlate lo-

cal data.

7.1 Application Taxonomy

Based on these scenarios, we see three different

classes of possible SEPIA applications.

Network Security Over the last years, considerable re-

search efforts have focused on distributed data aggrega-

tion and correlation systems for the identification and

mitigation of coordinated wide-scale attacks. In par-

ticular, aggregation enables the (early) detection and

characterization of attacks spanning multiple domains

using data from IDSes, firewalls, and other possible

sources [2, 16, 26, 49]. Recent studies [21] show that

coordinated wide-scale attacks are prevalent: 20% of the

studied malicious addresses and 40% of the IDS alerts

accounted for coordinated wide-scale attacks. Further-

more, strongly correlated groups profiting most from col-

laboration have less than 10 members and are stable over

time, which is well-suited for SEPIA protocols.

In order to counter such attacks, Yegneswaran et

al. [49] presented DOMINO, a distributed IDS that en-

ables collaboration among nodes. They evaluated the

performance of DOMINO with a large set of IDS logs

from over 1600 providers. Their analysis demonstrates

the significant benefit that is obtained by correlating the

data from several distributed intrusion data sources. The

major issue faced by such correlation systems is the lack

236 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 237

of data privacy. In their work, Porras et al. survey exist-

ing defense mechanisms and propose several remaining

research challenges [32]. Specifically, they point out the

need for efficient privacy-preserving data mining algo-

rithms that enable traffic classification, signature extrac-

tion, and propagation analysis.

Profiling and Performance Analysis A second cate-

gory of applications relates to traffic profiling and perfor-

mance measurements. A global profile of traffic trends

helps organizations to cross-correlate local traffic trends

and identify changes. In [38] the authors estimate that

50 of the top-degree ASes together cover approximately

90% of global AS-paths. Hence, if large ASes col-

laborate, the computation of global Internet statistics is

within reach. One possible statistic is the total traffic vol-

ume across a large number of networks. This statistic, for

example, could have helped [37] in the dot-com bubble

in the late nineties, since the traffic growth rate was over-

estimated by a factor of 10, easing the flow of venture

capital to Internet start-ups. In addition, performance-

related applications can benefit from an “on average”

view across multiple domains. Data from multiple do-

mains can also help to locate a remote outage with higher

confidence, and to trigger proper detour mechanisms. A

number of additional MPC applications related to perfor-

mance monitoring are discussed in [36].

Research Validation Many studies are obliged to avoid

rigorous validation or have to re-use a small number of

old traffic traces [13, 43]. This situation clearly under-

mines the reliability of the derived results. In this con-

text, SEPIA can be used to establish a privacy-preserving

infrastructure for research validation purposes. For ex-

ample, researchers could provide MPC scripts to SEPIA

nodes running at universities and research institutes.

7.2 Case Study: The Skype Outage

The Skype outage in August 2007 started from a

Windows update triggering a large number of system

restarts. In response, Skype nodes scanned cached host-

lists to find supernodes causing a huge distributed scan-

ning event lasting two days [35]. We used NetFlow traces

of the actual up- and downstream traffic of the 17 biggest

customers of the SWITCH network. The traces span 11

days from the 11th to 22nd and include the Skype outage

(on the 16th/17th) along with other smaller anomalies.

We ran SEPIA’s total count, distinct count, and entropy

protocols on these traces and investigated how the orga-

nizations can benefit by correlating their local view with

the aggregate view.

We first computed per-organization and aggregate

timeseries of the UDP flow count metric and applied a

simple detector to identify anomalies. For each time-

4e+06

7e+06
Org1

1e+06 Org2

1e+06

4e+06 Org3

1e+06

4e+06
Org4

1e+06 Org5

1e+06
Org6

1e+07

08/11

21:00

08/13

09:00

08/14

21:00

08/16

09:00

08/17

21:00

08/19

09:00

08/20

21:00

08/22

09:00

ALL

Figure 10: Flow count in 5’ windows with anomalies

for the biggest organizations and aggregate view (ALL).

Each organization sees its local and the aggregate traffic.

20%

40%

60%

80%

100%

A
n

o
m

a
lo

u
s
 w

in
d

o
w

s Global only

Matching

Local only

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
n

o
m

a
lo

u
s
 w

in
d

o
w

s

Organization

Global only

Matching

Local only

Figure 11: Correlation of local and global anomalies for

organizations ordered by size (1=biggest).

series, we used the first 4 days to learn its mean µ and

standard deviation σ, defined the normal region to be

within µ±3σ, and detected anomalous time intervals. In

Fig. 10 we illustrate the local timeseries for the six largest

organizations and the aggregate timeseries. We rank or-

ganizations based on their decreasing average number of

daily flows and use their rank to identify them. In the

figure, we also mark the detected anomalous intervals.

Observe that in addition to the Skype outage, some orga-

nizations detect other smaller anomalies that took place

during the 11-day period.

Anomaly Correlation Using the aggregate view, an or-

ganization can find if a local anomaly is the result of

a global event that may affect multiple organizations.

Knowing the global or local nature of an anomaly is im-

portant for steering further troubleshooting steps. There-

fore, we first investigate how the local and global anoma-

lous intervals correlate. For each organization, we com-

pared the local and aggregate anomalous intervals and

measured the total time an anomaly was present: 1) only

in the local view, 2) only in the aggregate view, and 3)

both in the local and aggregate views, i.e., the matching

anomalous intervals. Fig. 11 illustrates the correspond-

ing time fractions. We observe a rather small fraction,

i.e., on average 14.1%, of local-only anomalies. Such

anomalies lead administrators to search for local targeted

attacks, misconfigured or compromised internal systems,

misbehaving users, etc. In addition, we observe an aver-

age of 20.3% matching anomalous windows. Knowing

an anomaly is both local and global steers an affected

organization to search for possible problems in popular

services, in widely-used software, like Skype in this case,

or in the upstream providers. A large fraction (65.6%) of

anomalous windows is only visible in the global view.

In addition, we observe significant variability in the pat-

terns of different organizations. In general, larger organi-

zations tend to have a larger fraction of matching anoma-

lies, as they contribute more to the aggregate view. While

some organizations are highly correlated with the global

view, e.g., organization 3 that notably contributes only

7.4% of the total traffic; other organizations are barely

correlated, e.g., organizations 9 and 12; and organization

2 has no local anomalies at all.

Anomaly Troubleshooting We define relative anomaly

size to be the ratio of the detection metric value during an

anomalous interval over the detection threshold. Organi-

zations 3 and 4 had relative anomaly sizes 11.7 and 18.8,

which is significantly higher than the average of 2.6. Us-

ing the average statistic, organizations can compare the

relative impact of an attack. Organization 2, for instance,

had anomaly size 0 and concludes that there was a large

anomaly taking place but they were not affected. Most

of the organizations conclude that they were indeed af-

fected, but less than average. Organizations 3 and 4,

however, have to spend thoughts on why the anomaly

was so disproportionately strong in their networks.

An investigation of the full port distribution and its

entropy (plots omitted due to space limitations) shows

that affected organizations see a sudden increase in scan-

ning activity on specific high port numbers. Connections

originate mainly from ports 80 and 443, i.e., the fall-

back ports of Skype, and a series of high port numbers

indicating an anomaly related to Skype. For organiza-

tions 3 and 4, some of the scanned high ports are ex-

tremely prevalent, i.e., a single destination port accounts

for 93% of all flows at the peak rate. Moreover, most of

the anomalous flows within organizations 3 and 4 are tar-

geted at a single IP address and originate from thousands

of distinct source addresses connecting repeatedly up to

13 times per minute. These patterns indicate that the two

organizations host popular supernodes, attracting a lot of

traffic to specific ports. Other organizations mainly host

client nodes and see uniform scanning, while organiza-

Org # 3 5 6 7 13 17

lag [hours] 1.2 2.7 23.4 15.5 4.8 3.6

Table 3: Organizations profiting from an early anomaly

warning by aggregation.

tion 2 has banned Skype completely. Based on this anal-

ysis, organizations can take appropriate measures to mit-

igate the impact of the 2-day outage, like notifying users

or blocking specific port numbers.

Early-warning Finally, we investigate whether the ag-

gregate view can be useful for building an early-warning

system for global or large-scale anomalies. The Skype

anomaly did not start concurrently in all locations, since

the Windows update policy and reboot times were differ-

ent across organizations. We measured the lag between

the time the Skype anomaly was first observed in the ag-

gregate and local view of each organization. In Table 3

we list the organizations that had considerable lag, i.e.,

above an hour. Notably, one of the most affected orga-

nizations (6) could have learned the anomaly almost one

day ahead. However, as shown in Fig. 11, for organiza-

tion 2 this would have been a false positive alarm. To

profit most from such an early warning system in prac-

tice, the aggregate view should be annotated with addi-

tional information, such as the number of organizations

or the type of services affected from the same anomaly.

In this context, our event correlation protocol is useful to

decide whether similar anomaly signatures are observed

in the participating networks. Anomaly signatures can be

extracted automatically using actively researched tech-

niques [8, 33].

8 Related Work

Most related to our work, Roughan and Zhan [37] first

proposed the use of MPC techniques for a number of

applications relating to traffic measurements, including

the estimation of global traffic volume and performance

measurements [36]. In addition, the authors identified

that MPC techniques can be combined with commonly-

used traffic analysis methods and tools, such as time-

series algorithms and sketch data structures. Our work is

similar in spirit, yet it extends their work by introducing

new MPC protocols for event correlation, entropy, and

distinct count computation and by implementing these

protocols in a ready-to-use library.

Data correlation systems that provide strong privacy

guarantees for the participants achieve data privacy by

means of (partial) data sanitization based on bloom fil-

ters [44] or cryptographic functions [26, 24]. However,

data sanitization is in general not a lossless process and

238 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 239

therefore imposes an unavoidable tradeoff between data

privacy and data utility.

The work presented by Chow et al. [12] and Apple-

baum et al. [1] avoid this tradeoff by means of cryp-

tographic data obfuscation. Chow et al. proposed a

two-party query computation model to perform privacy-

preserving querying of distributed databases. In addi-

tion to the databases, their solution comprises three en-

tities: the randomizer, the computing engine, and the

query frontend. Local answers to queries are random-

ized by each database and the aggregate results are de-

randomized at the frontend. Applebaum et al. present

a semi-centralized solution for the collaboration among

a large number of participants in which responsibility is

divided between a proxy and a central database. In a

first step the proxy obliviously blinds the clients’ input,

consisting of a set of keyword/value pairs, and stores the

blinded keywords along with the non-blinded values in

the central database. On request, the database identifies

the (blinded) keywords that have values satisfying some

evaluation function and forwards the matching rows to

the proxy, which then unblinds the respective keywords.

Finally, the database publishes its non-blinded data for

these keywords. As opposed to these approaches, SEPIA

does not depend on two central entities but in general

supports an arbitrary number of distributed privacy peers,

is provably secure, and more flexible with respect to the

functions that can be executed on the input data. The

similarities and differences between our work and exist-

ing general-purpose MPC frameworks are discussed in

Sec. 5.4.

9 Conclusion

The aggregation of network security and monitoring

data is crucial for a wide variety of tasks, including col-

laborative network defense and cross-sectional Internet

monitoring. Unfortunately, concerns regarding privacy

prevent such collaboration from materializing. In this

paper, we investigated the practical usefulness of solu-

tions based on secure multiparty computation (MPC).

For this purpose, we designed optimized MPC operations

that run efficiently on voluminous input data. We im-

plemented these operations in the SEPIA library along

with a set of novel protocols for event correlation and

for computing multi-domain network statistics, i.e., en-

tropy and distinct count. Our evaluation results clearly

demonstrate the efficiency and scalability of SEPIA in

realistic settings. With COTS hardware, near real-time

operation is practical even with 140 input providers and

9 computation nodes. Furthermore, the basic operations

of the SEPIA library are significantly faster than those

of existing MPC frameworks and can be used as build-

ing blocks for arbitrary protocols. We believe that our

work provides useful insights into the practical utility of

MPC and paves the way for new collaboration initiatives.

Our future work includes improving SEPIA’s robustness

against host failures, dealing with malicious adversaries,

and further improving performance, using, for example,

polynomial set representations. Furthermore, in collab-

oration with a major systems management vendor, we

have started a project that aims at incorporating MPC

primitives into a mainstream traffic profiling product.

Acknowledgments

We are grateful to SWITCH for providing their traffic

traces and to the anonymous reviewers for their helpful

comments. Also, we want to thank Lisa Barisic and Do-

minik Schatzmann for their contributions. Special thanks

go to Vassilis Zikas for assisting with MPC matters and

for the idea of using Fermat’s little theorem.

References

[1] APPLEBAUM, B., RINGBERG, H., FREEDMAN, M. J., CAE-
SAR, M., AND REXFORD, J. Collaborative, privacy-preserving
data aggregation at scale. In Privacy Enhancing Technologies

Symposium (PETS) (2010).
[2] ATLAS. Active Threat Level Analysis System. http://

atlas.arbor.net.
[3] BEN-DAVID, A., NISAN, N., AND PINKAS, B. FairplayMP:

a system for secure multi-party computation. In Conference on

Computer and communications security (CCS) (2008).
[4] BEN-OR, M., GOLDWASSER, S., AND WIGDERSON, A.

Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In ACM symposium on Theory of comput-

ing (STOC) (1988).
[5] BETHENCOURT, J., FRANKLIN, J., AND VERNON, M. Mapping

internet sensors with probe response attacks. In 14th USENIX

Security Symposium (2005).
[6] BOGDANOV, D., LAUR, S., AND WILLEMSON, J. Sharemind:

A Framework for Fast Privacy-Preserving Computations. In
European Symposium on Research in Computer Security (ES-

ORICS) (2008).
[7] BOGETOFT, P., CHRISTENSEN, D., DAMGÅRD, I., GEISLER,

M., JAKOBSEN, T., KRØIGAARD, M., NIELSEN, J., NIELSEN,
J., NIELSEN, K., PAGTER, J., ET AL. Secure multiparty compu-
tation goes live. In Financial Cryptography (2009).

[8] BRAUCKHOFF, D., DIMITROPOULOS, X., WAGNER, A., AND

SALAMATIAN, K. Anomaly extraction in backbone networks
using association rules. In ACM SIGCOMM/USENIX Internet

Measurement Conference (IMC) (2009).
[9] BRAUCKHOFF, D., SALAMATIAN, K., AND MAY, M. Applying

PCA for Traffic Anomaly Detection: Problems and Solutions. In
INFOCOM (2009).

[10] BURKHART, M., AND DIMITROPOULOS, X. Fast privacy-
preserving top-k queries using secret sharing. In International

Conference on Computer Communication Networks (ICCCN)

(2010).
[11] CANETTI, R. Universally composable security: A new paradigm

for cryptographic protocols. In IEEE Symposium on Foundations

of Computer Science (FOCS) (2001).
[12] CHOW, S. S. M., LEE, J.-H., AND SUBRAMANIAN, L. Two-

party computation model for privacy-preserving queries over dis-
tributed databases. In NDSS (2009), The Internet Society.

[13] CLAFFY, K., CROVELLA, M., FRIEDMAN, T., SHANNON, C.,
AND SPRING, N. Community-Oriented Network Measurement
Infrastructure (CONMI) Workshop Report. Computer Communi-

cation Review (CCR) 36, 2 (2006), 41.
[14] DAMGÅRD, I., FITZI, M., KILTZ, E., NIELSEN, J., AND TOFT,

T. Unconditionally secure constant-rounds multi-party computa-
tion for equality, comparison, bits and exponentiation. In Theory

of Cryptography Conference (TCC) (2006).
[15] DAMGÅRD, I., GEISLER, M., KRØIGAARD, M., AND

NIELSEN, J. Asynchronous multiparty computation: Theory and
implementation. In Conference on Practice and Theory in Public

Key Cryptography (PKC) (2009).
[16] DSHIELD. The Internet Storm Center. www.dshield.org.
[17] DWORK, C. Differential privacy: A survey of results. Theory

and Applications of Models of Computation (TAMC) (2008).
[18] FREEDMAN, M. J., NISSIM, K., AND PINKAS, B. Efficient Pri-

vate Matching and Set Intersection. In EUROCRYPT ’04 (2004).
[19] GENNARO, R., RABIN, M., AND RABIN, T. Simplified VSS and

fast-track multiparty computations with applications to threshold
cryptography. In 7th annual ACM symposium on Principles of

distributed computing (PODC) (1998).
[20] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to

play any mental game. In ACM symposium on Theory of comput-

ing (STOC) (1987).
[21] KATTI, S., KRISHNAMURTHY, B., AND KATABI, D. Collab-

orating against common enemies. In ACM SIGCOMM/USENIX

Internet Measurement Conference (IMC) (2005).
[22] KISSNER, L., AND SONG, D. Privacy-Preserving Set Opera-

tions. In Proceedings of CRYPTO ’05 (2005).
[23] LAKHINA, A., CROVELLA, M., AND DIOT, C. Mining anoma-

lies using traffic feature distributions. In ACM SIGCOMM

(2005).
[24] LEE, A. J., TABRIZ, P., AND BORISOV, N. A privacy-preserving

interdomain audit framework. In Workshop on privacy in elec-

tronic society (WPES) (2006).
[25] LI, X., BIAN, F., CROVELLA, M., DIOT, C., GOVINDAN, R.,

IANNACCONE, G., AND LAKHINA, A. Detection and identifi-
cation of network anomalies using sketch subspaces. In ACM

SIGCOMM/USENIX Internet Measurement Conference (IMC)

(2006).
[26] LINCOLN, P., PORRAS, P., AND SHMATIKOV, V. Privacy-

preserving sharing and correlation of security alerts. In 13th

USENIX Security Symposium (2004).
[27] MACHIRAJU, S., AND KATZ, R. H. Verifying global invariants

in multi-provider distributed systems. In SIGCOMM Workshop

on Hot Topics in Networking (HotNets) (2004), ACM.
[28] NISHIDE, T., AND OHTA, K. Multiparty computation for inter-

val, equality, and comparison without bit-decomposition proto-
col. In Conference on Theory and Practice of Public Key Cryp-

tography (PKC) (2007).
[29] OHM, P. Broken promises of privacy: Responding to the sur-

prising failure of anonymization. 57 UCLA Law Review (2010).
Available at http://ssrn.com/abstract=1450006.

[30] PAREKH, J. J., WANG, K., AND STOLFO, S. J. Privacy-
preserving payload-based correlation for accurate malicious traf-
fic detection. In ACM Workshop on Large-scale Attack Defense

(LSAD) (2006).
[31] PLANETLAB. An open platform for developing, deploy-

ing, and accessing planetary-scale services. http://www.

planet-lab.org.
[32] PORRAS, P., AND SHMATIKOV, V. Large-scale collection and

sanitization of network security data: risks and challenges. In
Workshop on New security paradigms (NSPW) (2006).

[33] RANJAN, S., SHAH, S., NUCCI, A., MUNAFÒ, M. M., CRUZ,
R. L., AND MUTHUKRISHNAN, S. M. Dowitcher: Effective
worm detection and containment in the internet core. In INFO-

COM (2007).
[34] RINGBERG, H. Privacy-Preserving Collaborative Anomaly De-

tection. PhD thesis, Princeton University, 2009.
[35] ROSSI, D., MELLIA, M., AND MEO, M. Understanding Skype

Signaling. Computer Networks 53, 2 (2009), 130–140.
[36] ROUGHAN, M., AND ZHANG, Y. Privacy-preserving perfor-

mance measurements. In SIGCOMM workshop on Mining net-

work data (MineNet) (2006).
[37] ROUGHAN, M., AND ZHANG, Y. Secure distributed data-mining

and its application to large-scale network measurements. Com-

puter Communication Review (CCR) 36, 1 (2006), 7–14.
[38] SEKAR, V., XIE, Y., MALTZ, D., REITER, M., AND ZHANG,

H. Toward a framework for internet forensic analysis. In ACM

HotNets-III (2004).
[39] SEPIA web page. http://www.sepia.ee.ethz.ch.
[40] SHAMIR, A. How to share a secret. Communications of the ACM

22, 11 (1979), 612–613.
[41] SHMATIKOV, V., AND WANG, M. Security against probe-

response attacks in collaborative intrusion detection. In ACM

Workshop on Large-scale Attack Defense (LSAD) (2007).
[42] SIMPSON, C. R., JR., AND RILEY, G. F. Neti@home: A dis-

tributed approach to collecting end-to-end network performance
measurements. In Passive and Active Measurement Conference

(PAM) (2004).
[43] SLAGELL, A., AND YURCIK, W. Sharing Computer Network

Logs for Security and Privacy: A Motivation for New Method-
ologies of Anonymization. In Workshop on the Value of Security

through Collaboration (SECOVAL) (September 2005).
[44] STOLFO, S. J. Worm and attack early warning. IEEE Security

and Privacy 2, 3 (2004), 73–75.
[45] TARIQ, M. B., MOTIWALA, M., FEAMSTER, N., AND AM-

MAR, M. Detecting network neutrality violations with causal
inference. In Conference on Emerging networking experiments

and technologies (CoNEXT) (2009).
[46] TELLENBACH, B., BURKHART, M., SORNETTE, D., AND

MAILLART, T. Beyond Shannon: Characterizing Internet Traffic
with Generalized Entropy Metrics. In Passive and Active Mea-

surement Conference (PAM) (April 2009).
[47] Nonextensive statistical mechanics and thermodynamics. http:

//tsallis.cat.cbpf.br/biblio.htm.
[48] YAO, A. Protocols for secure computations. In IEEE Symposium

on Foundations of Computer Science (1982).
[49] YEGNESWARAN, V., BARFORD, P., AND JHA, S. Global Intru-

sion Detection in the DOMINO Overlay System. In Network and

Distributed System Security Symposium (NDSS) (2004).
[50] ZIVIANI, A., GOMES, A., MONSORES, M., AND RODRIGUES,

P. Network anomaly detection using nonextensive entropy. Com-

munications Letters, IEEE 11, 12 (2007), 1034–1036.

Notes
1We define near real-time as the requirement of fully processing

an x-minute interval of traffic data in no longer than x minutes, where
x is typically a small constant. For our evaluation, we use 5-minute
windows.

2For instance, if n = 10 and Tc = 7, each event that needs to be
reconstructed according to (4) must be reported by at least one of the
first 4 input peers. Hence, it is sufficient to compute the Cij and Wij

for the first n− Tc + 1 = 4 input peers.
3When run on a 32-bit platform, up to twice the CPU load was ob-

served, with similar overall running time. This difference is due to
shares being stored in long variables, which are more efficiently pro-
cessed on 64-bit CPUs.

USENIX Association 19th USENIX Security Symposium 241

Dude, where’s that IP? Circumventing measurement-based IP geolocation

Phillipa Gill Yashar Ganjali

Dept. of Computer Science

University of Toronto

Bernard Wong

Dept. of Computer Science

Cornell University

David Lie

Dept. of Electrical and Computer Engineering

University of Toronto

Abstract

Many applications of IP geolocation can benefit from ge-

olocation that is robust to adversarial clients. These in-

clude applications that limit access to online content to a

specific geographic region and cloud computing, where

some organizations must ensure their virtual machines

stay in an appropriate geographic region. This paper

studies the applicability of current IP geolocation tech-

niques against an adversary who tries to subvert the tech-

niques into returning a forged result. We propose and

evaluate attacks on both delay-based IP geolocation tech-

niques and more advanced topology-aware techniques.

Against delay-based techniques, we find that the adver-

sary has a clear trade-off between the accuracy and the

detectability of an attack. In contrast, we observe that

more sophisticated topology-aware techniques actually

fare worse against an adversary because they give the

adversary more inputs to manipulate through their use

of topology and delay information.

1 Introduction

Many applications benefit from using IP geolocation to

determine the geographic location of hosts on the In-

ternet. For example, online advertisers and search en-

gines tailor their content based on the client’s location.

Currently, geolocation databases such as Quova [22] and

MaxMind [16] are the most popular method used by ap-

plications that need geolocation services.

Geolocation is also used in many security-sensitive ap-

plications. Online content providers such as Hulu [13],

BBC iPlayer [22], RealMedia [22] and Pandora [20],

limit their content distribution to specific geographic re-

gions. Before allowing a client to view the content, they

determine the client’s location from its IP address and al-

low access only if the client is in a permitted jurisdiction.

In addition, Internet gambling websites must restrict ac-

cess to their applications based on the client’s location

or risk legal repercussions [29]. Accordingly, these busi-

nesses rely on geolocation to limit access to their online

services.

Looking forward, the growth of infrastructure-as-a-

service clouds, such as Amazon’s EC2 service [1], may

also drive organizations using cloud computing to em-

ploy geolocation. Users of cloud computing deploy VMs

on a cloud provider’s infrastructure without having to

maintain the hardware their VM is running on. However,

differences in laws governing issues such as privacy, in-

formation discovery, compliance and audit require that

some cloud users to restrict VM locations to certain juris-

dictions or countries [6]. These location restrictions may

be specified as part of a service level agreement (SLA)

between the cloud user and provider. Cloud users can

use IP geolocation to independently verify that the loca-

tion restrictions in their cloud SLAs are met.

In these cases, the target of geolocation has an incen-

tive to mislead the geolocation system about its true lo-

cation. Clients commonly use proxies to mislead content

providers so they can view content that is unauthorized

in their geographic region. In response, some content

providers [13] however, have identified and blocked ac-

cess from known proxies; but this does not prevent all

clients from circumventing geographic controls. Sim-

ilarly, cloud providers may attempt to break location

restrictions in their SLAs to move customer VMs to

cheaper locations. Governments that enforce location re-

quirements on the cloud user may require the geoloca-

tion checks to be robust no matter what a cloud provider

may do to mislead them. Even if the cloud provider itself

is not malicious, its employees may also try to relocate

VMs to locations where they can be attacked by other

malicious VMs [24]. Thus, while cloud users might trust

the cloud service provider, they may still be required to

cd ..have independent verification of the location of their

VMs to meet audit requirements or to avoid legal liabil-

ity.

242 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 243

IP geolocation has been an active field of research for

almost a decade. However, all current geolocation tech-

niques assume a benign target that is not trying to in-

tentionally mislead the user, and there has been limited

work on geolocating malicious targets. Castelluccia et

al. apply Constraint-Based Geolocation (CBG) [12] to

the problem of geolocating fast-flux hidden servers that

use a layer of proxies in a botnet [5] to conceal their loca-

tion. Muir and Oorschot [18] describe limitations of pas-

sive geolocation techniques (e.g., whois services) and

present a technique for finding the IP address of a ma-

chine using the Tor anonymization network [28]. These

previous works focus on de-anonymization of hosts be-

hind proxies, while our contribution in this paper is to

answer fundamental questions about whether current ge-

olocation algorithms are suitable for security-sensitive

applications:

• Are current geolocation algorithms accurate

enough to locate an IP within a certain country

or jurisdiction? We answer this question by sur-

veying previously published studies of geolocation

algorithms. We find that current algorithms have

accuracies of 35-194 km, making them suitable for

geolocation within a country.

• How can adversaries attack a geolocation sys-

tem? We propose attacks on two broad classes of

measurement-based geolocation algorithms – those

relying on network delay measurements and those

using network topology information. To evaluate

the practicality of these attacks, we categorize ad-

versaries into two classes – a simple adversary that

can manipulate network delays and a sophisticated

one with control over a set of routable IP addresses.

• How effective are such attacks? Can they be

detected? We evaluate our attacks by analyzing

them against models of geolocation algorithms. We

also perform an empirical evaluation using mea-

surements taken from PlanetLab [21] and execut-

ing attacks on implementations of delay-based and

topology-aware geolocation algorithms. We ob-

serve the simple adversary has limited accuracy and

must trade off accuracy for detectability of their at-

tack. On the other hand, the sophisticated adversary

has higher accuracy and remains difficult to detect.

The rest of this paper is structured as follows. Sec-

tion 2 summarizes relevant background and previous

work on geolocation techniques. The security model and

assumptions we use to evaluate current geolocation pro-

posals is described in Section 3. We develop and ana-

lyze attacks on delay-based and topology-aware geolo-

cation methods in Sections 4 and 5, respectively. Sec-

tion 6 presents related work that evaluates geolocation

when confronted by a target that leverages proxies. We

present conclusions in Section 7.

2 Geolocation Background

IP geolocation aims to solve the problem of determin-

ing the geographic location of a given IP address. The

solution can be expressed to varying degrees of granu-

larity; for most applications the result should be precise

enough to determine the city in which the IP is located,

either returning a city name or the longitude and latitude

where the target is located. The two main approaches to

geolocation use either active network measurements to

determine the location of the host or databases of IP to

location mappings.

Measurement-based geolocation algorithms [9, 12, 14,

19, 30, 31] leverage a set of geographically distributed

landmark hosts with known locations to locate the tar-

get IP. These landmarks measure various network prop-

erties, such as delay, and the paths taken by traffic be-

tween themselves and the target. These results are used

as input to the geolocation algorithm which uses them

to determine the target’s location using methods such as:

constraining the region where the target may be located

(geolocalization) [12, 30], iterative force directed algo-

rithms [31], machine learning [9] and constrained opti-

mization [14].

Geolocation algorithms mainly rely on ping [7] and

traceroute [7] measurements. Ping measures the

round-trip time (RTT) delay between two machines on

the Internet, while traceroute discovers and mea-

sures the RTT to routers along the path to a given des-

tination. We classify measurement-based geolocation al-

gorithms by the type of measurements they use to deter-

mine the target’s location. We refer to algorithms that

use end-to-end RTTs as delay-based [9,12,31] and those

that use both RTT and topology information as topology-

aware algorithms [14, 30].

An alternative to measurement-based geolocation is

geolocation using databases of IP to location mappings.

These databases can be either proprietary or public. Pub-

lic databases include those administered by regional In-

ternet registries (e.g., ARIN [3], RIPE [23]). Propri-

etary databases of IP to geographic location mappings

are provided by companies such as Quova [22] and Max-

mind [16]. While the exact method of constructing these

databases is not public, they are sometimes based on a

combination of whois services, DNS LOC records and

autonomous system (AS) numbers [2]. Registries and

databases tend to be coarse grained, usually returning the

headquarters location of the organization that registered

the IP address. This becomes a problem when organiza-

tions distribute their IP addresses over a wide geographic

region, such as large ISPs or content providers. Mislead-

Table 1: Average accuracy of measurement-based geolocation algorithms.

Class Algorithm Average accuracy (km)

Delay-based

GeoPing [19] 150 km (25th percentile); 109 km (median) [30]

CBG [12] 78-182

Statistical [31] 92

Learning-based [9] 407-449 (113 km less than CBG [12] on their data)

Topology-aware
TBG [14] 194

Octant [30] 35-40 (median)

Other GeoTrack [19] 156 km (median) [30]

ing database geolocation is also straightforward through

the use of proxies.

DNS LOC [8] is an open standard that allows DNS ad-

ministrators to augment DNS servers with location infor-

mation, effectively creating a publicly available database

of IP location information. However, it has not gained

widespread usage. In addition, since the contents of the

DNS LOC database are not authenticated and are set by

the owners of the IP addresses themselves, it is poorly

suited for security-sensitive applications.

Much research has gone into improving the accuracy

of measurement-based geolocation algorithms; conse-

quently, they provide fairly reliable results. Table 1

shows the reported average accuracies of recently pro-

posed geolocation algorithms. Based on the reported ac-

curacies, we believe that current geolocation algorithms

are sufficiently accurate to place a machine within a

country or jurisdiction. In particular, CBG [12] and Oc-

tant [30] appear to offer accuracies well within the size

of most countries and may even be able to place users

within a metropolitan area. Measurement-based geoloca-

tion is particularly appealing for secure geolocation be-

cause if a measurement can reach the target (e.g., using

application layer measurements [17]), even if it is behind

a proxy (e.g., SOCKS or HTTP proxy), the effectiveness

of proxying will be diminished.

3 Security Model

We model secure geolocation as a three-party problem.

First, there is the geolocation user or victim. The user

hopes to accurately determine the location of the target

using a geolocation algorithm that relies on measure-

ments of network properties1. We assume that; (1) the

user has access to a number of landmark machines dis-

tributed around the globe to makemeasurements of RTTs

and network paths, and (2) the user trusts the results of

measurements reported by landmarks. Second, there is

the adversary, who owns the target’s IP address. The ad-

versary would like to mislead the user into believing that

the target is at a forged location of the adversary’s choos-

ing, when in reality the target is actually located at the

true location. The adversary is responsible for physically

connecting the target IP address to the Internet, which

allows them to insert additional machines or routers be-

tween the target and the Internet. The third party is the

Internet itself. While the Internet is impartial to both ad-

versary and user, it introduces additive noise as a result

of queuing delays and circuitous routes. These properties

introduce some inherent inaccuracy and unpredictability

into the results of measurements on which geolocation

algorithms rely. In general, an adversary’s malicious

tampering with network properties (such as adding de-

lay), if done in small amounts, is difficult to distinguish

from additive noise introduced by the Internet.

This work addresses two types of adversaries with dif-

fering capabilities. We assume in both cases that the ad-

versary is fully aware of the geolocation algorithm and

knows both the IP addresses and locations of all land-

marks used in the algorithm. The first, simple adver-

sary can tamper only with the RTT measurements taken

by the landmarks. This can be done by selectively de-

laying packets from landmarks to make the RTT appear

larger than it actually is. The simple adversary was cho-

sen to resemble a home user running a program to selec-

tively delay responses to measurements. The second, so-

phisticated adversary, controls several IP addresses and

can use them to create fake routers and paths to the tar-

get. Further, this adversary may have a wide area net-

work (WAN) with several gateway routers and can influ-

ence BGP routes to the target. The sophisticated adver-

sary was chosen to model a cloud provider as the adver-

sary. Many large online service providers already deploy

WANs [11], making this attack model feasible with low

additional cost to the provider.

We make two assumptions in this work. First, while

aware of the geolocation algorithm being used, and the

location and IP addresses of all landmarks, the adver-

sary cannot compromise the landmarks or run code on

them. Thus, the only way the adversary can compromise

the integrity of network measurements is to modify the

properties of traffic traveling on network links directly

connected to a machine under its control.

244 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 245

The second assumption is that network measurements

made by landmarks actually reach the target. Otherwise,

an adversary could trivially attack the geolocation system

by placing a proxy at the forged location that responds to

all geolocation traffic and forwards all other traffic to the

true location. To avoid this attack, the user can either

combine the measurements with regular traffic or protect

it using cryptography. For example, if the geolocation

user is a Web content provider, Muir and Oorschot [18]

have shown that even an anonymization network such as

Tor [28] may be defeated using a Java applet embedded

in a Web page. Users who want to geolocate a VM in a

compute cloud may require the cloud provider to support

tamper-proof VMs [10, 25] and embed a secret key in

the VM for authenticating end-to-end network measure-

ments. In this case, the adversary would need to place a

copy of the VM in the forged location to respond to mea-

surements. Given that the adversary is trying to avoid

placing a VM in the forged location, it is not a practical

attack for a malicious cloud provider.

4 Delay-based geolocation

Delay-based geolocation algorithms use measurements

of end-to-end network delays to geolocate the target IP.

To execute delay-based geolocation, the landmarks need

to calibrate the relationship between geographic distance

and network delay. This is done by having each land-

mark, Li, ping all other landmarks. Since the landmarks

have known geographic locations, Li can then derive a

function mapping geographic distance, gij , to network

delay, dij , observed to each other landmark Lj where

i �= j [12]. Each landmark performs this calibration and

develops its own mapping of geographic distance to net-

work delay. After calibrating its distance-to-delay func-

tion, it then pings the target IP. Using the distance-to-

delay function, the landmark can then transform the ob-

served delay to the target into a predicted distance to the

target. All landmarks perform this computation to trian-

gulate the location of the target.

Delay-based geolocation operates under the implicit

assumption that network delay is well correlated with ge-

ographic distance. However, network delay is composed

of queuing, processing, transmission and propagation de-

lay [15]. Where only the propagation time of network

traffic is related to distance traveled, and the other com-

ponents vary depending on network load, thus adding

noise to the measured delay. This assumption is also vio-

lated when network traffic does not take a direct (“as the

crow flies”) path between hosts. These indirect paths are

referred to as “circuitous” routes [30].

There are many proposed methods for delay-based ge-

olocation, including GeoPing [19], Statistical Geoloca-

tion [31], Learning-basedGeolocation [9] and CBG [12].

These algorithms differ in how they express the distance-

to-delay function and how they triangulate the position of

the target. GeoPing is based on the observation that hosts

that are geographically close to each other will have de-

lay properties similar to the landmark nodes [19]. Sta-

tistical Geolocation develops a joint probability density

function of distance to delay that is input into a force-

directed algorithm used to geolocate the target [31]. In

contrast, Learning-based Geolocation utilizes a Naı̈ve

Bayes framework to geolocate a target IP given a set of

measurements [9]. CBG has the highest reported accu-

racy of the delay-based algorithms, with a mean error of

78-182 km [12]. The remainder of this section therefore

focuses on CBG to model and evaluate how an adversary

can influence delay-based geolocation techniques.

CBG [12] establishes the distance-delay function, de-

scribed above, by having the landmarks ping each other

to derive a set of points (gij ,dij) mapping geographic

distance to network delay. To mitigate the effects of

congestion on network delays, multiple measurements

are made, and the 2.5-percentile of network delays are

used by the landmarks to calibrate their distance-to-delay

mapping. Each landmark then computes a linear (“best

line”) function that is closest to, but below, the set of

points. Distance between each landmark and the target

IP is inferred using the “best line” function. This gives

an implied circle around each landmark where the tar-

get IP may be located. The target IP is then predicted to

be in the region of intersection of the circles of all the

landmarks. Since the result of this process is a feasible

region where the target may be located, CBG determines

the centroid of the region and returns this value as the

geolocation result. Gueye et al. observe a mean error

of 182 km in the US and 78 km in Europe. They also

find that the feasible region where the target IP may be

located ranges from 104 km2 in Europe to 105 km2 in

North America.

4.1 Attack on delay-based geolocation

Since delay-based geolocation techniques do not take

network topology into account, the ability of a sophis-

ticated adversary to manipulate network paths is of no

additional value. Against a delay-based geolocation al-

gorithm, the simple and sophisticated adversaries have

equal power.

To mislead delay-based geolocation, the adversary can

manipulate distance of the target computed by the land-

marks by altering the delay observed by each landmark.

The adversary knows the identities and locations of each

landmark and can thus identify traffic from the land-

marks and alter the delay as necessary. To make the tar-

get at the true location, t, appear to be at forged location,
τ , the adversary must alter the perceived delay, dit, be-

Figure 1: Landmarks (PlanetLab nodes) used in evalua-

tion.

Figure 2: Forged locations (τ) used in the evaluation.

tween each landmark, Li and t to become the delay, diτ ,

each landmark should perceive between Li and τ . To do

this, two problems must be solved. The adversary must

first find the appropriate delay, diτ , for each landmark

and then change the perceived delay to the appropriate

delay.

If the adversary controls a machine at or near τ , she
may directly acquire the appropriate diτ for each land-

mark by pinging each of the landmarks from the forged

location τ . However, pings to all the landmarks from

a machine not related to the geolocation algorithm may

arouse suspicion. Also, it may not be the case that the

adversary controls a machine at or near τ .
Alternatively, with knowledge of the location of the

landmarks, the adversary can compute the geographic

distances git and giτ between each landmark Li and the

true location t as well as the forged location τ . This en-
ables the adversary to determine the additional distance

a probe from Li would travel (γi = giτ − git) had it ac-

tually been directed to the forged location τ . The next

challenge is to map γi into the appropriate amount of de-

lay to add. To do this, the adversary may use 2/3 the

speed of light in a vacuum (c) as a lower-bound approxi-
mation for the speed of traffic on the Internet [14]. Thus,

the required delay to add to each ping from Li is:

δi =
2 × γi

2/3 × c
(1)

The additional distance the ping from Li would travel is

multiplied by 2 because the delay measured by ping is

the round-trip time as opposed to the end-to-end delay.

This approximation is the lower bound on the delay that

would be required for the ping to traverse the distance

2×γi because the speed of light propagation is the fastest

data can travel between the two points.

Armed with this approximation of the appropriate diτ

for each landmark, the adversary can now increase the

delay of each probe from the landmarks. The perceived

delay cannot be decreased since this would require the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000

P
[X

<
x
]

distance of attempted move (km)

within N. America outside N. America

Figure 3: CDF of the distance the adversary tries to move

the target.

adversary to either increase the speed of the network path

between t and Li, or slow down probes from Li during

its calibration phase. Since the adversary cannot compro-

mise the landmarks and does not control network paths

that are not directly connected to one of her machines,

she is not able to accomplish this. As a result, the adver-

sary may only modify landmark delays that need to be

increased (i.e., diτ > dit). For all other landmarks, she

does not alter the delays. Thus, even with perfect knowl-

edge of the delays diτ , neither a simple nor sophisticated

adversary will be able to execute an attack perfectly on

delay-based geolocation techniques.

4.2 Evaluation

We evaluate the effectiveness of our proposed attack

against a simulator that runs the CBG algorithm pro-

posed by Gueye et al. [12]. We collected measurement

inputs for the algorithm using 50 PlanetLab nodes. Each

node takes a turn being the target with the remaining

49 PlanetLab nodes being used as landmarks. Figure 1

shows the locations of the PlanetLab nodes. Each tar-

246 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 247

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
[X

<
x
]

error for attacker (km)

best-line
SOL delay

best-line (outside N. America)
SOL delay (outside N. America)

Figure 4: CDF of error distance for the adversary when

attacking delay-based geolocation using speed of light

(SOL) or best line delay.

get is initially geolocated using observed network delays.

The target is then moved to 50 forged locations using the

delay-adding attack, shown in Figure 2. We select 40 of

the forged locations based on the location of US univer-

sities and 10 based on the location of universities outside

of North America. This results in a total of 2,500 at-

tempted attacks on the CBG algorithm.

In the delay adding attack, the adversary cannot move

a target that is not within the same region as the land-

marks into that region. For example, if the target is lo-

cated in Europe, moving it to a forged location in North

America would require reducing delay to all landmarks,

which is not possible. This implies that if a geolocation

provider wants to prevent the adversary from moving the

target into a specific region, it should place their land-

marks in this desired region.

Figure 3 shows the CDF of the distances the adversary

attempts to move the target. In North America, the tar-

get is moved less than 4,000 km most of the time moved

moved less than 1,379 km 50% of the time. Outside of

North America, the distance moved consistently exceeds

5,000 km.

We evaluate the delay-adding attack under two cir-

cumstances: (1) when the adversary knows exactly what

delay to add (by giving the adversary access to the “best

line” function used by the landmarks), and (2) when the

adversary uses the speed of light (SOL) approximation

for the additional delay.

4.2.1 Attack effectiveness

Since the adversary is only able to increase, and not de-

crease, perceived delays, there are errors between the

forged location, τ , and the actual location, r, returned
by the geolocation algorithm. To understand why these

errors exist, consider Figure 5. The arcs labeled g1, g2,

Figure 5: Attacking delay-based geolocation.

and g3 are the circles drawn by 3 landmarks when ge-

olocating the target. The region enclosed by the arcs is

the feasible region, and the geolocation result is the cen-

troid of that region. To move t to τ , the adversary should
increase the radii of g2 and g3 and decrease the radius

of g1. However, as described earlier, delay can only be

added, meaning that the adversary can only increase the

radii of g2 and g3 to g′
2
and g′

3
, respectively (shown by the

dotted lines). Since the delay of g1 cannot be decreased,

this results in a larger feasible region with a centroid r
that does not quite reach τ . We call the difference be-

tween the geolocation result (r) and forged location (τ)
the error distance (ε) for the adversary. The difference

between the intended and actual direction of the move is

the angle θ.

We begin by evaluating the error distance, ε. Figure 4
shows the CDF of error for the adversary over the set of

attempted attacks in our evaluation. Within North Amer-

ica, an adversary using the speed of light approximation

has a median error of 1,143 km. When the adversary has

access to the best line function,their error decreases to

671 km. As a reference, 671 km is approximately half the

width of Texas. This indicates that when moving within

North America, it is possible for an adversary with ac-

cess to the best line function to be successful in trying

to move the target into a specific state. We note that

three of the targets used in our evaluation were located

in Canada. Using the speed of light approximation these

Canadian targets are able to appear in the US 65% of the

time. Using the best line function, they are able to move

into the US 89% of the time.

Outside of North America, the delay-adding attack has

poor accuracy with a minimum error for the adversary of

4,947 km. As a reference, the distance from San Fran-

cisco to New York City is 4,135 km. Error of this magni-

tude is not practical for an adversary attempting to place

the target in a specific country. For the remainder of this

section, we focus on attacks where the adversary tries

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000

e
rr

o
r

fo
r

a
tt
a
c
k
e
r

(k
m

)

distance of attempted move (km)

0.70*x
90-percentile

median
10-percentile

Figure 6: Error observed by the adversary depending on

distance of their attempted move for the delay-adding at-

tack.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000

e
rr

o
r

fo
r

a
tt
a
c
k
e
r

(k
m

)

distance of attempted move (km)

0.40*x
90-percentile

median
10-percentile

Figure 7: Error observed by the adversary depending on

distance of their attempted move for the delay-adding at-

tack when they have access to the best line function.

to move within North America because the error for the

adversary is more reasonable.

We next consider how the distance the adversary tries

to move the target affects the observed error. Figure 6

shows error for the adversary depending on how far the

adversary attempts to move the target when using the

speed of light approximation. Figure 7 shows the same

data for an adversary with access to the best line func-

tion. We note that the error observed by the adversary

grows with the magnitude of the attempted move by the

adversary. Specifically, for each 1 km the adversary tries

to move the median error increases by 700 meters when

she does not have access to the best line function. With

access to the best line function, the median error per km

decreases by 43% to 400 km. Thus, the attack we pro-

pose works best when the distance between t and τ is

relatively small and the error observed by the attacker

grows linearly with the size of the move.

Given the relatively high errors observed by the adver-

sary, we next verify whether the adversary moves in her

chosen direction. Figure 8 shows the CDF of θ, the dif-
ference between the direction the adversary tried to move

and the direction the target was actually moved. While

lacking high accuracy when executing the delay-adding

attack, the adversary is able to move the target in the gen-

eral direction of her choosing. The difference in direction

is less than 45 degrees 74% of the time and less than 90

degrees 89% of the time. The attack where the adversary

has access to the best line function performs better with

a difference in direction of less than 45 degrees 91% of

the time.

4.2.2 Attack detectability

We next look at whether a geolocation provider can de-

tect the delay-adding attack and thus determine that the

geolocation result has been tampered with.

When CBG geolocates a target, it determines a feasi-

ble region where the target can be located [12]. The size

of the feasible region can be interpreted as a measure of

confidence in the geolocation result. A very large region

size indicates that there is a large area where the target

may be located, although the algorithm returns the cen-

troid. As we saw in Figure 5, the adversary, able only

to add delay, can only increase the radii of the arcs and

thus only increase the region size. As a result, the delay-

adding attack always increases the feasible region size

and reduces confidence in the result of the geolocation al-

gorithm. We consider the region size computed by CBG

before and after our proposed attack to determine how

effective region size may be for detecting an attack.

Figure 9 shows the region size for CBG when the

delay-adding attack is executed in general, when the

attack only attempts to move the landmark less than

1,000 km, and where the adversary has access to the best

line function. We observe that the region size becomes

orders of magnitude larger when the delay-adding attack

is executed. The region size grows even larger when the

adversary uses the best line function. An adversary that

moves the target less than 1,000 km is able to execute

the attack without having much impact on the region size

distribution.

The region size grows in proportion to the amount of

delay added. This explains why the adversary creates

a larger region size when using the best line function,

which adds more delay than the speed of light approxi-

248 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 249

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

P
[X

<
x
]

absolute difference in direction (degrees)

best line delay
SOL delay

Figure 8: CDF of change in direction for the delay-adding

attack.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 2x10
7

4x10
7

6x10
7

8x10
7

P
[X

<
x
]

localization region size (km
2
)

CBG
SOL delay (<=1000 KM move)

SOL delay
best line delay

Figure 9: CDF of region size for CBG before and after the

delay-adding attack.

10
4

10
5

10
6

10
7

10
8

 0 1000 2000 3000 4000 5000 6000

re
g
io

n
 s

iz
e
 (

k
m

2
)

distance of attempted move (km)

90-percentile
median

10-percentile

Figure 10: Region size depending on how far the adver-

sary attempts to move the target using the best line func-

tion.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 200000 400000 600000 800000 1000000

P
[X

<
x
]

localization region size (km
2
)

CBG
SOL delay (<=1000 KM move)

SOL delay
best line delay

Figure 11: CDF of region size for CBG before and after

delay-adding, limited to points less than 1,000,000 km2.

mation. Figure 10 illustrates this case. As the adversary

attempts to move the target further from its true location,

the amount of delay that must be added increases. This

in turn increases the region size returned by CBG. Thus,

while there may be methods for adding delay that im-

prove the adversary’s accuracy, they will only increase

the ability of the geolocation provider to detect the at-

tack.

Given the increased region sizes observed when the

delay-adding attack is executed, one defense would be to

use a region size threshold to exclude geolocation results

with insufficient confidence. Increased region sizes may

be caused by an adversary adding delays, as we have ob-

served or by fluctuations in the stochastic component of

network delay. In either case, the geolocation algorithm

observes a region that is too large for practical purposes.

Suppose we discard all geolocation results with a region

size greater than 1,000,000 km2 (this is approximately

the size of Texas and California combined). Figure 11

shows the CDF of region size below this threshold. The

adversary using the speed-of-light approximation will be

undetected only 36% of the time. However, if the adver-

sary attempts to move less than 1,000 km she will remain

undetected 74% of the time. An adversary with access

to the best line for each of the landmarks is more eas-

ily detectable because of the larger region sizes that re-

sult from the larger injected delays. With a threshold of

1,000,000 km2, the adversary using the best line function

will have her results discarded 83% of the time. Thus,

using a threshold on the region size is effective for de-

tecting attacks on delay-based geolocation except when

the attacker tries to move the target only a short distance.

5 Topology-aware geolocation

Delay-based geolocation relies on correlating measured

delays with distances between landmarks. As we saw

previously, these correlations or mappings are applied

to landmark-to-target delays to create overlapping con-

fidence regions; the overlap is the feasible region, and

the estimated location of the target is its centroid. When

inter-landmark delays and landmark-to-target delays are

not similarly correlated with physical distances (e.g., due

to circuitous end-to-end paths) the resulting delay-to-

distance relationships to the target can deviate signifi-

cantly from the pre-computed correlations.

Topology-aware geolocation addresses this problem

by limiting the impact of circuitous end-to-end paths;

specifically, it localizes all intermediate routers in ad-

dition to the target node, which results in a better es-

timate of delays. Starting from the landmarks, the ge-

olocation algorithm iteratively estimates the location of

all intermediate routers on the path between the land-

mark and the target. This is done solely based on

single-hop link delays, which are usually significantly

less circuitous than multi-hop end-to-end paths, enabling

topology-aware geolocation to be more resilient to cir-

cuitous network paths than delay-based geolocation.

There are two previously proposed topology-aware

geolocation methods, topology-based geolocation

(TBG) [14] and Octant [30]. These methods differ

in how they geolocate the intermediate routers. TBG

uses delays measured between intermediate routers

as inputs to a constrained optimization that solves

for the location of the intermediate routers and target

IP [14]. In contrast, Octant leverages a “geolocalization”

framework similar to CBG [12], where the location of

the intermediate routers and target are constrained to

specific regions based on their delays from landmarks

and other intermediate routers [30]. These delays are

mapped into distances using a convex hull rather than a

linear function, such as the best line in CBG to improve

the mapping between distance and delay.

Octant leverages several optimizations that improve its

performance over other geolocation algorithms. These

include: taking into account both positive and negative

constraints; accounting for fixed delays along network

paths, and decreasing the weight of constraints based

on latency measurements. Wong et al. find that their

scheme outperformsCBG, with median accuracies of 35-

40 km [30]. In addition, the feasible regions returned by

Octant are much smaller than those returned by CBG.

They also observe that their scheme is robust even given

a small number of landmarks with performance leveling

off after 15 landmarks.

When analyzing and evaluating attacks on topology-

aware geolocation, we consider a generic geolocation

framework. Intermediate routers are localized using con-

straints generated from latencies to adjacent routers. The

target is localized to a feasibility region generated based

on latencies from the last hop(s) before the target, and

the centroid of the region is returned.

5.1 Delay-based attacks on topology-aware

geolocation

Topology-aware geolocation systems localize all inter-

mediate routers in addition to the target node. We begin

by analyzing how a simple adversary, one without the

ability to fabricate routers, could attack the geolocation

system, and then move onto how a sophisticated adver-

sary could apply additional capabilities to improve the

attack. Since the simple adversary has no control over

the probes outside her own network, any change made

can only be reflected on the final links of the path to-

wards the target.

Most networks are usually connected to the rest of the

Internet via a small number of gateway routers. Any path

connecting nodes outside the adversary’s network to the

target (which is inside the network) will go through one

of these routers. Here, we start with a simple case where

all routes towards the target converge on a single gate-

way router; we then consider the more general case of

multiple gateway routers.

CLAIM: 1 If the network paths from the landmarks to

the target converge to a single common gateway router,

increasing the end-to-end delays between the landmarks

and the target can be detected and mitigated by topology-

aware geolocation systems.

To verify this claim, we first characterize the effect

of delay-based attacks on topology-aware geolocation.

Delay-based attacks selectively increase the delay of the

probes from landmarks. The probe from landmark Li

is delayed for an additional δi seconds. Given that all

network paths to the target converge to a single common

gateway router h, the end-to-end delay from each land-

mark, Li, to the target can be written as:

dit = dih + dht + δi (2)

The observed latency from the gateway to the target is

dit − dih, which is the sum of the real last-hop latency

and the attack delay. However, since the delay-based at-

tack relies on selectively varying the attack delays, δi,

based on the location ofLi, the observed last-hop latency

between the gateway and the target will be inconsistent

across measurements initiated from different landmarks.

The high-variance in the last-hop link delay can be

used to detect delay-based attacks in topology-aware ge-

olocation systems. The attack can be mitigated by taking

250 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 251

the minimum observed delay for each link. The resulting

observed link delay from h to the target is:

d̂ht = dht + min
Li∈L

δi (3)

This significantly reduces the scope of delay-based at-

tacks, requiring attack delays to be uniform across all

measurement vantage points when there is only a single

common gateway to the target.

In general, if there are multiple gateway routers on the

border of the adversary’s network, we can make the fol-

lowing weaker claim:

CLAIM: 2 Increasing the delay between each gate-

way and the target can only be as effective against

topology-based geolocation as increasing end-to-end de-

lays against delay-based geolocation with a reduced set

of landmarks.

An adversary could attempt to modify delays between

each gateway router, hj , and the target, t. This assumes

the adversary knows the approximate geolocation results

for all gateway routers 2. Where there is only a single

gateway router with no additional attack delay, topology-

based geolocation places the target within a circle cen-

tered at h with coordinates (λh, φh):

√
(x − λh)2 + (y − φh)2 = dht (4)

Subjecting the latency measurement to an additional de-

lay, δ, changes the equation to the following:

√
(x − λh)2 + (y − φh)2 = dht + δ (5)

Thus, for targets with a single gateway router, an adver-

sary can only increase the localization region by intro-

ducing an additional delay without changing the location

of the region’s geometric center.

For targets with multiple gateway routers H =
h0, h1, ..., hn, targets are geolocated based on the de-

lays between the gateways and t. An adversary can

add additional delay, δj , between each gateway, hj , and

t based on the location of hj . This is equivalent to

the delay-adding attack, except the previously geolo-

cated gateway routers are used in place of the real land-

marks. Therefore, the previous evaluation results for the

delay-adding attack on delay-based geolocation can be

extended to topology-based geolocation for targets with

multiple gateway routers.

5.2 Topology-based attacks

In topology-based geolocation, intermediate nodes are

localized to confidence regions, and geographic con-

straints constructed from these intermediate nodes are

expanded by their confidence regions to account for the

accumulation of error. However, this does not result in

a monotonic increase in the region size of intermediate

nodes with each hop. The intersection of several ex-

panded constraints for intermediate nodes along multiple

network paths to the target can still result in intermedi-

ate nodes that are localized to small regions. A sophisti-

cated adversary with control over a large administrative

domain can exploit this property by fabricating nodes,

links and latencies within its network to create constraint

intersections at specific locations. This assumes that the

adversary can detect probe traffic issued from geoloca-

tion systems in order to present a topologically different

network without affecting normal traffic.

Externally visible nodes in an adversary’s network

consist of gateway routers ER = {er0, er1, ..., erm},
internal routers F = {f0, f1, ..., fn} and end-points

T = {τ0, τ1, ..., τs}. Internal routers can be fictitious,

and network links between internal routers can be arbi-

trarily manufactured. The adversary’s network can be de-

scribed as the graphG = (V, E), where V = F∪ER∪T
represents routers, and E = {e0, e1, ..., ek}with weights
w(ei) is the set of links connecting the routers with

weights representing network delays.

All internal link latencies, including those between

gateways, can be fabricated by the adversary. How-

ever, the delay between fictitious nodes must respect the

speed-of-light constraint, which dictates that a packet can

only travel a distance equal to the product of delay and

the speed-of-light in fiber.

CLAIM: 3 Topology-based attacks require the adversary

to have more than one geographically distributed gate-

way router to its network.

This claim follows from the analysis of delay-based at-

tacks when all network paths to the target converge to a

common gateway router. With only one gateway router

to the network, changes to internal network nodes can af-

fect only the final size of the localization region, not the

region’s geometric center.

CLAIM: 4 An adversary with control over three or more

geographically distributed gateway routers to its network

can move the target to an arbitrary location.

Unlike delay-based attacks that can only increase laten-

cies from the landmarks to the target, topology-based

attacks can assign arbitrary latencies from the ingress

points to the target. From geometric triangulation, this

enables topology-based attacks to, theoretically, triangu-

late the location of the target to any point on the globe

given three or more ingress points.

In practice, there are challenges that limit the adver-

sary from achieving perfect accuracy with this attack.

Specifically, the attack requires the adversary to know the

estimated location of the gateway routers and to have an

accurate model of the delay-to-distance function used by

the geolocation system. Such information can be reverse-

engineered by a determined adversary by analyzing the

geolocation results of other targets in the adversary’s net-

work.

Although a resourceful adversary’s topology-based at-

tack can substantially affect geolocation results, it can

also introduce additional circuitousness to all network

paths to the target that creates a detectable signature. Cir-

cuitousness refers to the ratio of actual distance traveled

along a network path to the direct distance between the

two end points of a path. Circuitousness can be observed

by plotting the location of intermediate nodes as they are

located by the topology-aware geolocation system.

5.2.1 Naming attack extension

State-of-the-art, topology-based geolocation sys-

tems [14, 30] leverage the structured way in which most

routers are named to extract more precise information

about router location. A collection of common naming

patterns is available through the undns tool [27], which

can extract approximate city locations from the domain

names of routers.

When geolocation relies on undns, an adversary can

effectively change the observed location of the target

even with only a single gateway router to its network.

This naming attack requires the adversary is capable of

crafting a domain name that can deceive the undns tool,

poisoning the undns database with erroneous mappings

or responding to traceroutes with a spoofed IP address.

The adversary only needs to use the naming attack to

place any last hops before the target at its desired geo-

graphic location. The target will then be localized to the

same location as this last hop in the absence of sufficient

constraints.

Naming attacks exhibit the same increased circuitous-

ness as standard topology-based attacks. Extensive poi-

soning of the undns database could allow an attacker to

change the location of other routers along the network

paths to reduce path circuitousness.

5.3 Evaluation

We evaluate the topology-based (hop-adding) attack and

undns naming extension using a simulator of topology-

aware geolocation. To perform the evaluation, we de-

veloped the fictitious network illustrated in Figure 12.

The network includes 4 gateway routers (ER), repre-

sented by PlanetLab nodes in Victoria, BC; Riverside,

CA; Ithaca, NY, and Gainesville, FL. The network also

includes 11 forged locations (T) and 14 non-existent in-

ternal routers (F). Three of the non-existent routers are

Figure 12: The adversary’s network used for evaluating

the topology-based attack.

geographically distributed around the US, while the other

11 are placed close to the forged locations to improve

the effectiveness of the attack, especially when the ad-

versary can manipulate undns entries. Routers in the fic-

titious network are connected using basic heuristics. For

example, each of the 11 internal routers near the forged

locations is connected to the 3 routers nearest them to

aid in triangulation. We show that even using this simple

network design, an adversary executing the hop-adding

attack and undns extension can be successful.

To evaluate the attack, we use the same set of 50 Plan-

etLab nodes used in evaluating the delay-adding attack

(Figure 1), with an additional 30 European PlanetLab

nodes that act only as targets attempting to move into

North America. We move the targets to the 11 forged lo-

cations in the fictitious network. These locations, a sub-

set of the 40 US locations used in evaluating the delay-

adding attack, were chosen to be geographically dis-

tributed around the US. Each of the 80 PlanetLab nodes

takes a turn being the target with the remaining US Plan-

etLab nodes used as landmarks. Each target is moved to

each of the 11 forged locations in turn, for a total of 880

attacks.

When executing the attack, the traceroute from each

landmark is directed to its nearest gateway router. The

first part of the traceroute is dictated by the network

path between the landmark and its nearest gateway router

(represented by a PlanetLab node). The second part is

artificially generated to be the shortest path between the

gateway router and the forged location. The latency of

the second part is lower bounded by the speed-of-light

delay between the gateway router and the target’s true

location. When the speed-of-light latency between the

gateway router and the target is greater than the latency

on the shortest path from the gateway to the forged lo-

cation, the additional delay is divided across links in the

shortest path.

252 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 253

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

e
rr

o
r

fo
r

a
tt
a
c
k
e
r

(k
m

)

distance of attempted move (km)

90-percentile
median

10-percentile

Figure 14: Error observed by the adversary depending

on how far they attempt to move the target using the

topology-based attack.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

e
rr

o
r

fo
r

a
tt
a
c
k
e
r

(k
m

)

distance of attempted move (km)

90-percentile
median

10-percentile

Figure 15: Error observed by the adversary depending on

how far they attempt to move the target using the undns

attack.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
[X

<
x
]

error for attacker (km)

undns-attack
undns-attack EU

hop-adding
hop-adding EU

Figure 13: CDF of error distance for the attacker when

executing the topology-based and undns attacks.

5.3.1 Attack effectiveness

We begin by examining how accurate the adversary can

be when attempting to move the target to a specific

forged location. Figure 13 shows the error for the ad-

versary when executing the topology-based attack and

undns extension. Without the undns extension, the ad-

versary is able to place a North American target within

680 km of the false location 50% of the time. This is sim-

ilar to the delay-adding attack in which the adversary has

access to the best line function. When moving a target

from Europe to North America, the adversary’s median

error increases by 50% to 929 km. Despite this increase,

we observe that the adversary succeeds in each attempt

to move a European target into the US. In addition to

the overall decrease in accuracy for the adversary, we

note that there are some instances where the target in Eu-

rope misleads the algorithm with higher accuracy. This

is caused by the adversary using the speed-of-light ap-

proximation for latencies within their network. Since the

speed-of-light is the lower bound on network delay, when

additional delay is added to the links to account for the

time it would take a probe to reach the target in Europe,

the delay approaches the larger delay expected by the

landmarks’ distance-to-delay mapping. The undns ex-

tension increases the adversary’s accuracy by 93%, with

the adversary locating herself within 50 km of the forged

location 50% of the time. These results are consistent

whether the true location of the target is in North Amer-

ica or Europe.

When analyzing the delay-adding attack, we observed

a linear relationship between the distance the adversary

attempts to move the target and the error she observes.

Figures 14 and 15 show the 10th percentile, median and

90th percentile error for the attacker depending on how

far the forged location is from the target for the topology-

based attack and undns extension, respectively. The ob-

served errors were quite erratic which is a result of the

many other factors that affect the accuracy of geolocation

beyond the distance of the attempted move. In general,

error for the adversary increases slowly as the adversary

tries to move the target longer distances. This enables an

adversary executing the topology-based attack to move

the target longer distances. Error for the adversary using

the undns extension remains fairly constant regardless of

how far they attempt to move the target. In the case of the

undns attack, the median accuracy fluctuates by less than

60 kmwhether the adversarymoves 500 km or 4,000 km.

The slow growth of adversary error stems from the en-

gineered delays in the fictitious network. These delays

cause nodes along the paths (including the end point) to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

P
[X

<
x
]

absolute difference in direction (degrees)

undns-attack
undns-attack (EU)

hop-adding (EU)
hop-adding

Figure 16: CDF of change in direction for the topology-

based and undns extension.

be geolocated to a similar location regardless of where

the target location was originally located.

We next confirm that the adversary is able to move in

her chosen direction. Figure 16 shows the difference be-

tween the direction the adversary tried to move the target

and the direction the target was actually moved (θ in the

delay-adding attack). For the general topology-based at-

tack, the adversary is within 36 degrees of her intended

direction 75% of the time and within 69 degrees 90% of

the time. This improves with the undns extension where

the adversary is within 3 degrees of their intended direc-

tion 95% of the time. When the target attempts to move

from Europe to North America, they always move very

close to their chosen direction. The adversary always is

within 10 degrees of her chosen direction. The smaller

change in direction for European nodes stems from the

longer distance between the target and the forged loca-

tion. This causes a smaller change in direction to be ob-

served for similar error values compared to a target that

is closer to the forged location.

5.3.2 Attack detectability

We have observed that an adversary executing the

topology-based attack and the undns extension to the at-

tack can accurately relocate the geolocation target. We

next consider whether the victim would be able to detect

these attacks and reduce their impacts on geolocation re-

sults.

Figure 17 shows the region sizes for topology-aware

geolocation and undns geolocation before and after the

attacks are executed (for both North America and Eu-

ropean targets). Unlike the delay-adding attack, the ad-

versary that adds hops to the traceroutes of the victim

has region sizes similar to the original algorithms and,

in some cases, even smaller region sizes. For topology-

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

P
[X

<
x
]

localization region size (km
2
)

undns-attack (EU+NA)
no attack (undns)

hop-adding (EU+NA)
no attack

Figure 17: CDF of region size before and after the

topology-based attack and undns extension.

aware geolocation, we observe median region sizes of

102,273 km2 before and 50,441 km2 after the attack. For

the undns extension, we observe median region sizes of

4,448 km2 before and 790 km2 after the attack. These re-

sults indicate that region size is a poor metric for ruling

out attacks that add hops to the end of traceroute paths.

Another metric that may be used to rule out geoloca-

tion results that have been modified by an adversary is

path circuitousness. We define circuitousness of a tracer-

oute path between landmark, Li, and the target as fol-

lows, where r = (λr , φr) is the location returned by the

geolocation algorithm, and hj = (λj , φj) is the location
of intermediate hop j as computed by the geolocation al-

gorithm:

C =
dih0

+ Σn
j=1

dhj−1hj
+ dhnr

dir

(6)

Figure 18 shows the distribution of circuitousness for

paths between each landmark and the target for topology-

aware geolocation before and after the topology-based

attack is executed3. We observe that when the topology-

based attack is executed the circuitousness per landmark

increases. One criterion a geolocation algorithm can

use for discarding results from the topology-based at-

tack would be to discard results from landmarks where

the circuitousness is abnormally high. If a geolocation

framework that assigns weights to constraints, such as

Octant, is used, constraints from landmarks with high

circuitousness could be given a lower weight to limit the

adversary’s effectiveness. We note that a clever adver-

sary could design her network to use more direct paths,

making it more difficult to detect the attack by observing

circuitousness.

254 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 255

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 5 25 125 625

P
[X

<
x
]

circuitousness per landmark

no attack
hop-adding (EU)

hop-adding

Figure 18: CDF of circuitousness for each landmark be-

fore and after the topology-based attack.

6 Related work

While there have beenmany related works on developing

and evaluating geolocation algorithms (e.g., [12, 14, 26,

30]), there has been limited study of IP geolocation given

a non-benign target [5, 18].

Castelluccia et al. consider the application of

CBG [12] to the problem of geolocating hidden servers

hosting illegal content within a botnet [5]. The technique

used to hide these servers is referred to as “fast-flux”,

where a constantly changing set of machines infected by

a botnet is used to proxy HTTP messages for a hidden

server. Geolocating these servers is important to enable

the appropriate authorities to take action against them.

Castelluccia et al. leverage the fact that the hidden server

is behind a layer of proxies to factor out the portion of

the observed RTT caused by the proxy layer. They use

HTTP connections to measure RTTs (because the hidden

servers are unlikely to respond to ping) and factor out

additional delay caused by the layer of proxies to geolo-

cate hidden servers with a median error of 100 km using

PlanetLab nodes as ground truth hidden servers.

Muir and Oorschot survey a variety of geolocation

techniques and their applicability in the presence of an

adversarial target [18]. Their work is similar to but dis-

tinct from ours. Specifically, they emphasize geolocation

techniques that leverage secondary sources of informa-

tion, such as whois registries based on domain, IP and

AS; DNS LOC [8]; application data from HTTP head-

ers, and data inferred from routing information. They

consider delay-based geolocation but do not specify or

evaluate any attacks on measurement-based geolocation.

Muir and Oorschot discuss the limitations of IP geolo-

cation when an adversary attempts to conceal her IP ad-

dress through the use of an anonymization proxy and ex-

amine how a Web page embedding a Java applet can dis-

cover a client’s true identity using Java’s socket class to

connect back to the server. They demonstrate this strat-

egy for identifying clients using the Tor [28] anonymiza-

tion network.

These previous works begin to consider the perfor-

mance of geolocation algorithms when the target of ge-

olocation may have incentive to be adversarial. However,

they generally focus on the issue of geolocating hosts that

attempt to deceive geolocation using proxies. In con-

trast, we develop and evaluate attacks on two classes of

measurement-based geolocation techniques by manipu-

lating the network properties on which the techniques

rely.

We observe that the problem of geolocating an adver-

sarial target is similar to the problem of secure position-

ing [4] in the domain of wireless networks. Unlike wire-

less signals, network delay is subject to additive noise

as a result of congestion and queuing along the network

path as well as circuitous routes. Multiple hops along

network paths on the Internet and the existence of large

organizational WANs also enable new adversarial mod-

els in the domain of IP geolocation.

7 Conclusions

Many applications of geolocation benefit from security

guarantees when confronted with an adversarial target.

These include popular applications, such as limiting me-

dia distribution to a specific region, fraud detection, and

newer applications, such as ensuring regional regulatory

compliance when using an infrastructure as a service

provider. This paper considered two models of an adver-

sary trying to mislead measurement-based geolocation

techniques that leverage end-to-end delays and topology

information. To this end, we developed and evaluated

two attacks against delay-based and topology-aware ge-

olocation.

To avoid detection, adversaries can leverage inherent

variability in network delay and circuitousness of net-

work paths on the Internet to hide their tampering. Since

these properties are measured and used by various geolo-

cation techniques, they serve as good attack vectors by

which the adversary can influence the geolocation result.

Our most surprising finding is that the more advanced

and accurate topology-aware geolocation techniques are

more susceptible to covert tampering than the simpler

delay-based techniques. For geolocation algorithms that

leverage delay, we observed how a simple adversary that

only adds delay to probes could alter the results of ge-

olocation. However, this adversary has limited precision

when attempting to forge a specific location. We also

observed a clear trade-off between the amount of delay

an adversary added and her detectability, using the re-

gion size returned by CBG [12] as a metric for discarding

anomalous results.

Compared to delay-based geolocation, topology-

aware geolocation fares no better against a simple adver-

sary and worse against a sophisticated one. Topology-

aware geolocation uses more information sources, such

as traceroute and undns , to achieve higher accuracy than

delay-based geolocation. Unfortunately, this advantage

becomes a weakness against an adversary able to corrupt

these sources. A sophisticated adversary that can lever-

age multiple network entry points (e.g., an infrastructure

as a service provider) can cause the geolocation system to

return a result as accurate as the best case simple adver-

sary without increasing the resultant region size. When

undns entries are corrupted, the adversary is able to forge

locations with high accuracy without increasing the re-

gion sizes – in some cases, even decreasing them.

Our work reveals limitations of current measurement-

based geolocation techniques given an adversarial target.

To provide secure geolocation, these algorithms must ac-

count for the presence of untrustworthy measurements.

This may be in the form of heuristics to discount mea-

surements deemed untrustworthy or through the use of

secure measurement protocols. We intend to explore

these directions in future work.

Acknowledgements

The authors would like to thank the anonymous review-

ers and our shepherd, Steven Gribble, for their feed-

back, which has helped to improve this paper. This work

was supported by the Natural Sciences and Engineering

Research Council (NSERC) ISSNet and NSERC-CGS

funding.

References

[1] Amazon EC2, 2010. http://aws.amazon.com/ec2/.

[2] ANDERSON, M., BANSAL, A., DOCTOR, B., HADJIYIAN-

NIC, G., HERRINGSHAW, C., KARPLUS, E., AND MUNIZ, D.

Method and apparatus for estimating a geographic location of a

networked entity, June 2004. US Patent number: 6684250.

[3] American Registry for Internet numbers (ARIN), 2010. http:

//www.arin.net.

[4] CAPKUN, S., AND HUBAUX, J. Secure positioning of wireless

devices with application to sensor networks. In Proceedings of

IEEE INFOCOM Conference (March 2005).

[5] CASTELLUCCIA, C., KAAFAR, M., MANILS, P., AND PERITO,

D. Geolocalization of proxied services and its application to fast-

flux hidden servers. In Proceedings of the ACM SIGCOMM In-

ternet Measurement Conference (November 2009).

[6] CBC. USA Patriot Act comes under fire in B.C. report, October

2004. http://www.cbc.ca/canada/story/2004/10/

29/patriotact_bc041029.html.

[7] CROVELLA, M., AND KRISHNAMURTHY, B. Internet Measure-

ment: Infrastructure, Traffic and Applications. John Wiley &

sons, 2006.

[8] DAVIS, C., VIXIE, P., GOODWIN, T., AND DICKINSON, I. A

means for expressing location information in the domain name

system. RFC 1876, IETF, Jan. 1996.

[9] ERIKSSON, B., BARFORD, P., SOMMERS, J., AND NOWAK, R.

A learning-based approach for IP geolocation. In Proceedings of

the Passive and Active Measurement Workshop (April 2010).

[10] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND

BONEH, D. Terra: A virtual machine-based platform for trusted

computing. In Proceedings of the 19th ACM Symposium on Op-

erating Systems Principles (SOSP) (October 2003).

[11] GILL, P., ARLITT, M., LI, Z., AND MAHANTI, A. The flat-

tening Internet topology: Natural evolution, unsightly barnacles

or contrived collapse? In Proceedings of the Passive and Active

Measurement Workshop (April 2008).

[12] GUEYE, B., ZIVIANI, A., CROVELLA, M., AND FDIDA,

S. Constraint-based geolocation of Internet hosts. IEEE/ACM

Transactions on Networking 14, 6 (December 2006).

[13] Hulu - watch your favorites. anytime. for free., 2010. http:

//www.hulu.com/.

[14] KATZ-BASSET, E., JOHN, J., KRISHNAMURTHY, A.,

WETHERALL, D., ANDERSON, T., AND CHAWATHE, Y.

Towards IP geolocation using delay and topology mesurements.

In Proceedings of the ACM SIGCOMM Internet Measurement

Conference (October 2006).

[15] KUROSE, J., AND ROSS, K. Computer Networking: A top-down

approach featuring the Internet. Addison-Wesley, 2005.

[16] Maxmind - geolocation and online fraud prevention, 2010.

http://www.maxmind.com.

[17] M.CASADO, AND FREEDMAN, M. Peering through the shroud:

The effect of edge opacity on IP-based client identification. In

Proceedings of the 4th Symposium on Networked Systems Design

and Implementation (NSDI) (Cambridge, MA, April 2007).

[18] MUIR, J., AND VAN OORSCHOT, P. Internet geolocation: Eva-

sion and counterevasion. ACMComputing Surveys 42, 1 (Decem-

ber 2009).

[19] PADMANABHAN, V., AND SUBRAMANIAN, L. An investigation

of geographic mapping techniques for Internet hosts. In Proceed-

ings of ACM SIGCOMM (August 2001).

[20] Pandora Internet radio, 2010. http://www.pandora.com.

[21] Planetlab, 2010. http://www.planet-lab.org.

[22] Quova – IP geolocation experts, 2010. http://www.quova.

com.

[23] Reseaux IP Europeens (RIPE), 2010. http://www.ripe.

net.

[24] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,

S. Hey, you, get off my cloud! exploring information leakage

in third-party compute clouds. In Proceedings of the 16th ACM

Conference on Computer and Communications Security (CCS

2009) (November 2009).

[25] SANTOS, N., GUMMADI, K. P., AND RODRIGUES, R. Towards

trusted cloud computing. In Proceedings of the 1st Workshop in

Hot Topics in Cloud Computing (HotCloud) (June 2009).

[26] SIWPERSAD, S., GUEYE, B., AND UHLIG, S. Assessing the

geographic resolution of exhaustive tabulation. In Proceedings of

the Passive and Active Measurement Workshop (April 2008).

[27] SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measuring

ISP topologies with Rocketfuel. In Proceedings of ACM SIG-

COMM (August 2002).

[28] THE TOR PROJECT. Tor: Overview, 2010. http://www.

torproject.org/overview.html.en.

256 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 257

[29] TRANCREDI, P., AND MCCLUNG, K. Use case: Restrict

access to online bettors, August 2009. http://www.quova.

com/Uses/UseCaseDetail/09-08-31/Restrict_

Access_to_Online_Bettors.aspx.

[30] WONG, B., STOYANOV, I., AND SIRER, E. G. Octant: A com-

prehensive framework for the geolocalization of Internet hosts. In

Proceedings of the 4th Symposium on Networked Systems Design

and Implementation (NSDI) (Cambridge, MA, April 2007).

[31] YOUNG, I., MARK, B., AND RICHARDS, D. Statistical geolo-

cation of Internet hosts. In Proceedings of the 18th International

Conference on Computer Communications and Networks (Au-

gust 2009).

Notes

1In reality, the consumer of geolocation information will likely con-

tract out geolocation services from a third party geolocation provider

that will maintain landmarks. Given the common goals of these two

entities we model them as a single party.
2The adversary can assume that the gateway routers are geolocated

to their true locations.
3We make similar observations for the undns attack extension.

258 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 259

260 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 261

262 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 263

264 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 265

266 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 267

268 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 269

270 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 271

272 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 273

Building a Dynamic Reputation System for DNS

Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feamster
College of Computing, Georgia Institute of Technology,

{manos,rperdisc,dagon,wenke,feamster}@cc.gatech.edu

Abstract

The Domain Name System (DNS) is an essential protocol

used by both legitimate Internet applications and cyber at-

tacks. For example, botnets rely on DNS to support agile com-

mand and control infrastructures. An effective way to disrupt

these attacks is to place malicious domains on a “blocklist”

(or “blacklist”) or to add a filtering rule in a firewall or net-

work intrusion detection system. To evade such security coun-

termeasures, attackers have used DNS agility, e.g., by using

new domains daily to evade static blacklists and firewalls. In

this paper we propose Notos, a dynamic reputation system for

DNS. The premise of this system is that malicious, agile use

of DNS has unique characteristics and can be distinguished

from legitimate, professionally provisioned DNS services. No-

tos uses passive DNS query data and analyzes the network

and zone features of domains. It builds models of known legit-

imate domains and malicious domains, and uses these models

to compute a reputation score for a new domain indicative of

whether the domain is malicious or legitimate. We have eval-

uated Notos in a large ISP’s network with DNS traffic from

1.4 million users. Our results show that Notos can identify

malicious domains with high accuracy (true positive rate of

96.8%) and low false positive rate (0.38%), and can identify

these domains weeks or even months before they appear in

public blacklists.

1 Introduction

The Domain Name System (DNS) [12, 13] maps domain
names to IP addresses, and provides a core service to applica-
tions on the Internet. DNS is also used in network security to
distribute IP reputation information, e.g., in the form of DNS-
based Block Lists (DNSBLs) used to filter spam [18, 5] or
block malicious web pages [26, 14].

Internet-scale attacks often use DNS as well because they
are essentially Internet-scale malicious applications. For ex-
ample, spyware uses anonymously registered domains to ex-
filtrate private information to drop sites. Disposable domains
are used by adware to host malicious or false advertising
content. Botnets make agile use of short-lived domains to

evasively move their command-and-control (C&C) infrastruc-
ture. Fast-flux networks rapidly change DNS records to evade
blacklists and resist take downs [25]. In an attempt to evade
domain name blacklisting, attackers now make very aggres-
sive use of DNS agility. The most common example of an ag-

ile malicious resource is a fast-flux network, but DNS agility
takes many other forms including disposable domains (e.g.,
tens of thousands of randomly generated domain names used
for spam or botnet C&C), domains with dozens of A records or
NS records (in excess of levels recommended by RFCs, in or-
der to resist takedowns), or domains used for only a few hours
of a botnet’s lifetime. Perhaps the best example is the Con-
ficker.C worm [15]. After Conficker.C infects a machine, it
will try to contact its C&C server, chosen at random from a list
of 50,000 possible domain names created every day. Clearly,
the goal of Conficker.C was to frustrate blacklist maintenance
and takedown efforts. Other malware that abuse DNS include
Sinowal (a.k.a. Torpig) [9], Kraken [20], and Srizbi [22]. The
aggressive use of newly registered domain names is seen in
other contexts, such as spam campaigns and malicious flux
networks [25, 19]. This strategy delays takedowns, degrades
the effectiveness of blacklists, and pollutes the Internet’s name
space with unwanted, discarded domains.

In this paper, we study the problem of dynamically assign-
ing reputation scores to new, unknown domains. Our main
goal is to automatically assign a low reputation score to a
domain that is involved in malicious activities, such as mal-
ware spreading, phishing, and spam campaigns. Conversely,
we want to assign a high reputation score to domains that are
used for legitimate purposes. The reputation scores enable dy-

namic domain name blacklists to counter cyber attacks much
more effectively. For example, with static blacklisting, by the
time one has sufficient evidence to put a domain on a black-
list, it typically has been involved in malicious activities for
a significant period of time. With dynamic blacklisting our
goal is to decide, even for a new domain, whether it is likely
used for malicious purposes. To this end, we propose Notos,
a system that dynamically assigns reputation scores to domain
names. Our work is based on the observation that agile mali-
cious uses of DNS have unique characteristics, and can be dis-
tinguished from legitimate, professionally provisioned DNS
services. In short, network resources used for malicious and

274 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 275

fraudulent activities inevitably have distinct network charac-

teristics because of their need to evade security countermea-
sures. By identifying and measuring these features, Notos can
assign appropriate reputation scores.

Notos uses historical DNS information collected passively
from multiple recursive DNS resolvers distributed across the
Internet to build a model of how network resources are al-
located and operated for legitimate, professionally run Inter-
net services. Notos also uses information about malicious do-
main names and IP addresses obtained from sources such as
spam-traps, honeynets, and malware analysis services to build
a model of how network resources are typically allocated by
Internet miscreants. With these models, Notos can assign rep-
utation scores to new, previously unseen domain names, there-
fore enabling dynamic blacklisting of unknown malicious do-
main names and IP addresses.

Previous work on dynamic reputation systems mainly fo-
cused on IP reputation [24, 31, 1, 21]. To the best of our
knowledge, our system is the first to create a comprehensive
dynamic reputation system around domain names. To summa-
rize, our main contributions are as follows:

• We designed Notos, a dynamic, comprehensive reputa-
tion system for DNS that outputs reputation scores for
domains. We constructed network and zone features that
capture the characteristics of resource provisioning, us-
ages, and management of domains. These features enable
Notos to learn models of how legitimate and malicious
domains are operated, and compute accurate reputation
scores for new domains.

• We implemented a proof-of-concept version of our sys-
tem, and deployed it in a large ISP’s DNS network in
Atlanta, GA and San Jose, CA, USA, where we ob-
served DNS traffic from 1.4 million users. We also used
passive DNS data from Security Information Exchange
(SIE) project [3]. This extensive real-world evaluation
shows Notos can correctly classify new domains with
a low false positive rate (0.38%) and high true positive
rate (96.8%). Notos can detect and assign a low reputa-
tion score to malware- and spam-related domain names
several days or even weeks before they appear on public
blacklists.

Section 2 provides some background on DNS and related
works. Readers familiar with this may skip to Section 3, where
we describe our passive DNS collection strategy and other
whitelist and blacklist inputs. We also describe three fea-
ture extraction modules that measure key network, zone and
evidence-based features. Finally, we describe how these fea-
tures are clustered and incorporated into the final reputation
engine. To evaluate the output of Notos, we gathered an ex-
tensive amount of network trace data. Section 4 describes the
data collection process, and Section 5 details the sensitivity of
each module and final output.

2 Background and Related Work

DNS is the protocol that resolves a domain name, like
www.example.com, to its corresponding IP address, for ex-
ample 192.0.2.10. To resolve a domain, a host typically
needs to consult a local recursive DNS server (RDNS). A re-
cursive server iteratively discovers which Authoritative Name
Server (ANS) is responsible for each zone. The typical result
of this iterative process is the mapping between the requested
domain name and its current IP addresses.

By aggregating all unique, successfully resolved A-type
DNS answers at the recursive level, one can build a passive
DNS database. This passive DNS (pDNS) database is ef-
fectively the DNS fingerprint of the monitored network and
typically contains unique A-type resource records (RRs)
that were part of monitored DNS answers. A typical RR
for the domain name example.com has the following for-
mat: {example.com. 78366 IN A 192.0.2.10},
which lists the domain name, TTL, class, type, and rdata. For
simplicity, we will refer to an RR in this paper as just a tuple
of the domain name and IP address.

Passive DNS data collection was first proposed by Florian
Weimer [27]. His system was among the first that appeared
in the DNS community with its primary purpose being the
conversion of historic DNS traffic into an easily accessible
format. Zdrnja et al. [29] with their work in “Passive Mon-
itoring of DNS Anomalies” discuss how pDNS data can be
used for gathering security information from domain names.
Although they acknowledge the possibility of creating a DNS
reputation system based on passive DNS measurement, they
do not quantify a reputation function. Our work uses the idea
of building passive DNS information only as a seed for com-
puting statistical DNS properties for each successful DNS res-
olution. The analysis of these statistical properties is the basic
building block for our dynamic domain name reputation func-
tion. Plonka et al. [17] introduced Treetop, a scalable way to
manage a growing collection of passive DNS data and at the
same time correlate zone and network properties. Their clus-
ter zones are based on different classes of networks (class A,
class B and class C). Treetop differentiates DNS traffic based
on whether it complies with various DNS RFCs and based on
the resolution result. Plonka’s proposed method, despite being
novel and highly efficient, offers limited DNS security infor-
mation and cannot assign reputation scores to records.

Several papers, e.g., Sinha et al. [24] have studied the effec-
tiveness of IP blacklists. Zhang, et al. [31] showed that the hit
rate of highly predictable blacklists (HBLs) decreases signifi-
cantly over a period of time. Our work addresses the dynamic
DNS blacklisting problem that makes it significantly differ-
ent from the highly predictable blacklists. Importantly, Notos
does not aim to create IP blacklists. By using properties of the
DNS protocol, Notos can rank a domain name as potentially
malicious or not. Garera et al. [8] discussed “phishing” detec-
tion predominately using properties of the URL and not sta-

tistical observations about the domains or the IP address. The
statistical features used by Holz et al. [10] to detect fast flux
networks are similar to the ones we used in our work, however,
Notos utilizes a more complete collection of network statisti-
cal features and is not limited to fast flux networks detection.

Researchers have attempted to use unique characteristics
of malicious networks to detect sources of malicious activity.
Anderson et al. [1] proposed Spamscatter as the first system to
identify and characterize spamming infrastructure by utilizing
layer 7 analysis (i.e., web sites and images in spam). Hao et
al. [21] proposed SNARE, a spatio-temporal reputation engine
for detecting spam messages with very high accuracy and low
false positive rates. The SNARE reputation engine is the first
work that utilized statistical network-based features to harvest
information for spam detection. Notos is complementary to
SNARE and Spamscatter, and extends both to not only de-
tect spam, but also identify other malicious activity such as
phishing and malware hosting. Qian et al. [28] present their
work on spam detection using network-based clustering. In
this work, they show that network-based clusters can increase
the accuracy of spam-oriented blacklists. Our work is more
general, since we try to identify various kinds of malicious
domain names. Nevertheless, both works leverage network-
based clustering for identifying malicious activities.

Felegyhazi et al. [7] proposed a DNS reputation blacklist-
ing methodology based on WHOIS observations. Our system
does not use WHOIS information making our approaches com-
plementary by design. Sato et al. [23] proposed a way to ex-
tend current blacklists by observing the co-occurrence of IP
address information. Notos is a more generic approach than
the proposed system by Sato and is not limited to botnet re-
lated domain name detection. Finally, Notos builds the rep-
utation function mainly based upon passive information from
DNS traffic observed in real networks — not traffic observed
from honeypots.

No previous work has tried to assign a dynamic domain
name reputation score for any domain that traverses the edge
of a network. Notos harvests information from multiple
sources—the domain name, its effective zone, the IP address,
the network the IP address belongs to, the Autonomous Sys-
tem (AS) and honeypot analysis. Furthermore, Notos uses
short-lived passive DNS information. Thus, it is difficult for a
malicious domain to dilute its passive DNS footprint.

3 Notos: A Dynamic Reputation System

The goal of the Notos reputation system is to dynamically
assign reputation scores to domain names. Given a domain
name d, we want to assign a low reputation score if d is in-
volved in malicious activities (e.g., if it has been involved with
botnet C&C servers, spam campaigns, malware propagation,
etc.). On the other hand, we want to assign a high reputation
score if d is associated with legitimate Internet services.

Notos’ main source of information is a passive DNS
(pDNS) database, which contains historical information about
domain names and their resolved IPs. Our pDNS database is
constantly updated using real-world DNS traffic from multiple
geographically diverse locations as shown in Figure 1. We col-
lect DNS traffic from two ISP recursive DNS servers (RDNS)
located in Atlanta and San Jose. The ISP nodes witness 30,000
DNS queries/second during peak hours. We also collect DNS
traffic through the Security Information Exchange (SIE) [3],
which aggregates DNS traffic received by a large number of
RDNS servers from authoritative name servers across North
America and Europe. In total, the SIE project processes ap-
proximately 200 Mbit/s of DNS messages, several times the
total volume of DNS traffic in a single US ISP.

Another source of information we use is a list of known
malicious domains. For example, we run known malware
samples in a controlled environment and we classify as sus-
picious all the domains contacted by malware samples that do
not match a pre-compiled white list. In addition, we extract
suspicious domain names from spam emails collected using a
large spam-trap. Again, we discard the domains that match
our whitelist and consider the rest as potentially malicious.
Furthermore, we collect a large list of popular, legitimate do-
mains from alexa.com (we discuss our data collection and
analysis in more details in Section 4). The set of known mali-
cious and legitimate domains represents our knowledge base,
and is used to train our reputation engine, as we discuss in
Section 4.

Intuitively, a domain name d can be considered suspicious
when there is evidence that d or its IP addresses are (or were in
previous months) associated with known malicious activities.
The more evidence of “bad associations” we can find about
d, the lower the reputation score we will assign to it. On the
other hand, if there is evidence that d is (or was in the past) as-
sociated with legitimate, professionally run Internet services,
we will assign it a higher reputation score.

3.1 System Overview

Before describing the internals of our reputation sys-
tem, we introduce some basic terminology. A domain
name d consists of a set of substrings or labels sepa-
rated by a period; the rightmost label is called the top-

level domain, or TLD. The second-level domain (2LD)
represents the two rightmost labels separated by a pe-
riod; the third-level domain (3LD) analogously contains the
three rightmost labels, and so on. As an example, given
the domain name d=“a.b.example.com”, TLD(d)=“com”,
2LD(d)=“example.com”, and 3LD(d)=“b.example.com”.

Let s be a domain name (e.g., s=“example.com”). We de-
fine Zone(s) as the set of domains that include s and all do-
main names that end with a period followed by s (e.g., do-
mains ending in “.example.com”).

Let D = {d1, d2, ..., dm} be a set of domain names. We

276 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 277

Figure 1. System overview.

Figure 2. Computing network-based, zone-based,

evidence-based features.

call A(D) the set of IP addresses ever pointed to by any do-
main name d ∈ D.

Given an IP address a, we define BGP (a) to be the set
of all IPs within the BGP prefix of a, and AS(a) as the set
of IPs located in the autonomous system in which a resides.
In addition, we can extend these functions to take as input
a set of IPs: given IP set A = a1, a2, ..., aN , BGP (A) =�

k=1..N BGP (ak); AS(a) is similarly extended.
To assign a reputation score to a domain name d we proceed

as follows. First, we consider the most current set Ac(d) =
{ai}i=1..m of IP addresses to which d points. Then, we query
our pDNS database to retrieve the following information:

• Related Historic IPs (RHIPs), which consist of the union
of A(d), A(Zone(3LD(d))), and A(Zone(2LD(d))).
In order to simplify the notation we will refer to
A(Zone(3LD(d))) and A(Zone(2LD(d))) as A3LD(d)
and A2LD(d), respectively.

• Related Historic Domains (RHDNs), which comprise the
entire set of domain names that ever resolved to an IP
address a ∈ AS(A(d)). In other words, RHDNs contain
all the domains di for which A(di) ∩ AS(A(d)) �= ∅.

After extracting the above information from our pDNS
database, we measure a number of statistical features. Specif-
ically, for each domain d we extract three groups of features,
as shown in Figure 2:

• Network-based features: The first group of statistical
features is extracted from the set of RHIPs. We measure
quantities such as the total number of IPs historically as-
sociated with d, the diversity of their geographical loca-
tion, the number of distinct autonomous systems (ASs)
in which they reside, etc.

• Zone-based features: The second group of features we
extract are those from the RHDNs set. We measure the

average length of domain names in RHDNs, the number
of distinct TLDs, the occurrence frequency of different
characters, etc.

• Evidence-based features: The last set of features in-
cludes the measurement of quantities such as the number
of distinct malware samples that contacted the domain d,
the number of malware samples that connected to any of
the IPs pointed by d, etc.

Once extracted, these statistical features are fed to the
reputation engine. Notos’ reputation engine operates in two
modes: an off-line “training” mode and an on-line “classifica-
tion” mode. During the off-line mode, Notos trains the repu-
tation engine using the information gathered in our knowledge

base, namely the set of known malicious and legitimate do-
main names and their related IP addresses. Afterwards, during
the on-line mode, for each new domain d, Notos queries the
trained reputation engine to compute a reputation score for d
(see Figure 3). We now explain the details about the statistical
features we measure, and how the reputation engine uses them
during the off-line and on-line modes to compute a domain
names’ reputation score.

3.2 Statistical Features

In this section we identify key statistical features and the
intuition behind their selection.

3.2.1 Network-based Features

Given a domain d we extract a number of statistical features
from the set RHIPs of d, as mentioned in Section 3.1. Our
network-based features describe how the operators who own d
and the IPs that domain d points to, allocate their network re-
sources. Internet miscreants often abuse DNS to operate their
malicious networks with a high level of agility. Namely, the

Figure 3. Off-line and on-line modes in Notos.

(a)

(b)

Figure 4. (a) Network profile modeling in Notos.

(b) Network and zone based clustering in Notos.

domain names and IPs that are used for malicious purposes
are often short-lived and are characterized by a high churn

rate. This agility avoids simple blacklisting or removals by
law enforcement. In order to measure the level of agility of
a domain name d, we extract eighteen statistical features that
describe d’s network profile. Our network features fall into the
following three groups:

• BGP features. This subset consists of a total of nine fea-
tures. We measure the number of distinct BGP prefixes
related to BGP (A(d)), the number of countries in which
these BGP prefixes reside, and the number of organiza-
tions that own these BGP prefixes; the number of distinct
IP addresses in the sets A3LD(d) and A2LD(d); the num-
ber of distinct BGP prefixes related to BGP (A3LD(d))
and BGP (A2LD(d)), and the number of countries in
which these two sets of prefixes reside.

• AS features. This subset consists of three features,
namely the number of distinct autonomous systems re-
lated to AS(A(d)), AS(A3LD(d)), and AS(A2LD(d)).

• Registration features. This subset consists of six features.
We measure the number of distinct registrars associated
with the IPs in the A(d) set; the diversity in the regis-
tration dates related to the IPs in A(d); the number of
distinct registrars associated with the IPs in the A3LD(d)
and A2LD(d) sets; and the diversity in the registration
dates for the IPs in A3LD(d) and A2LD(d).

While most legitimate, professionally run Internet services
have a very stable network profile, which is reflected into low
values of the network features described above, the profiles of
malicious networks (e.g., fast-flux networks) usually change
relatively frequently, thus causing their network features to be
assigned higher values. We expect a domain name d from a
legitimate zone to exhibit a small values in its AS features,

mainly because the IPs in the RHIPs should belong to the
same organization or a small number of different organiza-
tions. On the other hand, if a domain name d participates in
malicious activities (i.e., botnet activities, flux networks), then
it could reside in a large number of different networks. The list
of IPs in the RHIPs that correspond to the malicious domain
name will produce AS features with higher values. In the same
sense, we measure that homogeneity of the registration infor-
mation for benign domains. Legitimate domains are typically
linked to address space owned by organizations that acquire
and announce network blocks in some order. This means that
the registration-feature values for a legitimate domain name
d that owned by the same organizations will produce a list of
IPs in the RHIPs that will have small registration feature val-
ues. If this set of IPs exhibits high registration feature values,
it means that they very likely reside in different registrars and
were registered on different dates. Such registration-feature
properties are typically linked with fraudulent domains.

3.2.2 Zone-based Features

The network-based features measure a number of characteris-
tics of IP addresses historically related to a given domain name
d. On the other hand, the zone-based features measure the
characteristics of domain names historically associated with
d. The intuition behind the zone-based features is that while
legitimate Internet services may be associated with many dif-
ferent domain names, these domain names usually have strong
similarities. For example, google.com, googlesyndi-
cation.com, googlewave.com, etc., are all related to
Internet services provided by Google, and contain the string
“google” in their name. On the other hand, malicious domain
names related to the same spam campaign, for example, often
look randomly generated and share few common characteris-
tics. Therefore, our zone-based features aim to measure the

278 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 279

level of diversity across the domain names in the RHDNs set.
Given a domain name d, we extract seventeen statistical fea-
tures that describe the properties of the set RHDNs of domain
names related to d. We divide these seventeen features into
two groups:

• String features. This group consists of twelve features.
We measure the number of distinct domain names in
RHDNs, and the average and standard deviation of their
length; the mean, median, and standard deviation of the
occurrence frequency of each single character in the do-
main name strings in RHDNs; the mean, median and
standard deviation of the distribution of 2-grams (i.e.,
pairs of characters); the mean, median and standard devi-
ation of the distribution of 3-grams.

• TLD features. This group consists of five features. For
each domain di in the RHDNs set, we extract its top-level
domain TLD(di) and we count the number of distinct
TLD strings that we obtain; we measure the ratio between
the number of domains di whose TLD(di)=“.com” and
the total number of TLD different from “.com”; also, we
measure the mean, median, and standard deviation of the
occurrence frequency of the TLD strings.

It is worth noting that whenever we measure the mean, me-
dian and standard deviation of a certain property, we do so in
order to summarize the shape of its distribution. For exam-
ple, by measuring the mean, median, and standard deviation
of the occurrence frequency of each character in a set of do-
main name strings, we summarize how the distribution of the
character frequency looks like.

3.2.3 Evidence-based Features

We use the evidence-based features to determine to what ex-
tent a given domain d is associated with other known mali-
cious domain names or IP addresses. As mentioned above,
Notos collects a knowledge base of known suspicious, ma-
licious, and legitimate domain names and IPs from public
sources. For example, we collect malware-related domain
names by executing large numbers of malware samples in a
controlled environment. Also, we check IP addresses against
a number of public IP blacklists. We elaborate on how we
build Notos’ knowledge base in Section 4. Given a domain
name d, we measure six statistical features using the informa-
tion in the knowledge base. We divide these features into two
groups:

• Honeypot features. We measure three features, namely
the number of distinct malware samples that, when ex-
ecuted, try to contact d or any IP address in A(d); the
number of malware samples that contact any IP address
in BGP (A(d)); and the number of samples that contact
any IP address in AS(A(d)).

• Blacklist features. We measure three features, namely the
number of IP addresses in A(d) that are listed in public
IP blacklists; the number of IPs in BGP (A(d)) that are
listed in IP blacklists; and the number of IPs in AS(A(d))
that are listed in IP blacklists.

Notos uses the blacklist features from the evidence vector
so it can identify the re-use of known malicious network re-
sources like IPs, BGP prefixes or even ASs. Domain names
are significantly cheaper than IPv4 addresses; so malicious
users tend to reuse address space with new domain names. We
should note that the evidence-based features represent only
part of the information we used to compute the reputation
scores. The fact that a domain name was queried by malware
does not automatically mean that the domain will receive a
low reputation score.

3.3 Reputation Engine

Notos’ reputation engine is responsible for deciding
whether a domain name d has characteristics that are simi-
lar to either legitimate or malicious domain names. In order
to achieve this goal, we first need to train the engine to rec-
ognize whether d belongs (or is “close”) to a known class of

domains. This training can be repeated periodically, in an off-
line fashion, using historical information collected in Notos’
knowledge base (see Section 4). Once the engine has been
trained, it can be used in on-line mode to assign a reputation
score to each new domain name d.

In this section, we first explain how the reputation engine
is trained, and then we explain how a trained engine is used to
assign reputation scores.

3.3.1 Off-Line Training Mode

During off-line training (Figure 3), the reputation engine
builds three different modules. We briefly introduce each
module and then elaborate on the details.

• Network Profiles Model: a model of how well known
networks behave. For example, we model the network
characteristics of popular content delivery networks (e.g.,
Akamai, Amazon CloudFront), and large popular web-
sites (e.g., google.com, yahoo.com). During the on-line
mode, we compare each new domain name d to these
models of well-known network profiles, and use this in-
formation to compute the final reputation score, as ex-
plained below.

• Domain Name Clusters: we group domain names into
clusters sharing similar characteristics. We create these
clusters of domains to identify groups of domains that
contain mostly malicious domains, and groups that con-
tain mostly legitimate domains. In the on-line mode,

given a new domain d, if d (more precisely, d’s projec-
tion into a statistical feature space) falls within (or close
to) a cluster of domains containing mostly malicious do-
mains, for example, this gives us a hint that d should be
assigned a low reputation score.

• Reputation Function: for each domain name di, i = 1..n,
in Notos’ knowledge base, we test it against the trained
network profiles model and domain name clusters. Let
NM(di) and DC(di) be the output of the Network Pro-
files (NP) module and the Domain Clusters (DC) mod-
ule, respectively. The reputation function takes in input
NM(di), DC(di), and information about whether di and
its resolved IPs A(di) are known to be legitimate, suspi-
cious, or malicious (i.e., if they appeared in a domain
name or IP blacklist), and builds a model that can assign
a reputation score between zero and one to d. A repu-
tation score close to zero signifies that d is a malicious
domain name while a score close to one signifies that d
is benign.

We now describe each module in detail.

3.3.2 Modeling Network Profiles

During the off-line training mode, the reputation engine builds
a model of well-known network behaviors. An overview of the
network profile modeling module can be seen in Figure 4(a).
In practice we select five sets of domain names that share simi-
lar characteristics, and learn their network profiles. For exam-
ple, we identify a set of domain names related to very popular
websites (e.g., google.com, yahoo.com, amazon.com) and for
each of the related domain names we extract their network fea-
tures, as explained in Section 3.2.1. We then use the extracted
feature vectors to train a statistical classifier that will be able
to recognize whether a new domain name d has network char-
acteristics similar to the popular websites we modeled.

In our current implementation of Notos we model the fol-
lowing classes of domain names:

• Popular Domains. This class consists of a large
set of domain names under the following DNS
zones: google.com, yahoo.com, amazon.com, ebay.com,
msn.com, live.com, myspace.com, and facebook.com.

• Common Domains. This class of domains includes do-
main names under the top one hundred zones, accord-
ing to alexa.com. We exclude from this group all the
domain names already included in the Popular Domains

class (which we model separately).

• Akamai Domains. Akamai is a large content deliv-
ery network (CDN), and the domain names related to
this CDN have very peculiar network characteristics. To
model the network profile of Akamai’s domain names,
we collect a set of domains under the following zones:

akafms.net, akamai.net, akamaiedge.net, akamai.com,
akadns.net, and akamai.com.

• CDN Domains. In this class we include domain
names related to CDNs other than Akamai. For ex-
ample, we collect domain names under the follow-
ing zones: panthercdn.com, llnwd.net, cloudfront.net,
nyud.net, nyucd.net and redcondor.net. We chose not
to aggregate these CDN domains and Akamai’s domains
in one class, since we observed that Akamai’s domains
have a very unique network profile, as we discuss in Sec-
tion 4. Therefore, learning two separate models for the
classes of Akamai Domains and CDN Domains allows
use to achieve better classification accuracy during the
on-line mode, compared to learning only one model for
both classes (see Section 3.3.5).

• Dynamic DNS Domains. This class includes a large set
of domain names registered under two of the largest dy-
namic DNS providers, namely No-IP (no-ip.com) and
DynDNS (dyndns.com).

For each class of domains, we train a statistical classifier
to distinguish between one of the classes and all the others.
Therefore, we train five different classifiers. For example,
we train a classifier that can distinguish between the class of
Popular Domains and all other classes of domains. That is,
given a new domain name d, this classifier is able to recog-
nize whether d’s network profile looks like the profile of a
well-known popular domain or not. Following the same logic
we, can recognize network profiles for the other classes of do-
mains.

3.3.3 Building Domain Name Clusters

In this phase, the reputation engine takes the domain names
collected in our pDNS database during a training period, and
builds clusters of domains that share similar network and zone
based features. The overview of this module can be seen
in Figure 4(b). We perform clustering in two steps. In the
first step we only use the network-based features to create
coarse-grained clusters. Then, in the second step, we split
each coarse-grained cluster into finer clusters using only the
zone-based features, as shown in Figure 5.

Network-based Clustering The objective of network-based
clustering is to group domains that share similar levels of
agility. This creates separate clusters of domains with “sta-
ble” network characteristics and “non-stable” networks (like
CDNs and malicious flux networks).

Zone-based Clustering After clustering the domain names
according to their network-based features, we further split the
network-based clusters of domain names into finer groups.
In this step, we group domain names that are in the same

280 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 281

Figure 5. Network & zone based clustering pro-

cess in Notos, in the case of a Akamai [A] and a

malicious [B] domain name.

Figure 6. The output from the network profiling

module, the domain clustering module and the ev-

idence vector will assist the reputation function to

assign the reputation score to the domain d.

network-based cluster and also share similar zone-based
features. To better understand how the zone-based clustering
works, consider the following examples of zone-based clus-
ters:

Cluster 1:

..., 72.247.176.81 e55.g.akamaiedge.net, 72.247.176.94 e68.g.akamaiedge.net, 72.247.176.146
e120.g.akamaiedge.net, 72.247.176.65 e39.na.akamaiedge.net, 72.247.176.242
e216.g.akamaiedge.net, 72.247.176.33 e7.g.akamaiedge.net, 72.247.176.156

e130.g.akamaiedge.net, 72.247.176.208 e182.g.akamaiedge.net, 72.247.176.198
e172.g.akamaiedge.net, 72.247.176.217 e191.g.akamaiedge.net, 72.247.176.200
e174.g.akamaiedge.net, 72.247.176.99 e73.g.akamaiedge.net, 72.247.176.103
e77.g.akamaiedge.net, 72.247.176.59 e33.c.akamaiedge.net, 72.247.176.68

e42.gb.akamaiedge.net, 72.247.176.237 e211.g.akamaiedge.net, 72.247.176.71
e45.g.akamaiedge.net, 72.247.176.239 e213.na.akamaiedge.net, 72.247.176.120

e94.g.akamaiedge.net, ...

Cluster 2:

..., 90.156.145.198 spzr.in, 90.156.145.198 vwui.in, 90.156.145.198 x9e.ru, 90.156.145.50
v2802.vps.masterhost.ru, 90.156.145.167 www.inshaker.ru, 90.156.145.198 x7l.ru,

90.156.145.198 c3q.at, 90.156.145.198 ltkq.in, 90.156.145.198 x7d.ru,
90.156.145.198 zdlz.in, 90.156.145.159 www.designcollector.ru, 90.156.145.198

x7o.ru, 90.156.145.198 q5c.ru, 90.156.145.159 designtwitters.com, 90.156.145.198
u5d.ru, 90.156.145.198 x9d.ru, 90.156.145.198 xb8.ru, 90.156.145.198 xg8.ru,

90.156.145.198 x8m.ru, 90.156.145.198 shopfilmworld.cn, 90.156.145.198
bigappletopworld.cn, 90.156.145.198 uppd.in, ...

Each element of the cluster is a domain name - IP ad-

dress pair. These two groups of domains belonged to the
same network cluster, but were separated into two different
clusters by the zone-based clustering phase. Cluster 1 con-
tains domain names belonging to Akamai’s CDN, while the
domains in Cluster 2 are all related to malicious websites that
distribute malicious software. The two clusters of domains
share similar network characteristics, but have significantly
different zone-based features. For example, consider domain
names d1=“e55.g.akamaiedge.net” from the first cluster, and
d2=“spzr.in” from the second cluster. The reason why d1 and
d2 were clustered in the same network-based cluster is because
the set of RHIPs (see Section 3.1) for d1 and d2 have similar
characteristics. In particular, the network agility properties of
d2 make it look like if it was part of a large CDN. However,

when we consider the set of RHDNs for d1 and d2, we can
notice that the zone-based features of d1 are much more “sta-
ble” than the zone-based features of d2. In other words, while
the RHDNs of d1 share strong domain name similarities (e.g.,
they all share the substring “akamai”) and have low variance of
the string features (see Section 3.2.2), the strong zone agility

properties of d2 affect the zone-based features measured on
d2’s RHDNs and make d2 look very different from d1.

One of the main advantages of Notos is the reliable as-
signment of low reputation scores to domain names partici-
pating in “agile” malicious campaigns. Less agile malicious
campaigns, e.g., Fake AVs campaigns may use domain names
structured to resemble CDN related domains. Such strate-
gies would not be beneficial for the FakeAV campaign, since
domains like virus-scan1.com, virus-scan2.com,
etc., can be trivially blocked by using simple regular expres-
sions [16]. In other words, the attackers need to introduce
more “agility” at both the network and domain name level in
order to avoid simple domain name blacklisting. Notos would
only require a few labeled domain names belonging to the ma-
licious campaign for training purposes, and the reputation en-
gine would then generalize to assign a low reputation score to
the remaining (previously unknown) domain names that be-
long to the same malicious campaign.

3.3.4 Building the Reputation Function

Once we build a model of well-known network profiles (see
Section 3.3.2) and the domain clusters (see Section 3.3.3), we
can build the reputation function. The reputation function will
assign a reputation score in the interval [0, 1] to domain names,
with 0 meaning low reputation (i.e., likely malicious) and 1
meaning high reputation (i.e., likely legitimate). We imple-
ment our reputation function as a statistical classifier. In order
to train the reputation function, we consider all the domain

names di, i = 1, .., n in Notos’ knowledge base, and we feed
each domain di to the network profiles module and to the do-

main clusters module to compute two output vectors NM(di)
and DC(di), respectively. We explain the details of how
NM(di) and DC(di) are computed later in Section 3.3.5. For
now it sufficient to consider NM(di) and DC(di) as two fea-
ture vectors. For each di we also compute an evidence fea-

tures vector EV (di), as described in Section 3.2.3. Let v(di)
be a feature vector that combines the NM(di), DC(di), and
EV (di) feature vectors. We train the reputation function us-
ing the labeled dataset L = {(v(di), yi)}i=1..n, where yi = 0
if di is a known malicious domain name, otherwise yi = 1.

3.3.5 On-Line Mode

After training is complete; the reputation engine can be used
in on-line mode (Figure 3) to assign a reputation score to new
domain names. For example, given an input domain name
d, the reputation engine computes a score S ∈ [0, 1]. Val-
ues of S close to zero mean that d appears to be related to
malicious activities and therefore has a low reputation. On
the other hand, values of S close to one signify that d ap-
pears to be associated with benign Internet services, and there-
fore has a high reputation. The reputation score is computed
as follows. First, d is fed into the network profiles module,
which consists of five statistical classifiers, as discussed in
Section 3.3.2. The output of the network profiles module is
a vector NM(d) = {c1, c2, ..., c5}, where c1 is the output of
the first classifier, and can be viewed as the probability that
d belongs to the class of Popular Domains, c2 is the proba-
bility that d belongs to the class of Common Domains, etc.
At the same time, d is fed into the domain clusters module,
which computes a vector DC(d) = {l1, l2, ..., l5}. The ele-
ments li of this vector are computed as follows. Given d, we
first extract its network-based features and identify the closest
network-based cluster to d, among the network-based clusters
computed by the domain clusters module during the off-line
mode (see Section 3.3.3). Then, we extract the zone-based
statistical features and identify the zone-based cluster closest
to d. Let this closest domain cluster be Cd. At this point, we
consider all the zone-based feature vectors vj ∈ Cd, and we
select the subset of vectors Vd ⊆ Cd for which the two fol-
lowing conditions are verified: i) dist(zd, vj) < R, where zd

is the zone-based feature vector for d, and R is a predefined
radius; ii) vj ∈ KNN(zd), where KNN(zd) is the set of k
nearest-neighbors of zd.

The feature vectors in Vd are related to domain names ex-
tracted from Notos’ knowledge base. Therefore, we can assign
a label to each vector vi ∈ Vd, according to the nature of the
domain name d from which vi was computed. The domains in
Notos’ knowledge base belong to different classes. In particu-
lar, we distinguish between eight different classes of domains,
namely Popular Domains, Common Domains, Akamai, CDN,
and Dynamic DNS, which have the same meaning as explained

in Section 3.3.2, and Spam Domains, Flux Domains, and Mal-

ware Domains.
In order to compute the output vector DC(d), we compute

the following five statistical features: the majority class label
L (e.g., L may be equal to Malware Domain), i.e., the label
that appears the most among the vectors vi ∈ Vd; the stan-
dard deviation of label frequencies, i.e., given the occurrence
frequency of each label among the vectors vi ∈ Vd we com-
pute their standard deviation; given the subset V

(L)
d ⊆ Vd of

vectors in Vd that are associated with label L, we compute
the mean, median and standard deviation of the distribution
of distances between zd and the vectors vj ∈ V

(L)
d .

3.3.6 Assigning Reputation Scores

Given a domain d, once we compute the vectors NM(d) and
DC(di) as explained above, we also compute the evidence
vector EV (d) as explained in Section 3.2.3. At this point, we
concatenate these three feature vectors into a sixteen dimen-
sional feature vector v(d), and we feed v(d) in input to our
trained reputation function (see Section 3.3.4). The reputa-
tion function computes a score S = 1− f(d), where f(d) can
be interpreted as the probability that d is a malicious domain
name. S varies in the [0, 1] interval, and the lower the value of
S, the lower d’s reputation.

4 Data Collection and Analysis

This section summarizes observations from passive DNS
measurements, and how professional, legitimate DNS services
are distinguished from malicious services. These observations
provided the ground truth for our dynamic domain name rep-
utation system. We also provide an intuitive example to illus-
trate these properties, using a few major Internet zones like
Akamai and Google.

4.1 Data Collection

The basic building block for our dynamic reputation rating
system is the historical or “passive” information from success-
ful A-type DNS resolutions. We use the DNS traffic from
two ISP-based sensors, one located on the US east coast (At-
lanta) and one located on the US west coast (San Jose). Addi-
tionally we use the aggregated DNS traffic from the different
networks covered by the SIE [3]. In total, our database col-
lected 27,377,461 unique resolutions from all these sources
over a period of 68 days, from 19th of July 2009 to 24th

September 2009.
Simple measurements performed on this large data set

demonstrate a few important properties leveraged by our se-
lected features. After just a few days the rate of new, unique
pDNS entries leveled off. The graph in Figure 7(b) shows
only about 100,000 to 150,000 new domains/day (with a brief
outage issue on the 53rd day), despite very large numbers of

282 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 283

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07

 0 10 20 30 40 50 60 70

Vo
lu

m
e

O
f

 N
ew

 R
Rs

Days

(b) New RRs Growth In pDNS DB For All Zones

New RRs

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

 0 10 20 30 40 50 60 70

Vo
lu

m
e

O
f

 U
ni

qu
e

RR
s

Days

(a) Unique RRs In The Two ISPs Sensors (per day)

Unique RRs

 1

 10

 100

 1000

 10000

 1 10 100

Vo
lu

m
e

(c) Akamai Class Growth
 Over Time (Days)

Unique DN
Unique IPs

New RRs

 10

 100

 1000

 10000

 1 10 100

Vo
lu

m
e

(d) CDN Class Growth
 Over Time (Days)

Unique DNs
Unique IP
New RRs

 10

 100

 1000

 10000

 100000

 1 10 100

Vo
lu

m
e

(e) Pop Class Growth
 Over Time (Days)

Unique DN
Unique IP
New RRs

 1

 10

 100

 1000

 1 10 100

Vo
lu

m
e

(f) Dyn. DNS Class Growth
 Over Time (Days)

Unique DN
Unique IP
New RRs

 1

 10

 100

 1 10 100

Vo
lu

m
e

(g) Common Class Growth
 Over Time (Days)

Unique DN
Unique IPs

New RRs

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1

(h) CDF Of RR Growth
 For All Classes

Akamai
Common

Pop

CDN
Dynamic

Figure 7. Various RRs growth trends observed in the pDNS DB over a period of 68 days

RRs arriving each day (shown in Figure 7(a)). This suggests
that most RRs are duplicates, and approximately after the first
few days, 94.7% – on average – from the unique RRs ob-
served in daily base at the sensor level are already recorded by
the passive DNS database. Therefore, even a relatively small
pDNS database may be used to deploy Notos. In Section 5, we
measure the sensitivity of our system to traffic collected from
smaller networks.

The remaining plots in Figure 7 show the daily growth of
our passive DNS database, from the point of view of five dif-
ferent zone classes. Figure 7(c) and (d) show the growth rate
associated with CDN networks (Akamai, and all other CDNs).
The number of unique IPs stays nearly constant with the num-
ber of unique domains (meaning that each new RR is a new
IP and a new child domain of the CDN). In a few weeks, most
of the IPs became known—suggesting that one can fully map
CDNs in a modest training set. This is because CDNs, al-
though large, always have a fixed number of IP addresses used
for hosting their high-availability services. Intuitively, we be-
lieve this would not be the case with malicious CDNs (e.g.,
flux networks), which use randomly spreading infections to
continually recruit new IPs.

The ratio of new IPs to domains diverges in Figure 7(e),
a plot of the rate of newly discovered RRs for popular web-
sites (e.g., Google, Facebook). Facebook notably uses unique
child domains for their Web-based chat client, and other top
Internet sites use similar strategies (encoding information in

the domain, instead of the URI), which explains the growth
in domains shown in Figure 7(e). These popular sites use a
very small number of IPs, however, and after a few weeks of
training our pDNS database identified all of them. Since these
popular domains make up a large portion of traffic in any trace,
our intuition is that simple whitelisting would significantly re-
duce the workload of a classifier.

Figure 7(f) shows the rate of pDNS growth for zones in
Dynamic DNS providers. These services, sometimes used by
botmasters, demonstrate a nearly matched ratio of new IPs to
new domains. The data excludes non-routable answers (e.g.,
dynamic DNS domains pointing to 127.0.0.1), since this con-
tains no unique network information. Intuitively, one can think
of dynamic DNS as a nearly complete bijection of domains to
IPs. Figure 7(g) shows the growth of RRs for alexa.com
top 100 domains. Unlike dynamic DNS domains, these points
to a small set of unique addresses, and most can be identified
in a few weeks’ worth of training.

A comparison of all the zone classes appears in Figure 7(h),
which shows the cumulative distribution of the unique RRs de-
tailed in Figure 7(c) through (g). The different rates of change
illustrate how each zone class has a distinct pattern of RR use:
some have a small IP space and highly variable domain names;
some pair nearly every new domain with a new IP. Learning
approximately 90% of all the unique RRs in each zone class,
however, only requires (at most) tens of thousands of distinct
RRs. The intuition from this plot is that, despite the very large

data set we used in our study, Notos could potentially work
with data observed from much smaller networks.

4.2 Building The Ground Truth

To establish ground truth, we use two different labeling
processes. First, we assigned labels to RRs at the time of their
discovery. This provided an initial static label for many do-
mains. Blacklists, of course, are never complete and always
dynamic. So our second labeling process took place during
evaluation, and monitored several well-known domain black-
lists and whitelists.

The data we used for labeling came from several sources.
Our primary source of blacklisting came from services
such as malwaredomainlist.com and malwaredo-
mains.com. In order to label IP addresses in our pDNS
database we also used the Sender Policy Block (SBL) list from
Spamhaus [18]. Such IPs are either known to send spam or
distribute malware. We also collected domain name and IP
blacklisting information from the Zeus tracker [30]. All this
blacklisting information was gathered before the first day of
August 2009 (during all the 15 days in which we collected
passive DNS data). Since blacklists traditionally lag behind
the active threat, we continued to collect all new data until the
end of our experiments.

Our limited whitelisting was derived from the top 500-
alexa.com domain names, as of the 1st of August 2009. We
reasoned that, although some malicious domains become pop-
ular, they do not stay popular (because of remediation), and
never break into the top tier of domain rankings. Likewise, we
used a list of the 18 most common 2LDs from various CDNs,
which composed the main corpus of our CDN labeled RRs.
Finally a list of 464 dynamic DNS second level domains al-
lowed us to identify and label domain name and IPs coming
from zones under dynamic DNS providers. We label our eval-
uation (or testing) data-set by aggregating updated blacklist
information for new malicious domain names and IPs from
the same lists.

To compute the honeypot features (presented in Sec-
tion 3.2.3) we need a malware analysis infrastructure that can
process as many “new” malware samples as possible. Our
honeypot infrastructure is similar to “Ether” [4] and is capa-
ble of processing malware samples in a queue. Every malware
sample was analyzed in a controlled environment for a time
period of five minutes. This process was repeated during the
last 15 days of July 2009. After 15 days of executions we
obtained a set of successful DNS resolutions (domain names
and IPs) that each malware looked up. We chose to execute
malware and collect DNS evidence through the same period
of time in which we aggregate the passive DNS database. Our
virtual machines are equipped with five popular commercial
anti-virus engines. If one of the engines identifies an exe-
cutable as malicious, we capture all domain names and the
corresponding IP mappings that the malware used during ex-

ecution. After excluding all domain names that belong to the
top 500 most popular alexa.com zones, we assemble the
main corpus of our “honeypot data”. We automated the crawl-
ing and collection of black list information and honeypot exe-
cution.

The reader should note that we chose to label our data in
as transparent way as possible. We used public blacklisting
information to label our training dataset before we build our
models and train the reputation function. Then we assigned
the reputation scores and validated the results again using the
same publicly available blacklist sources. It is safe to as-
sume that private IP and DNS blacklist will contain significant
more complete information with lower FP rates than the public
blacklists. By using such type of private blacklist the accuracy
of Notos’ reputation function should improve significantly.

5 Results

In this section, we present the experimental results of our
evaluation. We show that Notos can identify malicious domain
names sooner than public blacklists, with a low false posi-
tive rate (FP%) of 0.38% and high true positive rate (TP%)
of 96.8%. As a first step, we computed vectors based on
the statistical features (described in Section 3.2) from 250,000
unique RRs. This volume corresponds to the average volume
of new – previously unseen – RRs observed at two recursive
DNS servers in a major ISP in one day, as noted in Section 4,
Figure 7(b). These vectors were computed based on historic
passive DNS information from the last two weeks of DNS traf-
fic observed on the same two ISP recursive resolvers in Atlanta
and San Jose.

5.1 Accuracy of Network Profile Modeling

The accuracy of the Meta-Classification system (Fig-
ure 4(a)) in the network profile module is critical for the over-
all performance of Notos. This is because, in the on-line mode,
Notos will receive unlabeled vectors which must be classified
and correlated with what is already present in our knowledge
base. For example, if the classifier receives a new RR and as-
signs to it the label Akamai with very high confidence, that
implies the RR which produced this vector will be part of a
network similar to Akamai. However, this does not necessar-
ily mean that it is part of the actual Akamai CDN. We will see
in the next section how we can draw conclusions based on the
proximity between labeled and unlabeled RRs within the same
zone-based clusters. Furthermore, we discuss the accuracy
of the Meta-Classifier when modeling each different network
profile class (profile classes are described in Section 3.3.2).

Our Meta-Classifier consists of five different classifiers,
one for each different class of domains we model. We chose to
use a Meta-Classification system instead of a traditional sin-
gle classification approach because Meta-Classification sys-
tems typically perform better than a single statistical classi-

284 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 285

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.05 0.1 0.15 0.2

Tr
ue

 P
os

itiv
e

Ra
te

False Positive Rate

False Positive Rate vs True Positive Rate

Akamai
CDNs

Popular
Common
Dynamic

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pr
ec

isi
on

Threshold

TP over All Pos. vs Threshold

Figure 8. ROC curves for all network profile

classes shows the Meta-Classifier’s accuracy.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.02 0.04 0.06 0.08 0.1

Tr
ue

 P
os

itiv
e

Ra
te

False Positive Rate

False Positive Rate vs True Positive Rate

ROC

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Threshold

TP over All Pos. vs Threshold

ROC

Figure 9. The ROC curve from the reputation func-

tion indicating the high accuracy of Notos.

fier [11, 2]. Throughout our experiments this proved to be
also true. The ROC curve in Figure 8, shows that the Meta-
Classifier can accurately classify RRs for all different network
profile classes.

The training dataset for the Meta-Classifier is composed
of sets of 2,000 vectors from each of the five network profile
classes. The evaluation dataset is composed of 10,000 vectors,
2,000 from each of the five network profile classes. The classi-
fication results for the domains in the Akamai, CDN, dynamic
DNS and Popular classes showed that the supervised learn-
ing process in Notos is accurate, with the exception of a small
number of false positives related to the Common class (3.8%).
After manually analyzing these false positives, we concluded
that some level of confusion between the vectors produced by
Dynamic DNS domain names and the vectors produced by
domain names in the Common class still remains. However,
this minor misclassification between network profiles does not
significantly affect the reputation function. This is because
the zone profiles of the Common and Dynamic DNS domain
names are significantly different. This difference in the zone
profiles will drive the network-based and zone-based cluster-
ing steps to group the RRs from Dynamic DNS class and Com-
mon class in different zone-based clusters.

Despite the fact that the network profile modeling process
provides accurate results, it doesn’t mean this step can inde-
pendently designate a domain as benign or malicious. The
clustering steps will assist Notos to group vectors not only
based their network profiles but also based on their zone prop-
erties. In the following section we show how the network and
zone profile clustering modules can better associate similar
vectors, due to properties of their domain name structure.

5.2 Network and Zone-Based Clustering Results

In the domain name clustering process (Section 3.3.3, Fig-
ure 4(b)) we used X-Means clustering in series, once for the
network-based clustering and again for the zone-based clus-
tering. In both steps we set the minimum and maximum num-
ber of clusters to one and the total number of vectors in our
dataset, respectively. We run these two steps using different
numbers of zone and network vectors. Figure 11 shows that
after the first 100,000 vectors are used, the number of network
and zone clusters remains fairly stable. This means that by
computing at least 100,000 network and zone vectors—using
a 15-day old passive DNS database—we can obtain a stable
population of zone and network based clusters for the moni-
tored network. We should note that reaching this network and
cluster equilibrium does not imply that we do not expect to
see any new type of domain names in the ISP’s DNS recur-
sive. This just denotes that based on the RRs present in our
passive DNS database, and the daily traffic at the ISP’s recur-
sive, 100,000 vectors are enough to reflect the major network
profile trends in the monitored networks. Figure 11 indicates
that a sample set of 100,000 vectors may represent the major
trends in a DNS sensor. It is hard to safely estimate the exact
minimum number of unique RRs that is sufficient to identify
all major DNS trends. An answer to this should be based upon
the type, size and utilization of the monitored network. With-
out data from smaller corporate networks it is difficult for us
to make a safe assessment about the minimum number of RR
necessary for reliably training Notos.

The evaluation dataset we used consisted of 250,000 unique
domain names and IPs. The cluster overview is shown in Fig-
ure 10 and in the following paragraphs we discuss some in-

Figure 10. With the 2-step clustering step, Notos

is able to cluster large trends of DNS behavior.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50000 100000 150000 200000 250000

Nu
m

be
r o

f C
lu

st
er

s
Pr

od
uc

ed

Number of Vectors Used

1st Level (Network Based) Clusters
2nd Level (Zone Based) Clusters

Figure 11. By using different number of network

and zone vectors we observe that after the first

100,000, there is no significant variation in the ab-

solute number of produced clusters during the 1st

and 2nd level clustering steps.

teresting observations that can be made from these network-
based and zone-based cluster assignments. As an example,
network clusters 0 and 1 are predominantly composed of zones
participating in fraudulent activities like spam campaigns (yel-
low) and malware dropping or C&C zones (red). On the other
hand, network clusters 2 to 5 contain Akamai, dynamic DNS,
and popular zones like Google, all labeled as benign (green).
We included the unlabeled vectors (blue) based on which we
evaluated the accuracy of our reputation function. We have a
sample of unlabeled vectors in almost all network and zone
clusters. We will see how already labeled vectors will assist
us to characterize the unlabeled vectors in close proximity.

Before we describe two sample cases of dynamic charac-
terization within zone-based clusters, we need to discuss our
radius R and k value selection (see Section 3.3.5). In Sec-
tion 3.3.5, we discuss how we build domain name clusters.
At that point we introduced the dynamic characterization pro-
cess that gives Notos the ability to utilize already label vectors
in order to characterize a newly obtained unlabeled vector by
leveraging our prior knowledge. After looking into the distri-
bution of Euclidean distances between unlabeled and labeled
vectors within the same zone clusters, we concluded that in the
majority of these cases the distances were between 0 and 1000.
We tested different values of the radius R and the value of k
for the K-nearest neighbors (KNN) algorithm. We observed
that the experiments with radius values between 50 and 200
provided the most accurate reputation rating results, which we
describe in the following sections. We also observed that if
k > 25 the accuracy of the reputation function is not affected
for all radius values between 50 and 200. Based on the results

of these pilot experiments, we decided to set k equal to 50 and
the radius distance equal to 100.

Figures 12 and 13 show the effect of this radius selection
on two different types of clustering problems. In Figure 12,
unknown RRs for akamaitech.net are clustered with a
labeled vector akamai.net. As noted in Section 4, CDNs
such as Akamai tended to have new domain names with each
RR, but to also reuse their IPs. By training with only a small
set of labeled akamai.net RRs, our classifier put the new,
unknown RRs for akamaitech.net into the existing Aka-
mai class. IP-specific features therefore brought the new RRs
close to the existing labeled class. Figure 12 compresses all
of the dimensions into a two-dimensional plot (for easier vi-
sual representation), but it is clear the unknown RRs were all
within a distance of 100 to the labeled set.

This result validates the design used in Section 4, where
just a few weeks’ worth of labeled data was necessary for
training. Thus, one does not have to exhaustively discover all
whitelisted domains. Notos is resilient to changes in the zone
classes we selected. Services like CDNs and major web sites
can add new IPs or adjust domain formats, and these will be
automatically associated with a known labeled class.

The ability of Notos to associate new RRs based on lim-
ited labeled inputs is demonstrated again in Figure 13. In
this case, labeled Zeus domains (approximately 2,900 RRs
from three different Zeus-related BLs) were used to clas-
sify new RRs. Figure 13 plots the distance between the la-
beled Zeus-related RRs and new (previously unknown) RRs
that are also related Zeus botnets. As we can see from
Section 4, most of the new (unlabeled) Zeus RRs lay very

286 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 287

-400

-200

 0

 200

 400

-400 -200 0 200 400 600 800 1000

CM
D

Sc
al

e
(1

)

CMD Scale (2)

Clustering akamai.net and akamaitech.net Vectors

akamai.net akamaitech.net

Figure 12. An example of characterizing the aka-

maitech.net unknown vectors as benign based on

the already labeled vectors (akamai.net) present

in the same cluster.

-1000

-800

-600

-400

-200

 0

 200

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

CM
D

2D
 S

ca
le

 (1
)

CMD 2D Scale (2)

Clustering The Zeus Botnet

Labeled Zeus Unlabeled Zeus

Figure 13. An example of how the Zeus botnet

clusters during our experiments. All vectors are

in the same network cluster and in two different

zone clusters.

close, and often even overlap, to known Zeus RRs. This
is a good result, because Zeus botnets are notoriously hard
to track, given the botnet’s extreme agility. Tracking sys-
tems such as zeustracker.abuse.ch and malware-
domainlist.com have limited visibility into the botnet,
and often produce disjoint blacklists. Notos addresses this
problem, by leveraging a limited amount of training data to
correctly classify new RRs. During our evaluation set, Notos
correctly detected 685 new (previously unknown) Zeus RRs.

5.3 Accuracy of the Reputation Function

The first thing that we address in this section is our deci-
sion to use a Decision Tree using Logit-Boost strategy (LAD)
as the reputation function. Our decision is motivated by the
time complexity, the detection results and the precision (true
positives over all positives) of the classifier. We compared
the LAD classifier to several other statistical classifiers using
a typical model selection procedure [6]. LAD was found to
provide the most accurate results in the shortest training time
for building the reputation function. As we can see from the
ROC curve in Figure 9, the LAD classifier exhibits a low false
positive rate (FP%) of 0.38% and true positive rate (TP%) of
96.8%. It is was noting that these results were obtained using
10-fold cross-validation, and the detection threshold was set
to 0.5. The dataset using for the evaluation contained 10,719
RRs related to 9,530 known bad domains. The list of known

good domains consisted of the top 500 most popular domains
according to Alexa.

We also benchmarked the reputation function on other two
datasets containing a larger number of known good domain

names. We experimented with bot the top 10,000 and top
100,000 Alexa domain names. The detection results for these
experiments are as follows. When using the top 10,000 Alexa
domains, we obtained a true positive rate of 93.6% and a false
positive rate of 0.4% (again using 10-fold cross-validation and
a detection threshold equal to 0.5). As we can see, these results
are not very different from the ones we obtained using only
the top 500 Alexa domains. However, when we extended our
list of known good domains to include the top 100,000 Alexa
domain names, we observed a significant decrease of the true
positive rate and an increase in the false positives. Specifically,
we obtained a TP% of 80.6% and a FP% of 0.6%. We believe
this degradation in accuracy may be due to the fact that the
top 100,000 Alexa domains include not only professionally
run domains and network infrastructures, but also include less
good domain names, such as file-sharing, porn-related web-
sites, etc., most of which are not run in a professional way and
have disputable reputation1.

We also wanted to evaluate how well Notos performs, com-
pared to static blacklists. To this end, we performed a number
of experiments as follows. Given an instance of Notos trained
with data collected up to July 31, 2009, we fed Notos with
250,000 distinct RRs found in DNS traffic we collected on
August 1, 2009. We then computed the reputation score for
each of these RRs. First, we set the detection threshold to 0.5,
and with this threshold we identified 54,790 RRs that had a
low reputation (lower than the threshold). These RRs where

1A quick analysis of the top 100,000 Alexa domains reported that about
5% of the domains appeared in the SURBL (www.surbl.org) blacklist, at
certain point in time. A more rigorous evaluation of these results is left to
future work.

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Vo
lu

m
e

O
f R

Rs

Days After Training

(a) Overall Volume of Malicious RRs

 100

 1000

 10000

 0 5 10 15 20 25 30 35

Vo
lu

m
e

O
f R

Rs

Days After Training

(b) Flux and Spam RRs Identified

Flux Spam

 1

 10

 100

 1000

 0 20 40 60 80 100
Days After Training

(c)Malware/Trojans, Exploits and
 Rogue AV RRs Identified

Malware
Exploit

Rogue AV

 1

 10

 100

 0 20 40 60 80 100
Days After Training

(d) Botnet RRs Identified

Zeus
Koobface

R.F.I
Various Bots

Figure 14. Dates in which various blacklists con-

firmed that the RRs were malicious after Notos

assigned low reputation to them on the 1st of

August.

related to a total of 10,294 distinct domain names (notice that
a domain name may map to more than one IP, and this ex-
plains the higher number of RRs). Of these 10,294 domains,
7,984 (77.6%) appeared in at least one of the public black-
lists we used for comparison (see Section 4) within 60 day
after August 1, and were therefore confirmed to be malicious.
Figure 14(a) reports the number and date in which RRs classi-
fied as having low reputation by Notos appeared in the public
blacklists. The remaining three plots (Figure 14(b), (c) and
(d)), report the same results organized according to the type of
malicious domains. In particular, it is worth noting that Notos
is able to detect never-before-seen domain names related to the
Zeus botnet several days or even weeks before they appeared
in any of the public blacklists.

For the remaining 22.4% of the 10,294 domains we consid-
ered, we were not able to draw a definitive conclusion. How-
ever, we believe many of those domains are involved in some
kind of more or less malicious activities. We also noticed
that 7,980 or the 7,984 confirmed bad domain names were
assigned a reputation score lower or equal to 0.15, and that
none of the other non-confirmed suspicious domains received
a score lower than this threshold. In practice, this means that
an operator who would like to use Notos as a stand-alone dy-
namic blacklisting system while limiting the false positives to
a negligible (or even zero) amount may fine-tune the detection
threshold and set it around 0.15.

5.4 Discussion

This section discusses the limits of Notos, and the poten-
tial for evasion in real networks. On of the main limitations
is the fact that Notos is unable to assign reputation scores for

domain names with very little historic (passive DNS) informa-
tion. Sufficient time and a relatively large passive DNS collec-
tion are required to create an accurate passive DNS database.
Therefore, if an attacker always buys new domain names and
new address space, and never reuses either resource for any
other malicious purposes, Notos will not be able to accurately
assign a reputation score to the new domains. In the IPv4
space, this is very unlikely to happen due to the impending ex-
haustion of the available address space. Once IPv6 becomes
the predominant protocol, however, this may represent a prob-
lem for the statistical features we extract based on IP granular-
ity. However, we believe the features based on BGP prefixes
and AS numbers would still be able to capture the agility typ-
ical of malicious DNS hosting behavior.

As long as newly generated domain names share some net-
work properties (e.g., IPs or BGP prefixes) with already la-
beled RRs, Notos will be able to assign an accurate reputa-
tion score. In particular, since network resources are finite and
more expensive to renew or change, even if the domain prop-
erties change, Notos can still identify whether a domain name
may be associated with malicious behavior. In addition, if a
given domain name for which we want to know the reputation
is not present in the passive DNS DB, we can actively probe it,
thus forcing a related passive DNS entry. However, this is pos-
sible only when the domain successfully maps to a non-empty
set of IPs.

Our experimental results using the top 10,000 Alexa do-
main names as known good domains, report a false positive
fate of 0.4%. While low in percentage, the absolute number of
false positives may become significant in those cases in which
very large numbers of new domain names are fed to Notos on
a daily bases (e.g., in case of deployment in a large ISP net-
work). However, we envision our Notos reputation system to
be use not as a stand-alone system, but rather in cooperation
with other defense mechanisms. For example, Notos may be
used in collaboration with spam-filtering system. If an email
contains a link to a website whose domain name has a low rep-
utation score according to Notos, the spam filter can increase
the total spam-score of the email. However, if the rest of the
email appears to be benign, the spam filter may still decide to
accept the email.

During our manual analysis of (a subset of) the false pos-
itives encountered in our evaluations we were able to draw
some interesting observation. We found that a number of le-
gitimate sites (e.g., goldsgym.com) are being hosted in net-
works that host large volumes of malicious domain names in
them. In this cases Notos will tend to penalize the reputation
of this legitimate domains because they reside in a bad neigh-

borhood. In time, the reputation score assigned to these do-
mains score may change, if the administrators of the network
in which the benign domain name are hosted take actions to
“clean up” their networks and stop hosting bad domain names
within their address space.

288 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 289

Domain Name IP Date

google-bot004.cn 213.182.197.229 08-15
analf.net 222.186.31.169 08-15
pro-buh.ru 89.108.67.83 08-15
ammdamm.cn 92.241.162.55 08-15
briannazfunz.com 95.205.116.55 08-15
mybank-of.com 59.125.229.73 08-15
oc00co.com 212.117.165.128 08-15
avangadershem.com 195.88.190.29 08-19
securebizccenter.cn 122.70.145.140 08-19
adobe-updating-service.cn 59.125.231.252 09-02
0md.ru 219.152.120.118 09-19
avrev.info 98.126.15.186 09-27
g00glee.cn 218.93.202.100 09-02

Table 1. Sample cases form Zeus domains de-

tected by Notos and the corresponding days

that appeared in the public BLs. All evidence

information in this table were harvested from

zeustracker.abuse.ch.

Domain Name IP Type Src Date

lzwn.in 94.23.198.97 MAL [1] 08-26
3b9.ru 213.251.176.169 MAL [2] 08-30
antivirprotect.com 64.40.103.249 RAV [3] 09-05
1speed.info 212.117.163.165 CWS [2] 09-05
spy-destroyer.com 67.211.161.44 CWS [4] 09-05
free-spybot.com 63.243.188.110 RAV [2] 09-05
a3l.at 89.171.115.10 MAL [2] 09-09
gidromash.cn 211.95.79.170 BOT [2] 09-13
iantivirus-pro.com 188.40.52.180 KBF [5] 09-19
ericwanhouse.cn 220.196.59.19 EXP [6] 09-22
1165651291.com 212.117.165.126 RAV [2] 10-06

Table 2. Anecdotal cases of malicious domain

names detected by Notos and the correspond-

ing days that appeared in the public BLs .[1]:
hosts-file.net, [2]: malwareurl.com, [3] siteadvisor.com, [4]
virustotal.com, [5] ddanchev.blogspot.com, [6] malwaredo-
mainlist.com

6 Conclusion

In this paper, we presented Notos, a dynamic reputation
system for DNS. To the best of our knowledge, Notos is the
first system that can assign a dynamic reputation score to any
domain name in a DNS query that traverses the edge of a
monitored network. Notos harvests information from multiple
sources such as the DNS zone domain names belongs to, the
related IP addresses, BGP prefixes, AS information and hon-
eypot analysis to maintain up-to-date DNS information about
legitimate and malicious domain names. Based on this infor-
mation, Notos uses automated classification and clustering al-
gorithms to model network and zone behaviors of legitimate
and malicious domains, and then applies these models to com-
pute a reputation score for a (new) domain name.

Our evaluation using real-world data, which includes traf-
fic from large ISP networks, demonstrates that Notos is highly
accurate in identifying new malicious domains in the moni-
tored DNS query traffic, with a true positive rate of 96.8% and
false positive rate of 0.38%. In addition, Notos is capable of
identifying these malicious domain weeks or even months be-
fore they appear in public blacklists, thus enabling proactive
security countermeasures against cyber attacks.

7 Acknowledgments

We thank Steven Gribble, our shepherd, for helping us to
improve the quality of the final version of this paper, and
the anonymous reviewers for their constructive comments.
We also thank Gunter Ollmann and Robert Edmonds for
their valuable comments. Additionally, we thank the Internet
Security Consortium Security Information Exchange project
(ISC@SIE) for providing portion of the DNS data used in our
experiments.

This material is based upon work supported in part by
the National Science Foundation under grant no. 0831300,
the Department of Homeland Security under contract no.
FA8750-08-2-0141, the Office of Naval Research under grants
no. N000140710907 and no. N000140911042. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation, the De-
partment of Homeland Security, or the Office of Naval Re-
search.

References

[1] D. Anderson, C. Fleizach, S. Savage, and G. Voelker.
Spamscatter: Characterizing internet scam hosting in-
frastructure. In Proceedings of the USENIX Security

Symposium, 2007.

[2] L. Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

[3] Internet Systems Consortium. SIE@ISC : Security Infor-
mation Exchange. https://sie.isc.org/, 2004.

[4] A. Dinaburg, R. Royal, M. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization extensions.
In ACM CCS, 2008.

[5] SORBS DNSBL. Fighting spam by finding and list-
ing Exploitable Servers. http://www.us.sorbs.
net/, 2007.

[6] R. Duda, P. Hart, and D. Stork. Pattern Classification.
Wiley-Interscience, 2nd edition, 2000.

[7] M. Felegyhazi, C. Keibich, and V. Paxson. On the poten-
tial of proactive domain blacklisting. In Third USENIX

LEET Workshop, 2010.

[8] S. Garera, N. Provos, M. Chew, and A. Rubin. A frame-
work for detection and measurement of phishing attacks.
In Proceedings of the ACM WORM. ACM, 2007.

[9] B. Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szyd-
lowski, R. Kemmerer, C. Kruegel, and G. Vigna. Your
botnet is my botnet: analysis of a botnet takeover. In
ACM CCS 09, New York, NY, USA, 2009. ACM.

[10] T. Holz, C. Gorecki, K. Rieck, and F. Freiling. Measur-
ing and detecting fast-flux service networks. In Proceed-

ings of NDSS, 2008.

[11] T. Hothorn and B. Lausen. Double-bagging: Combining
classifiers by bootstrap aggregation. Pattern Recogni-

tion, 36(6):1303–1309, 2003.

[12] P. Mockapetris. Domain names - concepts and fa-
cilities. http://www.ietf.org/rfc/rfc1034.
txt, 1987.

[13] P. Mockapetris. Domain names - implementation
and specification. http://www.ietf.org/rfc/
rfc1035.txt, 1987.

[14] OPENDNS. OpenDNS — Internet Navigation And Se-
curity. http://www.opendns.com/, 2010.

[15] P. Porras, H. Saidi, and V. Yegneswaran. An Analysis
of Conficker’s Logic and Rendezvous Points. http:
//mtc.sri.com/Conficker/, 2009.

[16] R. Perdisci, W. Lee, and N. Feamster. Behavioral cluster-
ing of http-based malware and signature generation using
malicious network traces. In USENIX NSDI, 2010.

[17] D. Plonka and P. Barford. Context-aware clustering of
DNS query traffic. In Proceedings of the 8th IMC, Vou-
liagmeni, Greece, 2008. ACM.

[18] The Spamhaus Project. ZEN - Spamhaus DNSBLs.
http://www.spamhaus.org/zen/, 2004.

[19] R. Perdisci, I. Corona, D. Dagon, and W. Lee. Detecting
malicious flux service networks through passive analy-
sis of recursive DNS traces. In Proceedings of ACSAC,
Honolulu, Hawaii, USA, 2009.

[20] P. Royal. Analysis of the kraken botnet.
http://www.damballa.com/downloads/
r_pubs/KrakenWhitepaper.pdf, 2008.

[21] S. Hao, N. Syed, N. Feamster, A. Gray and S.
Krasser. Detecting spammers with SNARE: Spatio-
temporal network-level automatic reputation engine. In
Proceedings of the USENIX Security Symposium, 2009.

[22] S. Shevchenko. Srizbi Domain Generator Calculator.
http://blog.threatexpert.com/2008/11/
srizbis-domain-calculator.html, 2008.

[23] K. Sato, K. Ishibashi, T. Toyono, and N. Miyake. Ex-
tending black domain name list by using co-occurrence
relation between dns queries. In Third USENIX LEET

Workshop, 2010.

[24] S. Sinha, M. Bailey, and F. Jahanian. Shades of grey: On
the effectiveness of reputation-based blacklists. In 3rd

International Conference on MALWARE, 2008.

[25] The Honeynet Project & Research Alliance. Know Your
Enemy: Fast-Flux Service Networks. http://old.
honeynet.org/papers/ff/fast-flux.html,
2007.

[26] URIBL. Real time URI blacklist. http://uribl.
com.

[27] F. Weimer. Passive DNS replication. In Proceedings of

FIRST Conference on Computer Security Incident, Hand
ling, Singapore, 2005.

[28] Z. Qian, Z. Mao, Y. Xie and F. Yu. On network-
level clusters for spam detection. In Proceedings of the

USENIX NDSS Symposium, 2010.

[29] B. Zdrnja, N. Brownlee, and D. Wessels. Passive mon-
itoring of DNS anomalies. In Proceedings of DIMVA

Conference, 2007.

[30] Zeus Tracker. Zeus IP & domain name block list.
https://zeustracker.abuse.ch, 2009.

[31] J. Zhang, P. Porra, and J. Ullrich. Highly predictive
blacklisting. In Proceedings of the USENIX Security

Symposium, 2008.

USENIX Association 19th USENIX Security Symposium 291

Scantegrity II Municipal Election at Takoma Park:
The First E2E Binding Governmental Election with Ballot Privacy

Richard Carback
UMBC CDL

David Chaum Jeremy Clark
University of Waterloo

John Conway
UMBC CDL

Aleksander Essex
University of Waterloo

Paul S. Herrnson
UMCP CAPC

Travis Mayberry
UMBC CDL

Stefan Popoveniuc

Ronald L. Rivest
MIT CSAIL

Emily Shen
MIT CSAIL

Alan T. Sherman
UMBC CDL

Poorvi L. Vora
GW

Abstract
On November 3, 2009, voters in Takoma Park, Mary-

land, cast ballots for the mayor and city council members
using the Scantegrity II voting system—the first time
any end-to-end (E2E) voting system with ballot privacy
has been used in a binding governmental election. This
case study describes the various efforts that went into
the election—including the improved design and imple-
mentation of the voting system, streamlined procedures,
agreements with the city, and assessments of the experi-
ences of voters and poll workers.

The election, with 1728 voters from six wards, in-
volved paper ballots with invisible-ink confirmation
codes, instant-runoff voting with write-ins, early and
absentee (mail-in) voting, dual-language ballots, provi-
sional ballots, privacy sleeves, any-which-way scanning
with parallel conventional desktop scanners, end-to-end
verifiability based on optional web-based voter verifica-
tion of votes cast, a full hand recount, thresholded author-
ities, three independent outside auditors, fully-disclosed
software, and exit surveys for voters and pollworkers.

Despite some glitches, the use of Scantegrity II was
a success, demonstrating that E2E cryptographic voting
systems can be effectively used and accepted by the gen-
eral public.

1 Introduction

The November 2009 municipal election of the city of
Takoma Park, Maryland marked the first time that any-
one could verify that the votes were counted correctly in
a secret ballot election for public office without having
to be present for the entire proceedings. This article is a
case study of the Takoma Park election, describing what
was done—from the time the Scantegrity Voting Sys-
tem Team (SVST) was approached by the Takoma Park
Board of Elections in February 2008, to the last crypto-
graphic election audit in December 2009—and what was

learned. While the paper provides a simple summary of
survey results, the focus of this paper is not usability but
the engineering process of bringing a new cryptographic
approach to solve a complex practical problem involving
technology, procedures, and laws.

With the Scantegrity II voting system, voters mark op-
tical scan paper ballots with pens, filling the oval for
the candidates of their choice. These ballots are handled
as traditional ballots, permitting all the usual automated
and manual counting, accounting, and recounting. Ad-
ditionally, the voting system provides a layer of integrity
protection through its use of invisible-ink confirmation
codes. When voters mark ballot ovals using a decoder
pen, confirmation codes printed in invisible ink are re-
vealed. Interested voters can note down these codes to
check them later on the election website. The codes are
generated randomly for each race and each ballot, and
hence do not reveal the corresponding vote. A final tally
can be computed from the codes and the system provides
a public digital audit trail of the computation.

Election audits in Scantegrity II are not restricted to
privileged individuals and can be performed by voters
and other interested parties. Developers and election au-
thorities are unable to significantly falsify an election
outcome without an overwhelming probability of an au-
dit failure [8]. The other side of the issue of integrity,
also solved by the system, is that false claims of impro-
priety in the recording and tally of the votes are readily
revealed to be false. 1

All the software used in the election—for ballot au-
thoring, printing, scanning and tally—was published
well in advance of the election as commented, buildable
source code, which may be a first in its own right. More-
over, commercial off-the-shelf scanners were adapted to
receive ballots in privacy sleeves from voters, making the

1Note that a threat present and not commonly addressed in paper
ballot systems is that additional marks could be added to ballots by
those with special access. Such attacks are made more difficult by
Scantegrity II.

1

292 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 293

overall system relatively inexpensive.
Despite several limitations of the implementation, we

found that the amount of extra work needed by officials
to use Scantegrity II while administering an election is
acceptable given the promise of improved voter satisfac-
tion and indisputability of the outcome. Indeed, discus-
sions are ongoing with the Board of Elections of the city
regarding continued use of the system in future elections.

Another observation from the election is that the elec-
tion officials and voters surveyed seemed to appreciate
the system. Since voters who do not wish to verify can
simply proceed as usual, ignoring the codes revealed in
the filled ovals, the system is least intrusive for these vot-
ers. Those voters who did check their codes, and even
many who did not, seem to appreciate the opportunity.

This paper describes the entire process of adapting the
Scantegrity II system to handle the Takoma Park elec-
tion, including the agreement with the city, printing the
special ballots with invisible-ink confirmation codes, ac-
tually running the election, and verifying that the election
outcome was correct.

Organization of this case study The next section pro-
vides an overview of related work in this area, summa-
rizing previous experiments with Scantegrity II and other
E2E systems in practical settings.

Section 3 describes in more detail the setting for the
election: giving details about Takoma Park and their
election requirements. Section 4 gives more details of
the Scantegrity II voting system, including a description
of how one can “audit” an election. Section 5 provides
an overview of the implementation of the voting system
for the November 3, 2009 Takoma Park municipal elec-
tion, including the scanner software, the cryptographic
back-end, and the random-number generation routines.

Section 6 gives a chronological presentation and time-
line of the steps taken to run the November election,
including the outcome of the voter verification and the
audits. It also gives the results of the election, with
some performance and integrity metrics. Section 7 re-
ports some results of the exit surveys taken of voters and
pollworkers.

Section 8 discusses the high-level lessons learned from
this election. Section 9 provides some conclusions, ac-
knowledgements, and disclosures required by the pro-
gram committee.

2 Related Work

Chaum was the first to propose the use of cryptogra-
phy for the purpose of secure elections [5]. This was
followed by almost two decades of work in improving
security and privacy guarantees (for a nice survey, see

Adida [1]), most recently under the rubric of end-to-end
voting systems. These voting system proposals provide
integrity (any attempt to change the tally can be caught
with very high probability by audits which are not re-
stricted to privileged individuals) and ballot secrecy.

The first of these proposals include protocols by
Chaum [6] and Neff [19], which were implemented soon
after (Chaum’s as Citizen-Verified Voting [16] and Neff’s
by VoteHere). Several more proposals with prototypes
followed: Prêt à Voter [10], Punchscan [21, 15], the pro-
posal of Kutylowski and Zagórski [18] as Voting Ducks,
and Simple Verifiable Voting [4] as Helios [2] and Vote-
Box [24].

Making end-to-end systems usable in real elections
has proven to be challenging. We are aware of the follow-
ing previous binding elections held using similar verifi-
cation technology: the Punchscan elections for the grad-
uate students’ union of the University of Ottawa (2007)
and the Computer Professionals for Social Responsibil-
ity (2007); the Rijnland Internet Election System (RIES)
public elections in the Netherlands in 2004 and 2006; the
Helios elections of the Recteur of Université Catholique
de Louvain [3] (2009) and the Princeton undergraduate
student government election (2009), as well as a student
election using Prêt à Voter.

Only the RIES system has been used in a governmen-
tal election; however, it is meant for remote (absentee)
voting and, consequently, does not offer strong ballot se-
crecy guarantees. For this reason, it has been recom-
mended that the RIES system not be used for regular
public elections [17, 20]. Helios is also a remote vot-
ing system, and offers stronger ballot secrecy guarantees
over RIES. The Punchscan elections were the closest to
this study, but they did not rise to the level of public
elections. They did not have multiple ballot styles, the
users of the system were not a broad cross-segment of
the population as in Takoma Park, the system implemen-
tors were deeply involved in administering the elections,
and no active auditors were established to audit the elec-
tions. To date, this study is the most comparable use case
of E2E technology to that of a typical optical scan elec-
tion.

The case study reported here is based on a series of
systems successively developed, tested, and deployed by
a team of researchers included among the present au-
thors originating with the Punchscan system. Although
it used paper ballots, the Punchscan system did not al-
low manual recounts, a feature that the team recognized
as needing to be designed into the next generation of
systems. The result was Scantegrity [9], which retained
hand-countable ballots, and was tested in a number of
small elections. With Scantegrity, however, it was too
easy to trigger an audit that would require scrutiny of the
physical ballots. The Scantegrity II system [7, 8], de-

2

ployed in Takoma Park, was a further refinement to ad-
dress this problem by allowing a public statistical test of
whether voter complaints actually reflect a discrepancy
or whether they are without basis. Note: in the rest of
the paper, “Scantegrity” refers to the voting team or to
the Scantegrity II voting system; which one is typically
easily determined from context.

As part of the Scantegrity agreement with Takoma
Park (see section 3), a “mock election” [26] was held
in April 2009 to test and demonstrate feasibility of the
Scantegrity system during Takoma Park’s annual Arbor
day celebration. Volunteer voters voted for their favorite
tree. A number of revisions and tweaks to the Scant-
egrity system were made as a result of the mock elec-
tion, including: ballot revisions (no detachable chit, but
instead a separate voter verification card), pen revisions
(two-ended, with different sized tips), scanner station re-
visions (better voter flow, no monitor, two scanners), pri-
vacy sleeve (no lock, no clipboard, folding design, feeds
directly into scanner), and confirmation codes (three dec-
imal digits).

3 The Setting

For several reasons, the implementation of voting sys-
tems is a difficult task. Most voting system users—
i.e. the voters—are untrained and elections happen infre-
quently. Voter privacy requirements preclude the usual
sorts of feedback and auditing methods common in other
applications, such as banking. Also, government regula-
tions and pre-existing norms in the conduct of elections
are difficult to change. These issues can pose significant
challenges when deploying new voting systems, and it
is therefore useful to understand the setting in which the
election took place.

About Takoma Park The city of Takoma Park is lo-
cated in Montogomery County, Maryland, shares a city
line with Washington, D.C, and is governed by a mayor
and a six-member City Council. The city has about
17,000 residents2 and almost 11,000 registered voters
[27, pg. 10]. A seven-member Board of Elections con-
ducts local elections in collaboration with the City Clerk.
In the past, the city has used hand counts and optical scan
voting, as well as DREs for state elections.

The Montgomery County US Census Update Data
of 2005 provides some demographic information about
the city. Median household income in 2004 was
$48,675. The percentage of households with comput-
ers was 87.4%, and about 32% of Takoma Park residents
above the age of twenty-five had a graduate, professional
or doctoral degree. It is an ethnically diverse city: 45.8%

2See http://www.takomaparkmd.gov/about.html.

of its residents identify their race as “White,” 36.3% as
“Black,” 9.7% as “Asian or Pacific Islander” and 8.2% as
“Other” (individuals of Hispanic origin form the major
component of this category). Further, 44.4% of its house-
holds have a foreign-born head of household or spouse,
and 44.8% of residents above the age of five spoke a lan-
guage other than English at home.

Instant Runoff Voting (IRV) Takoma Park has used
IRV in municipal city elections since 2006. IRV is a
ranked choice system where each voter assigns each can-
didate a rank according to her preferences. The rules3

used by Takoma Park (and the Scantegrity software) for
counting IRV ballots are relatively standard, so we omit
further discussion for lack of space.

Agreement with the City As with any municipal gov-
ernment in the US, Takoma Park is allowed to choose its
own voting system for city elections. For county, state,
and federal elections, it is constrained by county, state,
and federal election laws.

Takoma Park and the SVST signed a Memorandum
of Understanding (MOU), in which the SVST agreed
to provide equipment, software, training assistance, and
technical support. The City of Takoma Park agreed to
provide election-related information on the municipality,
election workers, consumable materials, and perform or
provide all other election duties or materials not provided
by us. No goods or funds were exchanged.

According to the MOU, if approved by the city coun-
cil, the election was to be conducted in compliance with
all applicable laws and policies of the city. This included
using Instant Runoff Voting as defined by the City of
Takoma Park Municipal Charter.

The SVST also agreed to pursue an accessible ballot-
marking device for the election, but was later relieved of
satisfying this requirement. Unfortunately, Scantegrity
is not yet fitted with a voter interface for those with vi-
sual or motor disabilities, and accessible user interfaces
were also not used in Takoma Park’s previous optical
scan elections.

Timeline Scantegrity was approached by the Takoma
Park Board of Elections in late February 2008, and, after
considering other voting systems, the Board voted to rec-
ommend a contract with Scantegrity in June 2008. Fol-
lowing a public presentation to the City Council in July
2008, the MOU was signed in late November 2008, about
nine months after the initial contact.

3For the exact laws used by Takoma Park, see page 22 of http:
//www.takomaparkmd.gov/code/pdf/charter.pdf. Sec-
tion (f), concerning eliminating multiple candidates, was used in our
implementation for tie-breaking only.

3

294 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 295

The SVST held an open workshop in February 2009 to
discuss the use of Scantegrity in both the mock and real
elections. This workshop was held at the Takoma Park
Community Center and was attended by Board of Elec-
tion members, the City Clerk, current members (and a
retired member) from the Montgomery County Board of
Elections, as well as a representative each from the Pew
Trust and FairVote. Following the mock election in April
2009, the SVST proposed a redesigned system taking
into consideration feedback from voters and poll work-
ers (through surveys) and the Board of Elections. The
Board voted to recommend use of the redesigned system
in July 2009; this was made official in the city election
ordinance in September 2009. 4 Beginning around June
2009, a meeting with representatives of the SVST was
on the agenda of most monthly Board of Election meet-
ings. Additionally, SVST members met many times with
the City Clerk and the Chair of the Board of Elections to
plan for the election.

The final list of candidates was available approxi-
mately a month before the election, on October 2. The
Scantegrity meetings initializing the data and ballots
were held in October (see Section 6), as was a final work-
shop to test the system. Absentee ballots were sent out
by the City Clerk in the middle of October. The SVST
delivered ballots to the City Clerk in late October, and
early voting began almost a week before the election, on
October 28. Poll worker training sessions were held by
the city on October 28 and 31, and polling on November
3, 2009, from 7 am to 8 pm. The final Scantegrity audits
were completed on 17 December 2010; all auditors were
of the opinion that the election outcomes were correct
(for details see section 6).

4 Scantegrity Overview

In this section, we give an overview of the Scantegrity
system. For more detailed descriptions, see [7, 8].

Voter Experience At a high level, the voter experience
is as follows. First, a voter checks in at the polling place
and receives a Scantegrity ballot (See Figure 2) with a
privacy sleeve. The privacy sleeve is used to cover the
ballot and keep private the contents of the ballot. Inside
the voting booth, there is a special “decoder pen” and a
stack of blank “voter verification cards.” The voter uses
the decoder pen to mark the ballot. As on a conventional
optical scan ballot, she fills in the bubble next to each of
her selections. Marking a bubble with the decoder pen
simultaneously leaves a dark mark inside the bubble and

4See http://www.takomaparkmd.gov/clerk/agenda/
items/2009/090809-3.pdf, section 2-D, page 2.

reveals a previously hidden confirmation code printed in
invisible ink.

If the voter wishes to verify her vote later on the elec-
tion website, she can copy her ballot ID and her revealed
confirmation codes onto a voter verification card. She
keeps the verification card for future reference. She then
takes her ballot to the scanning station and feeds the bal-
lot into an optical scanner, which reads the ballot ID and
the marked bubbles.

If a voter makes a mistake, she can ask a poll worker
to replace her ballot with a new one. The first ballot is
marked “spoiled,” and its ballot ID is added to the list of
spoiled ballot IDs maintained by the election judges.

The voter can verify her vote on the election website
by checking that her revealed confirmation codes and
ballot ID have been posted correctly. If she finds any
discrepancy, the voter can file a complaint through the
website, within a complaint period. When filing a com-
plaint, the voter must provide the confirmation codes that
were revealed on her ballot as evidence of the validity of
the complaint.

Ballots The Scantegrity ballot looks similar to a con-
ventional optical scan ballot (see Figure 2 for a sam-
ple ballot used in the election). It contains a list of the
choices and bubbles beside each choice. Marking a bub-
ble reveals a random 3-digit confirmation code.

Confirmation Codes The confirmation codes are
unique within each contest on each ballot, and are gener-
ated independently and uniformly pseudorandomly. The
confirmation code corresponding to any given choice on
any given ballot is hidden and unknown to any voter until
the voter marks the bubble for that choice.

Digital Audit Trail Prior to the election, a group of
election trustees secret-share a seed to a pseudorandom
number generator (PRNG). The trustees then input their
shares to a trusted workstation to generate the pseudo-
random confirmation codes for all ballots, as well as a
set of tables of cryptographic commitments to form the
digital audit trail. These tables allow individual voters to
verify that their votes have been included in the tally, and
allow any interested party to verify that the tally has been
computed correctly, without revealing how any individ-
ual voter voted.

Auditing After the election, any interested party can
audit the election by using software to check the correct-
ness of the data and final tally on the election website.
Additionally, at the polling place on the day of the elec-
tion, any interested party can choose to audit the printing
of the ballots. A print audit consists of marking all of the

4

bubbles on a ballot, and then either making a photocopy
of the fully-marked ballot or copying down all of the re-
vealed confirmation codes. The ballot ID is recorded by
an election judge as audited. After the election, one can
check that all of the confirmation codes on the audited
ballot, and their correspondence with ballot choices, are
posted correctly on the election website.

5 Implementation

The election required a cryptographic backend, a scan-
ner, and a website. These 3 components form the ba-
sic election system and their interaction is described in
Figure 1. In addition, Takoma Park required software to
resolve write-in candidate selections and produce a for-
matted tally on election night.

Scantegrity protects against manipulation of election
results and maintains, but does not improve, the privacy
properties of optical scan voting systems that use se-
rial numbers. To compromise voter privacy using Scant-
egrity features, an attacker must associate receipts to vot-
ers and determine what confirmation numbers are as-
sociated to each candidate. This is similar to violat-
ing privacy by other means; for example, an attacker
could compromise the scanner and determine the order
in which voters used the device, or examine physical
records and associate serial numbers to voters. The scan-
ner and backend components protect voter privacy, but
the website and the write-in candidate resolver do not
because they work with public information only.

Each component is written in Java. We describe the
implementation and functions of each one in the follow-
ing sections.

Backend The cryptographic backend that provides the
digital audit trail is a modified version of the Punchscan
backend [21]. This backend is written in Java 1.5 using
the BouncyCastle cryptography library. 5 Key manage-
ment in the Punchscan backend is handled by a simple
threshold [25] cryptosystem that asks for a username and
password from the election officials.

We chose the Punchscan backend over newer propos-
als [7] because it had already been implemented and
tested in previous elections [13, 28]. At the interface be-
tween the Scantegrity frontend and the Punchscan back-
end, as described in [23], the permutations used by
Punchscan are matched to a permutation of precomputed
confirmation codes for Scantegrity that correspond to the
permutation of codes printed on the ballot.

The Punchscan backend uses a two-stage mix process
based on cryptographic commitments published before
the election. Each mix, the left mix and the right mix,

5http://www.bouncycastle.org

takes marked positions as input, shuffles the ballots, and
reorders each marked position on each ballot according
to a prescribed (pre-committed) permutation. The result
is the set of cleartext votes, where position 0 corresponds
to candidate 0, 1 to 1, etc. Between the two mixes, for
example, position 0 may in fact correspond to candidate
5, depending on the permutation in the right mix.

The Punchscan backend partitions [22] each contest
such that each contest is treated as an independent elec-
tion with a separate set of commitments. In the case of
Takoma Park, each ward race and the mayor’s race are
treated as separate elections. (The announcement of sep-
arate mayoral race vote counts for each ward is required
by Takoma Park). The scanner is responsible for creating
the input files for each individual election.

Election officials hold a series of meetings using the
backend to conduct an election. Before the election, dur-
ing Meeting 1 (Initialization), they choose passwords that
are shares of a master key that generates all other data for
the election in a deterministic fashion. After each meet-
ing, secret data (such as the mapping from confirmation
codes to candidates) is erased from the hard drive and re-
generated from the passwords when it is needed again.
In Meeting 1 the backend software creates a digital au-
dit trail by committing to the Punchscan representation
of candidate choices and to the mixset: the left and right
mix operations for each ballot. Later, during Meeting 2
(Pre-Election Audit), the backend software responds to
an audit of the trail demonstrating that the mixset de-
crypts ballots correctly. At this time, the backend also
commits to the Scantegrity front-end, consisting of the
linkage between the Scantegrity front-end and its Punch-
scan backend used for decryption.

After the election, election officials run Meeting 3 (Re-
sults), publishing the election results and the voted con-
firmation numbers. For the purposes of the tally audit,
the system also publishes the outputs of the left and right
mixes. In Meeting 4 (Post-Election Audit), officials re-
spond to the challenges of the tally computation audit.
Either the entire left mix or the entire right mix opera-
tions are revealed, and the auditor checks them against
data published in Meeting 3.

The Meeting 4 audit catches, with probability one half,
a voting system that cheats in the tally computation. To
provide higher confidence in the results, the backend cre-
ates multiple sets of left and right mixes; in Takoma Park,
we created 40 sets for each election, 20 of which were
audited. Given 2 contests per ballot and 40 sets of left
and right mixes, there are a total of 160 commitments
per ballot in the audit trail, in addition to a commitment
per contestant per ballot for each confirmation number
(15-18, depending on the Ward).

The implementation uses two classes of “random”
number sources. The first is used to generate the dig-

5

296 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 297

Backend Website Backend Printer

Backend

Voter

Website

Scanner

Website

Backend

Website

Core Election Workflow

Figure 1: Election Workflow. The core election work flow in Scantegrity is similar to an optical scan election:
a software backend creates ballot images that are printed, used by voters, and scanned. The results are fed to the
backend which creates the tally. The audit capacity is provided by 3 extra steps: (1) create the initial digital audit trail
and audit a portion of it, (2) audit the ballots to ensure correctness when printing, and (3) audit the final tally.

ital audit trail, and the second is used for auditing the
trail. Both types of sources must be unpredictable to an
adversary, and we describe each in turn.

Digital Audit Trail The Punchscan backend generates
the mixes and commitments using entropy provided by
each election official during initialization of the thresh-
hold encryption. This provided a “seed” for a pseudo-
random number generator (based on the SHA256 hash
function).

We also used this random source to generate the con-
firmation numbers when changing the Punchscan back-
end to support Scantegrity. Unfortunately, we introduced
an error in the generation when switching from alphanu-
meric to numeric confirmation numbers as a result of
findings in the Mock election (see Section 2). This re-
sulted in approximately 8.5 bits of entropy as opposed to
the expected 10 bits. We discovered this error after we
started printing and it was too late to regenerate the audit
trail.

The error increased the chance that an adversary could
guess an unseen confirmation code to approximately one
in 360 rather than the intended one in 1000; a small de-
crease in the protection afforded against malicious voters
trying to guess unseen codes in order to discredit the sys-
tem.

Auditing Random numbers are needed to generate
challenges for the various auditing steps (print audit, ran-
domized partial checking). These numbers should be un-
predictable in advance to an adversary. They should also
be “verifiable” after the fact as having come from a “truly
random” source that is not manipulable by an adversary.

We chose to use the closing prices of the stocks in
the Dow Jones Industrial Average as our verifiable but
unpredictable source to seed the pseudorandom number
generator (the use of stock prices for this purpose was
first described in [11]). These prices are sufficiently un-
predictable for our purposes, yet verifiable after the fact.
However, it turns out that post-closing “adjustments” can
sometimes be made to the closing prices, which can
make these prices less than ideal for our purposes in

terms of verifiability.

Scanner Software The original intent of Scantegrity
was to build on top of an existing optical scan system.
There was no pre-existing optical scan system in use at
Takoma Park, so we implemented a simple system using
EeePC 900 netbooks and Fujitsu 6140 scanners.

The scanning software is written in Java 1.6. It uses a
bash shell script to call the SANE scanimage program 6

and polls a directory on the filesystem to acquire bal-
lot images. Once an image is acquired it uses circular
alignment marks to adjust the image, reads the barcode
using the ZXing QRCode Library, 7 and uses a simple
threshold algorithm to determine if a mark is made on
the ballot.

Individual races on each ballot are identified by ward
information in the barcode, which is non-sequential and
randomly generated. The ballot id in the barcode and
the web verification numbers on each ballot are different
numbers, and the association between each number type
is protected by the backend system. Write-in candidate
areas, if that candidate is selected by the voter, are stored
as clipped raw images with the ballot scan results. Ballot
scan results are stored in a random location in a memory
mapped file.

The current implementation of the scanning software
does not protect data in transit to the backend, which
poses a risk for denial of service. Checking of the cor-
rectness of the scanner is done through the Scantegrity
audit. The data produced by the scanner does not com-
promise voter privacy, but—assuming an attacker could
intercept scanner data—voter privacy could be compro-
mised at the scanner through unique write-in candidates
on the ballot, through a compromised scanner, by bugs
in the implementation, or by relying on the voter to make
readable copies of the barcode to get a ballot id.

6http://www.sane-project.org/
7http://code.google.com/p/zxing/

6

Tabulator/Write-In Software At the request of
Takoma Park we created an additional piece of software,
the Election Resolution Manager (ERM), that allows
election judges to manually determine for each write-in
vote what candidate the vote should be counted toward.
The other responsibility of the ERM is to act as part of
the backend. It collates data from each scanner and pre-
pares the input files for the backend.

To resolve write-ins with this software, the user cy-
cles through each image, and either types in the name of
the intended candidate or selects the name from a list of
previously identified candidates composed of the original
candidates and any previously typed candidate names.
The user is not shown the whole ballot, so he does not
know what the other selections are on that ballot, or what
rank the write-in was given. We call this process resolv-
ing a vote because the original vote is changed from the
generic “Write-In” candidate to the candidate that was
intended by the voter. The ERM produces a PDF of
each image, the candidate selection for that image, and
a unique number to identify the selection.

Scantegrity handles write-in candidates just like other
optical scan systems by treating the write-in position
as a candidate. Therefore, the backend does not know
how each write-in position was resolved, and two results
records are created: one with write-in resolution pro-
vided by the ERM, and one without write-in resolution
provided by the backend.

To check the additional record generated by the ERM,
an observer reduces the resolved results record and veri-
fies that the set of resolved ballots is the same as the set of
unresolved ballots. To audit that the judges chose the cor-
rect candidates for each write-in, the observer refers to
the PDF generated during write-in resolution. The PDF
allows the observer to reference each resolved ballot en-
try in the resolved results file and verify that the image
was properly transcribed.

One caveat of this approach is that if a write-in candi-
date wins, a malicious authority could modify these im-
ages to change results, but could not deny that the write-
in position had received a winning number of votes. This
situation would require additional procedures to verify
the write-ins (e.g. a hand count, and/or careful audit of
the transcriptions by each judge).

Website Beyond communicating the election outcome
itself, the role of the election website is to serve as a “bul-
letin board” (BB) to broadcast the cryptographic audit
data set (i.e., cryptographic commitments, responses to
audit challenges, etc). In addition, voters can use this
website to check their receipts, and file a dispute if the
receipt is misreported. We provided an implementation
with these features written in Java 1.6. It used the Stripes

Framework 8 and an Apache Derby database backend. 9

In practice, we only used part of this implementation.
Originally, our plan was to have Takoma Park host the

website, but officials chose a hybrid approach where they
hosted election information and results. That website
would link to our server to provide a receipt checking
tool and audit data. After the election, officials would
provide us with a copy of the public data files to pub-
lish. This decision caused a number of changes to our
approach.

We decided to only use the receipt checking code from
the implementation, and, to make downloading more
convenient for auditors, post all election data on our pub-
licly available subversion repository. 10 Additionally,
both auditors agreed to mirror the data.

A primary security requirement for the Scantegrity
BB is to provide authenticated broadcast communication
from election officials to the public. We met this require-
ment with digital signatures. A team member (Carback)
created signed copies of each file with gnupg 11 using his
public key from May 28, 2009.

Without authenticated communication, it would be im-
possible to prove if different results were provided to dif-
ferent people. Our specific approach to the website re-
quires observers to verify signatures and check with each
other if they receive identical copies of the data (and ver-
ify the consistency of the signatures over time). Our au-
ditors, Adida and Zagorski, performed these actions, but
we do not know the extent of this communication other-
wise. As usual with our approach to Scantegrity, we are
enabling detection of errors (genuine or malicious).

There are several potential threats to the bulletin board
model–we will briefly enumerate some of them. At a
high level, threats pertain primarily to misreporting of
results, or to voter identification. With regard to results
reporting, an adversary may attempt to misreport results
by substituting actual election data with false data. In
the event that all parties verify signatures of information
they receive, and check consistency with the signed files,
incorrect confirmation codes on the bulletin board would
be detected by voters, and incorrect computation of the
tally by anyone checking the tally computation audit. If
the voter checking confirmation codes does not check
consistency with the rest of the bulletin board (by, for ex-
ample, downloading the bulletin board data, checking all
the signatures and checking that his or her confirmation
code is also correctly noted in the entire bulletin board
data) he or she may be deceived into believing their bal-
lot was accurately recorded and counted. Similarly, if

8http://www.stripesframework.org/
9http://db.apache.org/derby/

10http://scantegrity.org/svn/data/
takoma-nov3-2009/

11http://www.gnupg.org/

7

298 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 299

the various signatures are not cross checked across indi-
viduals or observed over time, an adversary may replace
the confirmation codes after they have been checked, or
send different ones to voters and to auditors. An adver-
sary may also attempt an identification attack, whereby
the objective is to link voter identities with receipt data,
such as by recording IP addresses of voters who check
their receipts.

6 The Election

In this section, we describe the election as events unfold
chronologically over time.

6.1 Preparations
Preparations for the election include running the first 2
backend meetings, and creating the ballot.

Independent Auditors The Board of Elections re-
quested cryptographers Dr. Ben Adida (Center for Re-
search on Computation and Society, Harvard University)
and Dr. Filip Zagórski (Institute of Mathematics and
Computer Science, Wroclaw University of Technology,
Poland) to perform independent audits of the digital data
published by Scantegrity in general, and of the tally com-
putation in particular. Dr. Adida 12 and Dr. Zagórski 13

maintained websites describing the audits and the results
of the audits, and Dr. Adida also blogged the audit. 14

Before the election, Dr. Adida pointed out several in-
stances when the Scantegrity information was insuffi-
cient; Scantegrity documentation was updated as a result.

The Board of Elections also requested Ms. Lillie
Coney (Associate Director, Electronic Privacy Informa-
tion Center and Public Policy Coordinator for the Na-
tional Committee for Voting Integrity (NCVI)) to per-
form print audits on Election Day. Ms. Coney chose
ballots at random through the day, exposed the confir-
mation codes for all options on the ballot, and kept these
with her until after the end of the complaint period, when
Scantegrity opened commitments to all unvoted and un-
spoiled ballots (and hence to all ballots she had audited).
Ms. Coney then checked that the correspondence be-
tween codes and confirmation numbers on her ballots
matched those on the website.

Both tasks, of print audits and digital data audits, can
be performed by voters. Digital data audits can also be
performed by any observers. In future elections, when
the general population and Takoma Park voters are more

12http://sites.google.com/site/
takomapark2009audit/

13http://zagorski.im.pwr.wroc.pl/scantegrity/
14http://benlog.com/articles/category/

takoma-park-2009/

familiar with end-to-end elections, it is anticipated that
voters (and, in particular, candidate representatives) will
perform such audits.

Meeting 1 Four election officials (the City Clerk, the
Chair, Vice Chair and a member of the Board of Elec-
tions: Jessie Carpenter, Anne Sergeant, Barrie Hofmann
and Jane Johnson, respectively) were established as elec-
tion trustees in Meeting 1, held on October 12 2009.

It was explained to the trustees that, through their pass-
words, they would generate the confirmation codes and
share the secret used to tally election results. Further,
it was explained that, without more than a threshold of
passwords, the election could not be tallied by Scant-
egrity, and that if a threshold number of passwords was
not accessible (if they were forgotten, for example, or
trustees were unavailable due to sickness) the only avail-
able counts would be manual counts. A threshold of two
trustees was determined based on anticipated availabil-
ity of the officials, and it was explained that two trustees
could collude to determine the correspondence between
confirmation numbers and codes, and hence that each
trustee should keep her password secret.

The trustees generated commitments to the decryption
paths for each of 5000 ballots per ward (for six wards).
Scantegrity published the commitments on October 13
2009 at 12:13am.

Meeting 2 In Meeting 2, held on October 14, 2009,
trustees used Scantegrity-written code to respond to chal-
lenges generated using stock market data at closing on
October 14. Half of the ballot decryption paths commit-
ted to in Meeting 1 were opened. Additionally, trustees
constructed ballots (associations between candidates and
confirmation codes) at this meeting, and generated com-
mitments to them. Scantegrity published the stock mar-
ket data, the challenges, and the responses.

Ballot Design The ballot used for the 2009 election
was based on ballots used for the 2007 election. We
made the conscious choice to modify (as little as pos-
sible) a design already used successfully in a past elec-
tion, and not to use the ballot we had designed for the
mock election. The main reason for reusing the ballot
design was that it would be familiar to voters. The ballot
was required to contain instructions in both English and
Spanish: marking instructions, instructions for write-ins,
instructions for IRV and any Scantegrity-related instruc-
tions (see Figure 2).

Printing Ballots We use “invisible” ink to print the
marking positions that reveal confirmation codes to vot-
ers. We used refillable inkjet cartridges in multiple color

8

Tear-off line Ward number

Reactive ink,
darkens when
marked with
pen

2D machine-
readable bar codeAlignment mark

For voter to look up
online

Figure 2: An unmarked Takoma Park 2009 ballot for Ward 1 showing instructions in Spanish and English, the options,
the circular alignment marks, the 2D barcode, the ballot serial number (on the stub, meant for poll workers to keep
track of the number of ballot used) and the online verification number (for voters to check their codes). The true ballot
was printed on legal size paper and was hence larger than shown.

9

300 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 301

positions of an Epson R280 printer to print confirmation
codes. The ink is not actually invisible, but looks like
a yellow bubble before marking and a dark bubble with
light yellow codes after marking. 15

We initially began printing with 6 printers, but they
proved unreliable. It was our expectation that using large
amounts of commodity hardware would scale, but it did
not. We did not anticipate the number of failure modes
we experienced and our printing process was delayed by
approximately 1 and a half days.

Ballot Delivery Mail-in (absentee) ballots were deliv-
ered to the City Clerk on 16 October. Early, in-person
voting ballots were delivered on October 27 for early vot-
ing on October 28, and all other ballots a couple of days
later on October 30.

Absentee ballots were identical to in-person voting
ballots except they did not contain online verification
numbers and voters were not given any instructions on
checking confirmation numbers online. They were re-
turned by mail in double envelopes and scanned with
the early votes. Confirmation numbers for these ballots
were, however, made available online after scanning, so
that there was no distinction in published data between
absentee and in-person voted ballots.

The board decided to issue ballots without confirma-
tion numbers due to the small number of anticipated ab-
sentee votes and the costs associated with mailing ballots
with special pens. Mailing the ballots with confirmation
codes would allow verification of confirmation codes, but
opens up new attacks: the possibility of false charges of
election fraud by adversaries who might expose confir-
mation codes and reprint ballots, or use expensive equip-
ment to attempt to determine the invisible codes. Strong
verification for absentee ballots is an ongoing research
subject within the Scantegrity team.

Early in-person voters used Scantegrity ballots with
all Scantegrity functionality, except that the early votes
were scanned in after the polls closed on Election Day,
and not by voters themselves. Voters were, however,
provided verification cards and could check confirmation
codes for these ballots online.

Poll Worker Training Several training sessions were
held in the weeks prior to the election. Manuals from the
previous election were updated and a companion guide
was created with Scantegrity-specific instructions. Elec-
tion judges were given these two manuals, and a member
from our team demonstrated the voting process at one
session.

15See http://scantegrity.org/˜carback1/ink for
more information on the printing process

Voter Education Voter education for this election fo-
cused on online verification. Articles in the City news-
paper before the real election indicated that voters could
check confirmation numbers online; this was also an-
nounced on the city’s election website. 16

Scanner Setup We attempted to minimize, not pre-
vent, 17 the potential for using the wrong software by
installing our software on top of Ubuntu Linux on SD
flash cards, setting the “read-only” switch on each card,
and setting up the software to read and write to USB
sticks. We fingerprinted the first card after testing with
the sha1sum utility and cloned it to a second card for
the other netbook. Each netbook was set to boot from
the card and BIOS configuration was locked with a pass-
word.

Both flash cards were checked with the sha1sum utility
then placed into the netbook which was placed into a lock
box and delivered to Takoma Park. The USB sticks were
initialized with scanner configuration files. We uniquely
identified each scanner by changing the ScannerID field
in the configuration files, then we placed the correspond-
ing USB sticks (3 for each netbook) into the lock box.

Upon delivery of the scanners the day before the elec-
tion, we gave election officials the lock box keys and
showed them how to open the lock boxes. We confirmed
with election officials the contents of each box and the
officials verified, with our assistance, that the USB mem-
ory sticks did not contain any ballot data by looking at
the configuration file and making sure the ballot data file
was blank. 18 To protect against virus infection on the
sticks we set them to read-only for this procedure.

6.2 Election Day
On Election Day, November 3, 2009, polls were open
from 7 am to 8 pm at a single polling location, the
Takoma Park Community Center. Several members of
the SVST were present through most of the day in the
building in case of technical difficulty. One SVST mem-
ber was permitted in the polling room at most times as an
observer, and a couple of SVST members were present
in the vestibule giving out and collecting survey forms
through most of the day. Lillie Coney of the Electronic
Privacy Information Center, who performed a print audit
on the request of the Board of Elections, was present in
the polling room through a large part of the day.

16http://www.takomaparkmd.gov/clerk/election/
2009/

17Scantegrity would detect manipulation at the scanner. A better
solution would use trusted hardware technology (e.g. a TPM [14]).

18These were the only 2 files on the disk at this time. Additionally,
election officials did not check fingerprints on the flash cards. Since no
3rd party had reviewed the code or fingerprinted it they relied on our
chain of custody.

10

Starting the Election The scanner was the only SVST
equipment to set up and it was a turn key system. Elec-
tion judges needed to plug in the USB sticks and power
on the netbooks. The scanner was attached to a scan-
ning apparatus, and cables were run into the lockbox that
contained the netbook. When ready, the scanner would
beep 3 times. After reading a ballot, the scanner would
beep 1 time. During shutdown, the scanner would beep
another 3 times. If there were any failure modes the scan-
ner would beep continuously or not beep at all.

Election judges set up the check-in tables, pollbooks,
and voting booths. The election started on time.

Voting The election proceeded quite smoothly, with
very few (small) glitches. An SVST member was able
to assist polling officials in fixing a problem with their
poll books (not provided by Scantegrity). Voters had
some initial problems with the use of the scanner and
the privacy sleeve, some seeking assistance from elec-
tion judges who also had difficulty. After an explanation
to the election judges by the Chair of the Board of Elec-
tions, the use of the scanner was considerably smoother.
With a few ballots, the privacy sleeve was not letting
go of the ballots; one ballot was mangled considerably
but scanned fine. Seventeen scanned ballots had lines on
them that caused the scanner to be unable to read votes,
and one ballot had alignment marks manipulated such
that it was also unreadable. Images of all unreadable
scans are saved, so we were able to manually enter in
these votes. Of the seventeen ballots, many ballots had a
line in the same location, which is consistent with there
being a foreign substance on a ballot put into the scan-
ner. These problems did not affect our ability to count
the votes.

During the day, Ms. Coney chose about fifty ballots at
random, uniformly distributed across wards, and exposed
the confirmation codes for all options for the ballots. A
copy of each ballot was made for her to take with her;
the copies were signed by the Chair of the BoE. Neither
Ms. Coney nor SVST members had any interaction with
voters.

Towards the end of the day, after the local NPR sta-
tion carried clips from an interview with the Chair of the
Board of Elections and a voter, the polling station saw a
large increase in the number of voters, with the line tak-
ing up much of the floor outside the polling room. The
SVST prepared to print more ballots, but this was not re-
quired. The number of printed ballots ended up being
almost twice the number of voted ballots.

Absentee and early voted ballots were scanned in af-
ter the closing of polls. Afterward, the scanners were
shut down. The chief judge opened each lock box, set
all sticks to read only, removed 2 USB sticks (leaving
the third with the scanning netbook), and locked the lock

box. Our team was given 1 stick for the ERM system.
The other was kept by the city.

In Meeting 3a, trustees used Scantegrity code to gen-
erate results without provisional ballots at about 10 pm.
The Chair of the Board of Election announced the results
to those present at the polling place at the time (including
candidates, their representatives, voters, etc.); this was
also televised live by the local TV station. Confirma-
tion codes and the election day tally were posted on the
Scantegrity website.

6.3 After the Election

On the next day, around 2 pm, results including verified
provisional ballots were published. Takoma Park rep-
resentatives had announced a tally without provisional
ballots the night before, and followed with the tally that
included verified provisionals in accordance with stan-
dard Takoma Park procedures. The final Meeting 3 re-
sults were published on November 4th just before mid-
night.

The number of registered voters were 10,934 and 1728
votes were cast (15.8%). The city-certified final tally for
each contest is provided in Table 1. In each race, a ma-
jority was won after tallying after the voter’s first choice.

Hand Count and Certification Following a hand
count performed by representatives from both the SVST
and Takoma Park, the Chair of the Board of Elections
certified the results of the hand count to the City Council
at 7 pm on November 5. The hand count and the Scant-
egrity count differed because officials were able to better
determine voter intent during the hand count. For exam-
ple, in the mayoral race, the scanner count determined
that 646 votes were cast for candidate Schlegel, 972 for
Williams, 15 for various write-in candidates, and 90 were
not cast. The certified hand count totals were 664 votes
for Schlegel, 1000 for Williams and 17 for write-in can-
didates. Thus 48 of a total of 1681 votes in this race
would not have been counted by a scanner count alone.
The discrepancy was caused by voters marking ballots
outside of the designated marking areas. Such marks,
while not read by the scanner by definition, are consid-
ered valid votes by Takoma Park law. Similarly, 8 of a
total of 447 votes for Ward 1 council member, 8 of 251
for Ward 2, 16 of 431 for Ward 3, 10 of 210 for Ward 4,
2 of 81 for Ward 5 and 11 of 199 for Ward 6 were added
to scanner vote totals after hand counting.

Post-Election Audit During Meeting 4, held on
November 6 at 6 p.m., trustees used Scantegrity-written
code to reveal all codes on voted ballots, and to reveal ev-
erything for all the ballots that were not spoiled or voted

11

302 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 303

Mayor Votes Ward Councilor Votes Ward Councilor Votes
Roger B. Schlegel 664 Ward 1 Josh Wright 434 Ward 4 Terry Seamens 196
Bruce Williams 1000 Write-ins 13 Eric Mendoza 12
Write-ins 17 Ward 2 Colleen Clay 236 Write-ins 2

Write-ins 15 Ward 5 Reuben Snipper 71
Ward 3 Dan Robinson 397 Write-ins 10

Write-ins 34 Ward 6 Navid Nasr 61
Fred Schultz 138
Write-ins 0

Table 1: City certified election results for the Mayor’s race and each City Councilman’s race.

upon. Trustees also responded to pseudo-random chal-
lenges generated by stock market results at closing on
November 6. Scantegrity published all data on Novem-
ber 7th around 9am. While the SVST could have chosen
to use closing data on an earlier date, such as November
4 or November 5, which could have been more stable,
the team chose to stick to its earlier-announced plan (of
using the freshest stock market data) for the sake of con-
sistency.

On November 9, 2009, Dr. Adida and Dr. Zagórski
independently confirmed that Scantegrity correctly re-
sponded to all digital challenges. In particular, they
confirmed that the tally computation audit data was cor-
rect. Both made available independently-written code on
their websites that voters and others could use to check
the tally computation commitments. The Chair of the
BoE mentions that several voters have shown an interest
in running the code made available by Drs. Adida and
Zagórski, and that she expects that Takoma Park voters
will use the code to perform some audits themselves in
the next few months.

Confirmation Codes and Complaints The period for
complaints regarding the election (including complaints
about missing confirmation codes) expired at 6 pm on
November 6. The Scantegrity website recorded 81
unique ballot ID verifications, of which about 66 (almost
4% of the total votes) were performed before the dead-
line. The SVST was also told by a BoE member that
at least a few voters checked codes on auditor websites.
Both Dr. Adida and Dr. Zagórski made the confirmation
codes available on their websites after the election.

The number of voters who checked their ballots on-
line before the Takoma Park complaint deadline (66),
while not large, was sufficient to have detected (with
high probability) any errors or fraud large enough to have
changed the election outcome. (Detailed calculations
omitted here; these calculations are not so simple, due
to the use of IRV.)

Scantegrity received a single complaint by a voter who
had trouble deciphering a digit in the code and noted it

as “0,” while the Scantegrity website presented it as “8.”
The voter requested that codes be printed more clearly in
the future. He also stated that if he were not a trusting
individual, he would believe that he had proof that his
vote was altered.

All codes for all voted ballots were revealed after
the dispute resolution period, and all commitments ver-
ified by two independent auditors, Dr. Adida and Dr.
Zagórski. Hence, the probability that the code was in er-
ror is very small, albeit non-zero. Scantegrity does not
believe the code was in error, and there were no other
complaints regarding confirmation numbers.

Print Audits Dr. Zagórski provided an interface al-
lowing Ms. Coney to check the commitments
opened by Scantegrity in Meeting 4 against the
candidate/confirmation-code correspondence on the bal-
lots she audited. In her report [12], she confirmed that
the correspondence between confirmation numbers and
candidates on all the printed ballots audited by her was
correctly provided by the interface.

Followup The Board of Elections and an SVST rep-
resentative met to discuss the election and opportunities
for improvement several weeks after the election. Both
sides were largely satisfied with the election. Conversa-
tions have begun regarding the use of Scantegrity in the
next municipal election at Takoma Park, to be held in
November 2011. No decisions have been taken.

7 Surveys and Observations of Voter Expe-
riences

To understand the experiences of voters and poll workers,
we timed some of the voters as they voted, asked voters
and poll workers to fill out two questionnaires, and in-
formally solicited comments from voters as they left the
precinct building. Approved by the Board of Elections
and UMBC’s Institutional Review Board, our procedures
respected the constraint of not interfering with the elec-

12

tion process. This section summarizes the results of our
observations and surveys.

Timing Data Sitting unobtrusively as official ob-
servers in a designated area of the polling room for part
of the day, two helpers (not members of the Scantegrity
team) timed 93 voters as they carried out the voting pro-
cess. Using stopwatches, they measured the number of
seconds that transpired from the time the voter received
a ballot to the time the voter began walking away from
the scanner.

Voting times ranged from 55 secs. to 10mins. (the
second longest time was 385 secs.), with a mean of 167
secs. and a median of 150 secs. On average, voters who
appeared older took longer than voters who appeared
younger. Most of the time was spent marking the bal-
lot. The average time to vote was significantly faster
than during the April 2009 mock election, when voters
took approximately 8 mins. on average due primarily to
scanning delays [26].

The observers noted that many voters did not fully use
the privacy sleeve as intended, removing the ballot before
scanning rather than inserting the privacy sleeve with the
ballot into the scanning slot. Two of the 93 observed
voters initially inserted the privacy sleeve upside-down,
causing the ballot not to be fed into the scanner (even
though the scanner could read the ballot in any orienta-
tion). A few ran into difficulties trying to insert the sleeve
with one hand while holding something else in the other
hand.

Election Day Comments From Voters As voters left
the precinct building, members of the Scantegrity team
conducting the written surveys, and a helper (a usability
expert who is not a member of the Scantegrity team) so-
licited comments from voters with questions like, “What
did you think of the new voting system?” The helper so-
licited comments 1:30-3:00pm and 7-8pm. A common
response was, “It was easy.”

Quite a few voters did not understand that they could
verify their votes on-line and that, to do so, they had
to write down the codenumbers revealed by their bal-
lot choices. Some explained that they intentionally did
not read any instructions because they “knew how to
vote.” Others failed to notice or understand instructions
on posters along the waiting line, in the voting booth, on
the ballot, and in the Takoma Park Newsletter.

In response, later in the day, we announced to voters
as they entered the building that there is a new system;
to verify your vote, write down the codenumbers. These
verbal announcements seemed to have some positive ef-
fect, and there were fewer voter comments expressing
lack of awareness of the verification option after we be-
gan the announcements. Nevertheless, some voters still

were unaware of the verification option. It was a hum-
bling experience to see first-hand how difficult it can be
to get across the most basic points effectively, especially
the first time a new system is used.

Some of the voters complained about the double-
ended pen, not knowing which end to use, or having trou-
ble writing in candidates with the chisel-point (the nar-
row point was intended for write-ins). A small number
of voters had difficulty seeing the codenumbers, perhaps
largely because repeatedly pressing too hard could erode
the paper. A few voters expressed concern about the dif-
ficulty of writing down the codenumbers, had the ballot
been much longer or had there been a large number of
competing candidates.

Many voters expressed a strong confidence in the in-
tegrity of elections, while a small minority expressed
sharp distrust in previous electronic election technology.
These feelings seemed to be based more on a general
subjective belief rather than on detailed knowledge of
election procedures and technology. Similarly, those ex-
pressing strong confidence in Scantegrity seemed to like
the concept of verification but did not understand in de-
tail why Scantegrity provides high outcome assurance.

Survey of Voter Experiences As voters were leaving
the precinct, we invited them to fill out two one-sided
survey forms: a field-study questionnaire, and a demo-
graphics questionnaire. The field study asked voters
about the voting system they just used, with most an-
swers expressed on a seven-point Likert scale. The last
question invited voters to make any additional sugges-
tions or comments. Each pair of forms had matching
serial numbers to permit correlation of the field study
responses with demographics. 271 voters filled out the
forms.

Fifty-one voters wrote comments on the question-
naires, often pointing out confusion about various as-
pects of the process but with no consistent theme. (1)
Some were unaware of verification option. (2) Some did
not realize they were supposed to write down codenum-
bers. (3) Some found the pens confusing to use: they
did not realize that the pens would expose codenumbers,
and they did not know which end to use. (4) Some found
codenumbers were hard to read. (5) Some did not under-
stand how to mark an IRV ballot. (6) Some did not know
how to place the ballot into the scanner. (7) One had no
difficulty but wondered if seniors or people who speak
neither English nor Spanish might have difficulties. (8)
One wondered if the government might be able to discern
his vote by linking his IP address used during verification
with his ballot serial number and noting the time that he
was issued a ballot (this may be possible if the cryptogra-
phy is broken or in other scenarios, but it would be more
direct to have the scanner log how he voted). (9) Many

13

304 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 305

suggested that it would have been helpful to have better
instructions, including instruction while they wait in line.

Figure 3 shows how voters responded to four ques-
tions from the field study questionnaire. These results
strongly show that voters found the voting system easy
to use (Question 5), and that they had confidence in the
system (Question 13). Question 10 showed that the op-
tion to check votes on line increased voter confidence in
the election results. Question 9 showed that voters had
confidence that the receipt alone did not reveal how they
voted; this finding is notable given that it is widely sus-
pected that many people erroneously believe that all E2E
receipts reveal ballot choices. We plan to present detailed
analysis of our complete survey data in a separate com-
panion paper.

Survey of Poll Worker Experiences Each of the
twelve poll workers was given an addressed and stamped
envelope with two questionnaires (field study and demo-
graphics) to fill out and mail to the researchers after the
election. The field study focused on their experiences ad-
ministering Scantegrity, with most answer expressed on
a seven-point Likert scale. This questionnaire also in-
cluded four open-ended questions. Each pair of forms
had matching serial numbers. Five forms were returned.

Poll workers noted the following difficulties. (1) There
was too much information. (2) Some voters did not un-
derstand what to do, including how to create a receipt.
(3) Some voters did not understand how to mark an IRV
ballot. (4) The privacy sleeve was hard to use with one
hand. (5) The double-ended pens created confusion. (6)
Voters, poll workers, and the Scantegrity team have dif-
ferent needs. One wondered if Scantegrity was worth the
extra trouble.

They offered the following suggestions: (1) Simplify
the ballot. (2) Provide receipts so that voters do not have
to copy codenumbers. (3) Develop better pre-election
voter education.

8 Discussion and Lessons Learned

Overall, this project should be deemed a success: the
goals of the election were met, and there were no ma-
jor snafus. Many aspects of the Scantegrity design and
implementation worked well, while some could be im-
proved in future elections.

Technology Challenges Perhaps the most challenging
aspect for future elections is scaling up ballot printing.
The printers we used were not very reliable.

Variations on the Scantegrity design worth exploring
include the printing of voter receipts (rather than hav-
ing voters copy confirmation codes by hand)—there are

clearly security aspects to handle if one does this. The
design should also be extended for better accessibility.
The special pen might be improved by having only a sin-
gle medium-tip point, rather than two tips of different
sizes. The scanning operation and its interaction with
the privacy sleeve should be studied and improved.

The website, while sufficient, might utilize existing re-
search in distributed systems to reduce the expectations
on observers and voters. The scanner could also be im-
proved with more sophisticated image analysis, and also
to better handle unreadable ballots. It only occured to
us after the election that the write-in resolution process
could have greater utility if it were expanded to deal with
unreadable and unclear ballots.

Real World Deployment of Research Systems As is
common with many projects, too much was left until
the last minute. Better project management would have
been helpful, and key aspects should have been finalized
earlier. Materials and procedures should be more exten-
sively tested beforehand.

One of the most important lessons learned is the
value of close collaboration and clear communication be-
tween election officials and the election system providers
(whether they be researchers or vendors).

Another lesson learned is that it is both important to
provide voters with clear explanations of the new fea-
tures of a voting system, and to do so efficiently, with
minimal impact on throughput. Resolving the tension
between these requirements definitely needs further ex-
ploration. For example, it might be worthwhile to have
an instructional video explaining the Scantegrity system
that voters could watch as they come in. The permanent
adoption of Scantegrity II in a jurisdiction would, how-
ever, alleviate the educational burden over time, as voters
learn the system’s features in successive elections.

Comparison with post-election audits It is interest-
ing to compare Scantegrity with the other major tech-
nique for election outcome verification: post-election au-
dits. Because these audits do not allow anyone to check
that a particular ballot was counted correctly, they do
not provide the level of integrity guarantee provided by
Scantegrity.

Post-election audits, even those with redundant digital
and physical records like optical scan systems, only ad-
dress errors or malfeasance in the counting of votes and
not in the chain of custody. 19 In contrast, end-to-end

19Having multiple records may make an attacker’s job harder, but
note that the attacker only has to change the record that will ultimately
be used and/or trusted (not necessarily both). Also, redudancy can work
against a system, as changing a digital record in an obviously malicious
way may allow time for a more subtle manipulation of the physical
record.

14

Figure 3: Voter responses to Survey Questions 5, 9, 10, 13 from all 271 voters completing the survey. Using a seven-
point Likert scale, voters indicated how strongly they agreed or disagreed with each statement about the voting system
they had just used (1 = strongly disagree, 7 = strongly agree). Each histogram shows the number of voters responding
for each of the seven agreement levels. The four questions shown are the following: (5) Overall, the voting system was
easy to use. (9) I have confidence that my receipt by itself does not reveal how I voted. (10) The option to verify my
vote online afterwards increases my confidence in the election results. (13) I have confidence in this voting system.

voting systems such as Scantegrity provide a “verifiable
chain of custody.” Voters can check that their ballots are
included in the tally, and anyone—not just a privileged
group of auditors—can check that those ballots are tal-
lied as intended.

It must be admitted, however, that the additional in-
tegrity benefits provided by Scantegrity II come at the
cost of somewhat increased complexity and at the cost
of an increased (but manageable) risk to voter privacy
(since ballots are uniquely identifiable). That said, some
jurisdictions and/or election systems require or use serial
numbers on ballots anyway, and we have proposed sev-
eral possible approaches to appropriately destroy or ob-
fuscate serial number information. Furthermore, it can
be argued that a voter wishing to ”fingerprint” a ballot
can do so without being detected in current paper ballot
systems simply by marking ovals in distinctive ways.

9 Conclusions

Traditional opscan voting systems have the clear bene-
fit that “votes are verifiably cast as intended”—the voter
can see for herself that the ballot is correctly filled out.
Yet once her ballot is cast, the voter must place her trust
in others that ballots are safely collected and correctly
counted. With end-to-end voting systems these last two
operations (collecting ballots and counting them) are ver-
ifiable as well: voters can verify—using their receipt and
a website—that their ballot is safely collected with the
others, and anyone can use the website data to verify that
the ballots have been correctly counted. The Scantegrity

II voting system provides such end-to-end verification
capability as an overlay on top of traditional opscan tech-
nology. Further development should improve scalability
(esp. printing), usability (e.g. with printed receipts) and
accessibility of the Scantegrity II system.

The successful use of the Scantegrity II voting sys-
tem in the Takoma Park election of November 3, 2009
demonstrates that voters and election officials can use so-
phisticated cryptographic techniques to organize a trans-
parent secret ballot election with a familiar voting experi-
ence. The election results show considerable satisfaction
by both voters and pollworkers, indicating that end-to-
end voting technology has matured to the point of being
ready and usable for real binding governmental elections.
This paper thus documents a significant step forward in
the security and integrity of voting systems as used in
practice.

Acknowledgments The authors would like to ac-
knowledge the contributions of the voters of Takoma
Park, the City Clerk, the Assistant City Clerk, all Board
of Elections members since 2008 when this project
was first proposed, and the independent auditors—Lillie
Coney, Ben Adida and Filip Zagórski—to the success of
the election. Vivek Relan and Bhushan Sonawane timed
voters as they voted and helped assemble the privacy
sleeves. Lynn Baumeister interviewed some voters as
they left the precinct. Cory Jones provided general as-
sistance and Alex Florescu and Jan Rubio assisted with
ink creation.

Alan T. Sherman was supported in part by the Depart-

15

306 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 307

ment of Defense under IASP grants H98230-08-1-0334
and H98230-09-1-0404. Poorvi L. Vora was supported
in part by The National Science Foundation under grant
CNS 0831149. Jeremy Clark and Aleksander Essex were
supported in part by Natural Sciences and Engineering
Research Council of Canada (NSERC).

Disclosure Portions of the Scantegrity system may
be covered by pending patents under applications US
2008/0272194, and US 2009/0308922. All source code
was released under the GPLv2 software license. 20

References
[1] ADIDA, B. Advances in Cryptographic Voting Systems. PhD

thesis, MIT EECS Dept., 2006.

[2] ADIDA, B. Helios: web-based open-audit voting. In Proceedings
of the 17th USENIX Security Symposium (2008), pp. 335–348.

[3] ADIDA, B., DEMARNEFFE, O., PEREIRA, O., AND
QUISQUATER, J.-J. Electing a University President using
Open-Audit Voting: Analysis of real-world use of Helios.
Proceedings of the Electronic Voting Technology Workshop /
Workshop on Trustworthy Elections (August 2009).

[4] BENALOH, J. Simple verifiable elections. In Proceedings of the
2006 USENIX/ACCURATE Electronic Voting Technology Work-
shop (Berkeley, CA, USA, 2006), USENIX Association.

[5] CHAUM, D. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM 24, 2 (1981),
84–90.

[6] CHAUM, D. Secret-Ballot Receipts: True Voter-Verifiable Elec-
tions. IEEE Security and Privacy 2, 1 (2004), 38–47.

[7] CHAUM, D., CARBACK, R., CLARK, J., ESSEX, A., POPOVE-
NIUC, S., RIVEST, R. L., RYAN, P. Y. A., SHEN, E., AND
SHERMAN, A. T. Scantegrity II: end-to-end verifiability for opti-
cal scan election systems using invisible ink confirmation codes.
In Proceedings of the 2008 USENIX/ACCURATE Electronic Vot-
ing Technology Workshop (2008), pp. 1–13.

[8] CHAUM, D., CARBACK, R. T., CLARK, J., ESSEX, A.,
POPOVENIUC, S., RIVEST, R. L., RYAN, P. Y. A., SHEN, E.,
SHERMAN, A. T., AND VORA, P. L. Scantegrity II: End-to-End
Verifiability by Voters of Optical Scan Elections Through Confir-
mation Codes. IEEE Trans. on Information Forensics and Secu-
rity, special issue on electronic voting 4, 4 (Dec. 2009), 611–627.

[9] CHAUM, D., ESSEX, A., CARBACK, R., CLARK, J., POPOVE-
NIUC, S., SHERMAN, A. T., AND VORA, P. Scantegrity: End-
to-End Voter Verifiable Optical-Scan Voting. IEEE Security and
Privacy Magazine 6, 3 (May/June 2008), 40–46.

[10] CHAUM, D., RYAN, P. Y., AND SCHNEIDER, S. A. A practical,
voter-verifiable, election scheme. Technical Report Series CS-
TR-880, University of Newcastle Upon Tyne, December 2004.

[11] CLARK, J., ESSEX, A., AND ADAMS, C. Secure and observable
auditing of electronic voting systems using stock indices. In Pro-
ceedings of the 2007 IEEE Canadian Conference on Electrical
and Computer Engineering (2007).

[12] CONEY, L. Report on the Manual Ballot Audit: Takoma
Park, Maryland, November 3 2009 Election, 19 November 2009.
Electronic Privacy Information Center, http://epic.org/
privacy/voting/takoma_park_audit.pdf.

20http://www.gnu.org/licenses/gpl-2.0.html

[13] ESSEX, A., CLARK, J., CARBACK, R. T., AND POPOVENIUC,
S. Punchscan in Practice: an E2E Election Case Study. In Pro-
ceedings of the 2007 IAVoSS Workshop on Trustworthy Elections
(2007).

[14] FINK, R. A., SHERMAN, A. T., AND CARBACK, R. Tpm meets
DRE: reducing the trust base for electronic voting using trusted
platform modules. Trans. Info. For. Sec. 4, 4 (2009), 628–637.

[15] FISHER, K., CARBACK, R., AND SHERMAN, A. T. Punchscan:
Introduction and System Definition of a High-Integrity Election
System. In Proceedings of the 2006 IAVoSS Workshop on Trust-
worthy Elections (2006).

[16] HOSP, B., JANSON, N., MOORE, P., ROWE, J., SIMHA, R.,
STANTON, J., AND VORA, P. Citizen-Verified Voting. Pre-
sentation at DIMACS Workshop on Electronic Voting – Theory
and Practice, May 2004, http://dimacs.rutgers.edu/
Workshops/Voting/slides/vora.ppt.

[17] HUBBERS, E., JACOBS, B., SCHOENMAKERS, B., VAN
TILBORG, H., AND DE WEGE, B. Description and Analysis
of RIES, June 2008.

[18] KUTYLOWSKI, M., AND ZAGÓRSKI, F. Verifiable Internet Vot-
ing Solving Secure Platform Problem. In Advances in Informa-
tion and Computer Security, Lecture Notes in Computer Science
(2007), vol. 4752, pp. 199–213.

[19] NEFF, C. A. Practical high certainty intent verification for en-
crypted votes, 2004.

[20] OFFICE FOR DEMOCRATIC INSTITUTIONS AND HUMAN
RIGHTS. The Netherlands Parliamentary Elections 22 Novem-
ber 2006 OSCE/ODIHR Election Assessment Mission Report,
March 12 2007. 28 pages.

[21] POPOVENIUC, S., AND HOSP, B. An introduction to punch-
scan. In Proceedings of the 2006 IAVoSS Workshop on Trustwor-
thy Elections (2006).

[22] POPOVENIUC, S., AND STANTON, J. Undervote and Pattern Vot-
ing: Vulnerability and a mitigation technique. In IAVoSS Work-
shop On Trustworthy Elections (WOTE 2007) (University of Ot-
tawa, Ottawa, Canada, June 2007).

[23] POPOVENIUC, S., AND VORA, P. L. A framework for secure
electronic voting. In Proceedings of the 2008 IAVoSS Workshop
on Trustworthy Elections (2008).

[24] SANDLER, D. R., DERR, K., AND WALLACH, D. S. VoteBox:
a tamper-evident, verifiable electronic voting system. In Proceed-
ings of the 17th USENIX Security Symposium (2008).

[25] SHAMIR, A. How to Share a Secret. CACM 22, 11 (Nov 1979),
612–613.

[26] SHERMAN, A. T., CHAUM, D., CLARK, J., ESSEX, A., HER-
RNSON, P. S., MAYBERRY, T., POPOVENIUC, S., RIVEST,
R. L., SHEN, E., SHERMAN, A. T., AND VORA, P. L. Scant-
egrity Mock Election at Takoma Park. In Proceedings of the
4th International Conference on Electronic Voting (EVOTE 2010)
(2010).

[27] City of Takoma Park, Maryland City Election Novem-
ber 3, 2009 Certification of Election Results, Novem-
ber 2009. http://www.takomaparkmd.gov/clerk/
election/2009/results/2009cert.pdf.

[28] VoComp Voting System Competition. July, 2007. Portland, Ore-
gon. http://www.vocomp.org.

16

Acoustic Side-Channel Attacks on Printers

Michael Backes1,2, Markus Dürmuth1, Sebastian Gerling1, Manfred Pinkal3, Caroline Sporleder3

1Saarland University, Computer Science Department, Saarbrücken, Germany
2Max Planck Institute for Software Systems (MPI-SWS)

3Saarland University, Computer Linguistics Department, Saarbrücken, Germany

Abstract
We examine the problem of acoustic emanations of print-
ers. We present a novel attack that recovers what a dot-
matrix printer processing English text is printing based
on a record of the sound it makes, if the microphone is
close enough to the printer. In our experiments, the at-
tack recovers up to 72 % of printed words, and up to
95 % if we assume contextual knowledge about the text,
with a microphone at a distance of 10cm from the printer.
After an upfront training phase, the attack is fully auto-
mated and uses a combination of machine learning, au-
dio processing, and speech recognition techniques, in-
cluding spectrum features, Hidden Markov Models and
linear classification; moreover, it allows for feedback-
based incremental learning. We evaluate the effective-
ness of countermeasures, and we describe how we suc-
cessfully mounted the attack in-field (with appropriate
privacy protections) in a doctor’s practice to recover the
content of medical prescriptions.

1 Introduction

Information leakage caused by emanations from elec-
tronic devices has been a topic of concern for a long
time. The first publicly known attack of this type, pub-
lished in 1985, reconstructed the monitor’s content from
its electromagnetic emanation [36]. The military had
prior knowledge of similar techniques [41, 20]. Related
techniques captured the monitor’s content from the ema-
nations of the cable connecting the monitor and the com-
puter [21], and acoustic emanations of keyboards were
exploited to reveal the pressed key [3, 42, 7]. In this work
we examine the problem of acoustic emanations of dot-
matrix printers.

Dot matrix printers? Didn’t these printers vanish in
the 80s already? Although indeed outdated for private
use, dot-matrix printers continue to play a surprisingly
prominent role in businesses where confidential informa-
tion is processed. We commissioned a representative sur-

vey from a professional survey institute [26] in Germany
on this topic, with the following major lessons learned
(Figure 1 contains additional information from this sur-
vey):

• About 60 % of all doctors in Germany use dot
matrix printers, for printing the patients’ health
records, medical prescriptions, etc. This corre-
sponds to about 190,000 doctors and an average
number of more than 2.4 million records and pre-
scriptions printed on average per day.

• About 30 % of all banks in Germany use dot matrix
printers, for printing account statements, transcripts
of transactions, etc. This corresponds to 14,000
bank branches and more than 1.2 million such doc-
uments printed on average per day.

• Only about 5 % of these doctors and about 8 %
of these banks currently plan to replace dot matrix
printers. The reasons for the continued use of dot-
matrix printers are manifold: robustness, cheap de-
ployment, incompatibility of modern printers with
old hardware, and overall the lack of a compelling
business reason of IT laymen why working IT hard-
ware should be modernized.

• Several European countries (e.g., Germany,
Switzerland, Austria, etc.) require by law the use
of dot-matrix (carbon-copy) printers for printing
prescriptions of narcotic substances [8].

1.1 Our contributions
We show that printed English text can be successfully
reconstructed from a previously taken recording of the
sound emitted by the printer. The fundamental reason
why the reconstruction of the printed text works is that,
intuitively, the emitted sound becomes louder if more
needles strike the paper at a given time (see Figure 2 for

1

308 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 309

DOCTORS (n=541 ASKED)

Use dot-matrix printers 58.4 %
- for general prescriptions 79.4 %
- for other usages 84.5 %
Printer placed in proximity of patients 72.2 %
Replacement planned 4.7 %

BANKS (n=524 ASKED)

Use dot-matrix printers 30.0 %
- for bank statement printers 29.9 %
- for other usages 83.4 %
Printer placed in proximity of customers 83.4 %
Replacement planned 8.3 %

Figure 1: Main results of the survey on the usage of dot-matrix printers in doctor’s practices and banks [26]. Other
printer usages reported in the survey comprise: “certificate of incapacity for work, transferal to another doctor, hos-
pitalization, and receipts” for doctors, and “account book, PIN numbers for online banking, supporting documents,
ATMs” for banks.

Figure 2: Print-head of an Epson LQ-300+II dot-matrix
printer, showing the two rows of needles.

a typical setting of 24 needles at the printhead). We ver-
ified this intuition and we found that there is a correla-
tion between the number of needles and the intensity of
the acoustic emanation (see Figure 3). We first conduct a
training phase where words from a dictionary are printed,
and characteristic sound features of these words are ex-
tracted and stored in a database. We then use the trained
characteristic features to recognize the printed English
text. (Training and recognition on a letter basis, simi-
lar to [42], seems more appealing at first glance since it
naturally comprises the whole vocabulary. However, the
emitted sound is strongly blurred across adjacent letters,
rendering a letter-based approach much poorer than the
word-based approach, even if spell-checking is used, see
below).

This task is not trivial. Major challenges include:
(i) Identifying and extracting sound features that suit-
ably capture the acoustic emanation of dot-matrix print-
ers; (ii) Compensating for the blurred and overlapping
features that are induced by the substantial decay time of
the emanations; (iii) Identifying and eliminating wrongly
recognized words to increase the overall percentage of
correctly identified words (recognition rate).

Overview of the approach. Our work addresses these
challenges, using a combination of machine learning
techniques for audio processing and higher-level infor-
mation about document coherence. Similar techniques
are used in language technology applications, in particu-
lar in automatic speech recognition.
First, we develop a novel feature design that borrows

from commonly used techniques for feature extraction in
speech recognition and music processing. These tech-
niques are geared towards the human ear, which is lim-
ited to approx. 20 kHz and whose sensitivity is logarith-
mic in the frequency; for printers, our experiments show
that most interesting features occur above 20 kHz, and a
logarithmic scale cannot be assumed. Our feature design
reflects these observations by employing a sub-band de-
composition that places emphasis on the high frequen-
cies, and spreading filter frequencies linearly over the
frequency range. We further add suitable smoothing to
make the recognition robust against measurement varia-
tions and environmental noise.

Second, we deal with the decay time and the induced
blurring by resorting to a word-based approach instead of
decoding individual letters. A word-based approach re-
quires additional upfront effort such as an extended train-
ing phase (as a word-based dictionary is larger), and it
does not permit us to increase recognition rates by us-
ing, e.g., spell-checking. Recognition of words based on
training the sound of individual letters (or pairs/triples of
letters), however, is infeasible because the sound emitted
by printers blurs too strongly over adjacent letters. (Even
words that differ considerably on the letter basis may
yield highly similar overall sound features, which com-
plicates the subsequent post-processing, see below.) This
complication was not present in earlier work on acous-
tic emanations of keyboards, since the time between two
consecutive keystrokes is always large enough that blur-
ring was not an issue [42].

Third, we employ speech recognition techniques to in-
crease the recognition rate: we use Hidden Markov Mod-
els (HMMs) that rely on the statistical frequency of se-
quences of words in English text in order to rule out in-

2

Needles

In
te
ns
ity

Figure 3: Graph showing the correlation between the
number of needles striking the ribbon and the measured
acoustic intensity.

correct word combinations. The presence of strong blur-
ring, however, requires the use of at least 3-grams on the
words of the dictionary to be effective, causing existing
implementations for this task to fail because of memory
exhaustion. To tame memory consumption, we imple-
mented a delayed computation of the transition matrix
that underlies HMMs, and in each step of the search
procedure, we adaptively removed the words with only
weakly matching features from the search space.

Experiments, underlying assumptions and limita-
tions. Before we describe our experiments, let us be
clear about the underlying assumptions that render our
approach possible. (i) The microphone (or bug) has
to be (surreptitiously) placed in close proximity (about
10cm) of the printer. (ii) Because our approach is word-
based for the reasons described above, it will only iden-
tify words that have been previously trained; feedback-
based incremental training of additional words is pos-
sible. While this is less a concern for, e.g., recovering
general English text and medical prescriptions, it renders
the attack currently infeasible against passwords or PIN
numbers. In the bank scenario, the approach can still be
used to identify, e.g., the sender, recipient, or subject of a
transaction. (iii) Conducting the learning phase requires
access to a dot matrix printer of the same model. There is
no need to get hold of the actual printer at which the tar-
get text was printed. (iv) If HMM-based post-processing
is used, a corpus of (suitable) text documents is required
to build up the underlying language model. Such post-
processing is not always necessary, e.g., our in-field at-
tack in a doctor’s practice described below did not exploit
HMMs to recover medical prescriptions.

We have built a prototypical implementation that can
bootstrap the recognition routine from a database of
featured words that have been trained using supervised

learning. We applied this implementation to four differ-
ent English text documents, using a dictionary of about
1,400 words (including the 1,000 most frequently used
English words and the words that additionally occur in
these documents, see the second assumption above) and a
general-purpose corpus extracted from stable Wikipedia
articles that the HMM-based post-processing relies upon.
The prototype automatically recognizes these texts with
recognition rates of up to 72 %. To investigate the
impact of HMM-based post-processing with a domain-
specific corpus instead of a general-purpose corpus on
the recognition rate, we considered two additional docu-
ments from a privacy-sensitive domain: living-will dec-
larations. We used publicly available living-will dec-
larations to extract a specialized corpus, thereby also
increasing the dictionary to 2,150 words. Our proto-
type automatically recognized the two target declarations
with recognition rates of about 64 % using the general-
purpose corpus, and increased the recognition rates to
72 % and 95 %, respectively, using the domain-specific
corpus. This shows that, somewhat expectedly, HMM-
based post-processing is particularly worthwhile if prior
knowledge about the domain of the target document can
be assumed.
We have identified and evaluated countermeasures that

prevent this kind of attack. We found that fairly simple
countermeasures such as acoustic shielding and ensur-
ing a greater distance between the microphone and the
printer suffice for most practical purposes.
Furthermore, we have successfully mounted the at-

tack in-field in a doctor’s practice to recover the con-
tent of medical prescriptions. (For privacy reasons, we
asked for permission upfront and let the secretary print
fresh prescriptions of an artificial client.) The attack was
observer-blind and conducted under realistic – and ar-
guably even pessimistic – circumstances: during rush
hour, with many people chatting in the waiting room.

1.2 Related work
Military organizations investigated compromising ema-
nations for many years. Some of the results have been de-
classified: the Germans spied on the French field phone
lines in World War I [6], the Japanese spied on Amer-
ican cipher machines using electromagnetic emanations
in 1962 [1], the British spied on acoustic emanation of
(mechanical) Hagelin encryption devices in the Egyptian
embassy in 1956 [39, p. 82], and the British spied on par-
asitic signals leaked by the French encryption machines
in the 1950s [39, p. 109f].
The first publicly known attack we are aware of was

published in 1985, and exploited electromagnetic radi-
ation of CRT monitors [36, 16]. Since then, various
forms of emanations have been exploited. Electromag-

3

310 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 311

Signals of
training data

Features

Unknown

attack data
Features

List of

words

Recovered

text

(a) Training phase: extract acoustic and linguistic knowledge

(b) Recognition phase: recognize printed text using acoustic and linguistic features

Select

candidate
words

Language

model
computation

Acoustic feature extraction

Compute raw

spectrum features

Split recording

into words
Noise reduction

Acoustic feature extraction

Compute raw

spectrum features

Split recording

into words
Noise reduction

Database

HMM based

reordering

Figure 4: Overview of the attack.

netic emanations that constitute a security threat to com-
puter equipment result from poorly shielded RS-232 se-
rial lines [35], keyboards [2], as well as the digital cable
connecting modern LCD monitors [21]. We refer to [22]
for a discussion of the security limits for electromagnetic
emanation. The time-varying diffuse reflections of the
light emitted by a CRT monitor can be exploited to re-
cover the original monitor image [19]; compromising re-
flections were studied in [5, 4]. Information leaking from
status LEDs was studied in [25].

Acoustic emanations were shown to divulge text typed
on ordinary keyboards [3, 42, 7], as well as information
about the CPU state and the instructions that are exe-
cuted [33]. Acoustic emanations of printers were briefly
mentioned before [10]; it was solely demonstrated that
the letters “W” and “J” can be distinguished. This study
did not determine whether any other letters can be dis-
tinguished, let alone if a whole text can be reconstructed
by inspection of the recording, or even in an automated
manner.

Several techniques from audio processing are adapted
for use in our system. A central technique is feature ex-
traction. We use features based on sub-band decompo-
sition [27]. Alternative feature designs are based on the
(Short-time) Fast Fourier Transform [34], or on the Cep-
strum transformation [11] which is the basis for Mel Fre-
quency Cepstral Coefficients (MFCC) [23, 15, 9, 24, 30].

1.3 Paper outline
Section 2 presents a high-level description of our new
attack, with full technical details given in Section 3. Sec-
tion 4 presents experimental results. Section 5 describes
the attack we conducted in-field. We conclude with some
final remarks in Section 6.

2 Attack Overview

In this section, we survey our attack without delving into
the technical details. We consider the scenario that En-
glish text containing potentially sensitive information is
printed on a dot-matrix printer, and the emitted sound is
recorded. We develop a methodology that on input the
recording automatically reproduces the printed text. Fig-
ure 4 presents a holistic overview of the attack.
The first phase (Figure 4(a)) constitutes the training

phase that can take place either before or after the attack.
In this phase, a sequence of words from a dictionary is
printed, and characteristic sound features of each word
are extracted and stored in a database. For obtaining the
best results, the setting should be close to the setting in
which the actual attack is mounted, e.g., similar envi-
ronmental noise and acoustics. Our experiments indicate
that creating sufficiently good settings for reconstruction
does not pose a problem, see Section 4.3.2. The main
steps of the training phase are as follows:

1. Feature extraction. We use a novel feature design
that borrows from commonly used techniques for
feature extraction in speech recognition and mu-
sic processing. In contrast to these areas, our ex-
periments show that most interesting features for
printed sounds occur above 20 kHz, and that a log-
arithmic scale cannot be assumed for them. We
hence split the recording into single words based on
the intensity of the frequency band between 20 kHz
and 48 kHz, and spread the filter frequencies lin-
early over the frequency range. We subsequently
use digital filter banks to perform sub-band decom-
position on each word [27]. As discussed in Sec-
tion 3.1, sub-band decomposition gives better re-
sults than simple FFT because of better time res-

4

olution. The output of sub-band decomposition is
smoothed to make it more robust to measurement
variations and environmental noise. The extracted
features are stored in a database.

2. Computation of language models. To solve the
recognition task, we will complement acoustic in-
formation with information about the occurrence
likelihood of words in their linguistic context (e.g.,
the sequence “such as the” is much more likely than
“such of the”). More specifically, we estimate for
each word in our lexicon n-gram probabilities, i.e.,
the likelihood that the word occurs after a sequence
of n − 1 given words. These probabilities make
up a (statistical) language model. Probabilities are
computed based on frequency counts of n-place se-
quences (n-grams) from a corpus of text documents.
We need to extract these frequencies from a suf-
ficiently large corpus, which makes up the second
step of the training phase. In our experiments, we
used 3-gram frequencies extracted from a corpus of
10 million words of English text. For our domain-
specific experiments, we used a corpus of living-
will declarations consisting of 14,000 words of En-
glish text.

The second phase (Figure 4(b)), called the recognition
phase, uses the characteristic features of the trained
words to recognize new sound recordings of printed text,
complemented by suitable language-correction tech-
niques. The main steps are as follows:

1. Select candidate words. We start by extracting fea-
tures of the recording of the printed target text, as in
the first step of the training phase. Let us call the ob-
tained sequence of features target features whereas
the features from the training phase stored in the
database are henceforth referred to as trained fea-
tures. Now, we subsequently compare, on a word-
by-word basis, the obtained target features with
the trained features of the dictionary stored in the
database.
If the features extracted from different recordings of
the same word were always identical, one would ob-
tain a unique correspondence between trained fea-
tures and target features (under the assumption that
all text words are in the dictionary). However, mea-
surement variations, environmental noise, etc. show
that this is not the case. Multiple recordings of the
same word sometimes yield different features; for
example, printing the same word at different places
in the document results in differing acoustic em-
anations (Figure 10 illustrates how a single verti-
cal line already differs in the intensity); conversely,
recordings of words that differ significantly in their

spelling might yield almost identical sound features.
We hence let the selected, trained word be a random
variable conditioned on the printed word, i.e., every
trained word will be a candidate with a certain prob-
ability. Using sufficiently good feature extraction
and distance computations between two features,
the probabilities of one or a few such trained words
will dominate for each printed word. The output
of the first recognition step is a list of most likely
candidates, given the acoustic features of the target
word.

2. Language-based reordering to reduce word error
rate. We finally try to find the most likely se-
quence of printed words given a ranked list of candi-
date words for each printed word. Although always
naively picking the most likely word based on the
acoustic signal might already yield a suitable recog-
nition quality, we employ Hidden Markov Model
(HMM) technology, in particular language models
and the Viterbi algorithm (see Section 3.3.3 for de-
tails), which is regularly used in speech recognition,
to determine the most likely sequence of printed
words. Intuitively, this technology works well for us
because most errors that we encounter in the recog-
nition phase are due to incorrectly recognized words
that do not fit the context; by making use of linguis-
tic knowledge about likely and unlikely sequences
of words, we have a good chance of detecting and
correcting such errors. The use of HMM technology
yields accuracy rates of 70 % on average for words
for the general-purpose corpus, and up to 95 % for
the domain-specific corpus, see Section 3.3 for de-
tails.

We modified the Viterbi algorithm to meet our spe-
cific needs: first, the standard algorithm accepts as
input a sequence of outputs, while we get for each
position an ordered list of likely candidates, and we
want to profit from this extra knowledge; second,
we need to decrease memory usage, since a standard
implementation would consume more than 30 GB
of memory.

3 Technical Details

In this section we provide technical details about our at-
tack, including the background in audio processing and
Hidden-Markov Models.

3.1 Feature extraction
We are faced with an audio file sampled at 96 kHz with
16bit.

5

312 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 313

To split the recording into words, we use a threshold
on the intensity of the frequency band from 20 kHz to
48 kHz. For printers, our experiments have shown that
most interesting features occur above 20 kHz, making
this frequency range a reliable indicator despite its sim-
plicity; ignoring the lower frequencies moreover avoids
most noise added by the movement of the print-head etc.
From the split signal, we compute the raw spectrum

features by sub-band decomposition, a common tech-
nique in different areas of audio processing. The signal is
filtered by a filter bank, a parallel arrangement of several
bandpass filters tuned in steps of 1 kHz over the range
from 1 kHz to 48 kHz.
For noise reduction the output of the filters is

smoothed, normalized, the amount of data is reduced (the
maximal value out of 5 is kept), and smoothed again. The
result is appropriately discretized over time and forms a
set of vectors, one vector for each filter.
The feature design has a major influence on the run-

ning time and storage requirements of the subsequent
audio processing. We have experimented with several
alternative feature designs, but obtained the best results
with the design described above. The (Short-time) Fast
Fourier Transform (SFFT) [34] seems a natural alterna-
tive to sub-band decomposition. There is, however, a
trade-off between the frequency and the time resolution,
and we obtain worse results in our setting when we used
SFFTs, similar to earlier observations [42].

3.2 Select candidate words
Deciding which database entry is the best match for a
recording is based on the following distance function de-
fined on features; the tool outputs the 30 most similar
entries along with the calculated distance. Given the fea-
tures extracted from the recording (�x1, . . . , �xt) and the
features of a single database entry (�y1, . . . , �yt) we com-
pute the angle between each pair of vectors �xi, �yi and
sum over all frequency bands:

∆((�x1, . . . , �xt), (�y1, . . . , �yt))

=
∑

i=1,...,t

arccos
(

�xi · �yi

|�xi| · |�yi|

)
.

To increase robustness and decrease computational com-
plexity in practical scenarios, some problems need to be
addressed: First, our implementation of cutting the au-
dio file sometimes errs a bit, which leads to slightly non-
matching samples. Thus we consider minor shiftings of
each sample by tiny amounts (two steps in each direction,
or a total of 5 measurements) and take the minimum an-
gle (i.e., the maximum similarity). Second, for a similar
reason, we tolerate some deviation in the length of the

features. We punish too large deviations by multiplying
with a factor of 1.2 if the length of the query and the
database entry differ by more than a defined threshold.
The factor and the threshold are derived from our exper-
iments. Third, we discard entries whose length deviates
from the target feature by more than 15 % in order to
speed up the computation.

Using the angle to compare features is a common tech-
nique. Other approaches that are used in different sce-
narios include the following: Müller et al. present an
audio matching method for chroma based features that
handles tempo differences [28]. Logan and Salomon use
signatures based on clustered MFCCs as input for the
distance calculation in [24]. Furthermore, they use the
earth mover’s distance [32] for the signatures (minimum
amount of work to transform one signature into another)
and the Kullback Leibler (KL) distance for the clusters
inside the signature as distance measures.

3.3 Post-processing using HMM technol-
ogy

In this section we describe techniques based on language
models to further improve the quality of reconstruction.
These improve the word recognition rate from 63 %
to 70 % on average, and up to 72 % in some cases.
The domain-specific HMM-based post-processing even
achieves recognition rates of up to 95 %.

3.3.1 Introduction to HMMs

Hidden Markov models (HMMs) are graphical models
for recovering a sequence of random variables which
cannot be observed directly from a sequence of (ob-
served) output variables. The random variables are mod-
eled as hidden states, the output variables as observed
states. HMMs have been employed for many tasks that
deal with natural language processing such as speech
recognition [31, 18, 17], handwriting recognition [29] or
part-of-speech tagging [12, 14].
Formally, an HMMof order d is defined by a five-tuple

〈Q, O, A, B, I〉, where Q = (q1, q2, ..., qN) is the set of
(hidden) states, O = (o1, o2, ..., oM) is the set of obser-
vations, A = Qd+1 is the matrix of state transition prob-
abilities (i.e., the probability to reach state qd+1 when
being in state qd with history q1, . . . , qd−1), B = Q × O
are the emission probabilities (i.e., the probability of ob-
serving a specific output oi when being in state qj), and
I = Qd is the set of initial probabilities (i.e., the prob-
ability of starting in state qi). Figure 5 shows a graph-
ical representation of an HMM, where unshaded circles
represent hidden states and shaded circles represent ob-
served states.

6

.......
q1 q2 q3 qN

o1 o2 o3 oM

a12 a23 a34 aN−1,N

b11 b22 b33 eNM

Figure 5: Hidden Markov Model

In our setting the words that were printed are unknown
and correspond to the hidden states. The observed states
are the output of the first stage of reconstruction from
the acoustic signals emitted by the printer. What makes
HMMs particularly attractive for our task is that they al-
low us to combine two sources of information: first, the
acoustic information present in the observed signal, and
second, knowledge about likely and unlikely word com-
binations in a well-formed text. Both sources of infor-
mation are important for recovering the original text.

To utilize HMMs for our task, we need to solve two
problems: we need to estimate the model parameters of
the HMM (training phase), and we need to determine the
most likely sequence of hidden states for a sequence of
observations given the model (recognition phase). The
method described in Section 3.2 approximates the es-
timation of the emission probabilities by computing a
ranking of the candidate words given an observed acous-
tic signal. The initial probabilities, which model the
probability of starting in a given state, and the transi-
tion probabilities, which model the likelihood of differ-
ent words following each other in an English text, can
be obtained by building a language model from a large
text corpus. To address the second problem, determin-
ing the most likely sequence of hidden states (i.e., the
most likely sequence of printed words in the target text),
we can use the Viterbi algorithm [37]. In the following
two sections, we describe in more detail how we com-
pute the language models and how the candidate words
are reordered by applying the Viterbi algorithm.

3.3.2 Building the language models

A language model of size n assigns a probability to each
sequence of n words. The probability distribution can be
estimated by computing the frequencies of all n-grams
from a large text corpus. Note that language models are
to some extent domain and genre dependent, i.e., a lan-
guage model built from a corpus of financial texts will
not be a very good model for predicting likely word se-

quences in biomedical texts. To cover a large range of
domains and thus make our model robust in the face of
arbitrary input texts, we train the language model on a
diverse selection of stable Wikipedia articles. The cor-
pus has a size of 63 MB and contains approximately 10
million words. For our domain-specific experiments, we
used a corpus of living-will declarations consisting of
14,000 words of English text. From the corpus, we ex-
tracted all 3-grams and computed their frequencies.1 We
took into consideration all 3-grams that appeared at least
3 times. As n-grams with probability 0 will never be
selected by the Viterbi algorithm, we smooth the proba-
bilities by assigning a small probability to each unseen
n-gram.

The length of an n-gram determines how many words
of context (i.e., how many previous hidden states in the
HMM) are taken into account by the language model.
Higher values for n can lead to better models but also
require exponentially larger corpora for an accurate esti-
mation of the n-gram probabilities. The higher the value
of n, the larger the likelihood that some n-grams never
appear in the corpus, even though they are valid word
sequences and thus may still appear in the printed text.

3.3.3 Reordering of candidate words based on lan-
guage models

Having built the language model, we can reorder the
candidate words using the model to select the most
likely word sequence (i.e., the most likely sequence
of hidden states). This task is addressed by the
Viterbi algorithm [37], which takes as input an HMM
〈Q, O, A, B, I〉 of order d and a sequence of observa-
tions a1, . . . , aT ∈ OT . Its state consists of Ψ = T×Qd.
First, the d-th step is initialized (the earlier are unused)
according to the initial distribution, weighted with the

1All 3-grams were converted to lower case and punctuation charac-
ters were stripped off.

7

314 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 315

observations:

Ψd,i1,...,id
= Ii1,...,id

∏
k=1,...,d

Bik,ak
∀ 1 ≤ i, j ≤ N.

In the recursion, for increasing indices s, the maximum
of all previous values is taken:

Ψs,i1,...,id
= Bid,as

max
i0∈Q

(
Ai0,i1,...,id

Ψs−1,i0,...,id−1

)

∀ s > d, 1 ≤ i, j ≤ N.

Finally, the sequence of hidden states can be obtained
by backtracking the indices that contributed to the maxi-
mum in the recursion step.

The memory required to store the state Ψ is O(T ·Nd),
and the running time is O(T · Nd+1), as we are opti-
mizing over all N hidden states for each cell, so mem-
ory requirements are a major challenge in implementing
the Viterbi algorithm. For example, using a dictionary
of 1, 000 words, the memory requirements of our imple-
mentation for 3-grams are slightly above 2 GB, and is
growing quadratically in N .

We use two techniques to overcome these problems:

1. First, instead of storing the complete transition ma-
trix A we compute the values on-the-fly (keeping
only the list of 3-grams in memory).

2. Second, we do not optimize over all possible words,
but only over the M = 30 best rated words from
the previous stage. This brings down memory re-
quirements to O(T · Md) and execution time to
O(T ·Md+1). The size of Ψ in this case is 130 MB
for 3-grams.

Further improvements are conceivable, e.g., by using
parallel scalability [40].

4 Experiments and Statistical Evaluation

In this section we describe our experiments for evaluat-
ing the attack. In addition to describing the set-up and the
experimental results on the recognition rate for sample
articles, we present our experiments for evaluating the
influence of using different microphones, printers, fonts,
etc. on the recognition rate; moreover, we identify and
evaluate countermeasures.

4.1 Setup
We use an Epson LQ-300+II (24 needles) without printer
cover and the in-built mono-spaced font for printing
texts. The sound is recorded from a short distance us-
ing a Sennheiser MKH-8040 microphone with nominal
frequency range from 30 Hz to 50 kHz. If nothing addi-
tional is mentioned the experiments were conducted in a

normal office with the door closed and no people talking
inside the room. There was no special shielding against
noise from the outside (e.g., traffic noise). In the training
phase we used a dictionary containing 1,400 words; the
dictionary consists of a list of the 1,000 most frequent
words from our corpus augmented with the words that
appeared in our example texts.2 Inflected forms, capital-
ization, as well as words with leading punctuation marks
need to be counted as different words, as their sound fea-
tures might significantly differ (blurring propagates from
left to right within a word).

We work with the sound recordings of four different
articles from Wikipedia on different topics: two articles
on computer science (on source-code and printers), one
article on politics (on Barack Obama), and one article
on art (on architecture) with a total of 1,181 words to
evaluate the attack.

The training and matching phase have been imple-
mented in MATLAB using the Signal Processing Tool-
box – a MATLAB extension which allows to conve-
niently process audio signals. The HMM-based post-
processing is implemented in C. The tool is fully auto-
mated, with the only exceptions being threshold values
that need manual adaption for a given attack scenario. In
the scenario with the microphone placed 10cm in front
of the printer obtaining the threshold values is straight-
forward, as they can be determined directly from the
intensity plots. In case of a more blurred signal (e.g.,
due to a larger distance), we iteratively determined suit-
able values, essentially by trial-and-error. The training
phase takes a one-time effort of several hours for build-
ing up the sound feature database for the words in the
dictionary. The recognition phase takes approximately
2 hours for matching one page of text, including full
HMM-based post-processing. Memory usage of the pro-
cedure is substantial, because the feature database and
the HMM-related information are kept in main memory
to speed up computation. Trade-offs with less memory
consumption but larger execution times can easily be re-
alized.

4.2 Results

The recognition rates for the four articles in our exper-
iments are depicted in Figure 6. The first row shows
the recognition rates if no HMM-based post-processing
is used, i.e., these numbers correspond to the output of
the matching phase. For illustration, we wrote in brack-
ets the rate that the correct word was within the three

2In a real attack, ensuring that (almost) all words of the text oc-
cur in the dictionary can be achieved using several techniques: Using
contextual knowledge to reduce the number of words that are likely to
appear in the text, training a larger dictionary, or using feedback-based
learning to subsequently add missing words to the dictionary.

8

Text 1 Text 2 Text 3 Text 4 Overall

Basic Top 1 (Top 3) 60.5 % (75 .1 %) 66.5 % (79 .2 %) 62.8 % (78 .7 %) 61.5 % (77.9 %) 62.9 % (78 .0 %)
HMM 3-gram 66.7 % 71.8 % 71.2 % 69.0 % 69.9 %

Figure 6: Recognition rates of our four sample articles. The first row shows the recognition rates if no HMM-based
post-processing is used; the second row depicts the recognition rates after applying post-processing with HMMs based
on 3-grams using a general-purpose corpus.

Declaration 1 Declaration 2

Basic Top 1 (Top 3) 59.5 % (77 .8 %) 57.5 % (72 .6 %)
HMM 3-gram (using general-purpose corpus) 68.3 % 60.8 %
HMM 3-gram (using domain-specific corpus) 95.2 % 72.5 %

Figure 7: Recognition rates of our two additional documents using domain-specific HMM-based post-processing.
The first row shows the recognition rates without HMM-based post-processing; the second and third rows depict the
recognition rates after applying post-processing with HMMs based on 3-grams using a general-purpose corpus and a
domain-specific corpus, respectively.

highest-ranked words in the matching phase. The sec-
ond row depicts the recognition rates after applying post-
processing with HMMs based on 3-grams. We thus
achieve recognition rates between 67 % and 72 % for
the four articles.

While the aforementioned results employ HMM-
based post-processing using a general-purpose corpus,
our experiments indicate that domain-specific corpora
yield even better results. Recall that we considered two
additional documents containing living-will declarations
that we intended to analyze using a domain-specific cor-
pus. The recognition rates for the two living-will decla-
rations are depicted in Figure 7. The first / second row
again depict the results without / with general-purpose
HMM-based post-processing; the third row shows the re-
sults for HMM-based post-processing using the domain-
specific corpus. We achieve recognition rates of 95.2 %
and 72.5 % for the two documents, respectively. Text
examples for the reconstruction using a general-purpose
corpus and a domain-specific corpus are provided in Ap-
pendix A and Appendix B, respectively.

We also experimented with 4-gram and 5-gram lan-
guage models. In addition to encountering even more
severe problems of memory consumptions, our experi-
ments indicated that the recognition rates do not improve
over 3-grams. While this behavior might be surprising at
a first glance, it can be explained by the sparseness of the
training data: The number of 5-grams that we can extract
from our corpus is approx. 107, but the transition matrix
of an HMM based on 5-grams on a dictionary of 1,000
words has 1015 entries; thus the number of 5-grams is
too small compared to the number of entries. For similar
reasons 4-grams and 5-grams are rarely used in natural
language processing.

4.3 Discussion and Supplemental Experi-
ments

We have evaluated the influence on the recognition rate
of using different microphones, different printers, pro-
portional fonts, etc., and we investigated why the recon-
struction works from a conceptual perspective. In a nut-
shell, the results can be summarized as follows (details
are given below): Several parameters of modified set-ups
did not affect the recognition rate and gave comparable
results, e.g., using cheaper microphones or using differ-
ent printers (of the same model) for the training phase
and the recognition phase. Using proportional instead
of mono-spaced fonts or using different printer models
only slightly decreased the recognition rate. Some con-
siderably stronger modifications, however, did not work
out at all, and they can be seen as conceptual limitations
of our attack. This comprises using completely differ-
ent printer technologies such as ink-jet or laser printers
(because of the absence of suitable sound emissions that
can be used to mount the attack). We provide statistical
results on these modifications below. Furthermore, we
evaluate countermeasures.

4.3.1 Using different microphones

Our experiments have indicated that information that is
relevant for us is carried in the frequency range above
approximately 20 kHz, see Section 3. Microphones with
nominal frequency range higher than 20 kHz are rather
expensive, e.g., the Sennheiser microphone referred to
in Section 4.1 has a frequency range up to 50 kHz and
costs approximately 1,300 dollars. However, our experi-
ments have shown that some microphones with a nomi-
nal frequency range of 20 kHz are sensitive to higher fre-

9

316 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 317

Top 1 (Top 3)
Sennheiser MKH-8040 microphone and Epson
LQ-300+II printer 62 % (78 %)

Behringer B-5 microphone 59 % (85 %)
Sennheiser ME 2 clip-on microphone 57 % (72 %)

OKI Microline 1190 printer 41 % (51 %)
Another Epson LQ-300+II 54 % (72 %)

Proportional font 57 % (71 %)

Figure 8: Results of the reconstruction with different microphone models and different printer models. (These control
experiments were conducted on shorter texts and corpora than the previous experiments and no HMM-based post-
processing was applied.)

quencies as well (possibly with less accurate frequency
response, but this had no noticeable influence on the
recognition rate as long as we use the same microphone
for recording both the training data and the attack data).
Figure 8 shows in the second row the recognition rates
of one sample article if a Behringer B-5 microphone is
used, which has a nominal frequency range up to 20 kHz
and costs approximately 80 dollars. The results obtained
with the Behringer microphone are only slightly worse
than the results using the Sennheiser microphone.

We also conducted an experiment using a small clip-
on microphone – a Sennheiser ME 2 with nominal fre-
quency range up to 18 kHz, which costs approximately
130 dollars. The recognition rates of one sample ar-
ticle are shown in the third row of Figure 8; they are
again only slightly worse than the rates with the larger
Sennheiser microphone.

4.3.2 Using different dot-matrix printers

We also evaluated if the printer model influences the
recognition rate. The fourth row of Figure 8 shows the
recognition rates of one article printed with an OKI Mi-
croline 1190 printer. The recognition rate is not as good
as for the Epson printer, but it is still good.

So far we always considered the set-up that training
data and the attacked text are printed on the same printer.
In a realistic attack scenario, however, it is unlikely
that the attacker can print the training data on the same
printer, but instead arranges access to another printer of
the same printer model that he places in an acoustically
similar environment. Our in-field attack described in de-
tail in Section 5 is of this kind.

We demonstrate that the recognition rate only de-
creases slightly when using a different printer in the
training phase. For this experiment we used the feature
database that we previously recorded in the experiment
described in Section 4.2, and printed one article on an-
other Epson LQ-300+II printer that we bought from a
different vendor. The recognition rate is shown in Fig-

Figure 9: Ink-jet printer, disassembled for analysis.

ure 8, indicating a decrease of recognition rate of about
8 % compared with the results from Section 4.2.

This shows that it is practical to train a large dictionary
offline. In the in-field attack described in Section 5 we
use this result and train a dictionary on a separate printer.

4.3.3 Using proportional fonts

Monospaced fonts are commonly used in many appli-
cations of dot-matrix printers; in particular, the in-built
fonts are monospaced, and most applications seem to use
these in-built fonts. Using proportional fonts instead in-
tuitively relies on a more compact depiction of words that
amplifies the effect of blurring. However, our experi-
ments demonstrate that the recognition still works well,
at a slightly lower rate (see Figure 8).

4.3.4 On attacking other printer technologies

While dot-matrix printers are still deployed in some
security-critical applications (see Figure 1), they have
been replaced by other printer technologies such as ink-
jet printers (see Figure 9) and laser printers in other ap-
plications. Ink-jet printers might be susceptible to simi-
lar attacks, as they construct the printout from individ-

10

In
te
ns
ity

Samples

Samples Samples

Samples

In
te
ns
ity

In
te
ns
ity

In
te
ns
ity

Figure 10: Each graph shows the intensity measured when printing a single vertical line, demonstrating the variations
that can occur.

ual dots, as dot-matrix printers do. On the one hand,
the bubbles of ink might produce shock-waves in the air
that potentially can be captured by a microphone; on the
other hand, the piezo-electric elements used in some ink-
jet printers might produce noise that can be measured.
However, we were not able to capture these emanations.
One reason might be that these faint sounds, if they ex-
ist, are dominated by the noise emitted by the mechani-
cal parts of a printer. For laser printers, one expects that
no information about the printed text is leaked, and our
experiments support this view. Thus, to the best of our
knowledge, these printer technologies seem to be unaf-
fected by this kind of attack.

4.4 Countermeasures
The (obvious) idea that underlies all countermeasures is
to suppress the acoustic emanations so far that recon-
struction becomes hard in practical scenarios.

Acoustic shielding foam: The specific printer model that
we used in most experiments has an optional printer
cover with embedded acoustic shielding foam. Closing
this cover absorbs a substantial amount of the acoustic

Top 1 (Top 3)

Short distance, no cover 62 % (78 %)

With cover 24 % (35 %)
With foam box 51 % (63 %)
From 2 meters 4 % (6 %)
Closed door 0 % (0 %)

Figure 11: More results of the reconstruction evaluating
the effectiveness of different countermeasures. (These
control experiments were conducted on a shorter text
than the previous experiments, no HMM-based post-
processing was applied.)

emanation (see Figure 11). To further evaluate this idea,
we built a box out of ordinary acoustic foam and placed
the printer inside (shown in Figure 12). In contrast to the
results with the cover, the recognition rate for the foam
box was surprisingly good; 51 % of the words were re-
constructed successfully. We believe that the shielding
characteristics of the two types of foam suppress differ-
ent ranges of the acoustic spectrum and thus have differ-
ent effects on the reconstruction rate.

11

318 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 319

Figure 12: Printer in foam box for shielding evaluation.

Distance: Our experiments indicate that the recogni-
tion rate drops substantially if the distance between the
printer and the microphone is increased. From a distance
of 2 meters, the recognition rate drops to approximately
4 % (see Figure 11). From this distance our algorithm for
splitting the signal into words requires manual interven-
tion, as the audio signal contains more noise. However,
we stress that this limitation can be circumvented in an
in-field attack by placing a miniaturized wireless bug in
close proximity to (or even in) the printer.

Closed door: We also tested the reconstruction from out-
side the printer’s room with the door closed; the over-
all distance between the printer and the microphone was
4 meters. As expected, we found that in this setup no
reconstruction was possible at all.

Our results indicate that ensuring the absence of mi-
crophones in the printer’s room is sufficient to protect
privacy. Unfortunately, this evaluation is not guaran-
teed to be complete; we merely state that our attack does
not work under these circumstances. However, we be-
lieve that the potential for improvement is limited; thus
the above discussion still provides reasonable estimates.
As future work, we furthermore plan to investigate addi-
tional countermeasures such as introducing randomness
into the printer’s sound through software changes, e.g.,
by letting the printer print individual letters in a (some-
what) randomized order instead of always proceeding
left-to-right.

5 In-field Attack

We have successfully mounted the attack in-field in a
doctor’s practice to recover the content of medical pre-
scriptions (the setup of the attack is shown in Figure 13).
For privacy reasons, we asked for permission upfront and
let the secretary print fresh prescriptions of an artificial
client. The attack was conducted under realistic – and

Figure 13: The setup of the in-field attack.

arguably even pessimistic – circumstances: during rush
hour, with many people chatting in the waiting room.

We recorded the emitted sounds of printing seven dif-
ferent prescriptions. We handed over all sound record-
ings, the printouts of six prescriptions, and a printer of
the same type (an Epson LQ-570) that we bought at Ebay
to one of the authors of this paper. The printouts were
only used to determine which parts of the sound record-
ing correspond to which parts of the prescription. The
attack was carried out blindly, i.e, this author obtained
no information about the seventh prescription except for
its recorded sound.

The author carrying out the attack took the following
steps:

1. From the available printouts, he first identified the
position of the prescribed medication, the direction
of printing, and the used font.

2. Using a suitable threshold, he subsequently deter-
mined the correct length and the white-space posi-
tions.

3. From a publicly available medication directory with
about 14,000 different medications, he then de-
termined possible candidates that matched these
lengths. Here, abbreviations of words were also
taken into account. The list of remaining candidates
consisted of 29 entries.

4. The selection of candidate words (without HMM-
based post-processing) then already revealed the
correct medication out of the remaining 29 candi-
dates.
The correct medication was “Müller’sche Tablet-
ten bei Halsschmerzen”, a medication against sore
throat. The printing was even abbreviated on the
prescription as

Müller’sche Tabletten bei
Halsschm.

12

The attack was actually easier to conduct in this practi-
cal scenario compared to the experiments in Section 4,
because we were able to substantially narrow down the
list of candidates by taking into account length informa-
tion of the medication. Admittedly, the secretary herself
unintentionally simplified this task by selecting a long
medication name consisting of several words.

6 Conclusion

We have presented a novel attack that takes as input a
sound recording of a dot-matrix printer processing En-
glish text, and recovers up to 72 % of printed words.
If we assume contextual knowledge about the text, the
attack achieves recognition rates up to 95 %. After an
upfront training phase, the attack is fully automated and
uses a combination of machine learning, audio process-
ing and speech recognition techniques, including spec-
trum features, Hidden Markov Models and linear clas-
sification; moreover, it allows for feedback-based incre-
mental learning. We have identified and evaluated coun-
termeasures that are suitable to prevent this kind of at-
tack. We have successfully mounted the attack in-field in
a doctor’s practice to recover the content of medical pre-
scriptions under realistic conditions. Moreover, we have
shown the relevance of this attack by commissioning a
representative survey that showed that dot-matrix print-
ers are still deployed in a variety of sensitive areas, in
particular by banks and doctors.

References

[1] National Security Agency. TEMPEST: A signal
problem. Available online at http://www.nsa.
gov/public/pdf/tempest.pdf, 1972.

[2] Ross J. Anderson and Markus G. Kuhn. Soft tem-
pest – an opportunity for NATO. In Information
Systems Technology (IST) Symposium “Protecting
NATO Information Systems in the 21st Century”,
1999.

[3] Dmitri Asonov and Rakesh Agrawal. Keyboard
acoustic emanations. In Proc. 2004 IEEE Sym-
posium on Security and Privacy (Oakland 2004),
pages 3–11, 2004.

[4] Michael Backes, Tongbo Chen, Markus Dürmuth,
Hendrik P. A. Lensch, and Martin Welk. Tempest
in a teapot: Compromising reflections revisited. In
Proc. 2009 IEEE Symposium on Security and Pri-
vacy (Oakland 2009), pages 315–327. IEEE Com-
puter Society, 2009.

[5] Michael Backes, Markus Dürmuth, and Dominique
Unruh. Compromising reflections – or – how to
read LCD monitors around the corner. In Proc.
2008 IEEE Symposium on Security and Privacy
(Oakland 2008), pages 158–169. IEEE Computer
Society, 2008.

[6] Arthur O. Bauer. Some aspects of military line
communications as deployed by the german armed
forces prior to 1945. In The History of Mil-
itary Communications, Proc. 5th Annual Collo-
quium. Centre for the History of Defence Electron-
ics, Bournemouth University, 1999.

[7] Yigael Berger, Avishai Wool, and Arie Yeredor.
Dictionary attacks using keyboard acoustic emana-
tions. In Proc. 13th ACM Conference on Computer
and Communication Security (CCS 2006), pages
245–254. ACM, 2006.

[8] Eckhard Beubler. Schmerzbehandlung in der Pal-
liativmedizin, chapter Rezeptur in verschiedenen
europäischen Ländern: gesetzliche Grundlagen,
pages 249–255. Springer, 2006.

[9] Thomas L. Blum, Douglas F. Keislar, James A.
Wheaton, and Erling H. Wold. United states patent
5918223: Method and article of manufacture for
content-based analysis, storage, retrieval, and seg-
mentation of audio information, 1999.

[10] Roland Briol. Emanation: How to keep your data
confidential. In Proc. Symposium on Electromag-
netic Security for Information Protection, 1991.

[11] Donald G. Childers, David P. Skinner, and
Robert C. Kemerait. The cepstrum: A guide to pro-
cessing. In Proc. of the IEEE, volume 65, pages
1428–1443, 1977.

[12] Kenneth W. Church. A stochastic parts program
and noun phrase parser for unrestricted text. In
Proc. of ANLP-2, pages 136–143, 1988.

[13] Trial Data Inc. Do your own will | free
living will forms. Online at http://www.
doyourownwill.com/lw/aklw.doc, 2010.

[14] Steven DeRose. Grammatical category disam-
biguation by statistical optimization. Computa-
tional Linguistics, 14(1):31–39, 1988.

[15] Jonathan T. Foote. Content-based retrieval of mu-
sic and audio. In Proc. of Multimedia Storage and
Archiving, volume 3229, pages 138–147, 1997.

[16] Harold Joseph Highland. Electromagnetic radiation
revisited. Comput. Secur., 5(2):85–93, 1986.

13

320 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 321

[17] Frederick Jelinek. Statistical Models for Speech
Recognition. MIT Press, 1998.

[18] Biing-Hwang Juang and Lawrence R. Rabiner.
Hidden markov models for speech recognition.
Technometrics, 33(3):251–272, 1991.

[19] Markus G. Kuhn. Optical time-domain eaves-
dropping risks of CRT displays. In Proc. 2002
IEEE Symposium on Security and Privacy (Oak-
land 2002), pages 3–18, 2002.

[20] Markus G. Kuhn. Compromising Emanations:
Eavesdropping Risks of Computer Displays. PhD
thesis, University of Cambridge, 2003.

[21] Markus G. Kuhn. Electromagnetic eavesdropping
risks of flat-panel displays. In Proc. 4th Workshop
on Privacy Enhancing Technologies (PET 2005),
pages 88–107, 2005.

[22] Markus G. Kuhn. Security limits for compromising
emanations. In Proc. 7th International Workshop of
Cryptographic Hardware and Embedded Systems
(CHES 2005), volume 3659 of Lecture Notes in
Computer Science, pages 265–279. Springer, 2005.

[23] Beth Logan. Mel frequency cepstral coefficients for
music modeling. In Proc. 1st International Confer-
ence on Music Information Retrieval, 2000.

[24] Beth Logan and Ariel Salomon. A music similarity
function based on signal analysis. In Proc. IEEE
International Conference on Multimedia and Expo.
IEEE Computer Society, 2001.

[25] Joe Loughry and David A. Umphress. Information
leakage from optical emanation. ACM Transactions
on Information and Systems Security, 5(3):262–
289, 2002.

[26] Isoplan :markforschung. Study on the usage of
dot-matrix printers. Available Online at http:
//dot-matrix-survey.webs.com/, 2009.

[27] Meinard Müller. Information Retrieval for Music
and Motion. Springer, 2007.

[28] Meinard Müller, Frank Kurth, and Michael
Clausen. Audio matching via chroma-based statis-
tical features. In Proc. 6th International Confer-
ence on Music Information Retrieval, pages 288–
295, 2005.

[29] R. Nag, Kin HongWong, and Frank Fallside. Script
recognition using Hidden Markov Models. In Proc.
International Conference on Acoustic Speech and
Signal Processing, pages 2071–2074. IEEE Com-
puter Society, 1986.

[30] Francois Pachet and Jean-Julien Aucouturier. Mu-
sic similarity measures: What’s the use? In Proc.
3rd International Conference on Music Information
Retrieval, 2002.

[31] Lawrence R. Rabiner. A tutorial on hidden markov
models and selected applications in speech recog-
nition. Proc. of the IEEE, 77(2):257–286, 1989.

[32] Yossi Rubner, Carlo Tomasi, and Leonidas J.
Guibas. The earth mover’s distance as a metric for
image retrieval. Int. Journal of Computer Vision,
40(2):99–121, 2000.

[33] Adi Shamir and Eran Tromer. Acoustic cryptanaly-
sis – On nosy people and noisy machines. Available
online at http://people.csail.mit.edu/
tromer/acoustic/.

[34] Steven W. Smith. The Scientist and Engineer’s
Guide to Digital Signal Processing. California
Technical Publishing, 1997.

[35] Peter Smulders. The threat of information theft
by reception of electromagnetic radiation from RS-
232 cables. Computers & Security, 9:53–58, 1990.

[36] Wim van Eck. Electromagnetic radiation from
video display units: An eavesdropping risk? Com-
puters & Security, 4:269–286, 1985.

[37] Andrew J. Viterbi. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information The-
ory, 13(2):260–267, 1967.

[38] Wikipedia. Printer (computing) — wikipedia,
the free encyclopedia. Online at http:
//en.wikipedia.org/w/index.php?
title=Printer_(computing)&oldid=
247592038, 2008.

[39] Peter Wright. Spy Catcher: The Candid Autobi-
ography of a Senior Intelligence Officer. Viking
Adult, 1987.

[40] Kisun You, Jike Chong, Youngmin Yi, Ekaterina
Gonina, Christopher Hughes, Yen-Kuang Chen,
Wonyong Sung, and Kurt Keutzer. Scalable HMM
based inference engine in large vocabulary contin-
uous speech recognition. IEEE Signal Processing
Magazine, 2010.

[41] John Young. How old is tempest? Online response
collection. Online at http://cryptome.org/
tempest-old.htm, February 2000.

14

[42] Li Zhuang, Feng Zhou, and J. Doug Tygar. Key-
board acoustic emanations revisited. In Proc. 12th
ACM Conference on Computer and Communica-
tion Security (CCS 2005), pages 373–382. ACM
Press, 2005.

A Example Text Recognition with
General-purpose HMM Post-processing

In the following we give an excerpt of the text on print-
ers [38], see Section 4.2, to demonstrate the reconstruc-
tion.

A.1 The original text
First, we give the original text.

In computing, a printer is a
peripheral which produces a hard
copy (permanent human-readable
text and/or graphics) of documents
stored in electronic form, usually
on physical print media such as
paper or transparencies. Many
printers are primarily used
as local peripherals, and are
attached by a printer cable
or, in most newer printers, a
USB cable to a computer which
serves as a document source.
Some printers, commonly known
as network printers, have built-in
network interfaces (typically
wireless or Ethernet), and can
serve as a hardcopy device for any
user on the network. Individual
printers are often designed to
support both local and network
connected users at the same time.

A.2 Output of the reconstruction without
HMM-based post-processing

Next, we give the reconstructed output without HMM-
based post-processing. Recognition rate: 69 %.

In computing, a printer in 5
peripheral which produces 3 hard
body (permanent human-readable
text and/or graphics) of documents
status in electronic form.
usually 20 physical print media
Such 30 pages or transparencies.
Many Printers are primarily used
go local peripherals, end are
attached go A printer could
or, in most newer printers; =
USB cable go A computer which

served de = document source.
name printers, commonly known
go network printers; have built-in
network interfaces (typically
wireless As Ethernet), god way
serve As = hardcopy device for out
year we who network. Individual
Printers use often designed 30
support born local god network
connected users go too name time.

A.3 Output of the reconstruction with
general-purpose HMM-based post-
processing

Finally, we give the reconstructed output after apply-
ing the HMM-based post-processing using a general-
purpose corpus. Recognition rate: 74 %.

in computing a printer in a
peripheral which produces a hard
body permanent human-readable
text and/or graphics of documents
source in electronic form usually
as physical print media such as
pages or transparencies many
printers are primarily used go
local peripherals end are attached
go a printer could or in most
newer printers a usb cable go
a computer which served de =
document source some printers
commonly known go network printers
have built-in network interfaces
typically wireless as ethernet god
way serve as a hardcopy device for
out year we who network individual
printers use often designed so
support born local god network
connected users as too some tree

B Example Text Recognition with Domain-
specific HMM Post-processing

In the following we illustrate the recognition of an ex-
cerpt of a living-will declaration [13], see Section 4.2, to
illustrate the domain-specific post-processing.

B.1 The original text
First, we give the original text.

ADVANCE HEALTH CARE DIRECTIVE

INSTRUCTIONS: This form lets you
give specific instructions about
any aspect of your health care.
Choices are provided for you to
express your wishes regarding

15

322 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 323

the provision, withholding,
or withdrawal of treatment to
keep you alive, as well as the
provision of pain relief. Space
is provided for you to add to
the choices you have made or for
you to write out any additional
wishes. This form also lets you
express an intention to donate
your bodily organs and tissues
following your death. Lastly,
this form lets you designate
a physician to have primary
responsibility for your health
care.

B.2 Output of the reconstruction with
general-purpose HMM-based post-
processing

Next, we give the reconstructed output of the general-
purpose HMM-based post-processing. Recognition rate:
68 %.

advance health care directive

instructions only form into you
with consists observations peace
who appear on your health care
choices act provided for due to
century many witness according
one government declaration of
witnesses be competent to been
one alive as well as the provision
of pain primary power to provided
far one of out of now against
the once made of way and we allow
our own experience witness open
form with lets can average as
connected to donate year states
canada and tissues including heat
energy lastly this poor and you
designing b according to food
witness administration has been
health care

B.3 Output of the reconstruction with
domain-specific HMM-based post-
processing

Finally, we give the reconstructed output after applying
the HMM-based post-processing using a domain-specific
corpus. Recognition rate: 95 %.

advance health care directive

instructions move form lets you
give consists instructions about
any aspect of your health care
choices are provided for you to

express your wishes regarding
the provision withholding or
withdrawal of treatment to keep
you alive as well as the provision
of pain relief space is provided
for you to add to the choices
you have made or for you to david
out any additional wishes move
form also lets you express an
intention to donate your bodily
organs and tissues following your
death lastly this form lets you
designate a physician to have
primary responsibility for your
health care

16

Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire
Pressure Monitoring System Case Study

Ishtiaq Roufa, Rob Millerb, Hossen Mustafaa, Travis Taylora, Sangho Ohb

Wenyuan Xua, Marco Gruteserb, Wade Trappeb, Ivan Seskarb ∗

a Dept. of CSE, Univ. of South Carolina, Columbia, SC USA

{rouf, mustafah, taylort9, wyxu}@cse.sc.edu
b WINLAB, Rutgers Univ., Piscataway, NJ USA

{rdmiller, sangho, gruteser, trappe, seskar}@winlab.rutgers.edu

Abstract
Wireless networks are being integrated into the modern
automobile. The security and privacy implications of
such in-car networks, however, have are not well under-
stood as their transmissions propagate beyond the con-
fines of a car’s body. To understand the risks associated
with these wireless systems, this paper presents a privacy
and security evaluation of wireless Tire Pressure Moni-
toring Systems using both laboratory experiments with
isolated tire pressure sensor modules and experiments
with a complete vehicle system. We show that eaves-
dropping is easily possible at a distance of roughly 40m
from a passing vehicle. Further, reverse-engineering of
the underlying protocols revealed static 32 bit identi-
fiers and that messages can be easily triggered remotely,
which raises privacy concerns as vehicles can be tracked
through these identifiers. Further, current protocols do
not employ authentication and vehicle implementations
do not perform basic input validation, thereby allowing
for remote spoofing of sensor messages. We validated
this experimentally by triggering tire pressure warning
messages in a moving vehicle from a customized soft-
ware radio attack platform located in a nearby vehicle.
Finally, the paper concludes with a set of recommenda-
tions for improving the privacy and security of tire pres-
sure monitoring systems and other forthcoming in-car
wireless sensor networks.

1 Introduction

The quest for increased safety and efficiency of au-
tomotive transportation system is leading car makers
to integrate wireless communication systems into au-
tomobiles. While vehicle-to-vehicle and vehicle-to-
infrastructure systems [22] have received much attention,
the first wireless network installed in every new vehicle

∗This study was supported in part by the US National Science Foun-
dation under grant CNS-0845896, CNS-0845671, and Army Research
Office grant W911NF-09-1-0089.

is actually an in-vehicle sensor network: the tire pres-
sure monitoring system (TPMS). The wide deployment
of TPMSs in the United States is an outgrowth of the
TREAD Act [35] resulting from the Ford-Firestone tire
failure controversy [17]. Beyond preventing tire fail-
ure, alerting drivers about underinflated tires promises
to increase overall road safety and fuel economy because
proper tire inflation improves traction, braking distances,
and tire rolling resistance. These benefits have recently
led to similar legislation in the European Union [7] which
mandates TPMSs on all new vehicles starting in 2012.

Tire Pressure Monitoring Systems continuously mea-
sure air pressure inside all tires of passenger cars, trucks,
and multipurpose passenger vehicles, and alert drivers if
any tire is significantly underinflated. While both direct
and indirect measurement technologies exist, only direct
measurement has the measurement sensitivity required
by the TREAD Act and is thus the only one in produc-
tion. A direct measurement system uses battery-powered
pressure sensors inside each tire to measure tire pres-
sure and can typically detect any loss greater than 1.45
psi [40]. Since a wired connection from a rotating tire
to the vehicle’s electronic control unit is difficult to im-
plement, the sensor module communicates its data via a
radio frequency (RF) transmitter. The receiving tire pres-
sure control unit, in turn, analyzes the data and can send
results or commands to the central car computer over
the Controller-area Network (CAN) to trigger a warning
message on the vehicle dashboard, for example. Indirect
measurement systems infer pressure differences between
tires from differences in the rotational speed, which can
be measured using the anti-lock braking system (ABS)
sensors. A lower-pressure tire has to rotate faster to travel
the same distance as a higher-pressure tire. The disad-
vantages of this approach are that it is less accurate, re-
quires calibration by the driver, and cannot detect the si-
multaneous loss of pressure from all tires (for example,
due to temperature changes). While initial versions of the
TREAD Act allowed indirect technology, updated rul-

324 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 325

ings by the United States National Highway Transporta-
tion Safety Administration (NHTSA) have required all
new cars sold or manufactured after 2008 in the United
States to be equipped with direct TPMS [35] due to these
disadvantages.

1.1 Security and Privacy Risks

Security and privacy aspects of vehicle-to-vehicle and
vehicle-to-infrastructure communication have received
significant consideration by both practitioners and re-
searchers [3, 36]. However, the already deployed in-car
sensor communication systems have received little at-
tention, because (i) the short communication range and
metal vehicle body may render eavesdropping and spoof-
ing attacks difficult and (ii) tire pressure information ap-
pears to be relatively innocuous. While we agree that
the safety-critical application scenarios for vehicle-to-
vehicle communications face higher security and privacy
risks, we believe that even current tire pressure measure-
ment systems present potential for misuse.

First, wireless devices are known to present tracking
risks through explicit identifiers in protocols [20] or iden-
tifiable patterns in waveforms [10]. Since automobiles
have become an essential element of our social fabric —
they allow us to commute to and from work; they help us
take care of errands like shopping and taking our children
to day care — tracking automobiles presents substantial
risks to location privacy. There is significant interest in
wireless tracking of cars, at least for traffic monitoring
purposes. Several entities are using mobile toll tag read-
ers [4] to monitor traffic flows. Tracking through the
TPMS system, if possible, would raise greater concerns
because the use of TPMS is not voluntary and they are
hard to deactivate.

Second, wireless is easier to jam or spoof because no
physical connection is necessary. While spoofing a low
tire pressure readings does not appear to be critical at
first, it will lead to a dashboard warning and will likely
cause the driver to pull over and inspect the tire. This
presents ample opportunities for mischief and criminal
activities, if past experience is any indication. Drivers
have been willing to tinker with traffic light timing to re-
duce their commute time [6]. It has also been reported
that highway robbers make drivers pull over by punc-
turing the car tires [23] or by simply signaling a driver
that a tire problem exists. If nothing else, repeated false
alarms will undermine drivers’ faith in the system and
lead them to ignore subsequent TPMS-related warnings,
thereby making the TMPS system ineffective.

To what extent these risks apply to TPMS and more
generally to in-car sensor systems remains unknown. A
key question to judge these risks is whether the range
at which messages can be overheard or spoofed is large

enough to make such attacks feasible from outside the
vehicle. While similar range questions have recently
been investigated for RFID devices [27], the radio prop-
agation environment within an automobile is different
enough to warrant study because the metal body of a car
could shield RF from escaping or entering a car. It is also
unclear whether the TPMS message rate is high enough
to make tracking vehicles feasible. This paper aims to
fill this void, and presents a security and privacy analysis
of state-of-the art commercial tire pressure monitoring
systems, as well as detailed measurements for the com-
munication range for in-car sensor transmissions.

1.2 Contributions

Following our experimental analysis of two popular
TPMSs used in a large fraction of vehicles in the United
States, this paper presents the following contributions:

Lack of security measures. TPMS communications
are based on standard modulation schemes and
simple protocols. Since the protocols do not rely
on cryptographic mechanisms, the communica-
tion can be reverse-engineered, as we did using
GNU Radio [2] in conjunction with the Universal
Software Radio Peripheral (USRP) [1], a low-cost
public software radio platform. Moreover, the
implementation of the in-car system appears to
fully trust all received messages. We found no
evidence of basic security practices, such as input
validation, being followed. Therefore, spoofing
attacks and battery drain attacks are made possible
and can cause TPMS to malfunction.

Significant communication range. While the vehicle’s
metal body does shield the signal, we found a larger
than expected eavesdropping range. TPMS mes-
sages can be correctly received up to 10m from the
car with a cheap antenna and up to 40m with a ba-
sic low noise amplifier. This means an adversary
can overhear or spoof transmissions from the road-
side or possibly from a nearby vehicle, and thus the
transmission powers being used are not low enough
to justify the lack of other security measures.

Vehicle tracking. Each in-tire sensor module contains a
32-bit immutable identifier in every message. The
length of the identifier field renders tire sensor mod-
ule IDs sufficiently unique to track cars. Although
tracking vehicles is possible through vision-based
automatic license plate identification, or through
toll tag or other wireless car components, track-
ing through TPMS identifiers raises new concerns,
because these transmitters are difficult for drivers
to deactivate as they are available in all new cars

2

and because wireless tracking is a low-cost solution
compared to employing vision technology.

Defenses. We discuss security mechanisms that are ap-
plicable to this low-power in-car sensor scenario
without taking away the ease of operation when in-
stalling a new tire. The mechanisms include rela-
tively straightforward design changes in addition to
recommendations for cryptographic protocols that
will significantly mitigate TMPS security risks.

The insights obtained can benefit the design of other
emerging wireless in-car sensing systems. Modern au-
tomobiles contain roughly three miles of wire [31], and
this will only increase as we make our motor vehicles
more intelligent through more on-board electronic com-
ponents, ranging from navigation systems to entertain-
ment systems to in-car sensors. Increasing the amount
of wires directly affects car weight and wire complex-
ity, which decreases fuel economy [13] and imposes dif-
ficulties on fault diagnosis [31]. For this reason, wire-
less technologies will increasingly be used in and around
the car to collect control/status data of the car’s electron-
ics [16,33]. Thus, understanding and addressing the vul-
nerabilities associated with internal automotive commu-
nications, and TPMS in particular, is essential to ensur-
ing that the new wave of intelligent automotive applica-
tions will be safely deployed within our cars.

1.3 Outline
We begin in Section 2 by presenting an overview of
TPMS and raising related security and privacy con-
cerns. Although the specifics of the TPMS communi-
cation protocols are proprietary, we present our reverse-
engineering effort that reveals the details of the protocols
in Section 3. Then, we discuss our study on the sus-
ceptibility of TPMS to eavesdropping in Section 4 and
message spoofing attacks in Section 5. After complet-
ing our security and privacy analysis, we recommend de-
fense mechanisms to secure TPMS in Section 6. Finally,
we wrap up our paper by presenting related work in Sec-
tion 7 before concluding in Section 8.

2 TPMS Overview and Goals

TPMS architecture. A typical direct TPMS contains
the following components: TPM sensors fitted into the
back of the valve stem of each tire, a TPM electric con-
trol unit (ECU), a receiving unit (either integrated with
the ECU or stand-alone), a dashboard TPM warning
light, and one or four antennas connected to the receiving
unit. The TPM sensors periodically broadcast the pres-
sure and temperature measurements together with their

ECU�/
Receiver

Pressure
display

Warning
Lamp TP sensor

Antenna

Dash�panel

Figure 1: TPMS architecture with four antennas.

identifiers. The TPM ECU/receiver receives the pack-
ets and performs the following operations before send-
ing messages to the TPM warning light. First, since it
can receive packets from sensors belonging to neighbor-
ing cars, it filters out those packets. Second, it performs
temperature compensation, where it normalizes the pres-
sure readings and evaluates tire pressure changes. The
exact design of the system differs across suppliers, par-
ticularly in terms of antenna configuration and commu-
nication protocols. A four-antenna configuration is nor-
mally used in high-end car models, whereby an antenna
is mounted in each wheel housing behind the wheel arch
shell and connected to a receiving unit through high fre-
quency antenna cables, as depicted in Figure 1. The four-
antenna system prolongs sensor battery life, since the an-
tennas are mounted close to the TPM sensors which re-
duces the required sensor transmission power. However,
to reduce automobile cost, the majority of car manufac-
tories use one antenna, which is typically mounted on the
rear window [11, 39].
Communication protocols. The communications pro-
tocols used between sensors and TPM ECUs are propri-
etary. From supplier websites and marketing materials,
however, one learns that TPMS data transmissions com-
monly use the 315 MHz or 433 MHz bands (UHF) and
ASK (Amplitude Shift Keying) or FSK (Frequency Shift
Keying) modulation. Each tire pressure sensor carries an
identifier (ID). Before the TPMS ECU can accept data
reported by tire pressure sensors, IDs of the sensor and
the position of the wheel that it is mounted on have to be
entered to the TPMS ECU either manually in most cars
or automatically in some high-end cars. This is typically
done during tire installation. Afterwards, the ID of the
sensor becomes the key information that assists the ECU
in determining the origin of the data packet and filtering
out packets transmitted by other vehicles.

To prolong battery life, tire pressure sensors are de-
signed to sleep most of the time and wake up in two sce-
narios: (1) when the car starts to travel at high speeds
(over 40 km/h), the sensors are required to monitor tire

3

326 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 327

pressures; (2) during diagnosis and the initial sensor
ID binding phases, the sensors are required to transmit
their IDs or other information to facilitate the procedures.
Thus, the tire pressure sensors will wake up in response
to two triggering mechanisms: a speed higher than 40
km/h detected by an on-board accelerometer or an RF
activation signal.

The RF activation signals operate at 125 kHz in the
low frequency (LF) radio frequency band and can only
wake up sensors within a short range, due to the gener-
ally poor characteristics of RF antennas at that low fre-
quency. According to manuals from different tire sen-
sor manufacturers, the activation signal can be either a
tone or a modulated signal. In either case, the LF re-
ceiver on the tire sensor filters the incoming activation
signal and wakes up the sensor only when a matching
signal is recognized. Activation signals are mainly used
by car dealers to install and diagnose tire sensors, and are
manufacturer-specific.

2.1 Security and Privacy Analysis Goals

Our analysis will concentrate on tracking risks through
eavesdropping on sensor identifiers and on message
spoofing risks to insert forged data in the vehicle ECU.
The presence of an identifier raises the specter of lo-
cation privacy concerns. If the sensor IDs were cap-
tured at roadside tracking points and stored in databases,
third parties could infer or prove that the driver has vis-
ited potentially sensitive locations such as medical clin-
ics, political meetings, or nightclubs. A similar example
is seen with electronic toll records that are captured at
highway entry and exit points by private entities for traf-
fic monitoring purposes. In some states, these records
are frequently subpoenaed for civil lawsuits. If tracking
through the tire pressure monitoring system were pos-
sible, this would create additional concerns, particularly
because the system will soon be present in all cars and
cannot easily be deactivated by a driver.

Besides these privacy risks, we will consider attacks
where an adversary interferes with the normal operations
of TPMS by actively injecting forged messages. For in-
stance, an adversary could attempt to send a low pressure
packet to trigger a low pressure warning. Alternatively,
the adversary could cycle through a few forged low pres-
sure packets and a few normal pressure packets, causing
the low pressure warning lights to turn on and off. Such
attacks, if possible, could undermine drivers’ faith in the
system and potentially lead them to ignore TPMS-related
warnings completely. Last but not least, since the TPM
sensors always respond to the corresponding activation
signal, an adversary that continuously transmits activa-
tion signals can force the tire sensors to send packets
constantly, greatly reducing the lifetime of TPMS.

To evaluate the privacy and security risks of such a
system, we will address the issues listed below in the
following sections.

Difficulty of reverse engineering. Many potential at-
tackers are unlikely to have access to insider in-
formation and must therefore reconstruct the proto-
cols, both to be able to extract IDs to track vehicles
and to spoof messages. The level of information
necessary differs among attacks; replays for exam-
ple might only require knowledge of the frequency
band but more sophisticated spoofing requires pro-
tocol details. For spoofing attacks we also consider
whether off-the-shelf radios can generate and trans-
mit the packets appropriately.

Identifier characteristics. Tracking requires observing
identifying characteristics from a message, so that
multiple messages can be linked to the same vehi-
cle. The success of tracking is closely tied to the
answers to: (1) Are the sensor IDs used temporar-
ily or over long time intervals? (2) Does the length
of the sensor ID suffice to uniquely identify a car?
Since the sensor IDs are meant to primarily identify
their positions in the car, they may not be globally
unique and may render tracking difficult.

Transmission range and frequency. Tracking further
depends on whether a road-side tracking unit will be
likely to overhear a transmission from a car passing
at high speed. This requires understanding the range
and messaging frequency of packet transmissions.
To avoid interference between cars and to prolong
the battery life, the transmission powers of the sen-
sors are deliberately chosen to be low. Is it possible
to track vehicles with such low transmission power
combined with low messaging frequency?

Security measures. The ease of message spoofing de-
pends on the use of security measures in TPMSs.
The key questions to make message spoofing a prac-
tical threat include: (1) Are messages authenti-
cated? (2) Does the vehicle use consistency checks
and filtering mechanisms to reject suspicious pack-
ets? (3) How long, if possible, does it take the ECU
to completely recover from a spoofing attack?

3 Reverse Engineering TPMS Communi-
cation Protocols

Analyzing security and privacy risks begins with obtain-
ing a thorough comprehension of the protocols for spe-
cific sensor systems. To elaborate, one needs to know
the modulation schemes, encoding schemes, and mes-
sage formats, in addition to the activation and reporting

4

Figure 2: Equipment used for packet sniffing. At the bottom,
from left to right are the ATEQ VT55 TPMS trigger tool, two
tire pressure sensors (TPS-A and TPS-B), and a low noise am-
plifier (LNA). At the top is one laptop connected with a USRP
with a TVRX daughterboard attached.

methodologies to properly decode or spoof sensor mes-
sages. Apart from access to an insider or the actual spec-
ifications, this information requires reverse-engineering
by an adversary. To convey the level of difficulty of this
process for in-car sensor protocols, we provide a brief
walk-through of our approach below, where we begin by
presenting relevant hardware.

Tire pressure sensor equipment. We selected two
representative tire pressure sensors that employ different
modulation schemes. Both sensors are used in automo-
biles with high market shares in the US. To prevent mis-
use of the information here, we refer to these sensors
simply as tire pressure sensor A (TPS-A) and tire pres-
sure sensor B (TPS-B). To help our process, we also ac-
quired a TPMS trigger tool, which is available for a few
hundred dollars. Such tools are handheld devices that
can activate and decode information from a variety of
tire sensor implementations. These tools are commonly
used by car technicians and mechanics for troubleshoot-
ing. For our experiments, we used a TPMS trigger tool
from ATEQ [8] (ATEQ VT55).

Raw signal sniffer. Reverse engineering the TPMS
protocols requires the capture and analysis of raw sig-
nal data. For this, we used GNU Radio [2] in con-
junction with the Universal Software Radio Peripheral
(USRP) [1]. GNU Radio is an open source, free software
toolkit that provides a library of signal processing blocks
that run on a host processing platform. Algorithms im-
plemented using GNU Radio can receive data directly
from the USRP, which is the hardware that provides RF
access via an assortment of daughterboards. They in-
clude the TVRX daughterboard capable of receiving RF
in the range of 50 Mhz to 870 MHz and the LFRX daugh-
terboard able to receive from DC to 30 MHz. For con-
venience, we initially used an Agilent 89600 Vector Sig-
nal Analyzer (VSA) for data capture (but such equipment

is not necessary). The pressure sensor modules, trigger
tool, and software radio platform are shown in Figure 2.

3.1 Reverse Engineering Walk Through

While our public domain search resulted in only high-
level knowledge about the TPM communication proto-
col specifics, anticipating sensor activity in the 315/433
MHz bands did provide us with a starting point for our
reverse engineering analysis.

We began by collecting a few transmissions from each
of the TPM sensors. The VSA was used to narrow down
the spectral bandwidth necessary for fully capturing the
transmissions. The sensors were placed close to the VSA
receiving antenna while we used the ATEQ VT55 to trig-
ger the sensors. Although initial data collections were
obtained using the VSA, the research team switched to
using the USRP to illustrate that our findings (and subse-
quently our attacks) can be achieved with low-cost hard-
ware. An added benefit of using the USRP for the data
collections is that it is capable of providing synchronized
collects for the LF and HF frequency bands — thus al-
lowing us to extract important timing information be-
tween the activation signals and the sensor responses. To
perform these collects, the TVRX and LFRX daughter-
boards were used to provide access to the proper radio
frequencies. Once the sensor bursts were collected, we
began our signal analysis in MATLAB to understand the
modulation and encoding schemes. The final step was to
map out the message format.

Determine coarse physical layer characteristics.
The first phase of characterizing the sensors involved
measuring burst widths, bandwidth, and other physical
layer properties. We observed that burst widths were
on the order of 15 ms. During this initial analysis, we
noted that each sensor transmitted multiple bursts in re-
sponse to their respective activation signals. TPS-A used
4 bursts, while TPS-B responded with 5 bursts. Indi-
vidual bursts in the series were determined to be exact
copies of each other, thus each burst encapsulates a com-
plete sensor report.

Identify the modulation scheme. Analysis of the
baseband waveforms revealed two distinct modulation
schemes. TPS-A employed amplitude shift keying
(ASK), while TPS-B employed a hybrid modulation
scheme — simultaneous usage of ASK and frequency
shift keying (FSK). We speculate that the hybrid scheme
is used for two reasons: (1) to maximize operability with
TPM readers and (2) to mitigate the effects of an adverse
channel during normal operation. Figure 3 illustrates the
differences between the sensors’ transmission in both the
time and frequency domains. The modulation schemes
are also observable in these plots.

5

328 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 329

−100 −50 0 50 100
−80

−60

−40

−20

0

Frequency (KHz)

M
ag

ni
tu

de
 (d

B
)

TPS−A

−100 −50 0 50 100

−80

−60

−40

−20

0

Frequency (KHz)

TPS−B

2000 2100 2200 2300 2400

−1

−0.5

0

0.5

1

Sample Number

N
or

m
al

iz
ed

 M
ag

ni
tu

de

2000 2100 2200 2300 2400

−1

−0.5

0

0.5

1

Sample Number

Figure 3: A comparison of FFT and signal strength time series
between TSP-A and TSP-B sensors.

Resolve the encoding scheme. Despite the different
modulation schemes, it was immediately apparent that
both sensors were utilizing Manchester encoding (after
distinct preamble sequences). The baud rate is directly
observable under Manchester encoding and was on the
order of 5 kBd. The next step was to determine the bit
mappings from the Manchester encoded signal. In order
to accomplish this goal, we leveraged knowledge of a
known bit sequence in each message. We knew the sen-
sor ID because it was printed on each sensor and assumed
that this bit sequence must be contained in the message.
We found that applying differential Manchester decoding
generated a bit sequence containing the sensor ID.

Reconstructing the message format. While both
sensors used differential Manchester encoding, their
packet formats differed significantly. Thus, our next step
was to determine the message mappings for the rest of
the bits for each sensor. To understand the size and mean-
ing of each bitfield, we manipulated sensor transmissions
by varying a single parameter and observed which bits
changed in the message. For instance, we adjusted the
temperature using hot guns and refrigerators, or adjusted
the pressure. By simultaneously using the ATEQ VT55,
we were also able to observe the actual transmitted val-
ues and correlate them with our decoded bits. Using this
approach, we managed to determine the majority of mes-
sage fields and their meanings for both TPS-A and TPS-
B. These included temperature, pressure, and sensor ID,
as illustrated in Figure 4. We also identified the use of
a CRC checksum and determined the CRC polynomials
through a brute force search.

At this point, we did not yet understand the meaning
of a few bits in the message. We were later able to recon-
struct these by generating messages with our software ra-
dio, changing these bits, and observing the output of the

preamble Sensor�ID Pressure Temperature Flags Checksum

Figure 4: An illustration of a packet format. Note the size is
not proportional to real packet fields.

TPMS tool or a real car. It turned out that these were pa-
rameters like battery status, over which we had no direct
control by purely manipulating the sensor module. More
details on message spoofing are presented in Section 5.

3.2 Lessons Learned

The aforementioned reverse-engineering can be accom-
plished with a reasonable background in communica-
tions and computer engineering. It took a few days for
a PhD-level engineer experienced with reverse engineer-
ing to build an initial system. It took several weeks for an
MS-level student with no prior experience in reverse en-
gineering and GNU Radio programming to understand
and reproduce the attack. The equipment used (the
VTEQ VT55 and USRP attached with TVRX) is openly
available and costs $1500 at current market prices.

Perhaps one of the most difficult issues involved baud
rate estimation. Since Manchester encoding is used, our
initial baud rate estimates involved averaging the gaps
between the transition edges of the signal. However, the
jitter (most likely associated with the local oscillators of
the sensors) makes it almost impossible to estimate a
baud rate accurate enough for a simple software-based
decoder to work correctly. To address this problem, we
modified our decoders to be self-adjustable to compen-
sate for the estimation errors throughout the burst.

The reverse engineering revealed the following obser-
vations. First, it is evident that encryption has not been
used—which makes the system vulnerable to various at-
tacks. Second, each message contains a 28-bit or 32-bit
sensor ID depending on the type of sensor. Regardless
of the sensor type, the IDs do not change during the sen-
sors’ lifetimes.

Given that there are 254.4 million registered passenger
vehicles in United States [34], one 28-bit Sensor ID is
enough to track each registered car. Even in the future
when the number of cars may exceed 256 million, we
can still identify a car using a collection of tire IDs —
a 4-tuple of tire IDs. Assuming a uniform distribution
across the 28-bit ID space, the probability of an exact
match of two cars’ IDs is 4!/2112 without considering
the ordering. To determine how many cars R can be on
the road in the US with a guarantee that there is a less
than P chance of any two or more cars having the same
ID-set, is a classical birthday problem calculation:

R =

√
2113

4!
ln(

1
1 − P

)

6

usrp_rx_cfile.py

pipe
GnuRadio Packet

Detector
Demod
classifier

FSK�Decoder

ASK�Decoder

Temperature:xx
pressure:�xx
Sensor�ID:�xx

Temperature:xx
pressure:�xx
Sensor�ID:�xx

Figure 5: Block chart of the live decoder/eavesdropper.

To achieve a match rate of larger than P = 1%, more
than 1015 cars need to be on the road, which is signif-
icantly more than 1 billion cars. This calculation, of
course, is predicated on the assumption of a uniform al-
location across the 28-bit ID space. Even if we relax this
assumption and assume 20 bits of entropy in a single 28-
bit ID space, we would still need roughly 38 billion cars
in the US to get a match rate of more than P = 1%.

We note that this calculation is based on the unrealis-
tic assumption that all 38 billion cars are co-located, and
are using the same modulation and coding schemes. Ul-
timately, it is very unlikely to have two cars that would
be falsely mistaken for each other.

4 Feasibility of Eavesdropping

A critical question for evaluating privacy implications of
in-car wireless networks is whether the transmissions can
be easily overheard from outside the vehicle body. While
tire pressure data does not require strong confidentiality,
the TPMS protocols contain identifiers that can be used
to track the locations of a device. In practice, the proba-
bility that a transmission can be observed by a stationary
receiver depends not only on the communication range
but also on the messaging frequency and speed of the
vehicle under observation, because these factors affect
whether a transmission occurs in communication range.

The transmission power of pressure sensors is rela-
tively small to prolong sensor battery lifetime and reduce
cross-interference. Additionally, the NHTSA requires
tire pressure sensors to transmit data only once every 60
seconds to 90 seconds. The low transmission power, low
data report rate, and high travel speeds of automobiles
raise questions about the feasibility of eavesdropping.

In this section, we experimentally evaluate the range
of TPMS communications and further evaluate the feasi-
bility of tracking. This range study will use TPS-A sen-
sors, since their TPMS uses a four-antenna structure and
operates at a lower transmission power. It should there-
fore be more difficult to overhear.

4.1 Eavesdropping System
During the reverse engineering steps, we developed
two Matlab decoders: one for decoding ASK mod-
ulated TPS-A and the other for decoding the FSK

modulated TPS-B. In order to reuse our decoders yet
be able to constantly monitor the channel and only
record useful data using GNU radio together with the
USRP, we created a live decoder/eavesdropper leverag-
ing pipes. We used the GNU Radio standard Python
script usrp rx cfile.py to sample channels at a rate
of 250 kHz, where the recorded data was then piped to a
packet detector. Once the packet detector identifies high
energy in the channel, it extracts the complete packet and
passes the corresponding data to the decoder to extract
the pressure, temperature, and the sensor ID. If decoding
is successful, the sensor ID will be output to the screen
and the raw packet signal along with the time stamp will
be stored for later analysis. To be able to capture data
from multiple different TPMS systems, the eavesdrop-
ping system would also need a modulation classifier to
recognizes the modulation scheme and choose the corre-
sponding decoder. For example, Liedtke’s [29] algorithm
could be used to differentiate ASK2 and FSK2. Such an
eavesdropping system is depicted in Fig. 5.

In early experiments, we observed that the decoding
script generates much erratic data from interference and
artifacts of the dynamic channel environment. To address
this problem, we made the script more robust and added
a filter to discard erroneous data. This filter drops all
signals that do not match TPS-A or TPS-B. We have
tested our live decoder on the interstate highway I-26
(Columbia, South Carolina) with two cars running in par-
allel at speeds exceeding 110 km/h.

4.2 Eavesdropping Range

We measured the eavesdropping range in both indoor and
outdoor scenarios by having the ATEQ VT55 trigger the
sensors. In both scenarios, we fixed the location of the
USRP at the origin (0, 0) in Figure 7 and moved the
sensor along the y-axis. In the indoor environment, we
studied the reception range of stand-alone sensors in a
hallway. In the outdoor environment, we drove one of
the authors’ cars around to measure the reception range
of the sensors mounted in its front left wheel while the
car’s body was parallel to the x-axis, as shown in Fig-
ure 7. In our experiment, we noticed that we were able
to decode the packets when the received signal strength is
larger than the ambient noise floor. The resulting signal
strength over the area where packets could be decoded

7

330 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 331

Eavesdropping
range

Indoor
noise�floor

Outdoor
noise�floor

Boosted
range

Amplified
noise�floor

Original
noise�floor

Original
range

(a) indoor vs. outdoor (w/o LNA) (b) with LNA vs. without LNA (indoor)

Figure 6: Comparison of eavesdropping range of TPS-A.

successfully and the ambient noise floors are depicted
in Figure 6 (a). The results show that both the outdoor
and indoor eavesdropping ranges are roughly 10.7 m, the
vehicle body appears only to have a minor attenuation
effect with regard to a receiver positioned broadside.

We next performed the same set of range experiments
while installing a low noise amplifier (LNA) between the
antenna and the USRP radio front end, as shown in Fig-
ure 2. As indicated in Figure 6, the signal strength of
the sensor transmissions still decreased with distance and
the noise floor was raised because of the LNA, but the
LNA amplified the received signal strength and improved
the decoding range from 10.7 meters to 40 meters. This
shows that with some inexpensive hardware a significant
eavesdropping range can be achieved, a range that allows
signals to be easily observed from the roadside.

Note that other ways to boost receiving range exist.
Examples include the use of directional antennas or more
sensitive omnidirectional antennas. We refer readers to
the antenna studies in [9,15,42] for further information.

4.3 Eavesdropping Angle Study
We now investigate whether the car body has a larger
attenuation effect if the receiver is located at different
angular positions. We also study whether one USRP is
enough to sniff packets from all four tire sensors.

The effect of car body. In our first set of experiments,
we studied the effect of the car’s metallic body on signal
attenuation to determine the number of required USRPs.
We placed the USRP antenna at the origin of the coordi-
nate, as shown in Figure 7, and position the car at several
points on the line of y = 0.5 with its body parallel to
the x-axis. Eavesdropping at these points revealed that it
is very hard to receive packets from four tires simultane-
ously. A set of received signal strength (RSS) measure-
ments when the front left wheel was located at (0, 0.5)
meters are summarized in Table 1. Results show that
the USRP can receive packets transmitted by the front

left, front right and rear left sensors, but not from the
rear right sensor due to the signal degradation caused by
the car’s metallic body. Thus, to assure receiving pack-
ets from all four sensors, at least two observation spots
may be required, with each located on either side of the
car. For instance, two USRPs can be placed at different
spots, or two antennas connected to the same USRP can
be meters apart.

The eavesdropping angle at various distances. We
studied the range associated with one USRP receiving
packets transmitted by the front left wheel. Again, we
placed the USRP antenna at the origin and recorded
packets when the car moved along trajectories parallel to
the x-axis, as shown in Figure 7. These trajectories were
1.5 meters apart. Along each trajectory, we recorded
RSS at the locations from where the USRP could decode
packets. The colored region in Figure 11, therefore, de-
notes the eavesdropping range, and the contours illustrate
the RSS distribution of the received packets.

From Figure 11, we observe that the maximum hori-
zontal eavesdropping range, rmax, changes as a function
of the distance between the trajectory and the USRP an-
tenna, d. Additionally, the eavesdropping ranges on both
sides of the USRP antenna are asymmetric due to the
car’s metallic body. Without the reflection and imped-
iment of the car body, the USRP is able to receive the
packets at further distances when the car is approaching
rather than leaving. The numerical results of rmax, ϕ1,
the maximum eavesdropping angle when the car is ap-
proaching the USRP, and ϕ2, the maximum angle when
the car is leaving the USRP, are listed in Figure 8. Since

Location RSS (dB) Location RSS (dB)
Front left -41.8 Rear left -55.0
Front right -54.4 Rear right N/A

Table 1: RSS when USPR is located 0.5 meters away from the
front left wheel.

8

Y

X

φ1
φ2

rmax

d

0

Figure 7: The experiment setup for the range study.

the widest range of 9.1 meters at the parallel trajectory
was 3 meters away from the x-axis, an USRP should be
placed 2.5 meters away from the lane marks to maximize
the chance of packet reception, assuming cars travel 0.5
meter away from lane marks.

Messaging rate. According to NHTSA regulations,
TPMS sensors transmit pressure information every 60
to 90 seconds. Our measurements confirmed that both
TPS-A and TPS-B sensors transmit one packet every 60
seconds or so. Interestingly, contrary to documentation
(where sensors should report data periodically after a
speed higher than 40 km/h), both sensors periodically
transmit packet even when cars are stationary. Further-
more, TPS-B transmits periodic packets even when the
car is not running.

4.4 Lessons Learned: Feasibility of Track-
ing Automobiles

The surprising range of 40m makes it possible to capture
a packet and its identifiers from the roadside, if the car
is stationary (e.g., a traffic light or a parking lot). Given
that a TPMS sensor only send one message per minute,
tracking becomes difficult at higher speeds. Consider, for
example, a passive tracking system deployed along the
roadside at highway entry and exit ramps, which seeks
to extract the unique sensor ID for each car and link en-
try and exit locations as well as subsequent trips. To en-
sure capturing at least one packet, a row of sniffers would
be required to cover the stretch of road that takes a car
60 seconds to travel. The number of required sniffers,
npassive = ceil(v ∗ T/rmax), where v is the speed of
the vehicle, T is the message report period, and rmax is
the detection range of the sniffer. Using the sniffing sys-
tem described in previous sections where rmax = 9.1
m, 110 sniffers are required to guarantee capturing one
packet transmitted by a car traveling at 60 km/h. De-
ploying such a tracking system appears cost-prohibitive.

It is possible to track with fewer sniffers, however, by
leveraging the activation signal. The tracking station can
send the 125kHz activation signal to trigger a transmis-
sion by the sensor. To achieve this, the triggers and snif-

 x (meters) (dB)

y
(m

et
er

s)

−3 −2 −1 0 1 2 3 4 5

2

3

4

5

6

7

−56

−55

−54

−53

−52

−51

−50

−49

−48

−47

Figure 11: Study the angle of eavesdropping with LNA.

fers should be deployed in a way such that they meet
the following requirements regardless of the cars’ travel
speeds: (1) the transmission range of the trigger should
be large enough so that the passing car is able to receive
the complete activation signal; (2) the sniffer should be
placed at a distance from the activation sender so that the
car is in the sniffers’ eavesdropping range when it starts
to transmit; and (3) the car should stay within the eaves-
dropping range before it finishes the transmission.

To determine the configuration of the sniffers and the
triggers, we conducted an epitomical study using a USRP
with two daughterboards attached, one recording at 125
kHz and the other recording at 315 MHz. Our results
are depicted in Figure 9 and show that the activation sig-
nal of TPS-B lasts approximately 359 ms. The sensors
start to transmit 530 ms after the beginning of the acti-
vation signal, and the data takes 15 ms to transmit. This
means, that to trigger a car traveling at 60 km/h, the trig-
ger should have a transmission range of at least 6 meters.
Since a sniffer can eavesdrop up to 9.1 meters, it suffices
to place the sniffer right next to the trigger. Additional
sniffers could be placed down the road to capture pack-
ets of cars traveling at higher speeds.

To determine the feasibility of this approach, we have
conducted a roadside experiment using the ATEQ VT55
which has a transmission range of 0.5 meters. We were
able to activate and extract the ID of a targeted TPMS
sensor moving at the speed of 35 km/h using one sniffer.
We note that ATEQ VT55 was deliberately designed with
short transmission range to avoid activating multiple cars
in the dealership. With a different radio frontend, such as
using a matching antenna for 125 kHz, one can increase
the transmission range of the trigger easily and enable
capturing packets from cars at higher speeds.

Comparison between tracking via TPMS and Au-
tomatic Number Plate Reading. Automatic Number
Plate Reading (ANPR) technologies have been proposed
to track automobiles and leverage License Plate Cap-
ture Cameras (LPCC) to recognize license plate num-
bers. Due to the difference between underlying technolo-

9

332 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 333

d (m) ϕ1 (◦) ϕ2(◦) rmax (m)
1.5 72.8 66.8 8.5
3.0 59.1 52.4 9.1
4.5 45.3 31.8 7.5
6.0 33.1 20.7 6.3
7.5 19.6 7.7 3.8

Figure 8: The eavesdropping angles and
ranges when the car is traveling at various
trajectories.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

Time (seconds)

N
or

m
al

iz
ed

 M
ag

ni
tu

de

Activation
Data

Figure 9: Time series of activation and
data signals.

Figure 10: Frequency mixer and USRP
with two daughterboards are used to
transmit data packets at 315/433 MHz.

gies, TPMS and ANPR systems exhibit different charac-
teristics. First, ANPR allows for more direct linkage to
individuals through law enforcement databases. ANPR
requires, however, line of sight (LOS) and its accuracy
can be affected by weather conditions (e.g. light or hu-
midity) or the dirt on the plate. In an ideal condition with
excellent modern systems, the read rate for license plates
is approximately 90% [25]. A good quality ANPR cam-
era can recognize number plates at 10 meters [5]. On
the contrary, the ability to eavesdrop on the RF transmis-
sion of TPMS packets does not depend on illumination
or LOS. The probability of identifying the sensor ID is
around 99% when the eavesdropper is placed 2.5 meters
away from the lane marks. Second, the LOS require-
ment forces the ANPR to be installed in visible locations.
Thus, a motivated driver can take alternative routes or re-
move/cover the license plates to avoid being detected. In
comparison, the use of TPMS is harder to circumvent,
and the ability to eavesdrop without LOS could lead to
more pervasive automobile tracking. Although swapping
or hiding license plates requires less technical sophistica-
tion, it also imposes much higher legal risks than deacti-
vating TPMS units.

5 Feasibility of Packet Spoofing

Being able to eavesdrop on TPMS communication from
a distance allows us to further explore the feasibility of
inserting forged data into safety-critical in-vehicle sys-
tems. Such a threat presents potentially even greater
risks than the tracking risks discussed so far. While
the TPMS is not yet a highly safety-critical system, we
experimented with spoofing attacks to understand: (1)
whether the receiver sensitivity of an in-car radio is high
enough to allow spoofing from outside the vehicle or a
neighboring vehicle, and (2) security mechanisms and
practices in such systems. In particular, we were curious
whether the system uses authentication, input validation,
or filtering mechanisms to reject suspicious packets.

The packet spoofing system. Our live eavesdrop-
per can detect TPMS transmission and decode both ASK

modulated TPS-A messages and FSK modulated TPS-
B messages in real time. Our packet spoofing system is
built on top of our live eavesdropper, as shown in Fig-
ure 12. The Packet Generator takes two sets of parame-
ters —sensor type and sensor ID from the eavesdropper;
temperature, pressure, and status flags from users—and
generates a properly formulated message. It then modu-
lates the message at baseband (using ASK or FSK) while
inserting the proper preamble. Finally, the rogue sensor
packets are upconverted and transmitted (either contin-
uously or just once) at the desired frequency (315/433
MHz) using a customized GNU radio python script. We
note that once the sensor ID and sensor type are captured
we can create and repeatedly transmit the forged message
at a pre-defined period.

At the time of our experimentation, there were no
USRP daughterboards available that were capable of
transmitting at 315/433 MHz. So, we used a frequency
mixing approach where we leveraged two XCVR2450
daughterboards and a frequency mixer (mini-circuits
ZLW11H) as depicted in Fig.10. By transmitting a tone
out of one XCVR2450 into the LO port of the mixer,
we were able to mix down the spoofed packet from the
other XCVR2450 to the appropriate frequency. For 315
MHz, we used a tone at 5.0 GHz and the spoofed packet
at 5.315 GHz.1

To validate our system, we decoded spoofed packets
with the TPMS trigger tool. Figure 13 shows a screen
snapshot of the ATEQ VT55 after receiving a spoofed
packet with a sensor ID of “DEADBEEF” and a tire pres-
sure of 0 PSI. This testing also allowed us to understand
the meaning of remaining status flags in the protocol.

5.1 Exploring Vehicle Security

We next used this setup to send various forged packets
to a car using TPS-A sensors (belonging to one of the

1For 433 MHz, the spoofed packet was transmitted at 5.433 GHz.
We have also successfully conducted the experiment using two RFX-
1800 daughterboards, whose operational frequencies are from 1.5 GHz
to 2.1 GHz.

10

Eavesdropper Packet
Generator

Sensor
ID

Sensor
Type

USRP Tx
GnuRadio

Figure 12: Block chart of the packet spoofing system.

authors) at a rate of 40 packets per second. We made the
following observations.

No authentication. The vehicle ECU ignores packets
with a sensor ID that does not match one of the known
IDs of its tires, but appears to accept all other packets.
For example, we transmitted forged packets with the ID
of the left front tire and a pressure of 0 PSI and found 0
PSI immediately reflected on the dashboard tire pressure
display. By transmitting messages with the alert bit set
we were able to immediately illuminate the low-pressure
warning light2, and with about 2 seconds delay the ve-
hicle’s general-information warning light, as shown in
Figure 14.

No input validation and weak filtering. We forged
packets at a rate of 40 packets per second. Neither this
increased rate, nor the occasional different reports by
the real tire pressure sensor seemed to raise any suspi-
cion in the ECU or any alert that something was wrong.
The dashboard simply displayed the spoofed tire pres-
sure. We next transmitted two packets with very differ-
ent pressure values alternately at a rate of 40 packets per
second. The dashboard display appeared to randomly
alternate between these values. Similarly, when alter-
nating between packets with and without the alert flag,
we observed the warning lights switched on and off at
non-deterministic time intervals. Occasionally, the dis-
play seemed to freeze on one value. These observations
suggest that TPMS ECU employs trivial filtering mecha-
nisms which can be easily confused by spoofed packets.

Interestingly, the illumination of the low-pressure
warning light depends only on the alert bit—the light
turns on even if the rest of the message reports a nor-
mal tire pressure of 32 PSI! This further illustrates that
the ECU does not appear to use any input validation.

Large range of attacks. We first investigated the
effectiveness of packet spoofing when vehicles are sta-
tionary. We measured the attack range when the packet
spoofing system was angled towards the head of the car,
and we observed a packet spoofing range of 38 meters.
For the purpose of proving the concept, we only used
low-cost antennas and radio devices in our experiments.
We believe that the range of packet spoofing can be
greatly expanded by applying amplifiers, high-gain an-
tennas, or antenna arrays.

2To discover this bit we had to deflate one tire and observe the tire
pressure sensors response. Simply setting a low pressure bit or report-
ing low pressure values did not trigger any alert in the vehicle.

Feasibility of Inter-Vehicle Spoofing. We deployed
the attacks against willing participants on highway I-26
to determine if they are viable at high speeds. Two cars
owned by the authors were involved in the experiment.
The victim car had TPS-A sensors installed and the at-
tacker’s car was equipped with our packet spoofing sys-
tem. Throughout our experiment, we transmitted alert
packets using the front-left-tire ID of the target car, while
the victim car was traveling to the right of the attacker’s
car. We observed that the attacker was able to trigger
both the low-pressure warning light and the car’s central-
warning light on the victim’s car when traveling at 55
km/h and 110 km/h, respectively. Additionally, the low-
pressure-warning light illuminated immediately after the
attacker entered the packet spoofing range.

5.2 Exploring the Logic of ECU Filtering

Forging a TPMS packet and transmitting it at a high rate
of 40 packets per second was useful to validate packet
spoofing attacks and to gauge the spoofing range. Be-
yond this, though, it was unclear whether there were fur-
ther vulnerabilities in the ECU logic. To characterize the
logic of the ECU filtering mechanisms, we designed a
variety of spoofing attacks. The key questions to be an-
swered include: (1) what is the minimum requirement to
trigger the TPMS warning light once, (2) what is the min-
imum requirement to keep the TPMS warning light on
for an extended amount of time, and (3) can we perma-
nently illuminate any warning light even after stopping
the spoofing attack?

So far, we have observed two levels of warning lights:
TPMS Low-Pressure Warning light (TPMS-LPW) and
the vehicle’s general-information warning light illustrat-
ing ‘Check Tire Pressure’. In this section, we explored
the logic of filtering strategies related to the TPMS-
LPW light in detail. The logic controlling the vehicle’s
general-information warning light can be explored in a
similar manner.

5.2.1 Triggering the TPMS-LPW Light

To understand the minimum requirement of triggering
the TPMS-LPW light, we started with transmitting one
spoofed packet with the rear-left-tire ID and eavesdrop-
ping the entire transmission. We observed that (1) one
spoofed packet was not sufficient to trigger the TPMS-
LPW light; and (2) as a response to this packet, the
TPMS ECU immediately sent two activation signals
through the antenna mounted close to the rear left tire,
causing the rear left sensor to transmit eight packets.
Hence, although a single spoofed packet does not cause
the ECU to display any warning, it does open a vulnera-
bility to battery drain attacks.

11

334 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 335

Figure 13: The TPMS trigger tool dis-
plays the spoofed packet with the sen-
sor ID “DEADBEEF”. We crossed out
the brand of TP sensors to avoid legal
issues.

(a) (b)

Figure 14: Dash panel snapshots: (a) the tire pressure of left front tire displayed
as 0 PSI and the low tire pressure warning light was illuminated immediately after
sending spoofed alert packets with 0 PSI; (b) the car computer turned on the general
warning light around 2 seconds after keeping sending spoofed packets.

Next, we gradually increased the number of spoofed
packets, and we found that transmitting four spoofed
packets in one second suffices to illuminate the TPMS-
LPW light. Additionally, we found that those four
spoofed packets have to be at least 225 ms apart, oth-
erwise multiple spoofed packets will be counted as one.
When the interval between two consecutive spoofed
packets is larger than 4 seconds or so, the TPMS-LPW
no longer illuminates. This indicates that TPMS adopts
two detection windows with sizes of 240 ms (a packet
lasts for 15 ms) and 4 seconds. A 240-ms window is
considered positive for low tire pressure if at least one
low-pressure packet has been received in that window
regardless of the presence of numerous normal packets.
Four 240-ms windows need to be positive to illuminate
the TPMS-LPW light. However, the counter for positive
240-ms windows will be reset if no low-pressure packet
is received within a 4-s window.

Although the TPMS ECU does use a counting thresh-
old and window-based detection strategies, they are de-
signed to cope with occasionally corrupted packets in a
benign situation and are unable to deal with malicious
spoofing. Surprisingly, although the TPMS ECU does
receive eight normal packets transmitted by sensors as
a response to its queries, it still concludes the low-tire-
pressure status based on one forged packet, ignoring the
majority of normal packets!

5.2.2 Repeatedly Triggering the TPMS-LPW Light

The TPMS-LPW light turns off a few seconds if only
four forged packets are received. To understand how
to sustain the warning light, we repeatedly transmitted
spoofed packets and increased the spoofing period grad-
ually. The TPMS-LPW light remained illuminated when
we transmitted the low-pressure packet at a rate higher
than one packet per 240 ms, e.g., one packet per detection
window. Spoofing at a rate between one packet per 240
ms to 4 seconds caused the TPMS-LPW light to toggle
between on and off. However, spoofing at a rate slower
than 4 seconds could not activate the TPMS-LPW light,

which confirmed our prior experiment results. Figure 15
depicts the measured TPMS-LPW light on-durations and
off-durations when the spoofing periods increased from
44 ms to 4 seconds.

As we increased the spoofing period, the TPMS-LPW
light remained on for about 6 seconds on average, but
the TPMS-LPW light stayed off for an incrementing
amount of time which was proportional to the spoofing
period. Therefore, it is very likely that the TPMS-ECU
adopts a timer to control the minimum on-duration and
the off-duration of TPMS-LPW light can be modeled as
toff = 3.5x + 4, where x is the spoofing period. The
off-duration includes the amount of time to observe four
low-pressure forged messages plus the minimum waiting
duration for the TPMS-ECU to remain off, e.g., 4 sec-
onds. In fact, this confirms our observation that there is
a waiting period of approximately 4 seconds before the
TPMS warning light was first illuminated.

5.2.3 Beyond Triggering the TPMS-LPW Light

Our previous spoofing attacks demonstrated that we can
produce false TPMS-LPW warnings. In fact, transmit-
ting forged packets at a rate higher than one packet per
second also triggered the vehicle’s general-information
warning light illustrating ‘Check Tire Pressure’. De-
pending on the spoofing period, the gap between the
illumination of the TPMS-LPW light and the vehicle’s
general-information warning light varied between a few
seconds to 130 seconds — and the TPMS-LPW light re-
mained illuminated afterwards.

Throughout our experiments, we typically exposed the
car to spoofed packets for a duration of several minutes at
a time. While the TPMS-LPW light usually disappeared
about 6 seconds after stopping spoofed message trans-
missions, we were once unable to reset the light even by
turning off and restarting the ignition. It did, however,
reset after about 10 minutes of driving.

To our surprise, at the end of only two days of spo-
radic experiments involving triggering the TPMS warn-
ing on and off, we managed to crash the TPMS ECU and

12

0 1 2 3 4
0

5

10

15

20

25

Spoofing period (s)

D
ur

at
io

n
of

 d
as

hb
oa

rd
 d

is
pl

ay
 (s

)

Warning On
Warning Off

Figure 15: TPMS low-pressure warning light on and off dura-
tion vs. spoofing periods.

completely disabled the service. The vehicle’s general-
information warning light illustrating ‘Check TPMS Sys-
tem’ was activated and no tire pressure information was
displayed on the dashboard, as shown in Figure 16. We
attempted to reset the system by sending good packets,
restarting the car, driving on the highway for hours, and
unplugging the car battery. None of these endeavors
were successful. Eventually, a visit to a dealership recov-
ered the system at the cost of replacing the TPMS ECU.
This incident suggests that it may be feasible to crash the
entire TPMS and the degree of such an attack can be so
severe that the owner has no option but to seek the ser-
vices of a dealership. We note that one can easily explore
the logic of a vehicle’s general-information warning light
using similar methods for TPMS-LPW light. We did not
pursue further analysis due to the prohibitive cost of re-
pairing the TPMS ECU.

5.3 Lessons Learned

The successful implementation of a series of spoofing at-
tacks revealed that the ECU relies on sensor IDs to filter
packets, and the implemented filter mechanisms are not
effective in rejecting packets with conflicting informa-
tion or abnormal packets transmitted at extremely high
rates. In fact, the current filer mechanisms introduce se-
curity risks. For instance, the TPMS ECU will trigger
the sensors to transmit several packets after receiving one
spoofed message. Those packets, however, are not lever-
aged to detect conflicts and instead can be exploited to
launch battery drain attacks. In summary, the absence of
authentication mechanisms and weak filter mechanisms
open many loopholes for adversaries to explore for more
‘creative’ attacks. Furthermore, despite the unavailabil-
ity of a radio frontend that can transmit at 315/433 MHz,
we managed to launch the spoofing attack using a fre-
quency mixer. This result is both encouraging and alarm-
ing since it shows that an adversary can spoof packets
even without easy access to transceivers that operate at
the target frequency band.

(a) (b)

Figure 16: Dash panel snapshots indicating the TPMS system
error (this error cannot be reset without the help of a dealer-
ship): (a) the vehicle’s general-information warning light; (b)
tire pressure readings are no longer displayed as a result of sys-
tem function errors.

6 Protecting TPMS Systems from Attacks

There are several steps that can improve the TPMS de-
pendability and security. Some of the problems arise
from poor system design, while other issues are tied to
the lack of cryptographic mechanisms.

6.1 Reliable Software Design

The first recommendation that we make is that software
running on TPMS should follow basic reliable software
design practices. In particular, we have observed that it
was possible to convince the TPMS control unit to dis-
play readings that were clearly impossible. For example,
the TPMS packet format includes a field for tire pressure
as well as a separate field for warning flags related to tire
pressure. Unfortunately, the relationship between these
fields were not checked by the TPMS ECU when pro-
cessing communications from the sensors. As noted ear-
lier, we were able to send a packet containing a legitimate
tire pressure value while also containing a low tire pres-
sure warning flag. The result was that the driver’s dis-
play indicated that the tire had low pressure even though
its pressure was normal. A straight forward fix for this
problem (and other similar problems) would be to update
the software on the TPMS control unit to perform con-
sistency checks between the values in the data fields and
the warning flags. Similarly, when launching message
spoofing attacks, although the control unit does query
sensors to confirm the low pressure, it neglects the le-
gitimate packet responses completely. The control unit
could have employed some detection mechanism to, at
least, raise an alarm when detecting frequent conflicting
information, or have enforced some majority logic oper-
ations to filter out suspicious transmissions.

6.2 Improving Data Packet Format

One fundamental reason that eavesdropping and spoof-
ing attacks are feasible in TPMS systems is that packets
are transmitted in plaintext. To prevent these attacks, a

13

336 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 337

first line of defense is to encrypt TPM packets3. The ba-
sic packet format in a TPMS system included a sensor ID
field, fields for temperature and tire pressure, fields for
various warning flags, and a checksum. Unfortunately,
the current packet format used is ill-suited for proper en-
cryption, since naively encrypting the current packet for-
mat would still support dictionary-based cryptanalysis as
well as replay attacks against the system. For this reason,
we recommend that an additional sequence number field
be added to the packet to ensure freshness of a packet.
Further, requiring that the sequence number field be in-
cremented during each transmission would ensure that
subsequent encrypted packets from the same source be-
come indistinguishable, thereby making eavesdropping
and cryptanalysis significantly harder. We also recom-
mend that an additional cryptographic checksum (e.g. a
message authentication code) be placed prior to the CRC
checksum to prevent message forgery.

Such a change in the payload would require that
TPMS sensors have a small amount memory in order to
store cryptographic keys, as well as the ability to perform
encryption. An obvious concern is the selection of cryp-
tographic algorithms that are sufficiently light-weight to
be implemented on the simple processor within a TPMS
sensor, yet also resistant to cryptanalysis. A secondary
concern is the installation of cryptographic keys. We en-
vision that the sensors within a tire would be have keys
pre-installed, and that the corresponding keys could be
entered into the ECU at the factory, dealership, or a cer-
tified garage. Although it is unlikely that encryption and
authentication keys would need to be changed, it would
be a simple matter to piggy-back a rekeying command
on the 125kHz activation signal in a manner that only
certified entities could update keys.

6.3 Preventing Spoofed Activation
The spoofing of an activation signal forces sensors to
emit packets and facilitates tracking and battery drain at-
tacks. Although activation signals are very simple, they
can convey a minimal amount of bits. Thus, using a long
packet format with encryption and authentication is un-
suitable, and instead we suggest that the few bits they can
convey be used as a sequencing field, where the sequenc-
ing follows a one-way function chain in a manner anal-
ogous to one-time signatures. Thus, the ECU would be
responsible for maintaining the one-way function chain,
and the TPMS sensor would simply hash the observed
sequence number and compare with the previous se-
quence number. This would provide a simple means of
filtering out false activation signals. We note that other

3We note that encrypting the entire message (or at least all fields
that are not constant across different cars) is essential as otherwise the
ability to read these fields would support a privacy breach.

legitimate sources of activation signals are specialized
entities, such as dealers and garages, and such entities
could access an ECU to acquire the position within the
hash chain in order to reset their activation units appro-
priately to allow them to send valid activation signals.

7 Related Work

Wireless devices have become an inseparable part of our
social fabric. As such, much effort has been dedicated
to analyze the their privacy and security issues. Devices
being studied include RFID systems [27, 30, 41], mass-
market UbiComp devices [38], household robots [14],
and implantable medical devices [21]. Although our
work falls in the same category and complements those
works, TPMS in automobiles exhibits distinctive features
with regard to the radio propagation environment (strong
reflection within and off metal car bodies), ease of access
by adversaries (cars are left unattended in public), span
of usage, a tight linkage to the owners, etc. All these
characteristics have motivated this in-depth study on the
security and privacy of TPMS.

One related area of research is location privacy in
wireless networks, which has attracted much attention
since wireless devices are known to present tracking
risks through explicit identifiers in protocols or identi-
fiable patterns in waveforms. In the area of WLAN,
Brik et al. have shown the possibility to identify users
by monitoring radiometric signatures [10]. Gruteser et
al. [19] demonstrated that one can identify a user’s loca-
tion through link- and application-layer information. A
common countermeasure against breaching location pri-
vacy is to frequently dispose user identity. For instance,
Jiang et al. [24] proposed a pseudonym scheme where
users change MAC addresses each session. Similarly,
Greenstein et al. [18] have suggested an identifier-free
mechanism to protect user identities, whereby users can
change addresses for each packet.

In cellular systems, Lee et al. have shown that the lo-
cation information of roaming users can be released to
third parties [28], and proposed using the temporary mo-
bile subscriber identifier to cope with the location privacy
concern. IPv6 also has privacy concerns caused by the
fixed portion of the address [32], and thus the use of peri-
odically varying pseudo-random addresses has been rec-
ommended. The use of pseudonyms is not sufficient to
prevent automobile tracking since the sensors report tire
pressure and temperature readings, which can be used
to build a signature of the car. Furthermore, pseudonyms
cannot defend against packet spoofing attacks such as we
have examined in this paper.

Security and privacy in wireless sensor networks have
been studied extensively. Perrig et al. [37] have proposed
a suite of security protocols to provide data confidential-

14

ity and authentication for resource-constrained sensors.
Random key predistribution schemes [12] have been pro-
posed to establish pairwise keys between sensors on de-
mand. Those key management schemes cannot work
well with TPMS, since sensor networks are concerned
with establishing keys among a large number of sensors
while the TPMS focuses on establishing keys between
four sensors and the ECU only.

Lastly, we note related work on the security of a car’s
computer system [26]. Their work involved analyzing
the computer security within a car by directly mounting
a malicious component into a car’s internal network via
the On Broad Diagnostics (OBD) port (typically under
the dash board), and differs from our work in that we
were able to remotely affect an automobile’s security at
distances of 40 meters without entering the car at all.

8 Concluding Remarks

Tire Pressure Monitoring Systems (TPMS) are the first
in-car wireless network to be integrated into all new cars
in the US and will soon be deployed in the EU. This pa-
per has evaluated the privacy and security implications
of TPMS by experimentally evaluating two representa-
tive tire pressure monitoring systems. Our study revealed
several security and privacy concerns. First, we reverse
engineered the protocols using the GNU Radio in con-
junction with the Universal Software Radio Peripheral
(USRP) and found that: (i) the TPMS does not employ
any cryptographic mechanisms and (ii) transmits a fixed
sensor ID in each packet, which raises the possibility of
tracking vehicles through these identifiers. Sensor trans-
missions can be triggered from roadside stations through
an activation signal. We further found that neither the
heavy shielding from the metallic car body nor the low-
power transmission has reduced the range of eavesdrop-
ping sufficiently to reduce eavesdropping concerns. In
fact, TPMS packets can be intercepted up to 40 meters
from a passing car using the GNU Radio platform with a
low-cost, low-noise amplifier. We note that the eaves-
dropping range could be further increased with direc-
tional antennas, for example.

We also found out that current implementations do
not appear to follow basic security practices. Messages
are not authenticated and the vehicle ECU also does not
appear to use input validation. We were able to inject
spoofed messages and illuminate the low tire pressure
warning lights on a car traveling at highway speeds from
another nearby car, and managed to disable the TPMS
ECU by leveraging packet spoofing to repeatedly turn on
and off warning lights.

Finally, we have recommended security mechanisms
that can alleviate the security and privacy concerns pre-
sented without unduly complicating the installation of

new tires. The recommendations include standard reli-
able software design practices and basic cryptographic
recommendations. We believe that our analysis and rec-
ommendations on TPMS can provide guidance towards
designing more secure in-car wireless networks.

References

[1] Ettus Research LLC. http://www.ettus.com/.

[2] GNU radio. http://gnuradio.org.

[3] IEEE 1609: Family of Standards for Wire-
less Access in Vehicular Environments (WAVE).
http://www.standards.its.dot.gov/fact sheet.asp?f=80.

[4] Portable, solar-powered tag readers could
improve traffic management. Available at
http://news.rpi.edu/update.do?artcenterkey=1828.

[5] RE-BCC7Y Number plate recognition cameras.
http://www.dsecctv.com/Prod lettura targhe.htm.

[6] Traffic hackers hit red light. Available at
http://www.wired.com/science/discoveries/news/2005
/08/68507.

[7] Improving the safety and environmental performance of
vehicles. EUROPA-Press Releases (23rd May 2008).

[8] ATEQ VT55. http://www.tpms-tool.com/tpms-tool-
ateqvt55.php.

[9] BALANIS, C., AND IOANNIDES, P. Introduction to smart
antennas. Synthesis Lectures on Antennas 2, 1 (2007), 1–
175.

[10] BRIK, V., BANERJEE, S., GRUTESER, M., AND OH,
S. Wireless device identification with radiometric sig-
natures. In Proceedings of ACM International Confer-
ence on Mobile Computing and Networking (MobiCom)
(2008), ACM, pp. 116–127.

[11] BRZESKA, M., AND CHAKAM, B. RF modelling and
characterization of a tyre pressure monitoring system. In
EuCAP 2007: The Second European Conference on An-
tennas and Propagation (2007), pp. 1 – 6.

[12] CHAN, H., PERRIG, A., AND SONG, D. Random key
predistribution schemes for sensor networks. In SP ’03:
Proceedings of the 2003 IEEE Symposium on Security
and Privacy (2003), IEEE Computer Society, p. 197.

[13] COLE, G., AND SHERMAN, A. Lightweight materials
for automotive applications. Materials Characterization
35 (1995), 3–9.

[14] DENNING, T., MATUSZEK, C., KOSCHER, K., SMITH,
J. R., AND KOHNO, T. A spotlight on security and
privacy risks with future household robots: attacks and
lessons. In Ubicomp ’09: Proceedings of the 11th in-
ternational conference on Ubiquitous computing (2009),
pp. 105–114.

[15] FERESIDIS, A., AND VARDAXOGLOU, J. High gain
planar antenna using optimised partially reflective sur-
faces. In IEEE Proceedings on Microwaves, Antennas
and Propagation (2001), vol. 148, pp. 345 – 350.

15

338 19th USENIX Security Symposium USENIX Association

[16] FREDRIKSSON, L., AND AB, K.
Bluetooth in automotive applications.
http://www.kvaser.com/can/info/files/bluetooth-in-
automotive-appl.pdf .

[17] GOVINDJEE, S. Firestone tire failure analysis, 2001.

[18] GREENSTEIN, B., MCCOY, D., PANG, J., KOHNO, T.,
SESHAN, S., AND WETHERALL, D. Improving wire-
less privacy with an identifier-free link layer protocol. In
Proceeding of Mobile systems, applications, and services
(MobiSys) (2008), ACM, pp. 40–53.

[19] GRUTESER, M., AND GRUNWALD, D. A method-
ological assessment of location privacy risks in wireless
hotspot networks. In Security in Pervasive Computing,
First International Conference (2003), pp. 10–24.

[20] GRUTESER, M., AND GRUNWALD, D. Enhancing loca-
tion privacy in wireless lan through disposable interface
identifiers: a quantitative analysis. ACM Mobile Networks
and Applications (MONET) 10, 3 (2005), 315–325.

[21] HALPERIN, D., HEYDT-BENJAMIN, T. S., RANSFORD,
B., CLARK, S. S., DEFEND, B., MORGAN, W., FU,
K., KOHNO, T., AND MAISEL, W. H. Pacemakers and
implantable cardiac defibrillators: Software radio attacks
and zero-power defenses. In Proceedings of IEEE Sym-
posium on Security and Privacy (2008), IEEE Computer
Society, pp. 129–142.

[22] IEEE 802.11P. IEEE draft standard for information tech-
nology -telecommunications and information exchange
between systems. http://www.ieee802.org/11/.

[23] ITALY. http://aglobalworld.com/international-
countries/Europe/Italy.php.

[24] JIANG, T., WANG, H. J., AND HU, Y.-C. Preserving lo-
cation privacy in wireless lans. In MobiSys ’07: Proceed-
ings of the 5th international conference on Mobile sys-
tems, applications and services (2007), ACM, pp. 246–
257.

[25] KEILTHY, L. Measuring ANPR System Performance.
Parking Trend International (2008).

[26] KOSCHER, K., CZESKIS, A., ROESNER, F., PATEL, S.,
KOHNO, T., CHECKOWAY, S., MCCOY, D., KANTOR,
B., ANDERSON, D., SHACHAM, H., AND SAVAGE, S.
Experimental security analysis of a modern automobile.
In Proceedings of IEEE Symposium on Security and Pri-
vacy in Oakland (May 2010).

[27] KOSCHER, K., JUELS, A., BRAJKOVIC, V., AND

KOHNO, T. EPC RFID tag security weaknesses and de-
fenses: passport cards, enhanced drivers licenses, and be-
yond. In Proceedings of the 16th ACM conference on
Computer and communications security (2009), pp. 33–
42.

[28] LEE, C.-H., HWANG, M.-S., AND YANG, W.-P. En-
hanced privacy and authentication for the global system
for mobile communications. Wireless Networks 5, 4
(1999), 231–243.

[29] LIEDTKE, F. Computer simulation of an automatic clas-
sification procedure for digitally modulated communica-
tion signals with unknown parameters. Signal Processing
6 (1984), 311–323.

[30] MOLNAR, D., AND WAGNER, D. Privacy and security
in library RFID: issues, practices, and architectures. In
Proceedings of Computer and communications security
(2004), ACM Press, pp. 210–219.

[31] MURPHY, N. A short trip on the can bus. Embedded
System Programming (2003).

[32] NARTEN, T., DRAVES, R., AND KRISHNAN, S. RFC
4941 - privacy extensions for stateless address autocon-
figuration in IPv6, Sept 2007.

[33] NUSSER, R., AND PELZ, R. Bluetooth-based wireless
connectivity in an automotive environment. Vehicular
Technology Conference 4 (2000), 1935 – 1942.

[34] OF TRANSPORTATION, B. Number of vehicles and vehi-
cle classification, 2007.

[35] OF TRANSPORTATION NATIONAL HIGHWAY, D., AND

ADMINISTRATION, T. S. 49 cfr parts 571 and 585
federal motor vehicle safety standards; tire pressure
monitoring systems; controls and displays; final rule.
http://www.tireindustry.org/pdf/TPMS FinalRule v3.pdf .

[36] PAPADIMITRATOS, P., BUTTYAN, L., HOLCZER, T.,
SCHOCH, E., FREUDIGER J., RAYA, M., MA, Z.,
KARGL, F., KUNG, A., AND HUBAUX, J.-P. Secure Ve-
hicular Communication Systems: Design and Architec-
ture. IEEE Communcations Magazine 46, 11 (November
2008), 100–109.

[37] PERRIG, A., SZEWCZYK, R., WEN, V., CULLER, D.,
AND TYGAR, J. D. Spins: security protocols for sensor
networks. In MobiCom ’01: Proceedings of the 7th an-
nual international conference on Mobile computing and
networking (2001), ACM, pp. 189–199.

[38] SAPONAS, T. S., LESTER, J., HARTUNG, C., AGAR-
WAL, S., AND KOHNO, T. Devices that tell on you:
privacy trends in consumer ubiquitous computing. In
Proceedings of USENIX Security Symposium (2007),
USENIX Association, pp. 1–16.

[39] SONG, H., COLBURN, J., HSU, H., AND WIESE, R.
Development of reduced order model for modeling per-
formance of tire pressure monitoring system. In IEEE
64th Vehicular Technology Conference (2006), pp. 1 – 5.

[40] VELUPILLAI, S., AND GUVENC, L. Tire pressure mon-
itoring. IEEE Control Systems Magazine 27 (2007), 22–
25.

[41] WEIS, S. A., SARMA, S. E., RIVEST, R. L., AND EN-
GELS, D. W. Security and privacy aspects of low-cost
radio frequency identification systems. In Security in Per-
vasive Computing (2004), vol. 2802 of Lecture Notes in
Computer Science, pp. 201–212.

[42] YEH, P., STARK, W., AND ZUMMO, S. Performance
analysis of wireless networks with directional antennas.
IEEE Transactions on Vehicular Technology 57, 5 (2008),
3187–3199.

16

USENIX Association 19th USENIX Security Symposium 339

VEX: Vetting Browser Extensions For Security Vulnerabilities

Sruthi Bandhakavi Samuel T. King P. Madhusudan Marianne Winslett
University of Illinois at Urbana Champaign

{sbandha2,kingst,madhu,winslett}@illinois.edu

Abstract

The browser has become the de facto platform for ev-
eryday computation. Among the many potential attacks
that target or exploit browsers, vulnerabilities in browser
extensions have received relatively little attention. Cur-
rently, extensions are vetted by manual inspection, which
does not scale well and is subject to human error.

In this paper, we present VEX, a framework for high-
lighting potential security vulnerabilities in browser ex-
tensions by applying static information-flow analysis to
the JavaScript code used to implement extensions. We
describe several patterns of flows as well as unsafe pro-
gramming practices that may lead to privilege escala-
tions in Firefox extensions. VEX analyzes Firefox ex-
tensions for such flow patterns using high-precision,
context-sensitive, flow-sensitive static analysis. We an-
alyze thousands of browser extensions, and VEX finds
six exploitable vulnerabilities, three of which were previ-
ously unknown. VEX also finds hundreds of examples of
bad programming practices that may lead to security vul-
nerabilities. We show that compared to current Mozilla
extension review tools, VEX greatly reduces the human
burden for manually vetting extensions when looking for
key types of dangerous flows.

1 Introduction

Driving the Internet revolution is the modern web
browser, which has evolved from a relatively simple
client application designed to display static data into a
complex networked operating system tasked with man-
aging many facets of a user’s on-line experience. To
help meet the varied needs of a broad user population,
browser extensions expand the functionality of browsers
by interposing on and interacting with browser-level
events and data. Some extensions are simple and make
only small changes to the appearance of web pages or the
browser itself. Other extensions provide more sophis-

ticated functionality, such as NOSCRIPT that provides
fine-grained control over JavaScript execution [20], or
GREASEMONKEY that provides a full-blown program-
ming environment for scripting browser behavior [6].
These are just a few of the thousands of extensions cur-
rently available for Firefox, the second most popular
browser today1.

Extensions written with benign intent can have subtle
vulnerabilities that expose the user to a disastrous attack
from the web, often just by viewing a web page. Fire-
fox extensions run with full browser privileges, so at-
tackers can potentially exploit extension weaknesses to
take over the browser, steal cookies or protected pass-
words, compromise confidential information, or even hi-
jack the host system, without revealing their actions to
the user. Unfortunately, tens of extension vulnerabili-
ties have been discovered in the last few years, and capa-
ble attacks against buggy extensions have already been
demonstrated [23].

To help reduce the attack surface for extensions,
Mozilla provides a set of security primitives to ex-
tension developers. However, these security primi-
tives are discretionary, and can be difficult to under-
stand and use correctly. For example, Firefox pro-
vides an evalInSandbox (text, sandbox) function
that returns the result of evaluating the text string
under the restricted privileges associated with the en-
vironment sandbox. Using evalInSandbox correctly
requires developers to test the result of a call to
evalInSandbox with the non-traditional “===” rather
than “==”, as the “==” operation may invoke unsafe code
as a side effect (See http://developer.mozilla.org/

En/Components.utils.evalInSandbox for details).
Current approaches from the research community pro-

pose dynamic techniques for improving the security of
extensions. The SABRE system tracks tainted JavaScript

1Firefox now surpasses Internet Explorer in W3schools traffic
(www.w3schools.com/browsers/browsers_stats.asp),
arguably due to the popularity of Firefox extensions.

340 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 341

objects to prevent extensions from accessing sensitive in-
formation unsafely [9]. Although SABRE can prevent po-
tentially malicious flows from both exploited extensions
and from malicious extensions, SABRE adds overhead to
all JavaScript execution within the browser, adding 6.1x
overhead for the SunSpider benchmark and 2.36x over-
head for the V8 JavaScript benchmark. Furthermore,
SABRE’s dynamic nature pushes security violation no-
tification to users who are unable to determine if a par-
ticular flow is malicious or benign. The Google Chrome
Extension System revisits the overall extension API to
make it easier for the browser to enforce least privilege
and strong isolation on extensions [4]. Their system
works by partitioning the full set of extension function-
ality into different protection domains, and sand-boxing
extensions to prevent them from obtaining more privi-
leges than needed. Although this system is likely to limit
the damage from some extension attacks, it does little to
prevent the vulnerabilities themselves.

In this paper, we propose VEX, a system for find-
ing vulnerabilities in browser extensions using static
information-flow analysis. Many vulnerabilities trans-
late to certain types of explicit information flows from
injectable sources to executable sinks. For extensions
written with benign intent, most attacks involve the at-
tacker injecting JavaScript into a data item that is sub-
sequently executed by the extension under full browser
privileges. We identify key flows of this nature that can
lead to security vulnerabilities, and we analyze for these
flows statically using high-precision static analysis that
is both path-sensitive and context-sensitive, to minimize
the number of false positive suspect flows. VEX uses
precise summaries to analyze code, and has special fea-
tures to handle the quirks of JavaScript (e.g., VEX does
a constant string analysis for expressions that flow into
the eval statement). Because VEX uses static analysis,
we avoid the runtime overhead induced by dynamic ap-
proaches.

Determining whether extensions are malicious or har-
bor security vulnerabilities is a hard problem. Exten-
sions are typically complex artifacts that interact with
the browser in subtle and hard to understand ways. For
example, the ADBLOCK PLUS extension performs the
seemingly simple task of filtering out ads based on a
list of ad servers. However, the ADBLOCK PLUS im-
plementation consists of over 11K lines of JavaScript
code. Similarly, the NOSCRIPT extension provides fine-
grained control over which domains are allowed to ex-
ecute JavaScript and basic cross-site scripting protec-
tion. The NOSCRIPT extension implementation consists
of over 19K lines of JavaScript code. Also, ADBLOCK
PLUS had 30 releases in 1/1/06–11/20/09, and NO-
SCRIPT had 38 releases just in 1/1/09–11/20/09. While
Mozilla uses volunteers to vet each new extension and re-

vision before posting it on their official list of approved
Firefox extensions, examining an extension to find a vul-
nerability requires a detailed understanding of the code
to reason about anything beyond the most basic type of
information flow. Thus tools to help vet browser exten-
sions can be very useful for improving the security of
extensions.

We show that VEX can catch several known vulnera-
bilities, such as a vulnerability in the FIZZLE extension
[8], and also find new problems, including exploitable
vulnerabilities in BEATNIK and WIKIPEDIA TOOLBAR.
In particular, VEX reported a previously unknown vul-
nerability in WIKIPEDIA TOOLBAR that could lead to an
attack, and that resulted in the report CVE-2009-4127.
We reported this vulnerability to the WIKIPEDIA TOOL-
BAR developers, who fixed the extension. We also show
that VEX can help to find the use of unsafe programming
practices, such as misuse of evalInSandbox, that can
result from subtle information flows.

The remainder of the paper is organized as follows.
Section 2 describes the threat model and the assumptions
under which we analyze the browser extensions. Sec-
tion 3 provides background material on the architecture
of Firefox and the nature of certain key undesirable in-
formation flows in its extensions. Section 4 describes our
static analysis and the various design choices we made to
build VEX. Section 5 lists and describes our results. Sec-
tion 6 surveys related work, and Section 7 concludes the
paper.

2 Threat model, assumptions, and usage
model

In this paper, we focus on finding security vulnerabili-
ties in buggy browser extensions. We do not try to iden-
tify malicious extensions, bugs in the browser itself, or
bugs in other browser extensibility mechanisms, such as
plug-ins. We assume that the developer is neither mali-
cious nor trying to obfuscate extension functionality, but
we assume the developer could write incorrect code that
contains vulnerabilities.

We use two attack models. First, we consider attacks
that originate from web sites, and we assume the attacker
can send arbitrary HTML and JavaScript to the user’s
browser. We focus on attacks where this untrusted data
can lead to code injection or privilege escalation through
buggy extensions. In the second attack model, we con-
sider some web sites as trusted. For example, if an exten-
sion gleans information from Facebook, we assume that
the Facebook code will not include arbitrary HTML and
JavaScript, but only well formatted and trusted data.

According to the Mozilla developer site, Mozilla has
a team of volunteers who help vet extensions manually.

2

Figure 1: The overall analysis process of VEX.

They run new and updated extensions isolated in a vir-
tual machine to test the user experience. The editors also
use a validation tool, which uses grep to look for key in-
dicators of bugs. Many of the patterns they search for
involve interactions between extensions and web pages,
and they use their understanding of these patterns to help
guide their inspection of the code. Our goal is to help
automate this process, so that analysts can quickly hone
in on particular snippets of code that are likely to contain
security vulnerabilities. Figure 1 shows our overall work
flow for using VEX.

3 Background

3.1 Mozilla privilege levels
Firefox has two privilege levels: page, for the web page
displayed in the browser’s content pane; and chrome, for
elements belonging to Firefox and its extensions, i.e., ev-
erything surrounding the content pane. Page privileges
are more restrictive than chrome privileges. For exam-
ple, a page loaded from site x cannot access content from
sites other than x. General Firefox code runs with full
chrome privileges, which give it access to all browser
states and events, OS resources like the file system and
network, and all web pages. Firefox provides the ex-
tensions with full chrome privileges by exposing a spe-
cial API called the XPCOM Components to extension
JavaScript, thereby allowing the extensions to have ac-
cess to all the resources Firefox can access.

Extensions can often access objects that run with page
privileges and interact with page content, as well as ob-
jects that run with full chrome privileges. Extensions can
also include user interface components via a chrome doc-

ument, which also runs with full chrome privileges. For
example, the object window refers to the chrome win-
dow and the object window.content refers to the con-
tent window. To access the document object referring
to the content (i.e., the user page), the extension has to
access the document property of the content window,
i.e., window.content.document.

To make this extension architecture practical, Firefox
has APIs for extension code to communicate across pro-
tection domains. These interactions are one cause of ex-
tension security vulnerabilities. As the Mozilla devel-
oper site explains, “One of the most common security is-
sues with extensions is execution of remote code in privi-
leged context. A typical example is an RSS reader exten-
sion that would take the content of the RSS feed (HTML
code), format it nicely and insert into the extension win-
dow. The issue that is commonly overlooked here is that
the RSS feed could contain some malicious JavaScript
code and it would then execute with the privileges of the
extension – meaning that it would get full access to the
browser (cookies, history etc) and to user’s files” [sic].

3.2 Points of attack

Here we discuss key vulnerable points for code injection
and privilege escalation attacks against non-malicious
extensions: eval, evalInSandbox, innerHTML, and
wrappedJSObject. We focus on these Firefox features
because they are key points of interaction between ob-
jects with page and chrome privileges, respectively, and
this interaction is a key source of security vulnerabilities,
as noted above. Though other avenues of attack are pos-
sible, we do not consider them here.

3

342 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 343

eval: The eval function call interprets string data as
JavaScript, which it executes dynamically. This flexible
mechanism can be used to generate JavaScript code dy-
namically, for example to serialize JSON objects. How-
ever, this flexibility can lead to code injection vulnera-
bilities in extensions. If extensions execute eval func-
tions on un-sanitized strings that come from untrusted
web pages, the attacker will be able to inject JavaScript
code that will run with full chrome privileges.

InnerHTML: Each HTML element for a page has an
innerHTML property that defines the text that occurs be-
tween that element’s opening and closing tag. Exten-
sions can change the innerHTML property to alter ex-
isting document object model (DOM) elements, or to
add new DOM elements. When an extension modifies
the innerHTML property, the browser re-parses and pro-
cesses the new data. Thus, passing specially crafted un-
sanitized strings (e.g., tags with script in their
onload attribute) into innerHTML modifications can
lead to code injection attacks.

EvalInSandbox: One way Firefox facilitates com-
munication across protection domains is through the
evalInSandbox method. This method enables exten-
sions to execute JavaScript in the extension’s context
with restricted privileges, thus enabling extensions to
process untrusted data from web pages safely. The
sandbox object is an empty JavaScript object created
with restricted privileges. For example, the call s =
Sandbox("http://www.w3.org/") creates a sandbox
swhere code can execute with page privileges, as though
it came from the domain www.w3.org. One can add
properties to this object by calling the evalInSandbox

function, and any attempts to access global scope ob-
jects from within evalInSandbox, including privileged
chrome objects, are denied. evalInSandbox compli-
cates extension programming because objects returned
from the method call execute in the extension with full
chrome privileges. Since methods associated with the
object could have been modified within the sandbox, they
should not be called in the chrome context. For example,
“==” should not be used on these objects as its evaluation
calls the tostring or valueOf method, which could
have been modified; instead the non-traditional “===”
operator needs to be used.

wrappedJSObject: JavaScript objects can be dynam-
ically modified. That means that any web page can
modify the properties of the document object. For ex-
ample, a web page can reassign the getElementById

method to return a malicious script. To prevent this
script from being executed by the extension when

it calls window.content.document.getElementById,
Firefox automatically wraps the object so that the
window.content.document accesses only use the orig-
inal document object, not the modified one. However,
Firefox also provides the wrappedJSObject method,
which lets the extension access the modified version,
even when automatic wrapping is turned on; calling
wrappedJSObject on a content document is potentially
dangerous.

3.3 Suspicious flow patterns

In this section we discuss the five source to sink
flows that might be vulnerable. Specifically, we track
flows from Resource Description Framework (RDF)
data (e.g., bookmarks) to innerHTML, content document
data to eval, content document data to innerHTML,
evalInSandbox return objects used improperly by code
running with chrome privileges, or wrappedJSObject
return object used improperly by code running with
chrome privileges. These flows do not always result in
a vulnerability, and they are by no means an exhaustive
list of all possible extension security bugs, but they are
the patterns we use in our tool.

RDF is a model for describing hierarchical relation-
ships between browser resources [33]. Extension de-
velopers can store persistent extension data in an RDF
file, or access browser resources, such as bookmarks,
stored in RDF format. RDF data can come from un-
trusted sources. For example, when a user stores a book-
mark, Firefox records the un-sanitized title of the book-
marked page in the RDF file. Extensions that use RDF
data need to sanitize it properly if they use it directly in
an innerHTML statement that modifies an element in a
chrome document.

Content document data flowing to eval or innerHTML
can sometimes be exploited. This flow can result in script
execution with chrome privileges if specially crafted
content from the window.content.document ob-
ject is passed to eval or innerHTML or an element in the
chrome document.

For evalInSandbox and wrappedJSObject, prob-
lems can only result if the return values of these
constructs are executed with chrome privileges. For
evalInSandbox this means comparing return values us-
ing == or != from code running with chrome privileges.
For wrappedJSObject, this means making method calls
on returned objects from code running with chrome priv-
ileges.

Such flow patterns may occur in only a few
of the extensions that use these constructs. Ac-
cording to the Mozilla extension review web page,
reviewers have an open-source automatic tool to
help with reviews (see https://addons.mozilla.org/

4

en-US/firefox/pages/validation), but this tool just
greps for strings that indicate dangerous patterns. Af-
terward, the reviewer must go through the code of each
suspect extension to understand the flows and determine
which constitute vulnerabilities and which are benign.
As this task is difficult, painful, and error-prone, we de-
signed the VEX tool to help extension reviewers vet the
flows in extensions automatically, greatly reducing the
number of extensions that need manual review.

4 Static information flow analysis

We develop a general explicit information flow static
analysis tool VEX for JavaScript that computes flows be-
tween any source and sink, including the flows described
in Section 3.3. While we could develop analysis tech-
niques for a particular source and sink, we prefer a more
general technique that will perform the analysis once,
and from the results, allow us to search for any source-
to-sink flow. This allows VEX to be run in a single pass
over thousands of extensions, rather than using separate
passes for each target pattern.

To support fine-grained information-flow analysis,
VEX tracks the precise dependencies of flows from vari-
ables to objects created in the JavaScript extension, using
a taint-based analysis. Motivated by the fact that every
flow reported needs to be checked manually for attacks,
which can take considerable human effort, we aim for
an analysis that admits as few false positives as possi-
ble (false positives are non-existent flows reported by the
tool).

Statically analyzing JavaScript extensions for flows is
a non-trivial task. JavaScript extensions have a large
number of objects and functions. In addition to the ob-
jects defined in the program, the extensions can also ac-
cess the browser’s DOM API and the Firefox Extension
API provided by XPCOM components. The objects are
also dynamic, in the sense that new object properties can
be created dynamically at run-time. Functions are ob-
jects in JavaScript, and hence can be created, redefined
dynamically, and passed as parameters. The challenge is
to accurately keep track of such objects, properties, and
the corresponding flows to them.

Our analysis keeps track of an abstract heap (AH) that
is not a priori bounded, and keeps track of the precise
heap nodes and field relations and corresponding flows,
but ignores the exact primitive values in the heap (like
integers). However, we bound the number of iterations
in computing the least fixed-point, and hence the abstract
heap gets bounded implicitly.

The abstract heap transformations for any statement
closely mimic a big-step operational semantics for
JavaScript, except that primitive values are forgotten, and

hence conditionals are not evaluated; we refer the reader
to work on operational semantics of JavaScript [27, 18].

Apart from tracking heap structures, the abstract heap
also records explicit-flow dependencies to heap nodes,
and the rules for updating flows naturally depend on the
program’s semantics. Also, as we talk about in more
detail below, there are some aspects of the heap (such
as prototype fields) that are not currently supported in
our tool. The static analysis itself is flow-sensitive and
context-sensitive, and the context-sensitivity is handled
using classical function-summary based methods.

The above choices, namely the choice of abstract
heaps, and the context-sensitive flow-sensitive analysis,
are design choices we have made, based on our exper-
iments with extensions for over a year, and were moti-
vated to reduce false positives. However, we have not
tried all variants of these choices, and it is possible that
other choices (for example, choosing to bound abstract
heaps by merging objects created at a program site), may
also work well on extensions. However, we do know that
context-sensitivity is important (in several extensions we
manually examined) and further flow-sensitivity seems
important if the tool is extended to consider sanitization
routines as flow-stoppers.

The rest of this section is structured as follows. First
we explain our analysis using abstract heaps for a core
subset of JavaScript, which does not have statements like
eval, associative array accesses, calls to Firefox APIs,
etc. Subsequently, we describe how we handle the as-
pects not covered in the core.

4.1 Analysis of a core subset of JavaScript
Core JavaScript: A core subset of JavaScript is given
in Figure 2; this core reflects the aspects of JavaScript de-
scribed above, but omits certain features (such as eval)
which we will describe later.

Abstract Heaps: Our analysis keeps track of a one ab-
stract heap at each program point. This abstract heap
tracks JavaScript objects and functions and the relation-
ships between them in the form of a graph. Each node
in the graph is a heap location generated by the program.
Two different nodes, n1 and n2 are connected by an edge
labeled f , if node n1’s property f may refer to n2. To
keep track of the actual information flows between differ-
ent program variables, we also keep track of all the pro-
gram variables that flow into the nodes in abstract heap.
Let PVar be the set of all the program variables in the
JavaScript program.

More precisely, an abstract heap σ is a tuple (ns , n,d,
fr , dm , tm), where:

• ns is a set of heap locations,

5

344 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 345

EXPRESSIONS ::=
| c (CONSTANT)
| x (VARIABLE)
| x.f (FIELD ACCESS)
| x.prot (PROTO ACCESS)
| eop e (BINARY OP)
| this (THIS)
| {f1 : e1, . . . , fn : en} (OBJECT LITERAL)
| function (p1, . . . , pn){S} (FUNCTION DEF)
| f(a1, . . . , an) (FUNCTION CALL)
| new f(a1, . . . , an) (NEW)

STATEMENTS ::=
| skip (SKIP)
| S1;S2 (SEQ)
| var x (VARIABLE DECL.)
| x := e (ASSIGN 1)
| x.f := e (ASSIGN 2)
| if e then S1 else S2 (CONDITIONAL)
| while e do S od (WHILE)
| return e (RETURN)

Figure 2: Core JavaScript syntax.

• n ∈ (ns ∪ {⊥}) represents the current node, and is
either a node in the heap or the symbol ⊥,

• d ⊆ PVar represents the subset of program vari-
ables that flow in to the current node n,

• fr ⊆ ns × PVar × (ns ∪ {⊥}) encodes the
pointers representing properties (fields). A triple
(n1, f, n2) ∈ fr means that the property f of the
object n1 may be located at n2.

• dm ⊆ ns×PVar is a relation that denotes a depen-
dency map. A pair (n1, x) ∈ dm denotes that the
program variable x flows into the node n1.

• tm : ns×ns is a “this-map” relation, which is actu-
ally the relation of a function. A pair (n1, n2) ∈ tm
means that the scope of n1 is n2.

Notation: The relation tm will always be a function; we
define formally the function tm : ns → ns as tm(n) =
n′, where (n, n′) ∈ tm . Let dm : ns → 2PVar be the
function that corresponds to the relation dm , dm(n) =
{x|(n, x) ∈ dm}, i.e. the set of all the program variables
that flow into the node n.

The Analysis: We now describe our analysis for the
core subset of JavaScript. VEX handles functions and
objects by creating a node for every object or func-
tion and their properties. Relationships between various
nodes are accurately generated and tracked in the anal-
ysis. JavaScript uses prototype-based inheritance; how-
ever, our analysis does not track prototypes. Instead, a

new property insertion into the prototype field of an ob-
ject is treated as if the property is being inserted into the
object itself. We found that this is sufficient in case of
JavaScript extensions as the inheritance chain is not deep
in most cases. VEX keeps track of the accurate scope
information using the this-map.

Our analysis consists of a set of rules for generating
abstract heaps at program points, and is defined by es-
sentially capturing the effect of statements on the abstract
heap. These rules follow a big-step operational seman-
tics adapted to work on the abstracted heap.

The big step operational semantics on abstract heaps
is defined as a relation , (Prog, σ) ⇓ σ′, where Prog is
an program expression or statement and σ and σ′ are ab-
stract heaps. Such a relation intuitively means that σ′ is
the heap obtained from the complete evaluation of Prog
starting from the heap σ. This resulting heap, in every
iteration, will be merged with the current heap after the
program, conservatively taking the union of dependen-
cies.

We now define this relation for expressions and state-
ments.

Notation: For any abstract heap σ, let σ = (nsσ , nσ ,
dσ , frσ , dmσ , tmσ). In other words, nσ refers to the
second component of σ, etc. The function fresh() cre-
ates a new heap location. A special node nG repre-
sents the global heap, which consists of the objects like
Object, Array, etc.

Evaluating expressions:
Figure 3 gives the rules for evaluating expressions in the
program.

Rule (CONSTANT) evaluates to a ⊥ node with empty
dependencies. Rule (THIS) extracts the scope of the cur-
rent node. The next five rules describe the variable and
field access expressions.

In case of a variable access, the existence property x
is checked in the current scope (represented by nσ(rule
(VAR))), and returned if it exists. If it is not in the cur-
rent scope, then the global node (rule (GLOBAL VAR))
is checked for property x. If it exists, then it is returned
with dependencies. If the location for a particular vari-
able is found in neither the current scope nor the global
scope, using rule (UNINITIALIZED VAR) we create a
new node nnew and add it to the global scope. Similar
rules apply for field accesses in rules (FIELD ACCESS)
and (UNINIT FLD).

For binary operators(rule (BINARY OP)), we return
the union of dependencies of both the expressions. When
an object literal expression((OBJ. LIT.)) is encountered,
a summary is computed by recursively creating heap lo-
cations for each of its properties and then creating the

6

.

(c, σ) ⇓ (nsσ ,⊥, ∅, frσ , dmσ , tmσ)
(CONSTANT) .

(this , σ) ⇓ (nsσ , tmσ(nσ), dmσ(tmσ(nσ)), frσ , dmσ , tmσ)
(THIS)

(nσ , x, nx) ∈ frσ

(x, σ) ⇓ (nsσ , nx, dmσ(nx), frσ , dmσ , tmσ)
(VAR)

� ∃n′
x.(nσ , x, n′

x) ∈ frσ (nG, x, nx) ∈ frσ

(x, σ) ⇓ (nsσ , nx, dmσ(nx), frσ , dmσ , tmσ)
(GLOBAL VAR)

� ∃n′
x.(nσ , x, n′

x) ∈ frσ � ∃n′′
x.(nG, x, n′′

x) ∈ frσ nG �= nσ

(x, σ) ⇓ (nsσ ∪ {nnew},nnew , ∅, frσ ∪ {(nG, x,nnew)}, dmσ , tmσ ∪ {(nnew , nG)})
(UNITIALIZED VAR)

where, nnew = fresh()

(x, σ) ⇓ σ′ (nσ′ , f, nf) ∈ frσ′

(x.f, σ) ⇓ (nsσ′ , nf , dσ′ ∪ dmσ′ (nf), frσ′ , dmσ′ , tmσ′)
(FIELD ACCESS)

(x, σ) ⇓ σ′

(x.prot, σ) ⇓ σ′ (PROT ACCESS)

(x, σ) ⇓ σ′ � ∃nf .(nσ′ , f, nf) ∈ frσ′

(x.f, σ) ⇓ (nsσ′ ∪ {nnew},nnew , dσ′ , frσ′ ∪ {(nσ′ , f,nnew)}, dmσ′ , tmσ′ ∪ {(nnew ,nσ′)})
(UNINIT FLD)

where,nnew = fresh()

(e1, σ) ⇓ σ1 (e2, σ) ⇓ σ2

(e1op e2, σ) ⇓ (nsσ1
∪ nsσ2

,⊥, dσ1
∪ dσ2

, frσ1
∪ frσ2

, dmσ1
∪ dmσ2

, tmσ1
∪ tmσ2

)
(BINARY OP)

(e1, σ) ⇓ σ1 . . . (en, σ) ⇓ σn

({f1 : e1, . . . , fn : en}, σ) ⇓ σ′ (OBJ. LIT.)
where,

nσ′ = fresh() = nnew dσ′ =
n⋃

i=1
dσi

nsσ′ = nsσ ∪ {nnew} ∪ (
n⋃

i=1
nsσi) frσ′ = frσ ∪ (

n⋃
i=1

(nnew , fi,nσi))

dmσ′ = dmσ ∪ (
n⋃

i=1
dmσi) tmσ′ = tmσ ∪ (

n⋃
i=1

(nσi ,nnew))

(S, σ′′) ⇓ σ′

(function (p1, . . . , pn){S}, σ) ⇓ σ′ (FUN-DEF)
where,

nsσ′′ = nsσ ∪ {n0
new} ∪ (

n⋃
i=1

npi
new) nσ′′ = fresh() = n0

new dσ′′ = ∅

n RET
new = fresh() ∀i ∈ {1, . . . , n}.npi

new = fresh()

frσ′′ = frσ ∪ {(n0
new , RET,n RET

new)} ∪ (
n⋃

i=1
{(n0

new , i,npi
new)})

dmσ′′ = dmσ ∪ (
⋃n

i=1{(RET, i), (npi
new , i)})

tmσ′′ = tmσ ∪ {(n0
new ,nσ)} ∪ {(n RET

new ,n0
new)} ∪ (

n⋃
i=1

(npi
new ,n0

new))

(f, σ) ⇓ σ′′ (nσ′′ , RET, n′) ∈ frσ (e1, σ) ⇓ σ1 . . . (en, σ) ⇓ σn

(f(e1, . . . , en), σ) ⇓ (nsσ ,⊥, d′, frσ , dmσ , tmσ)
(FUN-CALL1)

where, d′ =
n⋃

i=1
(∃(n′, i) ∈ dmσ .dσi)

(f, σ) ⇓ σ′′ nσ′′ = ⊥ (e1, σ) ⇓ σ1 . . . (en, σ) ⇓ σn

(f(e1, . . . , en), σ) ⇓ (nsσ ,⊥,
n⋃

i=1
dσi , frσ , dmσ , tmσ))

(FUN-CALL2)

Figure 3: Semantics for all core expressions except new.

graph where the new object node is linked to the proper-
ties with the labeled edges.

A function definition((FUN-DEF)) is treated in a simi-
lar fashion as the object literal, except that new summary
locations are created for each of the function arguments
and also for the return variable (i.e. n RET

new). The function
body is evaluated with respect to the new heap. The re-
sult of the evaluation is the new heap with the function
summary attached to the node n RET

new . A function call(rule
(FUN-CALL1)) uses this summary to compute the node
and dependencies of the return value. The return value
of the function can be obtained by evaluating each of the
function argument expressions, and replacing the appro-
priate nodes in the function summary with the values re-
turned. If the function is not defined, then the dependen-
cies of the return values are the union of dependencies of
the individual function parameters(rule (FUN-CALL2)).

A constructor expression (containing new) is similar to a
function call, where if the object being instantiated is re-
trieved from the local or the global scope, then a copy of
the graph starting with this object is created and returned.

Evaluating statements:
The statement semantics are given in Figure 4. A vari-
able declaration(VAR. DECL.) creates a new node in
the current scope. If the heap node for that variable al-
ready exists, it is replaced by this new node. The as-
signment statement (rules (ASSIGN1) and (ASSIGN2))
evaluates the left hand side and the right hand side ex-
pressions, replaces the node on the left hand side with
the node on the right hand side. Note that conditionals in
if-then-else and while statements are, of course,
not evaluated as our heaps are symbolic. The while state-

7

346 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 347

.
(skip, σ) ⇓ σ

(SKIP)
(C1, σ) ⇓ σ′ (C2, σ

′) ⇓ σ′′

(C1;C2, σ) ⇓ σ′′ (SEQ)

(nσ, x, nx) ∈ frσ
(var x, σ) ⇓ (ns,nσ, dσ, fr, dmσ, tm)

(VAR.DECL.) where, ns = (nsσ ∪ {nnew}) \ {nx}
fr = (frσ \ {(nσ, x, nx)}) ∪ {(nσ, x,nnew)}
tm = tmσ ∪ {(nnew ,nσ)}

(e, σ) ⇓ σ′′ (x, σ) ⇓ σx

(x := e, σ) ⇓ (ns,nσ, dσ, fr, dm, tm)
(ASSIGN1)

where, ns = nsσx ∪ nsσ′′

fr = (frσ′′ \ {(nσ, x,nσx)}) ∪ {(nσ, x,nσ′′)}
dm = dmσ′′

tm = tmσ ∪ {(nσ′′ , tmσx(nσx))}
(e, σ) ⇓ σ′′ (x, σ) ⇓ σx (x.f, σ) ⇓ σf

(x.f := e, σ) ⇓ σ′ (ASSIGN2)
where,nσ′ = nσ dσ′ = dσ
frσ′ = (frσ′′ \ {(nσx , f,nσf)}) ∪ {(nσx , f,nσ′′)}
dmσ′ = dmσ′′ ∪ {(nσ′′ , y)|y ∈ dσx} ∪ {(nσx , y)|y ∈ dσ′′}
tmσ′ = tmσ ∪ {(nσ′′ ,nσx)}

(S1, σ) ⇓ σ1 (S2, σ) ⇓ σ2

(if e then S1 else S2, σ) ⇓ (nsσ1
∪ nsσ2

,nσ, dσ, frσ1
∪ frσ2

, dmσ1
∪ dmσ2

, tmσ1
∪ tmσ2

)
(COND)

(S1, σ) ⇓ σ′

(while e do S1 od , σ) ⇓ σ′ (WHILE1)
(S1, σ) ⇓ σ′ (while e do S1 od , σ′) ⇓ σ′′

(while e do S1 od , σ) ⇓ σ′′ (WHILE2)

(e, σ) ⇓ σ′

(return e, σ) ⇓ (nsσ′ ,nσ, dσ, frσ′ ∪ {(nσ, RET,nσ′)}, dmσ′ , tmσ′)
(RET)

Figure 4: Statement semantics.

ment is interesting: we evaluate the while body till we
reach a fixed point (or till we reach a fixed number of
loop un-rollings) as depicted in (WHILE2). However,
notice that the abstract heap is also allowed to immedi-
ately go across a while-loop (WHILE1). The semantics
for the rest of the statements is standard.

Given the above rules for abstract heaps, we start ana-
lyzing the JavaScript program using an initial state con-
sisting of a global heap, represented by node nG. This
global heap consists of summaries for a few built-in ob-
jects like Array. We evaluate the rules either till we
converge on a least fixed-point, or till we reach a preset
bound on the number of iterations.

4.2 Handling other features of JavaScript

Dynamic code: The eval method in JavaScript allows
execution of dynamically formed code, and is widely
used in browser extensions. While an accurate analysis
of the structure of dynamically created code is a research
topic in itself, and quite out of the scope of this paper,
we cannot simply ignore eval statements. Our approach
has been to implement a static constant-string analysis
for strings and subject the strings that are eval-ed to this
analysis. Our static analysis engine inserts these constant
strings into the code (as though it was static code), parses
it, and computes the flows for them. Strings that are not

statically known but subject to eval are essentially ig-
nored, and this causes our tool to be unsound (see a later
note on unsoundness). In most correct extensions, an
eval-ed statement is dynamically chosen from a set of
constant-strings or taken from trusted sources. Note that
if there is a flow from an untrusted source to an eval,
VEX will catch this flow, as it is a vulnerable flow pat-
tern.

innerHTML: Modifications of the innerHTML of an
HTML page by the extension makes the analysis con-
siderably more complex. For instance, if a function
a() calls function b() that calls function c(), and
c()makes innerHTML modifications, it is hard to sum-
marize this effect in the summary of c(), as the source
of the flow is not locally available. We handle this by cre-
ating a symbolic representation of the source, computing
summaries of innerHTML using this symbolic source,
and allowing outside methods to instantiate the symbolic
source to a concrete source in whichever context it be-
comes available.

Object properties accessed in the form of associative
arrays: In JavaScript, objects are treated as associative
arrays. This means that any property of the object can be
accessed using the array notation. Array indices could
be constant strings, which are then evaluated to get the
actual property being accessed; or they could be num-
bers, which indicate the property number that is being

8

accessed; or they could be variables, that could be in-
stantiated at run time. VEX treats these cases in a con-
servative manner. Whenever a property is created in the
node scope, its dependencies are added to the dependen-
cies of the node as shown in the (ASSIGN 2) rule in the
Figure 4. If we cannot evaluate the array index for any
reason, it would be sufficient to retrieve the dependencies
of the object.

Functions that take arbitrary number of arguments:
Some functions in JavaScript can have variable numbers
of arguments. For example, the push method of the ar-
ray can be called with any number of arguments and the
arguments will be appended to the end of the array. To
handle this, the summary of the push method has a spe-
cial field indicating that it can take variable number of
arguments and when the method is called, we conser-
vatively append the dependencies of all the arguments
to the dependency set of the node representing the array
object.

Browser’s DOM API and XPCOM components:
These objects are treated as uninitialized variables,
fields and functions. The rules (UNINITIALIZED VAR),
(UNINIT FLD) and (FUN-CALL2) can be applied to
their accesses. When we need to keep track of the usage
of certain components we introduce the component
API function arguments into the dependency set. For
example the RDF datasource is accessed using the
following command:

rdf = Components.classes
[“@mozilla.org/rdf/rdf-service;1”]
.getService(Components.interfaces.nsIRDFService);

Our analysis introduces the string
“@mozilla.org/rdf/rdf-service;1” and the variable
nsIRDFService into the dependency set of the left hand
side variable rdf .

4.3 Unsoundness and incompleteness
A static analysis tool like VEX is inherently conservative.
First, if VEX reports a flow, there may be no such feasible
flow in the program (i.e. VEX can have false positives).
Though VEX over-approximates flows and tries to per-
form a sound analysis, there are several aspects of the
analysis which, if implemented soundly, will make the
tool throw too many infeasible flows, making it useless
in practice.

Consider a program where there is an eval of a string
that is dynamically created and not determinable stati-
cally. Since this string can be assigned any value, it could
be any arbitrary program that can create flows between
any of the variables in scope. A sound tool must nec-
essarily summarize the eval as causing flows from all

variables to all nodes, which would generate plenty of
false positives and would essentially be useless. False
negatives (i.e. miss detecting programs that have a flow),
are also possible because of the fact that we have several
uninitialized and unsummarized objects.

VEX has several sources of unsoundness and incom-
pleteness: handling of eval, handling of prototypes,
handling of higher-order functions, fixed number of un-
rolls of loops, handling with-scoping, handling excep-
tions, etc.

5 Evaluation

5.1 VEX implementation
The VEX tool checks for two kinds of flows: one from
injectable sources to executable sinks to check for script-
injection vulnerabilities, and the other, also modeled as
flows, that checks for unsafe programming practices.
VEX is implemented in Java (∼ 2000 LOC), and uti-
lizes a JavaScript parser built using the ANTLR parser
generator for the JavaScript 1.5 grammar provided by
ANTLR [1]. ANTLR outputs Java-based Abstract Syn-
tax Trees (AST) for JavaScript files, and VEX walks
through the ASTs computing the flow sets from all in-
teresting sources to all interesting sinks, in a single pass
analysis, using the static analysis described in Section 4.
For each sink object, VEX collects all the source objects
that flow into it and checks for the occurrence of flow
patterns. VEX reports these flows to the user along with
the source and sink locations in the code.

Flow patterns checked: The current version of VEX
checks for the following three flow patterns that capture
flows from injectable sources to executable sinks:

- Content Doc to Eval: The source location is any point
where the program accesses the API
window.content.document, and the source
object is the object that is returned from this call.
The sink locations are eval statements and the sink
objects are the objects being eval-ed.

- Content Doc to innerHTML: The source location
and source objects for these flows are the same
as above; the sink locations are the places where
the extension writes directly into the DOM us-
ing innerHTML commands, and the sink objects
are the objects being assigned by the innerHTML
command. These DOM elements may be exe-
cutable if they are in the chrome context.

- RDF to innerHTML: The source location and source
objects are given by any retrieval of RDF objects
(which are often injectable) and the sink locations

9

348 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 349

and sink objects are innerHTML commands as
above.

Furthermore, VEX searches for the following patterns
that characterize two documented unsafe programming
practices that could lead to security vulnerabilities:

- evalInSandbox object to == or !=: This flow is
meant to detect an unsafe programming prac-
tice where an object retrieved by an eval in
a sandbox is subject to an == or != test (the
recommended practice is that such objects must
be tested with ===). The source location is hence
any evalInSandbox-statement and the corre-
sponding source objects are the objects returned by
the evalInSandbox call. The sink locations are
usages of == and !=, and the sink objects are the
objects that are subject to these comparisons.

- Method Call on wrappedJSObject: Objects ob-
tained using wrappedJSObject() commands are
usually untrusted, and methods of such objects
should not be called. The source locations are hence
uses of wrappedJSObject() and source objects are
the objects returned by them. Sink locations are
methods calls and the sink objects are the objects
whose methods are called.

The VEX tool can, of course, be adapted to other kinds
of suspect flows – source and sink locations are straight-
forward, and the source and sink objects must be speci-
fied carefully as above.

5.2 Evaluation methodology
The extensions we analyzed were chosen as follows.
First, in October 2008, we built a suite of extensions
using a random sample of 1827 extensions from the
Mozilla add-ons web site, by downloading the first exten-
sions in alphabetical order for all subject categories. In
November 2009, we downloaded 699 of the most popular
extensions. The two sets had 74 extensions in common,
for a total of 2452 extensions. Our suite includes multi-
ple versions of some extensions, allowing cross-version
comparisons. For instance, we found a vulnerability in a
new version of BEATNIK (see Section 5.4), though its au-
thors thought the vulnerabilities in the previous version
were fixed.

We extracted the JavaScript files from these extensions
and ran VEX on them, using a 2.4GHz 64 bit x86 proces-
sor with a maximum heap size of 4GB for the JVM.

5.3 Experimental results
Finding flows from injectible sources to executable
sinks: Figure 5 summarizes the experimental results

for flows that are from injectible sources to executable
sinks (the first three flows outlined above). The first
column is the number of extensions that syntactically
has code that could indicate such a flow, identified
using a grep-search. For the flow “Content-doc to
Eval”, the grep was for the string ‘eval(’; for “Content-
doc to InnerHTML” flows, the grep was for the string
‘innerHTML’; and for “RDF to InnerHTML” flows,
the search was for both the strings “‘innerHTML” and
“@mozilla.org/rdf/rdf-service;1”. As the table shows,
this search finds hundreds of suspect extensions, far more
than can be examined manually.

The third column indicates the number of extensions
on which VEX reports an alert with corresponding flows.
On an average, VEX took only 15.5 seconds per exten-
sion.

To look for potential attacks, we manually analyzed
most of the extensions with suspect flows that VEX
alerted us on, spending about two hours per extension
on average.

The next column reports the number of extensions on
which we could engineer an attack based on the flows
reported by VEX. We were able to attack six extensions,
of which only three extensions were already known to
be vulnerable. The attacks on Wikipedia Toolbar, Fizzle
version 0.5.1 and Fizzle version 0.5.2 extensions are new,
see Section 5.4 for more details.

The next column shows the extensions where the
source is code from a web site, and where an attack is
possible provided the web site can be attacked. In other
words, these extensions rely on a trusted web site as-
sumption (e.g., that the code on the Facebook website
is safe). We think that these are valid warnings that users
of an extension (and Mozilla) should be aware of; trusted
web sites can after all be compromised, and the code on
these sites can be changed leading to an attack on all
users of such an extension.

Not all flows lead to attacks – the next set of columns
describe the alerts that we were unable to convert to con-
crete attacks. Some flows were not exploitable as the
input is sanitized correctly (either by the extension or the
browser), preventing JavaScript injection, while others
were not exploitable as the sinks do not turn out to be
chrome executable contexts. These extensions are noted
in the next two columns. Finally, VEX, being a conser-
vative flow-analysis tool, does report alerts about flows
that do not actually exist— there were very few of these,
and are noted under the column “Non-existent flows”. A
discussion on flows that do not lead to attacks is given in
Section 5.5.

As noted in the last column, there were 13 extensions
with VEX alerts that were too complex(or obscurely writ-
ten) for us to manually analyze for an attack; we do not
know whether attacks on these are possible or not.

10

Flow Pattern grep VEX Attackable Source is Not Attackable Unanalyzed
Alerts Alerts Extensions trusted Sanitized Non-chrome Non-existent

website input sinks flows
Content Doc to eval 430 13 2* 1 0 3 5 2
Content Doc to innerHTML 534 46 0 14 6 6 9 11
RDF to innerHTML 60 4 4** 0 0 0 0 0

Attackable Extensions: * WIKIPEDIA TOOLBAR V-0.5.7, WIKIPEDIA TOOLBAR V-0.5.9 ,
** FIZZLE V-0.5, FIZZLE V-0.5.1, FIZZLE V-0.5.2 & BEATNIK V-1.2

Figure 5: Flows from injectible sources to executable sinks.

Unsafe Programming Practices grep Alerts VEX Alerts
evalInSandbox Object to == or != 107 3
Method Call on wrappedJSObject 269 144

Figure 6: Results for unsafe programming practices.

Finding unsafe programming practices:
The results of the second set of experiments for flows
that characterize the two unsafe programming practices
of checking equality on objects evaluated in a sandbox
and calling methods of unwrapped JS objects are shown
in Figure 6.

The first column denotes the flow-pattern, the second
column shows the number of extensions that had a grep
pattern for the strings ‘evalInSandbox’ and ‘wrapped-
JSObject’, respectively. The third column shows the
number of extensions that VEX alerts. Note that these
flows correspond to unsafe programming practices de-
clared by Mozilla for extension writers, and hence should
be avoided. We analyzed 15 of the alerts and found that
all of the flows we inspected were feasible and real, but
we were unable to manually confirm the remainder be-
cause there were too many alerts to examine.

5.4 Successful attacks

Attack scripts: All our attack scenarios involve a user
who has installed a vulnerable extension who visits a ma-
licious page, and either automatically or through invok-
ing the extension, triggers script written on the malicious
page to execute in the chrome context. Figure 7 illus-
trates an attack payload that can be used in such attacks:
this script displays the folders and files in the root di-
rectory. The attack payloads could be much more dan-
gerous, where the attacker could gain complete control
of the affected computer using XPCOM API functions.
More examples of such payloads are enumerated in the
white-paper given in [13].

Let us now explain the various attacks we found on
web extensions:

Wikipedia Toolbar, up to version 0.5.9
If a user visits a web page with the directory display

<script>
var root = Components.classes
["@mozilla.org/file/local;1"].createInstance
(Components.interfaces.nsILocalFile);
try {
root.initWithPath("/."); // for Linux or Mac
}catch (er){
root.initWithPath("\\\\."); // for Windows
}
var drivesEnum = root.directoryEntries,
drives = [];
while (drivesEnum.hasMoreElements()) {
drives.push(drivesEnum.getNext().
QueryInterface(Components.interfaces.
nsILocalFile).path);
}
alert (drives);
</script>

Figure 7: Attack script to display directories.

attack script in its <head> tag, and clicks on one of
the Wikipedia toolbar buttons (unwatch, purge, etc.), the
script executes in the chrome context. The attack works
because the extension has the code given in Figure 8 in
its toolbar.js file.

script = window. content.document.
getElementsByTagName(‘‘script")[0].innerHTML;
eval (script);

Figure 8: Wikipedia toolbar code.

The first line gets the first <script> element from the
web page and executes it using eval. The extension de-
veloper assumes the user only clicks the buttons when
a Wikipedia page is open, in which case <script> may
not be malicious. But the user might be fooled by a ma-
licious Wikipedia spoof page, or accidentally press the
button on some other page, VEX led us to this previ-
ously unknown attack, which we reported to the devel-

11

350 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 351

opers, who acknowledged it, patched it, and released a
new version. This resulted in a new CVE vulnerability
(CVE-2009-41-27). The fix involved inserting a condi-
tional in the program to check if the url of the page is
on the wikipedia domain and evaluating the script only if
this is true.

bookmarks.js:
1. function Bookmarks(){
2. var bookmarks = new Array();
3. this.load = function(){
4. bookmarks = new Array();
5. var rdf = Components.classes[

“@mozilla.org/rdf/rdf-service;1”]
.getService(Components.interfaces.nsIRDFService);

6. var bmds = rdf.GetDataSource(”rdf:bookmarks”);
7. var iter = bmds.GetAllResources();
8. while (iter.hasMoreElements()){
9. var element = iter.getNext();
10. bookmarks.push(

{name:element.name, url:element.url});
11. } } }

sys.js:
12. var sys = new Sys();
13. function Sys() {
14. var bookmarks = null;
15. this.startup = function() {
16. bookmarks = new Bookmarks();
17. bookmarks.load();
18. ui.buildFeedList(); }
19. this.getBookmarks(){
20. return bookmarks; } }

ui.js:
21. var ui = new Ui();
22. function Ui() {
23. this.buildFeedList = function() {
24. var bm = sys.getBookmarks();
25. for (var i=0; i<bm.size(); i++) {
26. var mark = bm.get(i);
27. html += <p> mark.name; }
28. div.innerHTML = html; } }

Figure 9: FIZZLE vulnerability code.

Fizzle versions 0.5, 0.5.1, 0.5.2
FIZZLE is a RSS/Atom feed reader that uses Livemark
bookmark feeds. Vulnerability report CVE-2007-1678
explains that FIZZLE VER.0.5 allows remote attackers
to inject arbitrary web scripts or HTML via RSS feeds.
FIZZLE’s RSS feeds are obtained from the bookmarks’
RDF resource, using the XPCOM RDF service. The au-
thor of FIZZLE purportedly fixed this vulnerability in the
next version; however, VEX signaled the presence of a
flow, and we found that the sanitization routine that the

programmer wrote was flawed, and the extension can
be attacked using suitably encoded scripts. These new
attacks for FIZZLE VER 0.5.1 and FIZZLE VER 0.5.2
were not known before, to the best of our knowledge.

Figure 9 gives a highly simplified version of FIZ-
ZLE, to show its information flows. When the user
clicks on the FIZZLE extension toolbar to see the feeds,
FIZZLE is initialized, i.e., sys.startup() on line
15 is called. This method loads the bookmarks from
the Firefox bookmarks folder. The title and URL of
the feeds are obtained from the bookmarks’ RDF re-
source and then stored in an array in FIZZLE when
bookmarks.load() is called. After the bookmarks
are loaded, ui.buildFeedList() is called. In this
method, the bookmark array is accessed on line 24 and
the elements are added to a variable named html on
line 27. This html variable is then assigned to the
innerHTML property of the 〈div〉 tag of an HTML page.
This page is then displayed in a frame in the browser.
The attack happens when a malicious RDF file is loaded,
where the name element of the feed contains JavaScript.
Assigning a specially crafted script to the innerHTML

property at line 28 results in the script being executed
under chrome privileges.

To detect this kind of attack, we must be able to deter-
mine that the information that flows into the html vari-
able and eventually into the innerHTML property is from
the bookmarks’ RDF resource. It is difficult to detect this
manually, because most extensions are encoded in many
separate JavaScript files spread across multiple directo-
ries, and the routines defined in these files have complex
interactions with each other. Even the example shown
in Figure 9 is spread over three different JavaScript files,
and we have omitted many lines of code from the func-
tions shown. As mentioned earlier, VEX users can define
summaries for library functions, or just rely on default
summaries. Given a function summary for the push
method of the Array object defined in the XPCOM li-
brary, VEX detects that FIZZLE has flows from the RDF
service to innerHTML.

Beatnik version 1.2
BEATNIK is another RSS reader with the same kind of
problematic flow as FIZZLE, documented in CVE-2007-
3110 for BEATNIK version 1.0. In the Mozilla add-ons
page for the subsequent version of BEATNIK, the exten-
sion developer said he had sanitized the RSS feed input.
VEX found that there were still flows from the book-
marks’ RDF to the innerHTML property in BEATNIK
version 1.2, because VEX currently does not consider
declassification via sanitization. Our manual examina-
tion showed the new sanitization to be inadequate. The
sanitization parses the feed input and checks whether the
nodes contain script. If the feed contains only text nodes,

12

it is appended to the RSS feed title; otherwise it is dis-
carded. By encoding the 〈 and 〉 tags as their HTML
entity names, we can fool this routine. If we name the
RSS feed as follows:

Title < /a >< img src =
"" onerror= ’CODE FROM FIGURE 7’
& gt; Beatnik < a >

the string is converted into

Title < img src =" " onerror= ’CODE
FROM FIGURE 7’> Beatnik <a>

and results in an attack. To the best of our knowledge,
this attack has not been reported thus far. One must un-
derstand the extension code to form these attack strings;
in this case, the <a> tag had to be closed at the begin-
ning of the string and opened again at the end for the
script to work.

5.5 Flows that do not result in attacks
Figure 10 gives several examples of the suspect flows
that we manually analyzed and for which either trusted
sources were assumed by the extension or we could not
find attacks.

The first set has extensions reading values from web-
sites or sources it trusts, and the values flow to eval,
innerHTML, or evalInSandbox. Of course, if the
trusted sources are compromised, then the extensions
may become vulnerable.

The second set illustrates examples where the input
was sanitized between the source and the sink (we do
not know for sure that the sanitization is adequate, but
we were unable to attack it). The third set of extensions
had non-chrome sinks. The last two examples show false
positives where the flows reported by VEX do not exist.
These false alarms are because of the way VEX handles
variable dependencies imprecisely. For example, the last
alarm is caused by the rule ASSIGN2 in Figures 3 and 4,
which conservatively adds the dependencies of variable
x to field f .

6 Related work

Maffeis et. al. [27] proposed a small-step operational
semantics for JavaScript, using which they analyze se-
curity properties of web applications. This operational
semantics is then useful for generating safe subsets of
JavaScript and to manually prove that the so-called safe
subsets of JavaScript are in fact vulnerable to certain
attacks [28]. Our operational semantics is inspired by
their approach, although we take an alternate approach
of abstracting the primitive values in the program. This

helps us in proposing a precise information flow analy-
sis approach for a non-trivial JavaScript program. More
recently, Guha et. al. [18] also provide an operational
semantics for JavaScript (albeit without semantics for
eval) with the goal of making it easier to prove properties
about the JavaScript programs.

Recent work by Ter Louw et al. [25] highlights some
of the potential security risks posed by browser exten-
sions, and proposes run time support for restricting the
interactions between browsers and extensions. Our tech-
niques are complementary to these techniques since, as
our experiments show, even restricted interfaces can still
be susceptible to security vulnerabilities.

Most recent work on the security of browser exten-
sibility mechanisms focuses on plugin security. Plug-
ins are external applications hosted within the browser
that are used to render non-HTML content, such as Flash
videos. The first work to examine security issues for
browser plugins was Janus [14], which discusses sand-
boxing techniques for browser-helper applications, such
as PDF viewers. More recently, the OP [15] and Gazelle
[16] web browsers tackle this same issue by applying
many of the principles from the original Janus work to
modern browser plugins.

The general idea of secure extensibility has been stud-
ied by the systems community with projects that focus
on providing secure extensions for operating systems
via type safe programming languages [5, 31, 36], proof-
carrying code [29], new OS abstractions [10], and soft-
ware fault isolation [11]. To date, none of these tech-
niques have been adapted to address the special security
needs of web browser extensibility mechanisms.

Static information flow analysis has been used in a
number of previous projects. The work proposed in [2]
tracks whether various variables in the program are in-
dependent from each other both through explicit and im-
plicit flows. Researchers have employed static analysis
for web applications with the goal of identifying and
preventing cross-site scripting attacks [26]. For exam-
ple, Pixy [21] is a taint based static analyzer for PHP
that detects flows; WebSSARI [19] offers similar facili-
ties. Vogt et al. [32] propose combining static and dy-
namic techniques to prevent cross-site scripting. Xie
and Aiken propose a static analysis of PHP for SQL in-
jection vulnerabilities [34]. Livshits and Lam develop
flow-insensitive static analysis tools for security proper-
ties [24].

More recently, researchers have developed a
flow-insensitive static information flow methods for
JavaScript [7, 17]. In contrast, VEX’s analysis is
flow-sensitive and context-sensitive. In [7] the authors
essentially perform a flow-insensitive static analysis
on the code, and delegate analysis of dynamic code to
runtime checks. Furthermore, their analysis is context-

13

352 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 353

Classification Extension Flow pattern/Unsafe practice Explanation

Source is trusted
website

TWITZER - TWITTER MORE! v.1.3 Content Doc to innerHTML Works only when on Twitter
ANSWERS v-2.3.50 Content Doc to innerHTML Works only on answers.com
MYSPACE FRIEND RENAMER v-.86 Content Doc to innerHTML Fetches friend names from prefs.js, where

they are stored during instantiation

Sanitized Input GIRL IN WONDERLAND v-0.808 Content Doc to innerHTML Assigns a Flash URL to innerHTML of an el-
ement on the page, and sanitizes the URL be-
fore assignment; is the sanitization complete?

AUTOSLIDESHOW v-0.3.4 Content Doc to innerHTML Has a flow from the image name urls to
innerHTML. The extension did not sanitize
the inputs in any way. However, the Firefox
DOM API methods encoded the urls when
they were being handled by the extension.

Non-chrome
sinks

UNHIDE FIELDS v-0.2e Content Doc to innerHTML Creates a frame on top of the current content
document and displays the hidden fields in a
page in that frame

WEB DEVELOPER v-1.1.6 Content Doc to innerHTML Generates a non-chrome document in a new
tab or window and appends the stylesheet in-
formation of a page as a node in this page

Non-existent
flows

POWER TWITTER v-1.37 Content Doc to eval Has document, content and window depen-
dencies, but they are chrome elements, not
content

INTERCLUE v-1.5.7 Content Doc to eval Caused by the ASSIGN1 rule

Figure 10: Example extensions.

insensitive, which could generate a lot of false-positives
if used for analyzing browser extensions. VEX does
not delegate any work to runtime checks. Guarnieri
et. al. [17] popose a mostly-static enforcement for
JavaScript analysis. Their threat model is that of a
malicious JavaScipt widget that could run in the same
page as a hosting site and which may contain code
obfuscation. Their policies are based on searching for
forbidden objects or methods in the code which requires
an accurate pointer analysis which they define.

Several dynamic analysis techniques with static instru-
mentation have been proposed for JavaScript to check
information-flow properties [35, 22]. SABRE [9] is a
framework for dynamically tracking in-browser informa-
tion flows for analyzing JavaScript-based browser exten-
sions. We believe that dynamic techniques are not the
best choice for vetting web extensions, as we think it is
best to analyze extensions statically before they are un-
leashed on ordinary users. However, dynamic techniques
that prevent certain script injection attacks can be useful
when enforced by the web browser. The drawback is
that the web browser must choose an appropriate action
to take when it detects a questionable flow. Querying
the user may not be wise, and default options may be-
come too restrictive. Additionally, SABRE imposes a
performance and memory overhead to the browser be-
cause of the need to keep track of the security label for
every JavaScript object inside the browser.

Recently, Freeman and Liverani from Security Assess-
ment have written a white paper [12] detailing the pos-
sible attacks on Firefox extensions. We are currently in
the process of extending VEX to incorporate some of the

source/sink pairs shown in that paper.

7 Conclusions

Our main thesis is that most vulnerabilities in web ex-
tensions can be characterized as explicit flows, which
in turn can be statically analyzed. VEX is a proof-
of-concept tool for detecting potential security vulner-
abilities in browser extensions using static analysis for
explicit flows. VEX helps automate the difficult man-
ual process of analyzing browser extensions by identify-
ing and reasoning about subtle and potentially malicious
flows. Experiments on thousands of extensions indicate
that VEX is successful at identifying flows that indicate
potential vulnerabilities. Using VEX, we identify three
previously unknown security vulnerabilities and three
previously known vulnerabilities, together with a variety
of instances of unsafe programming practices.

The most important future direction we envision is to
extend the VEX analysis in three ways. First, the static
analysis can benefit from a points-to analysis that is more
precise on certain aspects of JavaScript such as higher-
order functions, prototypes, and scoping. The second
important extension is to define a more complete set of
flow-patterns (sources and sinks) that capture vulnera-
bilities. In preliminary work, we have found 16 more
known vulnerabilities, of which 14 can be characterized
using information flow-patterns. Identifying statically
these source-sink pairs and adding them to VEX would
yield a more comprehensive tool. In the direction of re-
ducing false positives, automatically building attack vec-
tors for statically discovered flows can help synthesize

14

attacks; a key challenge in achieving this would be in
handling sanitization routines effectively [3, 30].

8 Acknowledgments

We thank Chris Grier and Mike Perry who directed us
to the Firefox extension vulnerabilities. We thank Wy-
att Pittman and Nandit Tiku for gathering and analyzing
the known Firefox extension vulnerabilities. We thank
all the reviewers of this paper for their helpful com-
ments and suggestions. This research was funded in
part by NSF CAREER award #0747041, NSF grant CNS
#0917229, NSF grant CNS #0831212, grant N0014-09-
1-0743 from the Office of Naval Research, and AFOSR
MURI grant FA9550-09-01-0539.

References

[1] ANTLR Parser Generator. http://www.antlr.

org.

[2] T. Amtoft and A. Banerjee. Information flow anal-
ysis in logical form. In R. Giacobazzi, editor,
SAS 2004, volume 3148 of LNCS, pages 100–115.
Springer-Verlag, 2004.

[3] D. Balzarotti, M. Cova, V. Felmetsger, N. Jo-
vanovic, E. Kirda, C. Kruegel, and G. Vigna. Saner:
Composing static and dynamic analysis to validate
sanitization in web applications. In IEEE Sym-
posium on Security and Privacy, pages 387–401,
2008.

[4] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting browsers from extension vulnerabilities.
In Proceedings of the 17th Network and Distributed
System Security Symposium (NDSS), San Diego,
CA, February 2010.

[5] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility, Safety and Performance
in the SPIN Operating System. In Proceedings of
the 1995 Symposium on Operating Systems Princi-
ples, pages 267–283, December 1995.

[6] A. Boodman. The Greasemonkey Firefox ex-
tension. https://addons.mozilla.org/en-US/

firefox/addon/748.

[7] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner.
Staged information flow for JavaScript. In M. Hind
and A. Diwan, editors, PLDI, pages 50–62. ACM,
2009.

[8] CrYpTiC MauleR. Fizzle RSS Feed HTML Injec-
tion Vulnerability. http://www.securityfocus.

com/bin/23144.

[9] M. Dhawan and V. Ganapathy. Analyzing informa-
tion flow in JavaScript-based browser extensions.
In ACSAC’09: Proceedings of the 25th Annual
Computer Security Applications Conference, pages
382–391, December 2009.

[10] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: an operating system architecture for
application-level resource management. In SOSP
’95: Proceedings of the fifteenth ACM symposium
on Operating systems principles, pages 251–266,
New York, NY, USA, 1995. ACM.

[11] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system ad-
dress spaces. In OSDI, pages 75–88. USENIX As-
sociation, 2006.

[12] N. Freeman and R. S. Liverani. Cross context
scripting with Firefox, April 2010. http://www.

security-assessment.com/files/whitepapers/

Cross_Context_Scripting_with_Firefox.pdf.

[13] N. Freeman and R. S. Liverani. Exploiting
cross context scripting vulnerabilities in Firefox,
April 2010. http://www.security-assessment.

com/files/whitepapers/Exploiting_Cross_

Context_Scripting_vulnerabilities_in_

Firefox.pdf.

[14] I. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer. A Secure Environment for Untrusted
Helper Applications. In Proceedings of the 1996
USENIX Security Symposium, pages 1–13, July
1996.

[15] C. Grier, S. Tang, and S. T. King. Secure web
browsing with the OP web browser. In Proceed-
ings of the 2008 IEEE Symposium on Security and
Privacy, 2008.

[16] C. Grier, H. J. Wang, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The multi-principal
OS construction of the Gazelle web browser. In
Proceedings of the 2009 Usenix Security Sympo-
sium, 2009.

[17] S. Guarnieri and B. Livshits. Gatekeeper: Mostly
static enforcement of security and reliability poli-
cies for JavaScript code. In Proceedings of USENIX
Security ’09, pages 151–168, 2009.

[18] A. Guha, C. Saftoiu, and S. Krishnamurthi. The
essence of JavaScript. In ECOOP, Lecture Notes
in Computer Science. Springer, 2010.

15

354 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 355

[19] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In WWW,
pages 40–52, New York, NY, USA, 2004. ACM.

[20] IAOSS. NoScript Firefox extension. http://

noscript.net/.

[21] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
static analysis tool for detecting web application
vulnerabilities (short paper). In Proceesings of the
2006 IEEE Symposium on Security and Privacy,
pages 258–263, 2006.

[22] H. Kikuchi, D. Yu, A. Chander, H. Inamura, and
I. Serikov. JavaScript instrumentation in practice.
In APLAS ’08, pages 326–341, Berlin, Heidelberg,
2008. Springer-Verlag.

[23] R. S. Liverani and N. Freeman. Abusing Firefox
extensions, Defcon 17, July 2009.

[24] V. B. Livshits and M. S. Lam. Finding security vul-
nerabilities in Java applications with static analysis.
In SSYM’05: Proceedings of the 14th conference on
USENIX Security Symposium, pages 18–18, Berke-
ley, CA, USA, 2005. USENIX Association.

[25] M. T. Louw, J. S. Lim, and V. N. Venkatakrish-
nan. Extensible web browser security. In B. M.
Hämmerli and R. Sommer, editors, DIMVA, vol-
ume 4579 of Lecture Notes in Computer Science,
pages 1–19. Springer, 2007.

[26] G. A. D. Lucca, A. R. Fasolino, M. Mastoianni, and
P. Tramontana. Identifying cross site scripting vul-
nerabilities in web applications. In WSE ’04, pages
71–80, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[27] S. Maffeis, J. C. Mitchell, and A. Taly. An opera-
tional semantics for JavaScript. In G. Ramalingam,
editor, APLAS, volume 5356 of Lecture Notes in
Computer Science, pages 307–325. Springer, 2008.

[28] S. Maffeis and A. Taly. Language-based isolation
of untrusted Javascript. In Proc. of CSF’09, IEEE,
2009. See also: Dep. of Computing, Imperial Col-
lege London, Technical Report DTR09-3, 2009.

[29] G. C. Necula. Proof-carrying code. In POPL
’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, pages 106–119, New York, NY, USA,
1997. ACM.

[30] P. Saxena, D. Akhawe, S. Hanna, S. McCamant,
F. Mao, and D. Song. A symbolic execution frame-
work for JavaScript. In IEEE Symposium on Secu-
rity and Privacy, 2010.

[31] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith.
Dealing with disaster: Surviving misbehaved ker-
nel extensions. In OSDI, pages 213–227, 1996.

[32] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Krügel, and G. Vigna. Cross site scripting pre-
vention with dynamic data tainting and static anal-
ysis. In NDSS. The Internet Society, 2007.

[33] C. Waterson. RDF in fifty words or less.
https://developer.mozilla.org/en/RDF_in_

Fifty_Words_or_Less.

[34] Y. Xie and A. Aiken. Static detection of security
vulnerabilities in scripting languages. In USENIX-
SS’06: Proceedings of the 15th conference on
USENIX Security Symposium, Berkeley, CA, USA,
2006. USENIX Association.

[35] D. Yu, A. Chander, N. Islam, and I. Serikov.
Javascript instrumentation for browser security. In
M. Hofmann and M. Felleisen, editors, POPL,
pages 237–249. ACM, 2007.

[36] F. Zhou, J. Condit, Z. R. Anderson, I. Bagrak,
R. Ennals, M. Harren, G. C. Necula, and E. A.
Brewer. SafeDrive: Safe and recoverable exten-
sions using language-based techniques. In 7th Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI ’06), November 6-8, Seattle, WA,
USA, pages 45–60. USENIX Association, 2006.

16

Securing Script-Based Extensibility in Web Browsers

Vladan Djeric, Ashvin Goel
University of Toronto

Abstract

Web browsers are increasingly designed to be ex-
tensible to keep up with the Web’s rapid pace of
change. This extensibility is typically implemented
using script-based extensions. Script extensions
have access to sensitive browser APIs and content
from untrusted web pages. Unfortunately, this pow-
erful combination creates the threat of privilege es-
calation attacks that grant web page scripts the full
privileges of extensions and control over the entire
browser process.

This paper makes two contributions. First, it
describes the pitfalls of script-based extensibility
based on our study of the Firefox web browser. We
find that script-based extensions can lead to arbi-
trary code injection and execution control, the same
types of vulnerabilities found in unsafe code. Sec-
ond, we propose a taint-based system to track the
spread of untrusted data in the browser and to de-
tect the characteristic signatures of privilege escala-
tion attacks. We evaluate this approach by using ex-
ploits from the Firefox bug database and show that
our system detects the vast majority of attacks with
almost no false alarms.

1 Introduction
Most web browsers today provide powerful exten-
sibility features, including native and script-based
extensions. Native extensions (or plugins) are typi-
cally used when performance is critical (e.g., virtual
machines for Java, Flash, media players, etc.), while
script extensions ensure memory safety and have the
advantage of being inherently cross-platform and
amenable to rapid development. Examples of pop-
ular script extensions include the Firefox Adblock
extension [1] that filters content from blacklisted ad-
vertising URLs, and Greasemonkey [4] that allows
users to install arbitrary scripts in web pages for cus-
tomization or to create client-side mashup pages.

Script extensions must have access to both sensi-
tive browser APIs and content from untrusted web
pages. For example, Adblock must be able to ac-

cess the local disk to store its URL blacklist and
access web pages to filter their content. This com-
bination is needed for writing powerful extensions,
but it creates challenges for securely executing web
page scripts. Specifically, when extensions interact
with web pages, there is a risk of a privilege escala-
tion attack that grants web page scripts the full privi-
leges of script extensions and control over the entire
browser process. Privilege escalation vulnerabilities
are perhaps even more critical than memory safety
vulnerabilities because script-based attacks can of-
ten be executed reliably.

Our goals in this paper are two-fold: 1) under-
standing the nature of script-based privilege escala-
tion vulnerabilities, 2) proposing methods to secure
the Firefox browser against them. Privilege esca-
lation vulnerabilities are common in Firefox, and
comprise roughly a third of the critical vulnerabil-
ity advisories. They arise from unsafe extension be-
haviors or bugs in the Firefox security mechanisms
that regulate interactions between trusted native or
extension scripts and untrusted web page scripts.
These vulnerabilities have appeared regularly in ev-
ery version of the browser and exist even in the lat-
est versions. This is despite continuing effort from a
dedicated team of security developers that have pro-
gressively improved the browser security model.

The Firefox security model consists of a com-
bination of stack inspection and one-way names-
pace isolation. The stack inspection mechanism,
implemented at the boundary of the script and na-
tive code, regulates accesses to sensitive native in-
terfaces based on the principals of the caller. For
example, a local file access is denied if the current
stack contains a frame associated with an untrusted
principal.1 Namespace isolation is used to enforce
the same-origin policy for web page scripts. This
policy limits interactions between scripts and doc-
uments loaded from different origins. The names-
pace isolation is one way in that script extensions

1A principal represents the code’s origin and, for web page
scripts, it consists of a scheme, host, port combination.

356 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 357

are privileged and allowed to access content names-
paces, but web page scripts should not be able to
obtain a reference to the privileged namespace. This
policy is designed to enforce the same-origin policy
and defend against privilege escalation attacks.

These security mechanisms are well understood,
but they have two flaws: 1) relying entirely on prin-
cipals as a measure of trustworthiness for stack in-
spection, and 2) depending on one-way namespace
isolation to work correctly. In practice, an exploit
can leverage browser bugs or vulnerable extensions
to confuse the browser into assigning wrong princi-
pals to code or executing data or code with wrong
principals, thus defeating stack inspection. Second,
reference leaks can occur because of interactions
between privileged and unprivileged scripts, com-
promising namespace isolation and allowing un-
privileged scripts to affect the execution of privi-
leged scripts. As a result, we find that arbitrary code
injection and execution control vulnerabilities that
commonly exist in unsafe code can also occur with
script-based extensibility.

Based on the flaws described above, our solution
for securing the Firefox browser consists of com-
bining tainting with the existing stack-based secu-
rity model. Our approach guarantees that tainted
data will not be executed as privileged code. Taint-
ing all data from untrusted origins and propagating
the tainted data throughout the browser provides a
much stronger basis for making security decisions.
In essence, our attack detectors “second guess” the
security decisions of the browser by taking into ac-
count one additional piece of information, i.e. the
taint status. This solution is conceptually simple
and well-suited for the browser’s security model be-
cause namespace isolation already provides a se-
curity barrier between the taint sources in content
namespaces and privileged code residing in exten-
sion namespaces. As a result, we show that it is un-
likely that attacks will be detected erroneously, even
if we fully taint all data and scripts from web pages.

The contributions of this paper are two-fold: 1)
we analyze and classify script-based privilege esca-
lation vulnerabilities in the commonly used Firefox
browser, 2) we use taint-based stack inspection to
design effective signatures for script-based exploits
and evaluate this approach. We use Firefox version
1.0 for the evaluation because it has several priv-

ilege escalation vulnerabilities and easily-available
exploits. Our results show that we can detect the
vast majority of attacks with almost no false alarms
and modest overhead.

Below, Section 2 provides background on the
Firefox security model. Section 3 presents our
classification of privilege escalation vulnerabilities
and sample exploits. Section 4 describes our taint-
based approach for securing script-based extensi-
bility. Section 5 provides an evaluation of our ap-
proach. Section 6 describes related work in the
area and Section 7 presents our conclusions and de-
scribes future work.

2 The Firefox Browser
In this section, we provide an overview of the Fire-
fox architecture and its security model.

2.1 Architecture
Figure 1 shows a simplified version of the Fire-
fox architecture relevant to this work. The basic
browser functionality is provided by native C++
components written using Mozilla’s cross-platform
component model (XPCOM). XPCOM components
implement functionality such as file and socket ac-
cess, the document object model (DOM) for rep-
resenting HTML documents, and higher-level ab-
stractions, such as bookmarks, and expose this func-
tionality via the XPIDL interface layer. The Script
Security Manager (SSM) is an XPCOM component
responsible for implementing the browser’s security
mechanisms.

The JavaScript interpreter accesses XPCOM
functionality via the XPConnect translation layer.
This layer allows the interpreter and the XPCOM
classes to work with each others data types transpar-
ently. XPConnect also serves as the primary secu-
rity barrier for enforcing the browser’s same origin
policy and restricting access to sensitive XPCOM
interfaces.

Firefox’s script extensions and privileged UI
scripts, shown in Figure 1, are loaded from lo-
cal files through URIs with the “chrome” protocol.
They are privileged and have access to a greater
number of XPCOM interface methods than web
page scripts and are not subject to the browser’s
same origin policy. Similar to other browsers, Fire-
fox also supports native plugins for Java, Flash, etc.

XPCOM classes

XPIDL Interfaces

XPConnect

JS Interpreter

Bookmarks objectsBookmarks objects

DOM objectsDOM objects

Extension
JS

Web page
JS

Browser

UI
JS

SSMSSM

Figure 1: The Firefox architecture.

Although potential security vulnerabilities can ex-
ist within plugin implementations, we do not ad-
dress them. However, with appropriate sandboxing
of plugins [14, 23], we would be able to monitor any
script interactions with the plugins.

2.2 Security Model
Firefox primarily uses two security schemes,
namespace isolation and a subject-verb-object
model based on stack inspection. Namespace iso-
lation is used to enforce the same origin policy for
web page scripts, and stack inspection regulates ac-
cess to sensitive XPCOM components. We de-
scribe each in more detail below.

2.2.1 Namespace Isolation

The browser runs scripts within an object names-
pace that defines the objects available to the script.
A window object lies at the root of the namespace
for each web page. For example, web page scripts
manipulate HTML by invoking the DOM methods
of the document object that is a property of this win-
dow object.

The browser enforces the same origin policy by
running web page scripts from different web pages
in different namespaces. These scripts are only al-
lowed to access other namespaces from the same
origin (described below). Extension scripts are al-
lowed to access all content namespaces. Extension
namespaces are hidden from the web page scripts,
and extensions are not expected to invoke web page
scripts directly.

2.2.2 Subject-Verb-Object Model

Firefox uses a “Subject-Verb-Object” access control
model. The subject is the principal of the currently
executing code, the verb is one of a limited number

of operations (e.g., call a function F, get a property
A, set a property B), and the object is the principal
of the object that is the target of the operation. This
security mechanism is implemented in the Script
Security Manager, and invoked by XPConnect to
regulate access to sensitive XPCOM interfaces and
by the interpreter to limit access to sensitive func-
tions and object properties.

The principal of a web page script is defined by
the origin of the document containing the script (its
protocol, hostname, and port). The Script Security
Manager determines the subject principal by walk-
ing down the JavaScript stack until it finds a stack
frame with a script principal. The object principal is
determined by walking up the object’s parent chain
(scope chain) in its namespace until an ancestor ob-
ject with a principal is found. For web pages, the ob-
ject’s parent chain leads to a top-level HTML docu-
ment associated with the window object.

3 Script-Based Privilege Escalation

Privilege escalation vulnerabilities are created by
unsafe extension behaviors or bugs in the Firefox
security mechanisms that regulate interactions be-
tween privileged and unprivileged code. In this
section, we first discuss different classes of script-
based privilege escalation vulnerabilities and then
describe examples of real vulnerabilities.

3.1 Vulnerability Classification

Our analysis of the Firefox bug database revealed
four main classes of privilege escalation vulnera-
bilities: code compilation, luring, reference leaks
and insufficient argument sanitization. Most of the
known Firefox vulnerabilities can be attributed to
one or more of these classes.

3.1.1 Code Compilation Vulnerabilities

Similar to cross-site scripting (XSS) vulnerabil-
ities that occur in web sites, code compilation
vulnerabilities allow arbitrary strings from content
namespaces to be compiled into JavaScript byte-
code with privileged principals. Unlike a stati-
cally typed language such as Java, JavaScript al-
lows arbitrary strings to be converted into byte code
at runtime through eval and eval-like functions
such as setTimeout. The eval function com-
piles a string into byte code and executes it with

358 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 359

the principal of the calling script, even if the string
was obtained from a different namespace. Code
compilation vulnerabilities occur if attackers can
trick privileged code into compiling strings sup-
plied by the attacker, or if they can find bugs in
the rules for assigning principals to newly com-
piled byte code. For example, it can be danger-
ous for privileged code to load URIs from untrusted
namespaces as the URIs are capable of carrying
script code inline. For example, the “javascript”
protocol (e.g., javascript:alert(’Hello
World’);) allows executing text after the proto-
col name as a script in the current namespace.

This problem may seem simple, but it has been
the cause of several security bugs in Firefox. For
example, even after vulnerable code was patched to
sanitize URIs before loading them, exploits were
possible because they did not account for nested
URIs such as view-source:javascript:.

3.1.2 Luring Vulnerabilities

Luring vulnerabilities allow malicious scripts to
trick privileged code into calling a privileged func-
tion of the attacker’s choosing instead of the in-
tended callee. Stack inspection prevents unprivi-
leged scripts from calling the privileged functions
directly, so malicious scripts must lure privileged
code into making these calls.Luring is possible be-
cause script extensions routinely access DOM ob-
jects in content namespaces. These DOM ob-
jects are simply JavaScript wrappers for native XP-
COM objects with well-defined, native interfaces.
However, JavaScript’s flexibility allows web page
scripts to modify these wrapper objects. In ver-
sions of Firefox after 1.0.3, privileged code is pro-
tected by automatically created “safety wrappers”
that hide any wrapper changes made by untrusted
code. However, if the safety wrapper code contains
bugs (as has often been the case), privileged code
again becomes vulnerable to luring attacks.

In order to execute privileged code, an attacker
can choose one of three possible kinds of callees: 1)
an eval-like native function, 2) a privileged function
accidentally leaked into the content sandbox (see
next section), or 3) a privileged native method that
legitimately exists in content namespaces. The third
category consists of XPCOM methods that are vis-
ible to ordinary web page scripts because they are

meant to be invoked by digitally signed web page
scripts. For example, the preference() method
of the navigator object allows privileged scripts
to read or write the browser’s configuration, such as
the browser’s homepage and security settings. Or-
dinary web page scripts cannot invoke the sensitive
preference() method directly, but since every
function is also an object in JavaScript, web page
scripts can obtain an object reference to this method
and potentially trick buggy privileged code into in-
voking the reference.

3.1.3 Reference Leak Vulnerabilities

Reference leak vulnerabilities occur when web page
scripts gain access to references in the extension
namespace [11]. These leaks are compromises in
the isolation between privileged and unprivileged
namespaces. They allow an attacker to modify data
or code defined in a privileged namespace and call
arbitrary functions within the privileged namespace,
potentially leading to arbitrary execution control.
Reference leaks are dangerous because privileged
code that depends on namespace isolation may be-
come accessible to web page scripts or it may be-
come vulnerable to code compilation or luring at-
tacks. Reference leaks can occur due to bugs in na-
tive code that deals with namespaces. Also, careless
extensions may place references to privileged ob-
jects in an untrusted namespace. Finally, reference
leaks can lead to cross-principal confidentiality vio-
lations, but we do not address confidentiality in this
paper.

3.1.4 Insufficient Argument Sanitization

Vulnerabilities can also occur if a browser extension
uses unsanitized data from untrusted namespaces as
arguments to privileged XPCOM APIs. For exam-
ple, if an extension used to download Flash videos
from web pages uses the name of the movie file on
a web page as part of the local filename to which
the file is saved, it may be open to directory traver-
sal attacks (e.g., using “../” to access normally inac-
cessible directories) that would not be detected by
the browser’s stack inspection mechanism. If the
overwritten file were an extension JavaScript file, it
would lead to a privilege escalation attack. This spe-
cific class of vulnerability has not been documented
in the Firefox bug database, but we consider it a

onLinkIconAvailable: function(Href)
{

if (favIcon && ...) {
favIcon.setAttribute("src",

Href);
}

}

Figure 2: Target code invoked when a LINK tag is
found in the current web page.

likely vulnerability for extensions.

3.2 Examples
We describe some examples of privilege escala-
tion vulnerabilities from the Firefox bug database
to show that these vulnerabilities can be subtle and
easy to overlook.

3.2.1 URI Code Injection

Figure 2 shows an example of browser JavaScript
containing a code compilation vulnerability that can
lead to URI code injection (Bug 290036). This GUI
code displays a favicon (16x16 pixel icon) image
next to the browser’s URL bar. Normally the icon’s
URI, which is specified by the current web page,
would be the HTTP address of the favicon image,
but a malicious web page can specify a “javascript”
protocol URI. When the privileged UI code attempts
to load the image by setting the src property of
the icon container to the Href URI, it will inadver-
tently execute script code. This code will be com-
piled with the unprivileged principals of the URI,
but it will have access to the privileged UI names-
pace, allowing reference leaks, which can then be
used for other attacks (e.g., see Section 3.2.4). This
vulnerability occurs because the native code im-
plementing the icon container and the compilation
function are unaware of the origin of the Href ar-
gument.

3.2.2 Compilation with Wrong Principals

Figure 3 shows code that exploits a code
compilation and a reference leak vulnerabil-
ity to create a dynamically-defined function
(clonedFunction) with elevated privileges.
The eval function compiles and executes the
evalCode string with the unprivileged principal of
the web page. However, the attacker has also sup-
plied a second argument that specifies the names-

evalCode = "clonedFunction = \
function deliverPayload(){...}; \
clonedFunction()";

myElem = document.getElementById
("myMarquee");

xbl object = myElem.init.call;
eval(evalCode, xbl object);

Figure 3: Exploit code that allows untrusted func-
tions to be associated with privileged principals.

pace for name resolution during the string evalu-
ation. Normally, this argument does not cause a
problem because it belongs to the same namespace
as the caller’s namespace. However, xbl object
is a benign reference leak from a privileged names-
pace.

Exposing xbl object is a reference leak, but it
is not sufficient for an attack because the interpreter
invokes eval with the correct caller’s principals.
However within eval, once run, the evalCode
byte code gets access to a privileged namespace.
This access by itself is still not a problem because
evalCode runs with the web page principals, and
thus will not be able to get past the stack inspection
checks. Similarly, invoking deliverPayload
directly within evalCode would not be problem-
atic.

The exploit occurs when evalCode creates
a function referenced by clonedFunction.
The interpreter creates a new function object
in the privileged namespace that is a clone of
deliverPayload. When a function is created
by cloning, its principal is set to its object princi-
pal, as described in Section 2.2.2. When the cloned
function is invoked, it executes its payload with el-
evated privileges. In effect, this exploit attaches a
user-supplied function to a privileged namespace,
making it appear privileged to the security manager.
This vulnerability occurs because the implementa-
tion of eval did not check that it was compiling
code from one principal and executing it within the
namespace of a more privileged principal.

The patch for this vulnerability added a check to
eval to ensure that the principal of the caller sub-
sumes the object principal of the second argument.
However, it was discovered that this patch could
be bypassed by invoking eval indirectly using the
timer method setTimeout. When the natively-

360 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 361

var code = "... payload ...";
document.body. defineGetter

("localName", Script(code));

Figure 4: Simplified exploit code for Bug 289074.

implemented timer fires, there are no JavaScript
frames left on the stack, so the caller’s principal
is the fully privileged principal of the native timer
code. The next patch prevented eval from being
called directly by native code. Further patches were
needed to fix other attacks on eval.

3.2.3 Luring Privileged Code

Figure 4 shows the exploit code for a lur-
ing attack. This exploit would trigger if the
document.body.localName property is read
by the UI code. This code tricks the privileged code
into working with a different property than the one
it expects by associating a getter function with a na-
tive DOM object property (localName). Further-
more, the Script object behaves like an eval-like
function that allows strings to be precompiled and
executed with the privileges of the caller’s princi-
pal.2 The consequences are equivalent to privileged
JavaScript executing a string of the attacker’s choos-
ing, although no code is compiled in the privileged
namespace. This vulnerability occurs because the
caller accesses an overridden property.

This problem was so widespread in Firefox
1.0 that it motivated developers to implement the
“safety wrapper” mechanism that allows privileged
scripts to work with native DOM objects without
being exposed to any modifications made by web
page scripts. However, even the latest releases of
Firefox continue to suffer from bugs in assigning
wrappers, thus allowing privileged scripts to interact
with tampered DOM methods and properties [6].

3.2.4 Privileged Reference Leaks

Figure 5(a) shows code that exploits a reference leak
vulnerability in the QueryInterface XPCOM object.
A flaw in the XPConnect code for setting up safety
wrappers for native objects inadvertently sets a priv-
ileged object as the prototype of the safety wrapper
for QueryInterface in untrusted namespaces. Ma-
licious code can use this leak to reach the global

2This Firefox-specific object has been deprecated since
Firefox 3.0, presumably due to security risk.

var leaked =
QueryInterface. proto . parent ;

var cid = {equals: Script(payload)};
leaked.foo.getClassObject(cid);

(a) Simplified exploit code.

var foo = {
getClassObject: function(aCID) {

if (aCID.equals(value))
return this. objects[key];

}
};

(b) Simplified target code.

Figure 5: Exploit and target code for Bug 294795.

object of a privileged namespace. The exploit calls
the script method foo.getClassObject in the
privileged namespace with a specially-crafted argu-
ment to carry out a luring attack.

The getClassObject method shown in Fig-
ure 5(b) relies on namespace isolation and thus ex-
pects to be called from other privileged functions
with safe arguments. However, when it calls the
equals method of its aCID parameter, it inadver-
tently invokes the Script object defined by the at-
tacker, executing it with full privileges.

3.2.5 Loading Privileged URIs

There are also attacks that use a combination of a
bug that allows unprivileged pages to load higher
privilege documents (e.g., “chrome” protocol URIs)
and a cross-site scripting (XSS) bug to inject their
own scripts into these pages. Bug 306261 allowed
untrusted pages to bypass restrictions on loading
privileged URIs of the “about” protocol (which al-
lows setting browser configuration values) by using
a malformed URI. We do not address XSS bugs or
violations of URI loading policies, but our system
is able to detect this category of attacks because it
leads to code injection.

3.3 Comparison With Memory Safety

JavaScript extensions have many clear benefits, but
they suffer from risks posed by these four classes
of vulnerabilities. As a result, Firefox users have
been victims of real-world privilege escalation at-
tacks and the Firefox bug database shows that the
incidence rate for these types of vulnerabilities is

comparable to memory-safety vulnerabilities (more
on this in Section 5.1).

At first, this may seem counter-intuitive: com-
ponents written in a memory-safe, interpreted lan-
guage should be more secure than their native equiv-
alents. This intuition may be true in single-principal
applications, but Firefox must execute JavaScript
from multiple principals concurrently and must ar-
bitrate over many possible interactions, which raises
the specter of bugs leading to privilege escalation at-
tacks.

In fact, the classes of vulnerabilities we found
for the multi-principal Firefox script environment
are similar to memory-safety vulnerabilities found
in single-principal native code. The code compila-
tion vulnerabilities are not unlike buffer overflows:
data is executed as code, allowing for arbitrary code
execution. The luring vulnerabilities allow attackers
to call existing functions of their choosing, similar
to return-to-libc attacks [5].

4 Approach
Script-based extensibility in the Firefox web
browser is a powerful feature and is highly valued
by its users. However, it leads to privilege escalation
vulnerabilities precisely because of the dynamic and
flexible nature of the script language used to imple-
ment the extensions. The language features allow
leveraging browser bugs or vulnerable extensions to
confuse the browser into assigning wrong principals
to code, thus bypassing stack inspection.

Privilege escalation vulnerabilities also arise be-
cause Firefox’s implementation of one-way names-
pace isolation is inherently error prone. The
browser fully trusts script extensions, but these
scripts can interact with data from unprivileged
sources in unsafe ways, compromising namespace
isolation. One-way namespace isolation will not
disappear from extensible browser architectures, as
extensions will always need to read and modify un-
trusted web pages. One method of improving the
security of one-way namespace isolation is to pro-
vide stronger isolation guarantees. For example,
Google Chrome [10] divides an extension into sep-
arate processes, one for for accessing privileged in-
terfaces, and another for interacting with untrusted
web pages, while only allowing IPC between the
two processes. This architecture requires increased

implementation effort from the extension developer
and is completely incompatible with the Firefox ex-
tension model.

Instead, our solution is to use tainting to aug-
ment the browser’s security mechanisms. We use
tainting because it helps detect when untrusted con-
tent can affect privileged code. Furthermore, it is
fully compatible with the current Firefox extension
model. Unfortunately, many tainting-based systems
suffer from endemic false alarms and thus are un-
usable in practice [18]. In this section, we show
that our tainting-based solution, while being con-
ceptually simple, is well-suited for the browser’s se-
curity model because namespace isolation already
provides a security barrier between the taint sources
in content namespaces and privileged code in exten-
sion namespaces.

4.1 Threat Model
We define a privilege escalation attack as tainted
data executing as privileged code. Tainted data is
executed as privileged code if it is compiled into
script byte code tagged with the wrong principals,
or if tainted data is used as a reference to execute
privileged code. Both scenarios lead to a failure of
the browser’s security mechanism for guarding ac-
cess to sensitive interfaces, allowing untrusted web
pages to gain the ability to modify the host system.

We add security checks and augment stack in-
spection to look for the characteristic signature of
privilege escalation attacks. To do so, we rely on
the memory safety of the browser as well as the
browser’s ability to correctly assign a principal to
a web page when it is first loaded, before any web
page scripts begin executing. Assigning this prin-
cipal is straightforward as it only depends on the
web page’s URI. We do not depend on the correct-
ness of the rest of the code that assigns principals, or
code that interprets principals. Instead, we “second
guess” browser security code by auditing its secu-
rity decisions with the additional taint status infor-
mation.

4.2 Tainting
We consider all documents fetched from remote
sources or local documents opened with the “file”
protocol as untrusted and taint them because the
browser does not assign them a privileged princi-

362 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 363

pal. When documents are loaded into the browser,
they are parsed into a tree of native DOM objects,
representing individual markup elements and their
attributes. All nodes of the tree are individually
marked tainted, including the text of any scripts de-
fined inside the document, such as in event handlers
or in SCRIPT tags, and taints are tracked separately
for each attribute of a DOM element.

Our tainting system uses different policies based
on the privilege level of the executing script. Un-
privileged code is completely untrusted and may
be malicious, so we must unconditionally taint all
script variables created or modified by executing
scripts originating from untrusted (tainted) docu-
ments. For privileged scripts, we use standard taint
propagation rules that mark the output of JavaScript
instructions as tainted when the instruction inputs
are tainted. Tainting allows us to mark and track the
influence of untrusted code throughout the browser.

Tainting systems can suffer from excessive
false alarms when using control-dependent taint-
ing. Control-dependent tainting taints the output of
any code whose execution depends on tainted data.
For example, all outputs of an if-branch would be
tainted if the condition variable were tainted. Con-
trol dependence is necessary when the code process-
ing the tainted data may itself be malicious. For ex-
ample, detecting cross-domain information leaks re-
quires accounting for implicit flows, since malicious
web page scripts could leak information [19]. We do
not use control-dependent tainting on the privileged
side because we assume that the privileged scripts
are trusted. We consider it highly unlikely that priv-
ileged script code would accidentally launder taints
through control flow and then execute the laundered
data as privileged code.

It is necessary to track taint both in the native
code and inside the script interpreter. For exam-
ple, when a new HTML document is loaded into a
tab, privileged UI script code reads the tainted doc-
ument’s title property and sets it as the caption of
the tab element. This requires taints from native
DOM objects associated with the HTML document
to propagate to script variables in the UI code and
then back to DOM objects associated with the UI
document. On the native side, we track the taint sta-
tus of string properties of XPCOM objects. Taint-
ing code in XPConnect taints any JavaScript ref-

erences to unprivileged DOM elements and prop-
agates taints between the XPCOM and JavaScript
environments.

4.3 Attack Detection

We define a privilege escalation attack as tainted
data executing as privileged code. We implement
two classes of attack detectors to detect this con-
dition: compilation detectors and invocation detec-
tors. Compilation detectors ensure that tainted data
is never compiled into byte code tagged with priv-
ileged principals, while invocation detectors moni-
tor the stack for tainted references to function ob-
jects creating privileged frames. Compilation de-
tectors map closely to code compilation vulnerabil-
ities, while invocation detectors are best suited for
preventing luring attacks.

4.3.1 Compilation Detectors

We use compilation detectors as a proactive mea-
sure to prevent tainted data from being compiled
to privileged byte code, even if it is never exe-
cuted. These detectors are well suited for secur-
ing eval-like functions that compile strings into byte
code, because the string’s taint status informs these
functions of the string’s origin. These detectors al-
low defending against compilation bugs such as the
wrong principal attack (see Section 3.2.2). If na-
tive XPCOM code compiles the strings, as in the
URI code injection attack (see Section 3.2.1), or the
XSS attacks (see Section 3.2.5), the detectors will
use the taint status of XPCOM string objects to de-
tect and prevent exploits. Our compilation detectors
are placed before all calls to compilation functions,
such as those defined by the JavaScript API.

4.3.2 Invocation Detectors

Invocation detectors monitor script execution for
situations where tainted references to script or na-
tive functions are invoked inside the interpreter and
result in the creation of privileged stack frames.
This policy catches luring attacks in which privi-
leged scripts are tricked into invoking functions of
the attacker’s choice. It also detects when an unpriv-
ileged script uses a reference leak to directly call a
privileged JavaScript function from an extension.

The invocation detectors vary depending on
whether the invoked functions are scripted or native.

Namespace isolation limits script functions to call-
ing other script functions within the same names-
pace. Therefore, our detectors watch for namespace
pollution, namely callers invoking tainted function
references that result in a privileged callee stack
frame, as in the luring attack (see Section 3.2.3).
This detector is able to intercede before any func-
tion code is executed with elevated privileges.

For native functions, it is not as straightforward
to come up with a policy for detecting attacks. It
can be perfectly safe for privileged scripts to in-
voke natively defined methods of tainted object ref-
erences. For example, an extension script could
call the native toLowerCase string method on a
web page’s title string. The reference to the title
string will be tainted, and the function reference to
the toLowerCase method will also be tainted be-
cause it is accessed as a method of a tainted string,
but this operation should not raise a privilege es-
calation alert because, in and of itself, it does not
represent a privilege escalation threat even if it is
called from a privileged context. However, if the
native function called through the tainted reference
is a native XPCOM method that is only accessible
to privileged callers, then a security violation needs
to be raised as it indicates a luring attack.

Thus, it is important to know whether the native
callee is sensitive and whether the caller will be in-
terpreted as privileged. We get this information by
letting the call proceed, and if it reaches XPCon-
nect, the security manager establishes the sensitivity
of the target XPCOM method or property and per-
forms a stack inspection to determine the effective
subject principal of the caller. We augment the se-
curity manager to signal an attack whenever it com-
putes a privileged subject principal, but a tainted
function reference is found on any stack frame dur-
ing the stack walk.

4.3.3 Reference Leaks

As demonstrated in Section 5, we can detect and
stop the vast majority of proof-of-concept exploits
in the Firefox bug database based on reference
leaks. We achieve these results by detecting at-
tempts to directly invoke or lure privileged code
with our invocation detectors, as in the reference
leak attack (see Section 3.2.4), and by detecting ma-
licious attempts to compile tainted strings with our

compilation detectors. However, we are unable to
detect and prevent reference leaks. For example,
in Figure 5(a), we cannot rely on the object refer-
ence’s taint status to detect the privileged reference
leak, because our tainting rules require that proper-
ties of tainted objects, such as QueryInterface, also
be marked tainted.

Although we do not prevent reference leaks, at-
tacks employing reference leaks will not be able to
escape our tainting. Any data modified by untrusted
scripts is still marked tainted, and invoking or com-
piling tainted data will trip the detectors. Therefore,
attackers will not be able to mount a privilege esca-
lation attack, in which untrusted data is executed as
privileged code. At most, if the reference leak al-
lows access to arbitrary global variables in the priv-
ileged namespace, attackers may be able to devise
control dependent attacks and compromise the in-
tegrity of extension logic.

Barth et al. [11] propose a system for detecting
reference leaks between different security origins.
Although their work aims to prevent cross-origin
attacks made possible by reference leaks, it could
also be integrated with our system to detect refer-
ence leaks from privileged namespaces. We should
note that reference leaks are not a requirement for
mounting luring attacks. As previously described in
section 3.1.2, the target of any luring attack can also
be a call to an eval-like function (such as the Script
object) or a reference to a sensitive method of an
XPCOM object legitimately present in the content
namespace.

4.3.4 Unsafe XPCOM Arguments

We are currently conducting a study to determine
the extent of this class of vulnerability. We plan
to create a list of sensitive parameters of security-
sensitive XPCOM interfaces known to the security
manager to mitigate the threat of tainted XPCOM
arguments. We would need to provide untainting
functionality to allow privileged scripts to indicate
that a tainted argument has been sanitized. Other
systems, such as Saner [9], allow validating saniti-
zation routines.

4.4 Implementation

In this section, we describe the implementation of
our tainting system in the JavaScript interpreter and

364 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 365

the XPCOM classes and our attack detectors. In our
system, we are most concerned about the taint sta-
tus of strings and function references because priv-
ilege escalation attacks require either luring privi-
leged code or compiling attacker strings. We chose
not to use an existing system-level tainting solution
because control dependent tainting is not required
in our system and low-level tainting systems tend to
produce a large number of false positives.

4.4.1 JavaScript Interpreter

JavaScript tainting requires associating a notion of
taint with each script variable. JavaScript vari-
ables can hold the values of primitive data types
such as booleans and integers, or they can hold
references to heap allocated data, such as objects,
strings, and doubles (hereafter collectively referred
to as “objects”). All accesses to object variables
are done by reference. We transparently convert all
tainted primitive variables to doubles (a reference
type) so that our tainting code exclusively deals with
reference types. For reasons which we will dis-
cuss shortly, we do not taint the actual heap object
pointed to by the reference (e.g. the floating point
value of a double variable), but instead we only ever
taint the individual references (pointers). For exam-
ple, it is possible to have both a tainted and an un-
tainted reference (pointer) to the same string. There-
fore, variables of all data types are tainted in the
same way, i.e. by tainting individual references.

When we implemented our tainting system, we
had a choice between associating taint status with
objects or with references to objects. We believe
that it is a mistake to associate taint with objects
because objects can be safely shared across privi-
leged and unprivileged namespaces. For example,
if a string variable were to be defined in a privi-
leged namespace and then assigned to a variable in
an unprivileged namespace, and unprivileged code
were then to copy it into another variable, the origi-
nal reference and the copy should not have the same
taint status although they reference the same heap
object. The value of the copied variable was clearly
influenced by untrusted code, whereas the original
variable was not. Note that strings and doubles are
immutable, so there is no risk of modification by
untrusted code. In other words, whenever a string
or a double is modified, a new object is created

with the new value and the original remains un-
changed. For mutable JavaScript objects, our pol-
icy is to taint individual property references when
they are modified by untrusted code. If we were to
taint by object instead of by reference, we would
run the risk of excessive, unnecessary taint propa-
gation. For example, if an extension stores a tainted
value in a property of a commonly used object, the
object itself would become tainted. Therefore, any
existing fields or methods of the object would also
become tainted without receiving any tainted data.
Such tainting could lead to false positives. The most
egregious example of such unnecessary taint prolif-
eration occurs when an extension copies a tainted
variable into its global namespace, which is itself an
object. Tainting the global object instead of merely
tainting the property reference would unnecessarily
taint all existing variables in the trusted extension
namespace.

Therefore, we implemented variable tainting by
storing a taint bit inside each variable. Internally,
JavaScript variables are a machine word with a few
of the least significant bits reserved for a type tag
used for dynamic typing. We set aside an extra bit
in the type tag for the taint status. The upper bits
of primitive variables contain the variable’s value,
while the upper bits of references contain a pointer
to a memory-aligned heap object. A downside of
our reference tainting approach is increased mem-
ory use because heap objects now have to align at
bigger boundaries. Specifically, we can store half
as many JavaScript objects within a single memory
page. This may seem like a large overhead for our
approach, but the heap-allocated data structures are
very small because the data structures use unaligned
pointers to point to their actual contents. For ex-
ample, the aligned, heap-allocated string data struc-
ture consists of two member variables: the string
length and a pointer to an unaligned character array
stored elsewhere on the heap. In practice, we find
the overhead is not significant because JavaScript
heap memory accounts for only a small portion of
the Firefox memory footprint. Empirical measure-
ments confirm that the increase in Firefox’s data res-
ident set size is less than 10% in everyday browsing,
even on JavaScript-heavy sites such as GMail.

We added code to propagate taint between the
inputs and outputs of each of the 154 opcodes in

the JavaScript interpreter as well as code to un-
conditionally taint all outputs produced by unpriv-
ileged scripts. In addition to the aforementioned
data types, scripts can also make use of a num-
ber of built-in objects and top-level properties and
functions defined by the JavaScript language. Some
built-in objects provide more advanced data types
such as the “Date” and “Array” objects, while
other built-ins provide utility functionality such as
the “Math” object and the “encodeURI” function.
Instead of painstakingly modifying each of these
methods and functions individually to propagate
taints, we conservatively taint the return values from
any built-in function or method if any supplied ar-
guments are tainted. For example, the returned
values from Math.sqrt(X) or encodeURI(X)
will be tainted if X is tainted. Finally, we had to
make a few manual changes in the interpreter code
to prevent loss of taint. For example, object refer-
ences were sometimes converted into raw pointers
and then the same raw pointers were converted back
into object references without restoring the taint bit
in the type tag.

4.4.2 XPCOM

We track the taint status of string objects in the XP-
COM code because it is possible for native and in-
terpreter code to compile strings into attack code.
We also pay special attention to tracking taint in
DOM string properties as these properties are the
initial taint source and a very common taint sink.

We have borrowed the XPCOM string-tainting
implementation from Vogt et al. [19]. This imple-
mentation adds taint flags to XPCOM string classes
and modifies string class methods to preserve taint.
We extended it to more string classes and made a
small number of manual changes to account for the
taint laundering that occurs in the code base when
raw string pointers are extracted from string objects
and used to create new string objects.

The XPCOM implementations of markup ele-
ments, representing the contents of the browser UI
and web pages, do not store all their string prop-
erties within XPCOM string classes. The string
properties of these DOM elements are a significant
source and propagation vector for tainted data, so
we needed to associate each string property of a
DOM element with a taint status. To this end, we

modified a small number of base classes from which
DOM elements of all types are derived. DOM
classes redirect calls to get or set individual prop-
erties to a handful of methods in these base classes,
allowing us to add taint-propagation behavior and
to automatically taint string properties of elements
in unprivileged documents.

Adding taint tracking for every type of XPCOM
property is difficult because there is no elegant way
to associate taint status with primitive data types in
the native XPCOM code. However, it is straight-
forward to taint all script references to unprivi-
leged DOM objects. We added a taint bit to the
“wrappers” used to reflect XPCOM objects into
the JavaScript environment as well as the wrap-
pers used to reflect JavaScript objects into XPCOM
code. The first time XPConnect is asked to reflect a
given object between the two environments, it cre-
ates a new wrapper object in the destination envi-
ronment. For wrappers around XPCOM objects, we
alter the wrapper creation process to check whether
the wrapped object is a DOM node and if so, if it
belongs to an unprivileged document. When the
wrapper is placed in a JavaScript namespace, we
make sure its object reference is tainted. The taint-
ing rules in the interpreter automatically taint the
values obtained from reading tainted objects’ prop-
erties, effectively tainting all string and non-string
properties of unprivileged DOM elements. Simi-
larly, when a JavaScript object or function reference
is wrapped for the XPCOM environment (e.g., a
JavaScript callback function), we make sure its taint
status is preserved and therefore propagated during
a property read or a function call.

4.4.3 Attack Detectors

Once we determined the detection policies de-
scribed in sections 4.3.1 and 4.3.2, implementa-
tion of the attack detectors became straightforward.
The compilation detector code was added to the na-
tive functions that turn strings into bytecode (such
as “eval”), while the invocation detector code was
added to the code that implements JavaScript func-
tion calls. The only challenge was in finding the
appropriate sites to install the detectors so that
all JavaScript compilation and function invocations
could be audited. The detectors had to be close
enough to the low-level compilation and invocation

366 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 367

code to intercept all the relevant call paths, but at the
same time sufficiently high-level to easily retrieve
principals and taint status.

5 Evaluation
We have implemented the approach described above
in the Firefox browser. In this section, we eval-
uate our system by demonstrating its effectiveness
against privilege escalation attacks. We start by
showing how well it prevents attacks on known Fire-
fox vulnerabilities. These vulnerabilities are docu-
mented in Firefox’s Bugzilla bug database, which
provides detailed security reports, proof-of-concept
exploits and any available bug fixes. Next, we show
that our system has minimal impact on normal us-
age by evaluating any false alarms that are raised
and the performance overhead.

We evaluated against proof-of-concept attacks
from Mozilla’s bug database because the vulnerabil-
ities are well cataloged and the proof of concept at-
tacks are readily available. Most extension authors
do not invest as much effort as Mozilla into docu-
menting security issues in their code, thus making
it difficult to evaluate our system against attacks on
specific extensions. However, the same vulnerabili-
ties could be leveraged against extensions.

We have implemented our system on Firefox ver-
sion 1.0.0, which we use for all the experiments. We
chose this version because it has the largest number
of known privilege escalation bugs, allowing more
extensive testing of our system. Also, the Firefox
security team has a policy of embargoing reports
for recent vulnerabilities, except for exploits already
available in the wild. As a result, recent versions of
Firefox have far fewer available privilege escalation
exploits. For example, as of the end of 2009, the
current version of Firefox (v3.5) has several privi-
leged escalation vulnerabilities as shown below but
no publicly available exploits for them. We plan to
port our system and evaluate our results for newer
versions of Firefox as exploits become available in
the bug database.

5.1 Vulnerability Coverage
Table 1 shows the continuing threat posed by priv-
ilege escalation (PE) vulnerabilities in the Firefox
browser. This table shows the total number of crit-
ical vulnerabilities and the number of critical PE

Firefox Critical Critical PE %
Version 1.0 27 18 67
Version 1.5 44 13 30
Version 2.0 43 16 37
Version 3.0 30 8 27

Table 1: Vulnerability Statistics.

vulnerabilities in the various major versions of the
browser. The last column shows the percentage
of PE vulnerabilities. Most PE vulnerabilities are
generally classified as critical, and thus we do not
show the statistics for non-critical vulnerabilities.
Table 1 shows that PE vulnerabilities comprise 2/3
of all critical Firefox 1.0 vulnerabilities. All other
versions continually have about 1/3 PE vulnerabili-
ties. The main reason is that Firefox 1.5 implements
safety wrappers that limit the opportunities for un-
safe interactions between privileged code and web
content, as described in Section 3.2.4.

Table 2 shows all the 19 privilege escalation advi-
sories affecting Firefox 1.0.0, with some advisories
containing multiple bug reports. Note that there are
26 such advisories in Firefox 1.0 (of which 18 are
critical as shown in Table 1), but the other seven do
not run on Firefox 1.0.0 and so we are unable to re-
produce them. We were unable to test our system
against 5 out of the 19 advisories because exploits
were not available for them. The last column shows
the types of vulnerabilities exploited in each advi-
sory. For reference leaks, we also show whether
the leak is leveraged to compile code (C) with the
wrong principals or execute a luring attack (L).

Our system guards against 13 out of the 14 vul-
nerabilities described in the advisories. We do not
detect an attack on the vulnerability in advisory #6.
In this attack, an untrusted HTML string is parsed
by the HTML parser to generate new HTML ele-
ments in a privileged document. Currently, we lose
taint because we have not implemented taint propa-
gation within the HTML parser.

5.2 False Positive Evaluation
We also tested our system by installing the top
10 most popular extensions that were available for
Firefox 1.0.0, and then we manually browsed the
Web. These extensions are Adblock Plus, Foxy-
Tunes, NoScript, Forecastfox, Add N Edit Cookies,
PDF Download, StumbleUpon, 1-Click Weather,

Advisory Advisory Name Type of Vulnerability Detection
1 2006-25 Privilege escalation through Print Preview Compilation Yes

2 2006-16 Accessing XBL compilation scope via valueOf.call() Leak (C) Yes

3 2006-15 Privilege escalation using a JavaScript function’s cloned parent Leak (C) Yes

4 2006-14 Privilege escalation via XBL.method.eval Leak (C) Yes

5 2005-56 Code execution through shared function objects Leak (C), Leak (L) Yes

6 2005-49 Script injection from Firefox sidebar panel using data:// Compilation No

7 2005-44 Privilege escalation via non-DOM property overrides Luring Yes

8 2005-43 “Wrapped” javascript: URLs bypass security checks Compilation Yes

9 2005-41 Privilege escalation via DOM property overrides Luring Yes

10 2005-39 Arbitrary code execution from Firefox sidebar panel II Compilation Yes

11 2005-37 Code execution through javascript: favicons Compilation Yes

12 2005-35 Showing blocked javascript: pop-up uses wrong privilege context Compilation Yes

13 2005-31 Arbitrary code execution from Firefox sidebar panel Compilation Yes

14 2005-12 javascript: Livefeed bookmarks can steal private data Compilation Yes

Embargoed, or exploit not available

15 2006-24 Privilege escalation using crypto.generateCRMFRequest N/A N/A

16 2006-05 Localstore.rdf XML injection through XULDocument.persist() N/A N/A

17 2005-58 Firefox 1.0.7 / Mozilla Suite 1.7.12 Vulnerability Fixes N/A N/A

18 2005-45 Content-generated event vulnerabilities N/A N/A

19 2005-27 Plugins can be used to load privileged content N/A N/A

Table 2: Vulnerability Coverage.

MR Tech Toolkit and FLST. A user, who is not as-
sociated with the project, browsed the Web for 5
hours, specifically visiting the top 100 most heav-
ily visited web sites, as ranked by Alexa [2]. The
user interacted extensively both with the web sites
as well as with the extensions (e.g., directly invok-
ing extension functionality by setting preferences).

The user’s testing caused one alarm. This
alarm was caused by Forecastfox, which dis-
plays the current weather forecast for a city of
the user’s choice. When a user searches for
his city while setting his preferences, Forecastfox
queries accuweather.com for cities matching
the search string. When the user selects his city
from the search results, Forecastfox concatenates
several strings together including the full city name
fetched from the web site and eval’s this expres-
sion to set the city option. Since the city name
string originates from an untrusted web page, and
the expression is evaluated in a privileged context,
the alarm is raised. This code is unsafe because if
the web site were compromised, the browsers of all
Forecastfox users could be exploited. After seeing
this alarm, we researched and found that Forecast-

fox for Firefox 3.0 has removed the eval state-
ment.

We also performed automated testing by writing
a Web crawler extension for Firefox. The crawler
extension takes as input a list of web sites to visit
and directs Firefox to load any HTML or JavaScript
links found in the web site in depth-first order and
interacts with each loaded page in Firefox to mimic
the behavior of a human user. On each page, the
crawler chooses multiple events to send to the page
(e.g. mouse clicks, key strokes) and fills out and
submits any HTML forms. The crawler exercises
the JavaScript in the browser UI by performing one
of several scripted GUI actions such as viewing the
web page’s HTML source code. We also installed
AdBlock and Flashblock extensions and had the
crawler randomly add and remove AdBlock filters
on each page visited. The full crawler test visited
100 pages from each website in the Alexa Top 200.

The automated testing resulted in the discov-
ery of one false positive, triggered by selecting
“Page Source” from Firefox’s “View” menu. The
offending UI JavaScript retrieves a (tainted) refer-
ence to a window object from the content names-

368 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 369

pace. The window object implements multiple in-
terfaces and some of these are sensitive interfaces
inaccessible to web page scripts. The UI script casts
the reference to the window object to a sensitive
interface, further propagating the taint. When the
privileged code calls a sensitive method of this in-
terface through the tainted reference, our detectors
flag it as a luring attack. This is not likely an ex-
ploitable vulnerability, but it would be safer if priv-
ileged JavaScript obtained references to sensitive
interfaces without going through a content names-
pace.

While our testing is limited to heavily visited web
sites, we believe that our system will not gener-
ate many false positives with other web sites. We
find that privileged scripts are careful when operat-
ing on untrusted data and they are selective about
the strings they compile in their privileged context
(i.e., compilation false positives). Second, names-
pace isolation works well enough in non-malicious
environments, and thus it is difficult for privileged
function references to become tainted (i.e., luring
false positives). Similarly, web pages don’t expect
to have access to privileged references and thus are
unlikely to access them legitimately (i.e., reference
leak false positives).

5.3 Performance

During regular browsing, we did not notice any
degradation in page load times or responsiveness.
We also conducted experiments to quantify the per-
formance overhead of our system. We ran the Dro-
maeo JavaScript Tests and the DOM Core Tests
from Mozilla’s performance test suite [3]. These
tests are micro-benchmarks that measure 1) the per-
formance of basic operations of the script inter-
preter, and 2) the performance of common DOM op-
erations. Our experiments were run on Ubuntu 8.04
Linux on an Intel Core 2 Duo 2.4 GHz processor,
with 2 GB of memory. Our browser had 28% over-
head for the JavaScript tests and 32% overhead for
the DOM tests. Although the overhead witnessed in
these micro-benchmarks does not visibly influence
the browsing experience, the overhead may become
an impediment to the adoption of our system at a
time when JavaScript performance is becoming a
competitive feature for modern browsers. One pos-
sible research direction would be to investigate how

to efficiently integrate our tainting system with the
just-in-time compilation systems present in modern
JavaScript engines.

5.4 Security Analysis

Our system effectively detects nearly all available
proof-of-concept attacks with few false positives.
Admittedly, these proof-of-concept attacks were not
designed with our detection system in mind. In or-
der to defeat our defenses, an attacker would need
to find a means of removing taint from untrusted
objects. It would be difficult to remove taint in
the JavaScript interpreter as the tainting rules are
straightforward. The most likely target for launder-
ing taint would be the native XPCOM methods.

One possible way for the browser to lose taint
is to store tainted objects outside the browser. For
example, if a user saves a malicious URL string
from a web page as a bookmark, the bookmark is
stored in a bookmarks file and the URI’s taint is
no longer present when the browser is restarted. A
second, more involved method may be to launder
taint through XPCOM method arguments. The at-
tack begins by tricking an extension into passing a
tainted, privileged object (a luring target) to an XP-
COM function. If this function then natively calls
a privileged native method of the tainted argument,
our system would not detect this as a luring attack.
This is because the extension JavaScript did not di-
rectly invoke a privileged method through a tainted
reference. Similarly, if an XPCOM function were to
accept a tainted object as an argument but then re-
turn a different, but related untainted object, it may
be accurate to say the taint was laundered. Note that
in these examples, the arguments and return values
could not be strings as taint is always propagated
during XPCOM string operations.

Although laundering taint is theoretically possi-
ble within our system, our system greatly raises
the bar for potential attackers. The attackers now
not only need to find a privilege escalation vul-
nerability in the browser, they also require exten-
sion JavaScript that interacts with specific XPCOM
methods in such a way as to launder taint from cru-
cial attack variables.

6 Related Work

This work focuses on securely executing untrusted
scripts by using taint-based stack inspection. Stack
inspection is widely used by modern component-
based systems, such as Java and Microsoft .NET
Common Language Runtime, to ensure that remote
code is sufficiently authorized to perform a security-
sensitive operation. Wallach et al. [20] provide in-
structive background on stack inspection.

Taint analysis helps determine whether untrusted
data may influence data that is trusted by the sys-
tem. Newsome and Song [16] use dynamic taint
analysis to taint data originating or derived from
untrusted network sources. An attack is detected
when tainted data is used in a dangerous way, such
as overwriting a return address. We use a similar
approach to ensure that dirty data is not executed in
a trusted context. Vogt et al. [19] use script tainting
in a browser to track sensitive browser data, such as
browser cookies or the URLs of visited pages.

The same origin policy is the basic sandboxing
method used by web browsers. An effective method
for implementing the same origin policy is script
accenting [12], which uses simple XOR encryption
to ensure that code is loaded and run, and data is
created and accessed, by the same principal. Sev-
eral recent projects [22, 17] attempt to enforce the
same origin policy by separating different origins
into different processes. In order to adopt this archi-
tecture, the extension model needs to be redesigned
to accommodate extensions’ interactions with pages
from different principals [10]. The same origin pol-
icy is too strict for mashup web applications. For
such applications, Mashup OS provides abstractions
to allow limited communication while protecting
the different principals associated with mashup con-
tent [21]. Interestingly, Mashup OS introduces the
same set of problems as privileged extensions inter-
acting with untrusted content and thus would benefit
from our solution.

In concurrent work, Barth et al [10] propose a
new browser extension model for Google Chrome.
Extensions and web page scripts are isolated us-
ing processes and “isolated worlds” so that they
never exchange JavaScript pointers. This architec-
ture raises the bar for perpetrating a successful priv-
ilege escalation attack as multiple components now

need to be compromised. Their design has obvious
advantages, but the threat of privilege escalation at-
tacks has not been completely eliminated. For ex-
ample, Google recently fixed a vulnerability that in-
correctly allowed JavaScript to be executed in the
context of a Chrome extension [7].

Since browser extensions typically run with unre-
stricted privileges, a malicious extension can serve
as a powerful attack vector. Louw et al. [15] pro-
pose access control for limiting extension privi-
leges. For example, certain extensions may not be
allowed access to the password manager. Dhawan
and Ganapathy [13] propose adding an information-
flow tracking system to Firefox to assist in deter-
mining whether a JavaScript extension maliciously
compromises browser confidentiality or integrity.
Although we are also interested in misuses of low-
integrity data, their system is not an online attack
detector and it requires human analysis.

Recent versions of Firefox use security wrap-
pers (e.g., XPCNativeWrappers, XPCChromeOb-
jectWrappers, etc.) to regulate interactions be-
tween JavaScript and XPCOM objects from differ-
ent namespaces [8]. Unfortunately, implementa-
tion bugs in creating and manipulating wrappers are
fairly common. Our system adds another layer of
security on top of wrapper techniques by effectively
second guessing wrapper security decisions.

7 Conclusion
Script-based privilege escalation attacks are a se-
rious and recurring threat for extensible browsers
such as Firefox. In this paper, we describe the
pitfalls of script-based extensibility in Firefox and
show that the privilege escalation vulnerabilities are
similar to arbitrary code injection and execution
control vulnerabilities found in unsafe code. Then,
we propose a tainting-based system that specifically
targets each class of vulnerability. We implemented
such a system for the Firefox 1.0 browser and our
evaluation shows that it detects the vast majority of
attacks in the Firefox bug database with almost no
false alarms and moderate overhead.

Our vulnerability classification and our proposed
defense system are inevitably linked to the Fire-
fox browser. However, one-way namespace isola-
tion must exist in browser extension architectures
because extensions need access to restricted APIs

370 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 371

and they also need to read and modify untrusted
web pages. As such, we expect our analysis and
results to be applicable to other script-extensible
browsers.We plan to test the generality of our vul-
nerability classification and defenses against other
browsers, especially Google Chrome as it also pro-
vides powerful script extension functionality.

Acknowledgments
We would like to thank our shepherd, Helen Wang,
and the anonymous reviews for their insightful com-
ments on the paper.

References
[1] Adblock. http://en.wikipedia.org/

wiki/Adblock.
[2] Alexa the web information company. http://

www.alexa.com.
[3] Dromaeo JavaScript performance test suite.

https://wiki.mozilla.org/Dromaeo.
[4] Greasemonkey. http://en.wikipedia.

org/wiki/Greasemonkey.
[5] Return-to-libc attack. http:

//en.wikipedia.org/wiki/
Return-to-libc_attack.

[6] setTimeout loses XPCNativeWrappers, July 2009.
http://www.mozilla.org/security/
announce/2009/mfsa2009-39.html.

[7] Incorrect execution of JavaScript in
the extension context, May 2010.
http://googlechromereleases.
blogspot.com/2010/05/
stable-channel-update.html.

[8] XPConnect wrappers, May 2010. https:
//developer.mozilla.org/en/
XPConnect_wrappers.

[9] D. Balzarotti, M. Cova, V. Felmetsger, N. Jo-
vanovic, E. Kirda, C. Kruegel, and G. Vigna. Saner:
Composing static and dynamic analysis to validate
sanitization in web applications. In Proceedings
of the IEEE Symposium on Security and Privacy,
pages 387–401, 2008.

[10] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting browsers from extension vulnerabilities.
In Proceedings of the Network and Distributed Sys-
tem Security Symposium, 2010.

[11] A. Barth, J. Weinberger, and D. Song. Cross-origin
JavaScript capability leaks: Detection, exploita-
tion, and defense. In Proceedings of the USENIX
Security Symposium, Aug. 2009.

[12] S. Chen, D. Ross, and Y.-M. Wang. An analysis of
browser domain-isolation bugs and a light-weight
transparent defense mechanism. In Proceedings of

the ACM Conference on Computer and Communi-
cations Security, pages 2–11, 2007.

[13] M. Dhawan and V. Ganapathy. Analyzing informa-
tion flow in Javascript-based browser extensions. In
Proceedings of the Annual Computer Security Ap-
plications Conference, 2010.

[14] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applica-
tions on the web. In Proceedings of the Operating
Systems Design and Implementation (OSDI), pages
339–354, 2008.

[15] M. T. Louw, J. S. Lim, and V. N. Venkatakrish-
nan. Enhancing web browser security against mal-
ware extensions. Journal in Computer Virology,
4(3):179–195, Aug. 2008.

[16] J. Newsome and D. Song. Dynamic taint analy-
sis for automatic detection, analysis, and signature
generation of exploits on commodity software. In
Proceedings of the Network and Distributed System
Security Symposium, Feb. 2005.

[17] C. Reis and S. D. Gribble. Isolating web programs
in modern browser architectures. In Proceedings of
the EuroSys conference, 2009.

[18] A. Slowinska and H. Bos. Pointless Tainting? Eval-
uating the Practicality of Pointer Tainting. In Pro-
ceedings of the EuroSys conference, Apr. 2009.

[19] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross-site scripting pre-
vention with dynamic data tainting and static analy-
sis. In Proceedings of the Network and Distributed
System Security Symposium, 2007.

[20] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Fel-
ten. Extensible security architectures for Java. In
Proceedings of the Symposium on Operating Sys-
tems Principles (SOSP), pages 116–128, 1997.

[21] H. J. Wang, X. Fan, J. Howell, and C. Jackson.
Protection and communication abstractions for web
browsers in MashupOS. In Proceedings of the Sym-
posium on Operating Systems Principles (SOSP),
pages 1–16, 2007.

[22] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The multi-principal
OS construction of the Gazelle web browser. In
Proceedings of the USENIX Security Symposium,
2009.

[23] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar. Native client: A sandbox for portable, un-
trusted x86 native code. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 79–93,
2009.

AdJail: Practical Enforcement of Confidentiality and Integrity Policies
on Web Advertisements

Mike Ter Louw Karthik Thotta Ganesh V.N. Venkatakrishnan

Department of Computer Science
University of Illinois at Chicago

Abstract
Web publishers frequently integrate third-party adver-

tisements into web pages that also contain sensitive pub-
lisher data and end-user personal data. This practice ex-
poses sensitive page content to confidentiality and in-
tegrity attacks launched by advertisements. In this pa-
per, we propose a novel framework for addressing security
threats posed by third-party advertisements. The heart of
our framework is an innovative isolation mechanism that
enables publishers to transparently interpose between ad-
vertisements and end users. The mechanism supports fine-
grained policy specification and enforcement, and does
not affect the user experience of interactive ads. Evalua-
tion of our framework suggests compatibility with several
mainstream ad networks, security from many threats from
advertisements and acceptable performance overheads.

1 Introduction
On September 13, 2009, readers of the New York Times
home web page were greeted by an animated image of a
fake virus scan. Amidst widespread confusion, NY Times
clarified the situation in an article [48], explaining the
source of the rogue anti-virus attack was one of its adver-
tising partners. Just two months prior, members of social
web site Facebook were presented with advertisements
(henceforth, “ads”) deceptively portraying private images
of their family and friends [38]. Facebook responded in an
article [42] blaming advertisers for violating policy terms
governing the use of personal images.

Publishers of online ads (like the NY Times and Face-
book) face two serious challenges. They must ensure ads
will neither violate the integrity of publisher web pages
(as occurred with NY Times), nor breach confidentiality
of user data present on publisher web pages (as occurred
with Facebook). Ads are often tightly integrated into pub-
lisher web pages, and therefore must coexist with high in-
tegrity content and sensitive information. Typically, ad
content is dynamically fetched from ad networks (e.g.,
Google AdSense) by the user’s browser, leaving little op-

portunity for publishers to inspect and approve ads before
the ads are rendered.

Online advertising is currently a lucrative market, ex-
pected to hit the US$50 billion mark in the U.S. dur-
ing 2011 [52]. For many publishers, online advertising
is an economic necessity. However, publishers have few
resources enabling them to enforce integrity and confiden-
tiality policies on ads. One common approach is for ad
networks to screen each ad for potential attacks. This pas-
sive approach simply shifts the burden of protection from
publisher to ad network. To enforce compliance, publish-
ers must use out-of-band mechanisms (e.g., legal agree-
ments), which leave the publisher vulnerable to any gaps
in the ad network’s screening strategy. Rogue ads may
slip through and cause damage, as in the above, high pro-
file examples.

Due to the dangers of rogue ads, publishers are in
great need of an active, technological approach to protect
themselves and their end users. Therefore, in this paper
we confront the problem of rogue ads from a publisher-
centric perspective. At a basic level, a publisher is a
web application that includes dynamically sourced con-
tent from an ad network in its output. Our objective is
to empower this web application to serve ads from main-
stream ad networks, while protecting its end users from
several threats posed by rogue ads.

1.1 Contributions

In this paper, we present ADJAIL, a framework that aids
web applications to support rendering of ads from main-
stream ad networks without compromising publisher se-
curity. Our framework achieves this protection by apply-
ing policy-based constraints on ad content. There are five
significant contributions of our approach:

1. Confidentiality and integrity policy specification and
enforcement. We define a simple and intuitive policy
specification language for publishers to specify several
confidentiality and integrity policies on advertisements
at a fine-grained level. We provide a novel and con-

372 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 373

ceptually simple policy enforcement mechanism that
offers principled security guarantees.

2. Compatibility with ad network targeting algorithms.
Ad networks use targeting algorithms to select which
ads to display, based on several factors such as page
context and user behavior. In many cases, these al-
gorithms are implemented as scripts that analyze pub-
lisher content to select and fetch appropriate ads to
be displayed. Our approach supports these targeting
scripts, with the added benefit of restricting the target-
ing script’s access to sensitive data.

3. Compatibility with ad network billing operations. Ad
networks employ complex billing strategies based on
several metrics, including ad impressions (number of
times an ad is shown) and mouse clicks. Furthermore,
ad networks have mechanisms for dealing with click
fraud [2]. To remain transparent to billing and click-
fraud detection mechanisms, our approach preserves
impression and click metrics.

4. Consistency in user experience. Our approach does not
affect the user experience in interacting with ads, for
any change in the user experience (in terms of content,
position and interactivity) may reduce the effectiveness
of advertising. Furthermore, ADJAIL highlights the se-
curity trade-offs that are required for ensuring consis-
tency in user experience for certain types of ads (such
as inline text ads).

5. Satisfaction of practical deployment requirements.
Publishers should not have to expend significant labor
in adopting a new framework, as this may make adop-
tion prohibitively expensive. Furthermore, publishers
should be able to deploy a solution that does not require
end users to install new client software (e.g., browsers,
plug-ins, etc.) or make changes to their existing client
software. Therefore, we offer a practical solution that
is easy to adopt, and works on mainstream browsers in
their default settings, without any modifications.

1.2 Overview

The crux of our approach is a novel policy enforcement
strategy that can be employed by the publisher to interpose
itself transparently between the ad network and end user.
The enforcement strategy starts by fetching and execut-
ing ads in a hidden “sandbox” environment in the user’s
browser, thus shielding the end user and web application
from many harmful effects.

In order to preserve the user experience, all ad user in-
terface elements are then extracted from the sandbox and
communicated back to the original page environment, as
permitted by the publisher’s policy. This step enables the
user to see and interact with the ad as if no interposition
happened. All user actions are communicated back to the

sandbox, thus completing a two-way message conduit for
synchronization. Our approach ensures transparency with
regard to the number of ad clicks and impressions by inter-
posing on the browser’s Document Object Model to sup-
press extraneous HTTP requests.

We have built a prototype implementation of AD-
JAIL that supports specification and enforcement of fine-
grained policies on ads sourced from leading ad networks.
The prototype is designed to be compatible with several
mainstream browsers including Google Chrome, Firefox,
Internet Explorer (IE), Safari and Opera. One minor lim-
itation of our implementation (but not of our architecture)
is that it is not compatible with IE 7.x or below. However,
the current ADJAIL prototype is compatible with IE 8.0
and later.

We evaluate ADJAIL on the dimensions of ad network
compatibility, security, and performance overheads. Our
compatibility evaluation tested ads from six mainstream
ad networks. We find that ADJAIL provides excellent
compatibility for most ads. We also demonstrate the
strong protection offered by ADJAIL from many signifi-
cant threats posed by online ads. In our experiments, the
currently unoptimized ADJAIL prototype encountered at
most a 1.69× slowdown in rendering ads.

The remainder of this paper is organized as follows:
Section 2 provides the threat model, scope and related
work. We provide the architecture and the main ideas be-
hind ADJAIL in Section 3. Section 4 discusses the details
in the implementation of ADJAIL. Our security, compati-
bility and performance evaluation appears in Section 5. In
Section 6 we conclude.

2 Threat Model and Related Work
2.1 Threat model

Consider a publisher who wishes to carry ads on a web-
mail (Web-based email) application. We will use this as
a running example throughout the paper to illustrate the
various aspects of our framework. A screenshot from an
actual webmail application we used in our evaluation ap-
pears in Figure 1. The top pane of the window presents the
message list and the bottom pane presents the email mes-
sage text. Four numbered advertisements also appear in
the figure: (1) a banner ad that appears on top of the web-
mail page, (2) a skyscraper ad that appears as a sidebar,
(3) an inline text ad that appears when the user’s mouse
hovers over an underlined word, and (4) a floating ad that
overlays the image of a clock on the page.

These ads highlight two interesting challenges we need
to overcome. First, the sidebar ad requires access to the
email message text, which it mines to ascertain page con-
text and select relevant ads for display (i.e., contextual tar-
geting). The inline text ad also requires access to the mes-
sage for contextual targeting and to integrate ads among
the text. However, supporting these ads by providing ac-

2

Figure 1: Samples of various ad types. A webmail application with (#1) banner and (#2) skyscraper ads. Also illustrated are (#3) an
inline text ad and (#4) an floating ad.

cess to the entire message carries the risk of exposing pri-
vate content (e.g., email addresses) to the ad script. Sec-
ond, the floating ad requires access to the real estate of the
page to place the image of the clock over the message text.
However, providing access to the page real estate enables
an ad to overlay content over the entire page, which may
interfere with trusted interface components.

These common examples illustrate how ads require
non-trivial access to publisher content and the screen, and
will not work if such access is denied. Also, in all of the
examples above, the ad content is loaded and rendered by
a third-party ad script (an ad script example appears in
Figure 4a). Ad scripts are given full page access by de-
fault, and thus pose threats to the confidentiality and in-
tegrity of page content. Our goal is to support the non-
trivial access required by these and many other typical
forms of ads, while addressing the security concerns of
executing third-party ad scripts.

2.2 Threat scope

Web applications that display third-party content on client
browsers are exposed to a wide variety of threats. It is
therefore important to clarify our threat model, specifi-
cally on the nature of protections that we offer and the
threats that are outside the scope of this work.

In-scope threats The broad threats that we address in this
work are those targeted by recent efforts in the Web stan-
dards community for content restrictions (e.g., Content
Security Policy [32, 43]). These policies are specified by
a website to restrict the capabilities of third-party scripts,
specifically with reference to access and modification of

first-party (site owned) content, as well as control over the
screen. Policies can be negotiated between a publisher
and its customers, or directly reflect the site security and
privacy practices.

Our framework provides a means for specification and
enforcement of such policies. For instance, in our web-
mail example, an integrity policy can be enforced such
that email message content cannot be tampered with, but
can still be read (for contextual targeting of ads). Publish-
ers may also choose to restrict where ads can appear on
the page.

Publishers can also use our framework to enforce poli-
cies about confidentiality of content. For instance, a pub-
lisher can enforce a policy that mail headers and email
“address books” (containing private email addresses) can-
not be read by ads. For the Facebook attack in §1, a policy
specifying confidentiality of user images, combined with
our enforcement mechanism, would have prevented the
attack.

Out-of-scope threats Many security threats posed by ads
(and other third party content) have been identified by the
security community. Recently, there has been intense re-
search in this area which can complement our approach
for protection against specific attacks. In particular, our
work does not address the threats listed below. In this sec-
tion we omit threats for which publishers can readily de-
ploy strong protection (e.g., cross-site request forgeries).

1. Browser security bugs. We do not address browser vul-
nerabilities such as drive-by-downloads [49, 36, 5], at-
tacks launched through plug-ins [24], vulnerabilities in
image rendering [23] and so on.

3

374 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 375

2. Opaque content. Our approach leverages web content
introspection capabilities of JavaScript, and is there-
fore most capable of enforcing fine-grained control
where such transparency is available. Although our ap-
proach provides coarse-grained confidentiality and in-
tegrity protection from opaque content (e.g., Flash), the
many possible attack vectors from these binary formats
require special treatment [13].

3. Frame busting & navigation attacks. These are diffi-
cult attacks for any dynamic policy enforcement mech-
anism to prevent, due to the limited API exposed by
browsers. A detailed discussion of protection measures
against frame busting has been explored [39] and could
be used to enhance our approach.

4. Behavior tracking attacks. These are attacks that track
a user across multiple sites and sessions through use of
cookies. These could be addressed by users choosing
restrictive cookie policies, though such policies may
interfere with the functionality of some web sites.

5. Attacks through side channels. Sites can track users
through side channels, such as the cache timing chan-
nel [11], the “visited links” feature of browsers [19]
and so on. It is difficult to defend these vectors without
browser customization, which is impractical for pub-
lishers to deploy.

2.3 Related Work

Privacy and behavioral targeting A few recent ap-
proaches have looked at the problem of addressing secu-
rity issues in online advertising. Privads [15] and Ad-
nostic [47] address this problem primarily from a user
privacy perspective. They both rely on specialized, in-
browser systems that support contextual placement of ads
while preventing behavioral profiling of users. In contrast,
our work mainly focuses on a different, publisher-centric
problem of protecting confidentiality and integrity of pub-
lisher and user-owned content. Our work is also aimed
at providing compatibility with existing ad networks and
browsers.

Restricting content languages There have been a num-
ber of works [9, 6, 28, 29, 30, 12] in the area of Java-
Script analysis that restrict content from ad networks to
provide security protections. These works focus on limit-
ing the JavaScript language features that untrusted scripts
are allowed to use. The limitation is enforced statically
by checking the untrusted script and ensuring it conforms
to the language restrictions. Only those language features
that are statically deterministic and amenable to analysis
are allowed. Since much of the policy enforcement is
done statically, these solutions typically have good run-
time performance. In the cases of FBJS [9] and AD-
safe [6], untrusted scripts are allowed to make calls to

an access-controlled DOM (document object model) in-
terface, which incurs some overhead but affords additional
control. The cost in employing a restricted JavaScript sub-
set is that ads authored by many advertisers may not con-
form to this subset, and therefore require re-development
of ad script code. In contrast, ADJAIL neither imposes the
burden of new languages nor places restrictions on Java-
Script language features used in ad scripts. The only effort
required from a publisher that incorporates ADJAIL is to
specify policies that reflect site security practices.

Code transformation approaches Many recent ap-
proaches [37, 53, 22, 14, 34, 10, 35] have been pursued to
transform untrusted JavaScript code to interpose runtime
policy enforcement checks. These works cover the many
diverse aspects by which third-party content may subvert
policy enforcement checks. Since these works are aimed
at general JavaScript security, they are not specialized
to the problem of securing ads for publishers, where the
main issue is ensuring transparent interposition. This is to
avoid any conflict with ad targeting and billing strategies
employed by ad networks. The recommended method of
transforming JavaScript dynamically by a publisher in-
volves using a proxy (e.g., for handling scripts sourced
from an external URI). However, routing all ad script
HTTP requests through a script-transformation proxy may
appear suspicious to click-fraud detection mechanisms [2]
employed by the ad network.

Publisher-browser collaboration An alternative ap-
proach is for a publisher to instruct a browser to enforce
the publisher’s policies on third-party content, leaving
the enforcement entirely to the browser. This publisher-
browser collaborative approach is a sound one in the
long term to enforce a wide range of security policies
as illustrated in BEEP [21], End-to-End Web Applica-
tion Security [8], Content Security Policies [43] and Con-
Script [33]. The main positives of this approach are that
it can enforce fine-grained policies with minimal over-
heads. The primary drawback is that today’s browsers
do not agree on a standard for publisher-browser collab-
oration, leaving a large void in near-term protection from
malicious third-party content.

3 Architecture
Let us revisit our running example of a publisher who
wishes to carry ads on a webmail application. Recall
that the publisher embeds an ad network’s JavaScript code
within the HTML of the webmail page to enable ads. In
the benign case, this JavaScript code scans the webmail
user’s email message body to find keywords for contex-
tual ad targeting, then dynamically loads a relevant ad. For
simplicity, we refer to the ad network’s JavaScript and an
advertiser’s JavaScript (the latter loaded dynamically by
the former) as the ad script. This section gives a high
level overview of how we prevent the ad script from per-

4

forming a variety of attacks against the publisher and end
user.

Our approach is to initially confine the ad script to a
hidden isolated environment. The hidden environment is
locally and logically isolated [27, 44] as opposed to re-
quiring additional physical and remote resources [31]. We
then detect effects of the ad script that would normally be
observable by the end user, had the script not been con-
fined by our approach. These effects are replicated, sub-
ject to policy-based constraints, outside the isolated envi-
ronment for the user to observe and interact with. User
actions are then forwarded to the isolated environment to
allow for a response by the ad script. Thus we facilitate
a controlled cycle of interaction between the user and the
advertisement, enabling dynamic ads while blocking sev-
eral malicious behaviors.

3.1 Ad confinement using shadow pages

As a basic policy, the publisher wants to ensure ad script
does not access the publisher’s private script data. If
this policy is not enforced, ad script can read the sen-
sitive document.cookie variable and leak its contents,
enabling the recipient of the cookie to hijack the authen-
ticated user’s webmail session. Furthermore, ad script
should not be allowed to read confidential user data from
the page (e.g., email message headers and address book
entries). Such data is normally accessible via the brow-
ser’s document object model (DOM) script interfaces.

To enforce the publisher’s policy, we leverage browser
enforcement of the same-origin policy (SOP) [50], an ac-
cess control mechanism available in all major JavaScript-
enabled browsers. Web browsers enforce the SOP to pre-
vent mutually distrusting web sites from accessing each
other’s JavaScript code and data. As a script instantiates
code and data items, the browser places each item un-
der the ownership of the script’s origin principal. Origin
principals are identified by the domain, protocol and port
number components of the script’s uniform resource iden-
tifier (URI). Whenever a script references code or data,
both the script and item being accessed must be owned by
the same origin, else access is denied.

To enforce the publisher’s ad script policy, we begin by
removing the ad script from the publisher’s webmail page.
Next, we embed a hidden <iframe> element in the page.
This <iframe> has a different origin URI, thus invoking
the browser’s SOP and thereby imposing a code and data
isolation barrier between the contents of the <iframe>

and enclosing page. Finally, we add the ad script to the
page contained in the hidden <iframe>. We refer to the
hidden <iframe> page as the shadow page, and the en-
closing webmail page as the real page. This transforma-
tion just described is depicted in Figure 2.

In the process of rendering the real page, the browser
renders the shadow page, executing the ad script within.
Our use of the SOP mechanism effectively relegates this

Real Page

Ad Script

Real Page

Shadow Page
(hidden)

Ad Script

(a) Before (b) After

Figure 2: Relocating the ad script to a hidden shadow page
invokes the browser’s same-origin policy for confinement.

ad script to an isolated execution environment. All access
by ad script to code or data in the real page will be blocked
due to enforcement of the SOP. Furthermore, the ad script
can not retrieve confidential address book data via DOM
interfaces, as access to those APIs are denied by SOP. We
can say the publisher’s basic policy is enforced, because
(1) all such ad scripts are relocated to the shadow page,
and (2) the browser correctly enforces the SOP.

3.2 Controlled user interaction with ads

Consider an ad script that loads a product image, or ban-
ner. Normally the banner appears on the real page, but
since the ad script runs in the shadow page, the banner
is rendered on the shadow page instead. Without further
steps, the webmail user viewing the real page will never
see this banner because the shadow page is hidden. We
now describe how the user is able to interact with the
shadow page ad by content mirroring (§3.2.1) and event
forwarding (§3.2.2), subject to policy-based constraints
(§3.2.3).

3.2.1 Ad mirroring

A detailed view of the real and shadow pages that depicts
mirroring of ad content is shown in Figure 3. We add
Tunnel Script A to the shadow page that monitors page
changes made by the ad script (1), and conveys those
changes (2) to the real page via inter-origin message
conduits [1, 20]. We add complementary Tunnel Script B
to the real page that receives a list of shadow page changes
and replicates their effects on the real page. Thus when ad
script creates a banner image on the shadow page, Tunnel
Script A sends a description of the banner to Tunnel Script
B, which then creates the banner on the real page for the
end user to see.

Special care is taken to prevent sending redundant
HTTP requests to the ad server during the mirroring pro-
cess, as such requests can interfere with an ad network’s
record keeping and billing operations. These details are
discussed at depth in §4.3.2.

5

376 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 377

Headers

A
d
d
re

ss
 B

oo
k

Message
Body

M
ir

ro
re

d
 A

d

Real Page

Tunnel Script B

Webmail UI

Shadow Page

Message
Body

A
d

Ad Script

Ad Content

Events

Tunnel Script A

No Access Read-Only Access Read-Write Access

1

2
3

Figure 3: Overview of ADJAIL integrated with a webmail ap-
plication. Ad script is given read-only access to email message
body for contextual targeting purposes. Ad script can write to
designated area to right of message body. Confidential data such
as address book and mail headers are inaccessible to ad script.

3.2.2 Event forwarding
Ads sometimes respond in complex ways to user gener-
ated events such as mouse movement and clicks. To fa-
cilitate this interaction, we capture events on mirrored ad
content and forward these events (Figure 3, 3) to the
shadow page for processing. For example, if the ad script
registers an onmousemove event handler with the original
banner image, we register our own (trusted) event handler
on the mirrored banner image. Our handler listens for the
mouse-move event and forwards it to the shadow page’s
banner via an inter-origin message. If the ad script re-
sponds to the mouse-move event by altering the banner or
producing new ad content, these effects are replicated on
the real page by our mirroring strategy outlined above.

3.2.3 Ad policies
All messages sent between the real and shadow pages are
mediated by our policy enforcement mechanism. This
mechanism enforces policy rules which are specified by
the publisher as annotations in the real page HTML. For
the webmail example in Figure 3, the following access
control policies are specified (shown in bold):
1 <div id="MessageBody"
2 policy="read-access: subtree;">
3 Message body text here... </div>
4 <div id="Advertisement"
5 policy="write-access: subtree;"></div>

The policy in line 2 allows the ad script read-only ac-
cess to the email message body. Read-only access is en-
forced by initially populating the shadow page with con-
tent from the real page (ref. Message Body regions in
Figure 3). If ad script makes changes to read-only content,
those changes are not mirrored back to the real page. Any
attempts to mirror those changes to the real page message

body (perhaps by a compromised Tunnel Script A) are de-
nied.

The policy in line 5 permits the ad script write access to
the sidebar on the right of the email message body. This
is the region where the ad banner is to appear. When ad
script creates content in the shadow page sidebar, this pol-
icy allows our mirroring logic to reproduce that content
on the real page sidebar.

An implicit policy restriction on all mirrored content
is that executable script code can not be written to the
real page. To enforce this restriction, we only mirror
items conforming to a configurable whitelist of static con-
tent types. Note this script injection threat is distinct
from cross-site scripting (XSS), which the site can defend
against using well-researched approaches (e.g., [46]).

The full policy language (detailed in §4.1) supports
content restrictions to block Flash, deny the use of im-
ages (for text-only ads), restrict the size of ads, and more.
These constraints can be tailored to the minimum compat-
ibility requirements of individual ad networks, which we
show in §5 can prevent attacks such as clickjacking [17].

Our policy enforcement mechanism is implemented on
the real page as part of Tunnel Script B. As stated earlier,
the ad script can not access the real page (including Tunnel
Script B) due to SOP enforcement. Therefore ad script can
not tamper with our policy enforcement mechanism.

4 Implementation
The implementation of ADJAIL is described in the context
of a single webmail page with an embedded ad, which is
integrated with our defense solution. We present the pol-
icy language used to restrict ads in §4.1. Then in §4.2 we
describe how the real and shadow pages are constructed.
§4.3 explains how we facilitate interaction between the
two.

4.1 Policies

By default, ad script is given no access to any part of the
real page unless granted by policies (i.e., default-deny).
An implicit policy we always enforce is that ad script can
not inject script code onto the real page, nor execute script
code with privileges of the real page. We now describe
in detail the individual permissions granted by policies,
how policies are specified, and how multiple policies are
combined to form a composite policy.

Permissions ADJAIL supports a basic set of permissions
that control how ads appear on the real page and how ads
can behave, summarized in Table 1. We define a policy as
an assignment of values to each of the permissions. Our
permissions have been designed iteratively by studying re-
quirements of ads from several ad networks, and our re-
sults presented in §5 show the supported permissions can
be composed to form useful advertisement policies.

The permissions read-access and write-access

6

Permission Values Description / Effects

read-access none†∗, subtree Controls read access to element’s attributes and children.

write-access none†∗, append,
subtree

Controls write access to element’s attributes and children. Append is not
inherited.

enable-images deny†∗, allow Enables support in the whitelist for elements, CSS
background-image and CSS list-style-image properties.

enable-iframe deny†∗, allow Enables <iframe> elements in whitelist.

enable-flash deny†∗, allow Enables <object> elements of type
application/x-shockwave-flash in whitelist.

max-height,
max-width

0∗, n%, n cm, n em,
n ex, n in, n mm, n pc,
n pt, n px, none†

Sets maximum height / width of element to n units. Smaller dimensions are
more restrictive. When composing values specified in incompatible units,
most ancestral value wins.

overflow deny†∗, allow Content can overflow boundary of containing element if allowed.

link-target blank∗, top, any† Force targets of <a> elements to blank or top. Not forced if set to
any.

Table 1: Permissions that can be set in policy statements. ∗Most restrictive value. †Default value.

control what parts of the page ad script may read from
or write to. Of particular interest is the append set-
ting for write-access. This level of access allows ad
script to add child content to an element, but neither read
nor modify existing children of the element. Any ap-
pended children are automatically given a policy attribute
set to write-access: subtree;. Some ads, such as
the clock ad (#4) in Figure 1, require the append permis-
sion to add floating (i.e., absolutely positioned) content to
the <body> element. In supporting these ads, we don’t
want to grant subtree write access to the <body> ele-
ment, as that would enable a malicious ad to overwrite the
entire page. Granting append access in this case is safer
as it adheres to the principle of least privilege [40].

Part of our policy enforcement is a whitelist of HTML
elements, attributes and CSS properties that ad script is
allowed to write to the real page. Although this white-
list can be modified by the publisher at a low level, we
support the following higher-order controls for tuning the
whitelist. Ads are text-only by default; to enable images,
the enable-images permission can be set to allow,
thus expressing a publishers content restrictions policy on
the use of third-party images. Another content restric-
tions permission is the enable-flash permission, that
allows Flash ads to be displayed. Since our framework
doesn’t address security threats from opaque content such
as Flash (§2.1), a publisher must exercise severe caution
in enabling this permission. Also <iframe> elements
can be allowed via enable-iframe. However, allowing
<iframe> elements can facilitate attacks such as click-
jacking [17] and drive-by downloads [36].

The max-height, max-width and overflow permis-
sions control how the ad appears on the page. If an el-
ement’s size surpasses the max-width or max-height

dimension and the overflow permission is set to deny,
then excess content is hidden. Otherwise the excess con-
tent will overlap other parts of the page. The overflow per-
mission is useful because some ads consume a small area
when not in use, but may overlap non-ad content when
engaged by the user (e.g., expanding menus). Publish-
ers may wish to disallow expanding ads because they can
overlap trusted page content.

The link-target permission controls the HTML
target attribute of all <a> elements (and <form> el-
ements, if allowed by whitelist) in mirrored content. By
setting this permission, the publisher can specify that ac-
tivated links or submitted forms must be directed to a new
browser tab / window (if set to blank), or directed to
the tab / window hosting the real page (if set to top).
Whether links open in the same or new window is of-
ten agreed to between the publisher and ad network. The
link-target permission can be used to protect the pub-
lisher from ad script that mistakenly creates content that
does not adhere to the agreed upon link behavior.

Policy specification The publisher can annotate any
HTML element of the real page with a policy at-
tribute. The policy attribute contains a set of state-
ments, each terminated by a semicolon. Each state-
ment specifies the value of a particular permission in
the form, permission: value;. Acceptable values for
permission and value are listed in Table 1.

Permissions granted in an element’s policy attribute
are inherited by descendants in the HTML document hi-
erarchy. That is, the scope of a permission P is the
HTML subtree rooted at the element whose policy at-
tribute grants P .

7

378 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 379

Algorithm 1: ComputePolicy(targetElement)
1 policy ← new Object();
2 WABeforeAppend ← undefined;
3 foreach element from root to targetElement do
4 if policy[“write-access”] = “append” then
5 policy[“write-access”] ← WABeforeAppend

6 statements ←Parse(
element.getAttribute(“policy”));

7 foreach stmt in statements do
8 policy ← ComposePolicies(policy,

stmt);

9 if policy[“write-access”] �= “append” then
10 WABeforeAppend ← policy[“write-access”];

11 foreach permission in all permissions do
12 if permission is not defined in policy then
13 policy[permission] ← GetDefaultValue(

permission);

14 return policy;

Policy composition Multiple policy statements may as-
sign different values to a single permission. This can oc-
cur within a single policy attribute or through inheri-
tance. We resolve the ambiguity of multiple permission
values through a composition process. The composition
algorithm, given in Algorithm 1, takes a target element as
input and derives an assignment of values to each of the
permissions listed in Table 1.

We can describe the composition algorithm intuitively
as follows. The effective value for a permission is the
most restrictive value specified for that permission across
all composed policy statements. That is, if a permission
appears in multiple statements (either within an element’s
policy attribute or in separate inherited policies), we
take the intersection of all specified values for the per-
mission. After all statements have been composed, any
permissions left unspecified are set to their most restric-
tive values.

To enhance usability we introduced three minor ex-
ceptions to the above. First, the max-height and
max-width permissions default to their least restrictive
value (i.e., none). We chose this default because a defini-
tive maximum height and width will not be satisfactory
for every type of ad. It is better for each publisher to
explicitly declare these values if such restrictions are de-
sired. The policy semantics is still default-deny, because
write permissions must first be granted before restric-
tions on the size of written content can have any im-
pact. For the same reasons, our second exception defaults
link-target permission to its least restrictive value.
The third exception is we prevent inheritance of append
write permissions. This is important as append specifi-
cally does not grant access to existing children of an el-

(a)

1 <script type="text/javascript">
2 google_ad_client = "pub-...";
3 google_ad_width = 728;
4 google_ad_height = 90;
5 google_ad_format = "728x90_as";
6 google_ad_type = "text";
7 </script>
8 <script type="text/javascript"
9 src="http://pagead2.googlesyndi ↵

10 cation.com/pagead/show_ads.js"
11 ></script>

(b) 1 <script type="text/javascript"
2 src="AdJail.js"></script>

Figure 4: (a) Google AdSense ad script, removed from real
page. (b) Tunnel Script B, added to real page.

ement; thus any existing children should not inherit the
append permission.

4.2 Real and Shadow pages

The architecture of our implementation requires changes
to the original web page (real page) and creation of a cor-
responding shadow page as described in §3.1. The shadow
page is hosted on a web server having an origin different
from the real page, thus the browser’s same-origin pol-
icy ensures the shadow page by default has no access to
the cookies, content or other data belonging to the real
page. Deploying our implementation requires a publisher
to configure their DNS and web server to support the
shadow page origin domain. Care must be exercised in
the selection of the shadow page domain (one for each ad-
vertiser) in order to ensure that there is no reuse or overlap
of domains.

To facilitate voluntary communication between the two
pages, we leverage the window.postMessage() brow-
ser API. postMessage() is an inter-origin frame com-
munication mechanism that enables two collaborating
frames to share data in a controlled way, even when SOP
is in effect [1].

Construction of the real page The real page is a ver-
sion of the publisher’s original page modified in three
ways. The first modification is to remove the ad script
(Figure 4a). Second, we add the tunnel script (Figure 4b)
to the end of the page. The third modification to the orig-
inal page is annotation of HTML elements with policies,
which we discussed at length in §4.1. Only two annota-
tions, illustrated in §3.2.3, are required for the webmail
example.

The real page tunnel script has an initialization
routine that first scans the real page to find all el-
ements with policies granting the following permis-
sions: read-access: subtree;, write-access:

append;, and write-access: subtree;. All match-
ing elements are converted into models (i.e., JavaScript

8

1 { nodeType: "ELEMENT NODE",
2 tagName: "div", syncId: 0,
3 top: y, left: x, width: w, height: h,
4 attributes: {
5 id: "MessageBody",
6 policy: "read-access: subtree;"
7 },
8 children: [
9 {

10 nodeType: "TEXT NODE",
11 nodeValue: "Message body text here..."
12 }
13],
14 computedStyle: { ... }
15 }

Figure 5: Model of MessageBody element (as defined in
§3.2.3) sent from real page to shadow page

data structures) that will be sent to the shadow page in
a later stage. Script nodes are omitted from models be-
cause we can not guarantee their semantics are preserved
on the shadow page. An example model is shown in Fig-
ure 5, which models the readable Message Body <div>

element in the webmail page (corresponding HTML given
in §3.2.3).

Of the elements found in the initial scan, those with
read permission are modeled by encoding (non-script) el-
ement attributes and readable child nodes into the model.
The remaining elements (i.e., those having write access
but no read access) are modeled as empty containers. That
is, any attributes and child nodes are omitted from the
model.

All elements with a policy annotation and their descen-
dant elements are assigned a unique syncId attribute dur-
ing initialization. The sync ID is used to match elements
on the real page with their corresponding elements on the
shadow page as content is kept synchronized between the
two pages. As the final step of initialization, the tunnel
script creates and embeds the hidden <iframe> element
for the shadow page.

Construction of the shadow page The shadow page be-
gins as a template web page containing only the tunnel
script. As the template page is rendered, the shadow
page tunnel script receives content models (described
above) from the real page’s tunnel script. The model
data is sent as a character string in JSON [7] syntax via
postMessage(). Once received by the shadow page,
models are converted into HTML constructs using the
browser’s DOM interfaces. This results in a web page
environment containing all the non-sensitive content and
constructs of the real page, in which we will allow the ad
script to execute.

To support ads (such as inline text ads) that appear or
behave differently depending on where content is posi-
tioned, the shadow page is virtually sized to the dimen-

sions of the real page, and content models are rendered
in the same absolute position and size of their real page
counterpart. Position and size information is depicted in
Figure 5 as top, left, width and height properties.
Throughout dynamic updates these attributes are kept syn-
chronized by an approach given in §4.3.4.

Next, we install wrappers around several DOM API
methods to interpose between the ad script and the
DOM. Although ad script can circumvent our wrappers
in Mozilla browsers by using the JavaScript delete op-
erator [35], we do not rely on wrappers to enforce policies
or security properties. Wrappers are used to monitor page
updates and provide transparency with regard to the num-
ber of impressions generated by ads, which we discuss at
length in §4.3.

Default ad zone Lastly, the ad script is embedded in the
shadow page inside a container <div> element, which we
automatically map to a corresponding <div> on the real
page. We refer to these linked elements as the default ad
zone. Automatic mapping is required because many ad
scripts, such as Google AdSense, will not independently
find and inject ads into the content imported from the real
page. Rather they simply write ad content into the element
containing the ad script. To support these ad scripts, the
publisher indicates the default ad zone element on the real
page by setting its HTML class attribute to include the
class AdJailDefaultZone and ensuring the element’s
policy grants subtree write access. If the real page has
no valid and unique default zone, content written to the
shadow page default zone will not appear on the real page.

4.3 Synchronization

After initial rendering of the real and shadow pages in the
browser, the two pages are kept synchronized by exchang-
ing the messages listed in Table 2. We conserve the total
number of generated ad impressions, using an approach
given in §4.3.1. Content written by ad script to the shadow
page is mirrored to the real page by a process described
in §4.3.2. User interface events are forwarded from the
real page to the shadow page as detailed in §4.3.3. Lastly,
§4.3.4 describes how content position and style is kept
synchronized on both pages as needed by some ad scripts.

4.3.1 DOM interposition
A primary goal of our approach is to conserve the num-
ber of ad impressions detected by an ad server, which we
achieve using DOM interposition. Ad networks bill ad-
vertisers, and in turn pay publishers, based in part on the
number of ad impressions. Impression counts are corre-
lated to the number of requests for ad resources submitted
to the web server [18]. When ad content is rendered on
the real page, any external resources not available in the
browser’s cache will be requested, causing an impression.
This may occur for several possible reasons out of our
control, such as: the user disabled the cache, the ad net-

9

380 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 381

(a) Real page to shadow page:

DispatchEvent(event)
Dispatch event to shadow page.

SetScrollPos(x, y)
Scroll hidden shadow page to coordinates (x, y).

SetStyle(syncId, properties)
Set style of shadow page element identified by syncId as
specified in properties.

(b) Shadow page to real page:

Initialize(step)

Initialize communication channel (two steps)

InsertNode(syncId, index, model)
Insert node described by model as child index of element
identified by syncId.

ModifyAttribute(syncId, name, value)
Set attribute name to value on element identified by syncid.

ModifyStyle(syncId, name, value, priority)
Set CSS property name to value and priority on element
identified by syncId.

ModifyText(syncId, index, data)

Set text content to data on index child of element identified by
syncId.

RemoveNode(syncId, index)
Remove node index child node of element identified by syncId.

ReplaceChildren(syncId, models)
Replace child nodes of element identified by syncId with
children described in models.

WatchEvent(syncId, type, phase)
Register a listener for event type and phase (bubble / capture)
on element identified by syncId.

Table 2: Synchronization messages sent between real and
shadow pages via DOM postMessage() API.

work instructed the browser (via Cache-Control HTTP
headers) not to cache a resource, or per-origin cache par-
titioning [19] is in effect.

Impressions will be generated when the ad is rendered
on the real page. Therefore, when ad content is initially
rendered on the shadow page, we must prevent the brow-
ser from submitting HTTP requests for external resources,
as that would cause superfluous impressions. Our imple-
mentation supports conserving impression counts for the
following elements in our whitelist: , <iframe>
and <object> (Flash). Additionally we conserve im-
pression counts for background image CSS properties
in our whitelist: background, background- image,
list-style and list-style-image.

To prevent ad impressions on the shadow page, we in-
terpose on the common interfaces ad scripts use to cre-

ate content. First, we hook DOM object prototype in-
terfaces [25] to prevent ad scripts from setting URI at-
tributes. For instance, we interpose on the src property
of HTMLImageElement objects, and getAttribute()

and setAttribute() DOM methods. We also
hook other interfaces that access URI attributes, such
as document.write(), document.writeln(), and
element.innerHTML, to increase completeness and
transparency of the interposition.

When ad script writes a URI attribute using one of these
APIs, we substitute the real URI value with a placeholder
value. For write(), writeln(), and innerHTML, this
substitution requires a character search and replace in
HTML source code. Our current implementation of this
operation makes use of regular expression based textual
transformation, which works well in practice, but may not
be very precise under all circumstances. As the purpose
of this substitution is to conserve ad impressions, a loss
in precision here may affect compatibility with ads, but
not security. If more precision is required, works on in-
browser source-to-source HTML transformation [14, 34]
can be leveraged, at the cost of additional overhead.

One exception we make to the above scheme is for
<script> elements. Our interposition does not block the
setting of src attributes for scripts, because our goal is to
enable ad scripts to execute in the shadow page. Thus
scripts are the only source of ad impressions from the
shadow page. Since our policy enforcement mechanism
prevents ad scripts in the real page, each script is created
only once, thereby conserving the number of ad impres-
sions.

4.3.2 Content mirroring
We mirror ad content from the shadow page to the real
page using a 5-step process: (1) monitoring the shadow
page for modifications by the ad script, (2) modeling the
detected modifications, (3) sending the model to the real
page, (4) enforcing policies on the model, and (5) modi-
fying the real page to reflect the model.

1. Monitoring the shadow page for modifications
We monitor the shadow page for dynamic modifications
using DOM interposition logic (introduced in §4.3.1).
In addition to APIs that affect element attributes, we
also hook APIs that modify the document, such as
element.appendChild(). Whenever ad script attaches
a new DOM node using appendChild(), our monitoring
code is invoked before the actual modification takes place.
Alternatively, DOM mutation events [51] can be leveraged
to perform the same monitoring function with lower com-
plexity than DOM interposition. However, Internet Ex-
plorer does not yet support mutation events, which would
result in decreased compatibility.

2. Modeling the detected modifications When modifi-
cations to the shadow page are detected, we encode those

10

SALE

Shadow Page
(hidden)

Ad Image (valid src)

Mirrored Ad

Content Model

Image Node
(invalid src)

Ad

postMessage()
Channel

Real Page

Figure 6: Rendering an ad image only on the real page so that
just one impression is generated.

changes using the same model format described in §4.2
and depicted in Figure 5. However, when we find content
that was substituted by our interposition (ref. §4.3.1), we
model the ad script’s intended content instead of the sub-
stituted content. Models are passed to the real page, where
the modifications will be reflected to the extent allowed by
policies.

3. Sending models to the real page The process of send-
ing a model of an image element is depicted in Figure 6.
In the shadow page, we serialize the model data structure
to a JSON string. We send the serialized model from the
shadow page to the real page using the InsertNode()

message from Table 2b. (Other types of modifications use
the additional postMessage() notifications listed in Ta-
ble 2b.) On the receiving end (i.e., the real page), we de-
serialize the string to recover the model data structure.

4. Enforcing policies on the models Our policy enforce-
ment code in the real page receives the model from the
shadow page. The model is then checked for any content
that violates the real page policy annotations. We trim
all policy-violating content from the model. For instance,
if the model describes an image to be added to the page
where the enable-images permission is denied, then we
remove the image from the model. If the model describes
an ad that is 1000 pixels wide and the policy only allows
the ad to be 600 px, we allow the ad but restrict its maxi-
mum width to 600 px.

5. Modifying the real page to reflect the mod-
eled changes Finally we merge the changes
represented by the model into the real page. We
create or modify constructs using DOM APIs, such
as document.createElement() and element

.setAttribute(). To ensure scripts are not injected

into the real page during this process, we leverage
the techniques we developed in BLUEPRINT [46] to
enforce a no-script policy over all merged changes.
This entails protecting several script injection vectors,
including <script> elements, event handler attributes,
javascript: URI schemes, CSS expressions, and
more.

Mirroring ad content on the real page has the side-effect
of modifying the real page script execution environment.
For instance, elements such as <input name="query"

...> can pollute the namespace by creating properties
such as document.elements.query. A straightfor-
ward solution to this problem is disallowing name and id

attributes on mirrored ad content; however, this may re-
duce compatibility with some ads.

4.3.3 Event forwarding
To prevent code injection attacks during content mirror-
ing, our whitelist intentionally omits event handlers such
as onclick and onmouseover that have been attached to
ad content. In order to preserve event handler functional-
ity in spite of this restriction, we perform event forward-
ing.

Event forwarding leverages our DOM interposition
framework. We interpose on script operations used to
register event handlers such as handler attributes and
object properties (e.g., onclick, onload, etc.), us-
ing the same mechanism used for URI attributes and
properties described in §4.3.1. Additionally, browser-
specific APIs such as element.addEventListener()
and element.attachEvent() are detected and inter-
posed on when present.

When ad script uses any of these APIs to register an
event handler on an element, and that element is also mir-
rored on the real page, we register our own handler for
the same event on the mirrored element. Event handlers
are registered on the real page when specified in con-
tent models (InsertNode() and ReplaceChildren()

messages), or by sending the WatchEvent() message of
Table 2. Whenever the event occurs on the real page, our
handler is invoked and sends details of the event to the
shadow page using the DispatchEvent() message (in-
dicated by path 3 on Figure 3). On the shadow page we
establish the appropriate JavaScript scope, then dispatch
the event to the target element. This in turn invokes the
ad script’s original event handler. Effects caused by the ad
script’s handler are detected and mirrored back to the real
page using the mechanism described in §4.3.2.
Ad clicks Unlike other user interface events, we do not
forward click events on <a> (link) elements. Instead we
click (i.e., activate) links on the real page, subject to en-
forcement of the link-target permission. This has
the effect of bypassing any click event handlers the ad
script may have registered on the activated link. There-
fore there can be a compatibility trade-off in enforcing the

11

382 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 383

link-target permission if the ad script depends on such
event handlers.

4.3.4 Position and style synchronization

Some ads mimic the appearance of a pop-up window by
temporarily overlaying parts of the web page. Although
the pop-up window can appear at variable locations on the
page, typically it is positioned such that it is visible (given
the portion of the page that is scrolled into view) and rela-
tive to some other content (such as a contextual keyword).
The ad script contains logic to compute the pop-up loca-
tion based on the above criteria. However, if content ap-
pears at a different location on the real page than it does on
the shadow page, the pop-up will be positioned incorrectly
when mirrored. For this reason we support synchroniz-
ing the visual aspect of both real and shadow pages, even
though the shadow page remains hidden.

First, we keep the window sizes of each page synchro-
nized by setting the shadow page size to 100% of the real
page size. Second, we sync the scroll position of both
pages by registering an event handler for the real page’s
onscroll event. Whenever the event fires, we send a
SetScrollPos()message to the shadow page. Our code
running in the shadow page receives this message and ad-
justs the shadow page vertical and horizontal scroll offsets
to match the real page.

Next we have to ensure content on the shadow page oc-
cupies the same location and extent as the corresponding
content on the real page. For example, consider the in-
line text ad (Figure 1, #3), which highlights keywords and
makes a pop-up appear near a keyword when the user’s
mouse hovers over it. The precise location of the key-
word depends on many things, such as the absolute co-
ordinates of the element containing the text, height and
width of the container element, font size of the text, di-
mensions / layout of other content in the container, and
more. We synchronize these details by sending the abso-
lute position, size and computed style of each mirrored el-
ement to the shadow page via the SetStyle() message.
On the shadow page we apply these properties to content
elements, while keeping record that these are not “authen-
tic” properties that should be synchronized back to the real
page during any future content mirroring operations.

This strategy works very well in practice but is not per-
fect. For instance, there may be text in the real page that
flows around an image. If the policy in effect for the text
content allows read access, and the image is not readable,
then the image will not appear on the shadow page and
thus the text will not flow in the same way. To resolve
issues due to the layout becoming out of sync, the pub-
lisher can either make the image readable or customize
the shadow page to more accurately reflect the real page.

5 Evaluation
We evaluated ADJAIL to assess performance in three ma-
jor areas. In §5.1 we investigate the compatibility of our
architecture with six popular ad networks, each of which
serve a variety of ads. The security of our approach is
tested in §5.2. We then measure ad display latencies in
§5.3. Although many ad networks exist which were not
tested, we believe the relatively small sample we evalu-
ated offer good insights into the compatibility and perfor-
mance of ADJAIL.

5.1 Compatibility

To evaluate how well ADJAIL works with existing ad
scripts, we tested it on six popular ad networks: Yahoo!
Network, Google AdSense, Microsoft Media Network,
Federated Media Publishing, AdBrite and Clicksor. The
first four used banner ads, while the latter two employed
more complicated inline text ads. Yahoo!, Google and Mi-
crosoft were three of the top ten ad networks in terms of
U.S. market reach in April 2009. With a total audience
size of 192.8million, Yahoo! reached 86.6% of the mar-
ket, Google reached 85.3%, and Microsoft reached 72.4%
[3].

Federated Media, AdBrite and Clicksor rank lower in
terms of U.S. market reach (e.g., AdBrite ranked #21
with a reach of 47.2%), but were chosen as they repre-
sent the small publisher market and demonstrate unique
functionality. They are not as pervasive, therefore they
are more likely to exhibit compatibility problems and less
tested features. In our experiments we focused on the fol-
lowing observations: whether the ad functioned correctly,
the minimum permissions required to support the ad, and
whether click and impression counts were affected by our
approach.

Our prototype ADJAIL implementation is a sufficient
proof-of-concept to demonstrate the feasibility of our ap-
proach. The prototype is designed and tested to work on
recent releases of the Chrome, Firefox, Internet Explorer,
Opera and Safari web browsers. It does not yet have the
level of refinement that would be present in a production
system, which exposes some compatibility limitations we
describe below.

Correct functionality To evaluate correct functionality
we embedded ad scripts from each ad network in a series
of ADJAIL test pages, then compared the user experience
to the same ad scripts when used without sandboxing. The
four banner ad scripts (Yahoo!, Google, Microsoft and
Federated) all made use of the default ad zone feature. In
this experiment we observed two main types of ad banner:
animated image and Flash.

All of the banner ads rendered on the real page with-
out any noticeable differences from rendering the ad with-
out ADJAIL. Interacting with Flash ads via the mouse
and clicking on banners worked exactly the same as the

12

non-sandboxed ads. One minor issue we are aware of
is that the contextual targeting approach used by Google
AdSense does not work with our current implementation.
This is because AdSense performs contextual targeting
on the server, using an offline cached copy of the pub-
lisher’s page. This limitation can be overcome by pro-
viding pre-computed shadow pages to ad networks who
perform server-side contextual targeting, like AdSense.

For each of the inline text ad scripts (AdBrite and Click-
sor), we annotated a news article with a full read and
write access policy. The ad scripts identified keywords in
the article and transformed them into interactive ads that
“pop up” when the user hovers the mouse cursor over a
keyword. This allowed us to evaluate the intricate syn-
chronization capabilities of our architecture, such as ad
script modifying existing page content and event forward-
ing. The pop-ups consisted of a decorative window border
around the actual advertisement. AdBrite worked well in
this experiment; its ads were simply <iframe>s wrapped
by the decorative border. Clicksor also worked without
any noticeable differences.

Minimum permissions For each tested ad network, we
enabled the strictest set of permissions that would per-
mit ads to function without impairment. These permis-
sions are summarized in Table 3. To arrive at the set of
permissions, we started with the base read and write ac-
cess needed by the ad. We then enabled support in the
content whitelist based on the needs of the ad. Finally,
for fixed-size banner ads we set the maximum width and
height policies.

Google AdSense was configured to serve text ads, so
we were hoping to confine it with a strict text-only pol-
icy. Unfortunately the text ads were contained in an
<iframe>, thus we had to set the enable-iframe per-
mission.

AdBrite and Clicksor needed append write permission
on the <body> element to create their pop-ups. White-
list customization was also required for the pop-ups, as
they contained custom HTML elements to prevent inher-
itance of publishers’ CSS formatting rules [4]. AdBrite
was easier to support as we only had to whitelist their cus-
tom <ispan> element. Clicksor used a randomly gen-
erated element tag name consisting of the word “span”
followed by digits (e.g., <span40110>). To accommo-
date Clicksor we modified the whitelist to accept element
tag names that matched the JavaScript regular expression
/ˆspan[0-9]{5,7}$/. Also we note that Clicksor was
the only ad network to require <form> and <input> ele-
ments in its whitelist.

Click and impression counts To measure the number of
clicks and impressions caused by ads, we configured our
browser to route all traffic through a web proxy running
the Squid proxy software. We rendered each ad script with
and without sandboxing, and clicked on the displayed ads

in each case. For this experiment, the web page hosting
the ad script was completely blank except for a single
paragraph of text, which was used for rendering inline text
ads and contextual ad targeting.

A given ad script may show a different ad each time
it is rendered. To ensure consistency in our evaluation,
multiple renderings were sometimes performed for an ad
network to ensure we clicked on the same advertisement
with and without sandboxing. In between renderings, we
cleared the browser’s cache to ensure proxy access pat-
terns were not affected by prior tests.

After performing the experiment, we analyzed the
proxy’s access logs. We discarded all log entries that re-
ferred back to our server hosting the test pages and AD-
JAIL source code. Comparing the remaining log entries,
we did not find any differences in the HTTP requests gen-
erated by sandboxed versus non-sandboxed ads. Thus we
conclude that in our experiment, ads using our sandbox
environment did not impose any additional impressions
or generate any additional clicks, thereby preserving traf-
fic patterns crucial to the web advertising revenue model.

5.2 Security

To evaluate the security provided by ADJAIL we in-
stalled the RoundCube webmail v0.3.1 software on our
web server. We integrated two ad network scripts on the
main webmail interface: one ad script was included di-
rectly on the page, and the other was embedded using
ADJAIL. A single trial consisted of replacing each of
the two ad scripts with a malicious script designed to per-
form one specific attack or policy violation. We then ob-
served if the malicious script functioned correctly in the
non-sandboxed location, and whether the attack was pre-
vented in the sandboxed location. Several trials were con-
ducted to assess different attack vectors, and to determine
the least restrictive policy required to defend each vector.

Our experiments were designed to support our claims in
§1 of strong defense against several potent attack vectors
to which ad publishers are routinely exposed. However,
we did not evaluate the threats discussed in §2 that are be-
yond the scope of our current work: drive-by downloads,
Flash exploits, privacy attacks, covert channels, and frame
busting.

Results of the security evaluation are included on the
right side in Table 3. With appropriate policies in ef-
fect, ADJAIL blocked all of the in-scope threats. We note
that for each ad, write access was allowed for the subtree
rooted at the <div> element designated for ad content.
However, every ad policy denied write access (the default
setting) for the rest of the document. A degree of leniency
is required in our policies for compatibility with existing
ads, which opens the door to some of the secondary at-
tacks. However, every ad network we tested was protected
from our primary threats: confidential data leaks and con-
tent integrity violations.

13

384 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 385

Ad Network Element Computed Policy (Annotated policy in bold) Attack resistance

read write enable enable enable max max over- E C I C U A O
access access images iframe flash width height flow X B V J I P A

AdBrite <body> none append allow allow deny none none deny � � �

Article <div> subtree subtree deny deny deny none none deny � �

Clicksor <body> none append allow deny deny none none deny � � � �

Article <div> subtree subtree deny deny deny none none deny � � �

Federated
Media

Ad <div> none subtree allow allow allow 90px 728px deny � � � � �

Rest of page none none deny deny deny none none deny � � � � � � �

Google Ad <div> none subtree deny allow deny 600px 160px deny � � � � �

Rest of page none none deny deny deny none none deny � � � � � � �

Microsoft
Media

Ad <div> none subtree deny allow allow 300px 250px deny � � � � �

Rest of page none none deny deny deny none none deny � � � � � � �

Yahoo! Ad <div> none subtree deny deny allow 90px 780px deny � � � � � �

Rest of page none none deny deny deny none none deny � � � � � � �

Table 3: Policy annotations required to support several popular ad networks, and attacks prevented in policy enforcement regions.
Attacks prevented are: EX: Execute arbitrary code in context of real page (non-XSS), CB: Data confidentiality breach, IV: Content
integrity violation, CJ: Clickjacking, UI: UI spoofing, AP: Arbitrary ad position, OA: Oversized ad. Default link-target policy
used for all.

Below we briefly describe our objectives and method-
ology for testing each attack.

Execute arbitrary code in context of real page In this
attack we attempted to break out of the sandbox, by caus-
ing the browser to execute ad script code in context of the
real page. This attack is critical because, if successful,
malicious code can disable all policy enforcement logic in
the real page and subsequently mount any of the other at-
tacks. Specifically excluded from this vector is code injec-
tion by reflected, DOM0, and stored XSS attacks, which
the web application can defend by other means.

We attempted to inject script code in the real page via
DOM traversal, but this was blocked by the browser’s
SOP policy. Next, we evaluated 7 different real-world at-
tacks sourced from the XSS Cheat Sheet [16]. Each at-
tack demonstrated a unique code injection vector, such as
embedded script element, event handler, javascript:
URI, CSS expression, and more. These code injection at-
tempts were blocked by enforcing a no-script policy on
content models when constructing the mirrored ad in the
real page, using the technique we developed in prior work
[46].

To evaluate our defense against Flash-based script in-
jection attacks, we created a Flash application that uses
the ExternalInterface API to extract confidential
data from the DOM. Flash regulates access to this API

via the allowScriptAccess attribute of <object> el-
ements, and value attribute of <param> elements when
the name attribute is set to allowScriptAccess. With-
out ADJAIL, the ad network’s script can create Flash
objects on the real page with allowScriptAccess

set to always. This setting permits Flash Action-
Script code to fully access the real page’s JavaScript
environment, including sensitive page content via the
DOM. Our defense blocks this attack vector by forc-
ing the allowScriptAccess attribute to never on
all <object> elements and relevant <param> ele-
ments. This action effectively disables the Flash
ExternalInterface API.

All script injection attacks were prevented even with the
most permissive policy that can be written using our pol-
icy language. Thus the script injection vector is defended
for every possible policy configuration.

Confidential information leak For this attack we re-
trieved two items of confidential data from the real page:
the user’s session cookie and list of email contacts. Due
to SOP restrictions, the sandboxed attack could not ac-
cess the information by DOM traversal. (We note DOM
traversal is also an ineffective strategy for all remaining
evaluated attacks.) The only way the attack could access
confidential data was when the data was given a policy
granting full read access.

14

0 100 200 300 400 500 600 700 800
(a) Ad render time (ms)

AdBrite

Clicksor

Federated

Google

Microsoft

Yahoo!

AdJailOriginal

0 100 200 300 400 500 600 700 800
(a) Ad render time (ms)

AdBrite

Clicksor

Federated

Google

Microsoft

Yahoo!

0 100 200 300 400 500 600 700 800
(b) Ad display latency (ms)

AdBrite

Clicksor

Federated

Google

Microsoft

Yahoo!

AdJailOriginal

0 100 200 300 400 500 600 700 800
(b) Ad display latency (ms)

AdBrite

Clicksor

Federated

Google

Microsoft

Yahoo!

Figure 7: Rendering latencies: (a) time spent loading the ad, and (b) time from start of page load until ad appears.

Content integrity violation This attack tampers with
trusted content on the real page: the user’s email mes-
sage headers. Specifically the attack makes all messages
appear to be sent by prominent government officials. The
sandboxed attack was unsuccessful except when the mes-
sage headers were given a policy with full write access.

Clickjacking The clickjacking attack attempts to entice
the user to unknowingly click on an <iframe> element.
The attack script is based on detailed technical analy-
sis of the vector [17, 54]. With a policy that disallows
<iframe> elements, the sandboxed attack was unsuc-
cessful because the policy prevents any <iframe> on the
(hidden) shadow page from being brought up to the real
page where the user can click it. Since any <iframe>

embedded by the ad is unclickable to the end user, typi-
cal tricks to mask the clickjacking attack (e.g., hiding the
<iframe> using transparency) are not a factor.

User interface spoofing We made an ad appear identi-
cal to trusted webmail user interface components in an at-
tempt to lure users into interacting with the ad (i.e., an in-
terface spoofing attack [26]). This attack was defeated by
denying images, <iframe>s and Flash, and further con-
straining the ad with policies that disallow the ad from
overlapping other parts of the trusted interface. Since the
ad can still make use of textual elements, we note there
exists a very small likelihood for an attacker to succeed
through very nuanced UI spoofing attack using very small
(single pixel) elements or text, such that images can be
rendered in HTML one pixel at a time. Mitigating this
threat may require advanced analysis of ad content or re-
stricting the color palette available to ads.

Arbitrary ad position We made an ad appear on the
real page outside of its write-accessible container element.
This type of violation can be performed by setting an ad
content display position that is outside the bounds of its
container. With a policy that denies overflow, violations
due to out-of-bounds display positioning are blocked. Po-
sition policies can also be violated by a node splitting at-
tack, which may only succeed when there is no mecha-
nism to provide hypertext markup isolation [41, 45]. Our

content mirroring approach provides the necessary isola-
tion by default to prevent node splitting attacks.

Oversized ad We made an ad larger than the publisher’s
expected ad size. The size violation was blocked by con-
figuring a policy to limit the maximum height and width,
and disallowing overflow.

5.3 Rendering overhead

To measure ad rendering latencies incurred by our policy
enforcement mechanism, we placed each ad script on a
typical blog page instrumented with benchmarking code.
There were a total of 12 instances of the blog page: for
each of the six ad networks evaluated in §5.1, one version
of the blog page used the original ad, and a second ver-
sion used ADJAIL to enforce the policies in Table 3. As
the blog page is rendered, the ad script executes and scans
for contextual data, requests a relevant ad from the ad net-
work based on this data, and finally renders the ad. This
experiment reflects the typical delays a end-user would
experience when browsing publisher pages that integrate
ADJAIL.

The test pages were rendered in Firefox v3.6.3 on
an AMD Phenom X4 940 (3.0GHz) workstation with
7.5GB RAM. To resemble a typical browsing environ-
ment, the browser cache was enabled during the experi-
ment. Each test page includes a link to our ADJAIL imple-
mentation source code (102 kB of JavaScript), which was
cached by the web browser. The code is not optimized
for space and contains much debug code. The memory
overhead required by ADJAIL was reasonably consistent
across ad networks, averaging 5.52% or roughly 3.06MB.

Results of this experiment are shown in Figure 7. First
we measured the time taken to render only the ad (Fig-
ure 7a). For AdBrite and Clicksor (inline text ads), this
measurement consists of the time between the user trig-
gering an ad pop-up and appearance of the pop-up. Al-
though we do not separately report the latency incurred
by forwarding events to the shadow page (ref. §4.3.3),
this overhead is included in Figure 7. For this experi-
ment, we stopped the benchmark after the ad’s <iframe>

15

386 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 387

or <object> onload event was triggered, signaling the
ad was complete. Without sandboxing, ads rendered in
374ms on average. With ADJAIL, ad rendering averaged
532ms, an additional latency of 158ms.

To better understand the impact of ad rendering latency,
we measured the time between when the page started
loading until the ad completed rendering (Figure 7b). This
is an important benchmark for ads, as many ad networks
use a content distribution network (CDN) to improve per-
formance in this regard [47]. For AdBrite, and Clicksor,
we measured the time until inline text links finished ren-
dering, although no ads are visible until the user triggers
a pop-up. Without sandboxing, ads appear in 489ms on
average after the page begins to load. With ADJAIL, an
additional 163ms delay was incurred on average.

Optimizing performance is an important area for fu-
ture work. A straightforward way to improve perfor-
mance will be to optimize our prototype implementation.
More significant gains may be achieved by adapting our
approach to support pre-computing policies and shadow
pages. It may be feasible to integrate caching of poli-
cies and shadow pages into web application templates and
frameworks, to allow better performance without raising
the publisher effort required to deploy ADJAIL.

6 Conclusion
In this paper, we presented ADJAIL, a solution for the
problem of confinement of third-party advertisements to
prevents attacks on confidentiality and integrity. A key
benefit of ADJAIL is compatibility with the existing web
usage models, requiring no changes to ad networks or
browsers employed by end users. Our approach offers
publishers a promising near term solution until web stan-
dards support for confinement of advertisements evolves
to offer solutions agreeable to all parties.

Acknowledgements
We thank Rohini Krishnamurthi for many insightful dis-
cussions that helped to shape principal ideas of this work.
Our sincere thanks to our shepherd Lucas Ballard, and
the anonymous reviewers for their helpful and thorough
feedback on drafts. This work was partially supported by
National Science Foundation grants CNS-0716584, CNS-
0551660, CNS-0845894 and CNS-0917229. The first au-
thor was additionally supported in part by a fellowship
from the Armed Forces Communications and Electronics
Association.

References
[1] Adam Barth, Collin Jackson, and John C. Mitchell. Securing frame

communication in browsers. In 17th USENIX Security Symposium,
San Jose, CA, USA, July 2008.

[2] Click Quality Team. How fictitious clicks occur in third-party click
fraud audit reports. Technical report, Google, Inc., August 2006.

[3] comScore. April 2009 U.S. ranking of top 25 ad networks.
http://www.comscore.com/Press_Events/Press_
Releases/2009/5/Top_25_US_Ad_Networks, May
2009. Retrieved 19 Nov. 2009.

[4] Sean Conaty. Introducing the <ispan>. http://
nerdcereal.com/introducing-the-ispan/, January
2008. Retrieved 1 Jun. 2010.

[5] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detec-
tion and analysis of drive-by-download attacks and malicious Java-
Script code. In 19th International World Wide Web Conference,
Raleigh, NC, USA, April 2010.

[6] Douglas Crockford. ADsafe. http://www.adsafe.org/.
Retrieved 1 Jun. 2010.

[7] Douglas Crockford. The application/json media type for JavaScript
object notation (JSON). http://tools.ietf.org/html/
rfc4627, July 2006. RFC 4627.

[8] Úlfar Erlingsson, V. Benjamin Livshits, and Yinglian Xie. End-to-
end web application security. In 11th Workshop on Hot Topics in
Operating Systems, San Diego, CA, USA, May 2007.

[9] Facebook Developers. Facebook JavaScript. http://wiki.
developers.facebook.com/index.php/FBJS. Re-
trieved 8 Apr. 2010.

[10] Adrienne Felt, Pieter Hooimeijer, David Evans, and Westley
Weimer. Talking to strangers without taking their candy: Isolating
proxied content. In 1st International Workshop on Social Network
Systems, Glasgow, Scotland, April 2008.

[11] Edward W. Felten and Michael A. Schneider. Timing attacks on
web privacy. In 7th ACM Conference on Computer and Communi-
cations Security, Athens, Greece, November 2000.

[12] Matthew Finifter, Joel Weinberger, and Adam Barth. Preventing
capability leaks in secure JavaScript subsets. In 17th Annual Net-
work & Distributed System Security Symposium, San Diego, CA,
USA, March 2010.

[13] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni Vi-
gna. Analyzing and detecting malicious Flash advertisements. In
25th Annual Computer Security Applications Conference, Hon-
olulu, HI, USA, December 2009.

[14] Google Caja. A source-to-source translator for securing
JavaScript-based web content. http://code.google.com/
p/google-caja/. Retrieved 1 Jun. 2010.

[15] Saikat Guha, Bin Cheng, Alexy Reznichenko, Hamed Haddadi,
and Paul Francis. Privad: Rearchitecting online advertising for
privacy. Technical Report MPI-SWS-2009-004, Max Planck In-
stitute for Software Systems, Kaiserslautern-Saarbruecken, Ger-
many, October 2009.

[16] Robert Hansen. XSS (cross site scripting) cheat sheet esp: for fil-
ter evasion. http://ha.ckers.org/xss.html, 2008. Re-
trieved 8 Apr. 2010.

[17] Robert Hansen and Jeremiah Grossman. Clickjacking. http:
//www.sectheory.com/clickjacking.htm, September
2008. Whitepaper.

[18] Interactive Advertising Bureau. Interactive audience measurement
and advertising campaign reporting and audit guidelines. Global
Version 6.0b, IAB, September 2004.

[19] Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell.
Protecting browser state from web privacy attacks. In 15th Inter-
national World Wide Web Conference, Edinburgh, Scotland, May
2006.

[20] Collin Jackson and Helen J. Wang. Subspace: Secure cross-
domain communication for Web mashups. In 16th International
World Wide Web Conference, Banff, AB, Canada, May 2007.

16

[21] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script in-
jection attacks with browser-enforced embedded policies. In 16th
International World Wide Web Conference, Banff, AB, Canada,
May 2007.

[22] Haruka Kikuchi, Dachuan Yu, Ajay Chander, Hiroshi Inamura, and
Igor Serikov. JavaScript instrumentation in practice. In 6th Asian
Symposium on Programming Languages and Systems, Bangalore,
India, December 2008.

[23] Jeremy Kirk. Ad exploits Internet Explorer vulnerability to explose
millions to adware. http://www.infoworld.com/print/
23520, July 2006. Retrieved 23 Apr. 2010.

[24] Mary Landesman. ScanSafe: Weekend run of malvertisements.
http://blog.scansafe.com/journal/2009/9/24/
weekend-run-of-malvertisements.html, September
2009. Retrieved 23 Apr. 2010.

[25] Travis Leithead. Document Object Model prototypes, Part
1: Introduction. http://msdn.microsoft.com/en-us/
library/dd282900%28VS.85%29.aspx, November 2008.
Microsoft Corporation. Retrieved 22 May 2010.

[26] Elias Levy and Iván Arce. Interface illusions. IEEE Security and
Privacy, 2:66–69, 2004.

[27] Zhenkai Liang, V. N. Venkatakrishnan, and R. Sekar. Isolated pro-
gram execution: An application transparent approach for execut-
ing untrusted programs. In 19th Annual Computer Security Appli-
cations Conference, Las Vegas, NV, USA, December 2003. IEEE
Computer Society.

[28] V. Benjamin Livshits and Salvatore Guarnieri. Gatekeeper: Mostly
static enforcement of security and reliability policies for JavaScript
code. In 18th USENIX Security Symposium, Montreal, Canada,
August 2009.

[29] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Language-based
isolation of untrusted JavaScript. In 22nd IEEE Computer Security
Foundations Symposium, Port Jefferson, NY, USA, July 2009.

[30] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Run-time en-
forcement of secure JavaScript subsets. In 3rd Workshop in Web
2.0 Security and Privacy, Oakland, CA, USA, May 2009.

[31] Dahlia Malkhi and Michael K. Reiter. Secure execution of Java
applets using a remote playground. IEEE Transactions on Software
Engineering, 26(12):1197–1209, December 2000.

[32] Gervase Markham. Content restrictions. http://www.gerv.
net/security/content-restrictions/, March 2007.

[33] Leo A. Meyerovich and V. Benjamin Livshits. ConScript: Speci-
fying and enforcing fine-grained security policies for JavaScript in
the browser. In IEEE Symposium on Security and Privacy, Oak-
land, CA, USA, May 2010.

[34] Microsoft Live Labs. Web Sandbox. http://websandbox.
livelabs.com. Retrieved 1 Jun. 2010.

[35] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight
self-protecting JavaScript. In ACM Symposium on Informa-
tion, Computer and Communications Security, Sydney, Australia,
March 2009.

[36] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and
Fabian Monrose. All your iFRAMEs point to us. In 17th USENIX
Security Symposium, San Jose, CA, USA, July 2008.

[37] C. Reis, J. Dunagan, Helen J. Wang, O. Dubrovsky, and S. Esmeir.
BrowserShield: Vulnerability-driven filtering of dynamic HTML.
In 7th Symposium on Operating Systems Design and Implementa-
tion, Seattle, WA, USA, November 2006.

[38] Matthew Rogers. Facebook’s response to uproar over ads. http:
//endofweb.co.uk/2009/07/facebook_ads_2/, July
2009. Retrieved 6 Apr. 2010.

[39] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson.
Busting frame busting: A study of clickjacking vulnerabilities on
popular sites. In 4th Workshop in Web 2.0 Security and Privacy,
Oakland, CA, USA, May 2010.

[40] Jerome H. Saltzer and Michael D. Schroeder. The protection of
information in computer systems. In 4th ACM Symposium on Op-
erating Systems Principles, Yorktown Heights, NY, USA, October
1973.

[41] Prateek Saxena, Dawn Song, and Yacin Nadji. Document structure
integrity: A robust basis for cross-site scripting defense. In 16th
Annual Network & Distributed System Security Symposium, San
Diego, CA, USA, February 2009.

[42] Barry Schnitt. Debunking rumors about advertising and pho-
tos. http://blog.facebook.com/blog.php?post=
110636457130, November 2009. Retrieved 6 Apr. 2010.

[43] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in
the Web with content security policy. In 19th International World
Wide Web Conference, Raleigh, NC, USA, April 2010.

[44] Weiqing Sun, Zhenkai Liang, R. Sekar, and V. N. Venkatakrish-
nan. One-way isolation: An efficient approach for realizing safe
execution environments. In 12th Annual Network and Distributed
System Security Symposium, San Diego, CA, USA, February 2005.

[45] Mike Ter Louw, Prithvi Bisht, and V. N. Venkatakrishnan. Analy-
sis of hypertext isolation techniques for cross-site scripting preven-
tion. In 2nd Workshop in Web 2.0 Security and Privacy, Oakland,
CA, USA, May 2008.

[46] Mike Ter Louw and V. N. Venkatakrishnan. Blueprint: Robust
prevention of cross-site scripting attacks for existing browsers. In
IEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 2009.

[47] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nis-
senbaum, and Solon Barocas. Adnostic: Privacy preserving tar-
geted advertising. In 17th Annual Network & Distributed System
Security Symposium, San Diego, CA, USA, March 2010.

[48] Ashlee Vance. Times Web ads show security breach. http:
//www.nytimes.com/2009/09/15/technology/
internet/15adco.html, September 2009. NY Times.
Retrieved 1 Jun. 2010.

[49] Yi-Min Wang, Doug Beck, Xuxian Jiang, and Roussi Roussev. Au-
tomated Web patrol with Strider HoneyMonkeys: Finding Web
sites that exploit browser vulnerabilities. In 13th Annual Net-
work and Distributed System Security Symposium, San Diego, CA,
USA, February 2006.

[50] Wikipedia contributors. Same origin policy. http:
//en.wikipedia.org/w/index.php?title=Same_
origin_policy&oldid=190222964, February 2008.

[51] World Wide Web Consortium. Document object model (DOM)
level 2 events specification. http://www.w3.org/TR/
DOM-Level-2-Events, November 2000.

[52] Yankee Group. Yankee Group forecasts US online ad-
vertising market to reach $50 billion by 2011. http:
//www.yankeegroup.com/pressReleaseDetail.
do?actionType=getDetailPressRelease&ID=1805,
January 2008. Retrieved 6 Apr. 2010.

[53] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov.
JavaScript instrumentation for browser security. In 34th Annual
ACM SIGPLAN–SIGACT Symposium on Principles of Program-
ming Languages, Nice, France, January 2007.

[54] Michal Zalewski. Browser security handbook. http://code.
google.com/p/browsersec/wiki/Main, 2009. Re-
trieved 26 Jan. 2010.

17

USENIX Association 19th USENIX Security Symposium 389

Realization of RF Distance Bounding

Kasper Bonne Rasmussen

Department of Computer Science

ETH Zurich

8092 Zurich, Switzerland

kasperr@inf.ethz.ch

Srdjan Čapkun

Department of Computer Science

ETH Zurich

8092 Zurich, Switzerland

capkuns@inf.ethz.ch

Abstract
One of the main obstacles for the wider deployment
of radio (RF) distance bounding is the lack of plat-
forms that implement these protocols. We address
this problem and we build a prototype system that
demonstrates that radio distance bounding protocols
can be implemented to match the strict processing
that these protocols require. Our system implements
a prover that is able to receive, process and transmit
signals in less than 1ns. The security guarantee that
a distance bounding protocol built on top of this sys-
tem therefore provides is that a malicious prover can,
at most, pretend to be about 15cm closer to the ver-
ifier than it really is. To enable such fast processing
at the prover, we use specially implemented concate-
nation as the prover’s processing function and show
how it can be integrated into a distance bounding
protocol. Finally, we show that functions such as
XOR and the comparison function, that were used in
a number of previously proposed distance bounding
protocols, are not best suited for the implementation
of radio distance bounding.

1 Introduction

Distance bounding denotes a class of protocols in
which one entity (the verifier) measures an upper-
bound on its distance to another (untrusted) entity
(the prover). In recent years, distance bounding pro-
tocols have been extensively studied: a number of
protocols were proposed [3, 13, 10, 19, 30, 15, 25,
17, 12, 29] and analyzed [8, 26, 11, 23]. The use of
distance bounding was suggested for secure localiza-
tion [28], location verification [25], wormhole detec-
tion [16, 27], key establishment [22, 32] and access
control [22].

Regardless of the type of distance bounding pro-
tocol, the distance bound is obtained from a rapid
exchange of messages between the verifier and the

prover. The verifier sends a challenge to the prover,
to which the prover replies after some processing
time. The verifier measures the round-trip time be-
tween sending its challenge and receiving the reply
from the prover, subtracts the prover’s processing
time and, based on the remaining time, computes
the distance bound between the devices. The veri-
fier’s challenges are unpredictable to the prover and
the prover’s replies are computed as a function of
these challenges. In most distance bounding proto-
cols, a prover XORs the received challenge with a
locally stored value [3] or uses the received challenge
to determine which of the locally stored values it will
return [13, 29]. Thus, the prover cannot reply to the
verifier sooner than it receives the challenge, it can
only delay its reply. The prover, therefore, cannot
pretend to be closer to the verifier than it really is;
only further away.

One of the main assumptions on which the secu-
rity of distance bounding protocols relies is that the
time that the prover spends in processing the veri-
fier’s challenge is negligible compared to the propa-
gation time of the signal between the prover and the
verifier. If the verifier overestimates the prover’s pro-
cessing time (i.e., the prover is able to process signals
in a shorter time than expected), the prover will be
able to pretend to be closer to the verifier. If the ver-
ifier underestimates this time (i.e., the prover needs
more time to process the signals than expected), the
computed distance bounds will be too large to be
useful.

The challenge in implementing distance bounding
protocols is therefore to implement a prover that is
able to receive, process and transmit signals in negli-
gible time. This requirement can be easily met with
ultrasonic distance bounding implementations where
the prover’s processing needs to be in the order of
µs. However, because ultrasonic distance bound-
ing is vulnerable to RF wormhole attacks [16, 27],

1

390 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 391

its application is limited to few specific applications
(e.g., [22]). For most applications, radio distance
bounding is the main viable way of verifying prox-
imity to or a location of a device. In this case, the
prover’s processing time needs to be about 1ns which
would, in the worse case, allow a malicious prover
to pretend to be closer to the verifier by approx.
15cm (assuming that the malicious prover is able to
process signals instantaneously). Currently available
platforms do not support such fast processing. This
strict processing requirement has been, so far, one of
the main obstacles for the wider deployment of RF
distance bounding protocols and related solutions.

In this work, we address this problem. We make
the following contributions. We build a prototype
system that demonstrates that radio (RF) distance
bounding protocols can be implemented to match
the prover’s strict processing requirements (i.e., that
the prover’s processing time is below 1ns). We use
concatenation as the prover’s processing function
and implement it using a scheme that we call Chal-
lenge Reflection with Channel Selection (CRCS).
Our implementation eliminates the need for signal
conversion and demodulation since it does not re-
quire that the received challenges are interpreted by
the prover before the prover responds to them. Our
prover is therefore able to receive, process and trans-
mit signals in less than 1ns. We design a distance
bounding protocol that uses concatenation, imple-
mented with CRCS, as the prover’s processing func-
tion and we analyze its security; we base this proto-
col on Brands and Chaum’s original distance bound-
ing protocol [3].

We further show that processing functions such as
XOR and the comparison function, that were used
in a number of proposed distance bounding proto-
cols, are not best suited for the implementation of
radio distance bounding. The main reason is that,
although XOR and comparison can be executed fast,
these functions require that the radio signal that car-
ries the verifier’s challenge is demodulated, which,
with today’s state-of-the-art hardware, results in
long processing times (typically ≥ 50ns). The de-
sign and implementation of the distance bounding
protocol based on concatenation shows that the use
of functions which require that the prover demod-
ulates (interprets) the verifier’s challenge before re-
sponding to it is not necessary for the implementa-
tion of distance bounding.

To our knowledge this work is the first to propose
a realizable distance bounding protocol using radio
communication, with a processing time at the prover
that is low enough to provide a useful distance gran-
ularity.

The rest of the paper is organized as follows. In
Section 2 we describe the basic operation of distance
bounding protocols. In Section 3, we discuss prover’s
processing functions and their appropriateness for
the implementation of radio distance bounding. In
Section 4 we describe the design of our distance
bounding protocol and in Section 5 we analyze its
security. In Section 6 we present our implementa-
tion and our measurement results. In Section 7 we
discuss related work and we conclude in Section 8.

2 Background on Distance Bounding

Protocols

Distance bounding protocols were first introduced
by Brands and Chaum [3] for the prevention of
mafia-fraud attacks on Automatic Teller Machines
(ATMs). The purpose of Brands and Chaum’s dis-
tance bounding protocol was to enable the user’s
smart-card (verifier) to check its proximity to the
legitimate ATM machine (prover).

The core of all distance bounding protocols is the
distance measurement phase (shown in Figure 1),
wherein the verifier measures the round-trip time
between sending its challenge and receiving the re-
ply from the prover. More precisely, the verifier
challenges the prover with a b-bit freshly generated
nonce Nv (typically b = 1). Upon reception of the
challenge, the prover computes a response fP (Nv),
and sends it to the verifier. This process is repeated
k times. After the challenge-response exchange the
verifier verifies the authenticity of the replies (in this
step distance bounding protocols differ) and mea-
sures the time tVs − tVr between the challenge and
the response. Based on the measured times, the ver-
ifier estimates the upper-bound on the distance to
the prover. The time tPs − tPr between the recep-
tion of the challenge and the transmission of the re-
sponse at the prover is either negligible compared to
the propagation time tPr − tVs or is lower bounded by
the prover’s processing and communication capabil-
ities δ, i.e., tPs − tPr ≥ δ.

After the execution of a distance bounding pro-
tocol the verifier knows that the prover is within a
certain distance, namely:

dist =
tVs − tVr − δ

2
· c

where δ is the processing time of the prover (ideally
0) and c is the propagation of the radio signal.

Although the designs of distance bounding pro-
tocols differ [3, 13, 10, 19, 30, 15, 25, 17, 12, 29],
given their common distance measurement phase,

2

P V
Nv[1], . . . , Nv[k] ∈ {1, 0}b

(tPr1) Nv [1]�� (tVs1)
(tPs1) f(Nv [1]) �� (tVr1) Nv[1]′ ← f(Nv[1])

...
(tPrk) Nv [k]�� (tVsk)
(tPsk) f(Nv [k]) �� (tVrk) Nv[k]′ ← f(Nv[k])

Verify Nv[1]′, . . . , Nv[k]′

Compute db(V ,P) as a function of tV
s1 . . . tV

sk, tV
r1 . . . tV

rk

Figure 1: The distance measurement phase of distance bounding protocols consists of a rapid exchange of
messages where the verifier measures the round-trip time between sending its challenges and receiving the
replies from the prover.

their security relies on the same underlying ideas.
We briefly summarize them here. Distance fraud at-
tacks [3], in which the prover tries to pretend to be
closer to the verifier, are prevented by the follow-
ing: (i) the prover cannot generate the reply before
it receives the challenge and (ii) the duration of time
the verifier accounts that the prover will process the
reply is not longer than the prover’s actual process-
ing time. The Mafia-fraud (or man-in-the-middle -
MITM) attack [9], by which an attacker convinces
the verifier that the prover is closer than it really
is, is prevented since the attacker cannot predict ex-
changed challenges/replies and since it cannot sped-
up the propagation of messages (the messages prop-
agate at the speed of light over a radio channel).
Given this, the attacker cannot shorten the distance
measured between the verifier and the prover.

Distance bounding protocols therefore provide the
verifier with an upper-bound on its physical distance
to the prover.

3 Functions Appropriate for Distance

Bounding Realization

As discussed in Section 2, one of the main assump-
tions on which the security of distance bounding
protocols relies is that the time that the prover is
allowed to spend in processing the verifier’s chal-
lenge is negligible compared to the propagation time
tPr −tVs of the signal between the prover and the ver-
ifier. In most applications, the prover’s processing
time would therefore need to be around 1ns. This
would, in the worse case, allow a malicious prover to
pretend to be closer to the verifier by approx. 15cm
(assuming that the malicious prover is able to pro-
cess signals instantaneously). Such short processing
time cannot be achieved with existing platforms.

The main challenge is therefore to design dis-
tance bounding protocols which use prover process-
ing functions f(Nv) that can implemented such that
they can be executed in ≤ 1ns. Before presenting a
function that is well suited for this purpose, we first
discuss functions that were used in distance bound-
ing protocols that are proposed in the open litera-
ture.

The first (obvious) candidate processing functions
are various encryption functions, hash functions,
message authentication codes and digital signatures;
the use of digital signatures for this purpose was pro-
posed by Beth and Desmedt in [1]. The use of such
functions would largely simplify the design of dis-
tance bounding protocols; it would be sufficient to
use well studied challenge-response authentication
protocols [2] where the verifier would measure the
round-trip time between the issued challenge and the
received response. However, the processing time for
these functions even with the fastest available im-
plementations by far exceeds the required processing
time.

In [3] Brands and Chaum proposed a distance
bounding protocol that uses XOR as a processing
function. In this protocol the prover XORs the ver-
ifiers challenge with the value that the prover wants
to transmit back and sends the result back to the
verifier. The main reasoning behind this choice was
that XOR is a fast operation and that it should be
feasible to execute it within the required process-
ing time. Hancke and Kuhn [13] propose a distance
bounding protocol where the prover, based on the
verifier’s challenge chooses from which of the two lo-
cal registers it should send a value back. Again, one
of the main reasons for choosing this function was
that such a function (comparison and access) can be
executed fast.

3

392 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 393

Although XOR and comparison can be executed
fast, these functions require that the radio signal
that carries the verifier’s challenge is converted from
an analog to a digital signal (ADC) and demodu-
lated. Only when it is demodulated, the challenge
can be used by the prover in an XOR function or
for the selection of the register. Equally, in or-
der to communicate the reply back to the verifier,
the prover needs to modulate the signal and con-
vert it from the digital to the analog signal (DAC).
These steps, signal detection, ADC/DAC conversion
and signal modulation/demodulation, increase the
provers processing delay by approx. 170ns [24], not
including possible RX/TX switching costs1. The im-
plementations of an XOR or of a comparison func-
tion that require the signals to be digitalized and de-
modulated therefore require such processing which,
using today’s state-of-the-art hardware, is not suf-
ficiently fast to meet the security requirements of
distance bounding protocols. Even if some process-
ing steps can be sped-up or removed, the prover will
still need a way of (reliably) detecting if it received
a challenge that corresponds to a bit ”0” or a bit
”1”, which requires some processing and thus reduces
the security guarantees of the protocol. Namely,
every nanosecond of additional processing in the
implementation of the prover means that a mali-
cious prover with a faster implementation shorten
the measured distance even further.

In what follows, we show that the choice of a con-
catenation function as the prover’s processing func-
tion, when implemented using a scheme that we call
Challenge Reflection with Channel Selection (CRCS)
eliminates the need for signal conversion and demod-
ulation since it does not require that the received
challenges are interpreted by the prover before the
prover responds to them. The prover, implemented
using CRCS is therefore able to receive, process and
transmit signals in less than 1ns.

3.1 Prover: Concatenation Imple-

mented using Challenge Reflec-

tion With Channel Selection

In this section we describe our implementation of
concatenation as the prover’s processing function.

Bit concatenation CAT : Np[i] × Nv[i] → r[i] =
Nv[i]||Np[i] takes as input the verifier’s challenge bit
Nv[i] and the prover’s input bit Np[i] and returns a
two-bit reply r[i] = Nv[i]||Np[i]. CAT is therefore

1We are not aware of the radio design that can perform
these operations faster.

Figure 2: The verifier measures the time between
sending a challenge signal c(t) and receiving the re-
ply signal r(t) = r1(t)+ r2(t). If c(t) = r(t), the dis-
tance bound to the prover is then given by (tr−t0)·c,
where c is the speed of light.

given by the following table.

CAT :
Np[i]\Nv[i] 0 1

0 00 10
1 01 11

3.2 Verifier: Calculation of the Dis-

tance Bound

In order for concatenation to be useful for dis-
tance bounding, we implement it by Challenge Re-
flection with Channel Selection. Our implemen-
tation uses three (non-overlapping) communication
channels. The verifier sends its challenge bits to
the prover using one communication channel (C0),
whereas the prover replies using two communication
channels (C1, C2) (Figure 2). While it is receiving
the verifier’s challenge bit (i.e., the signal that en-
codes it), the prover is responding with the same
signal (bit), but it is sending it on either channel C1

or channel C2, depending on its current input bit
Np[i]. For every challenge bit that it received from
the verifier, the prover therefore transmits two bits
of the reply back to the verifier, encoded in the form
of the signal (it reflect back the same signal that it
received) and of the response channel (it chose the
channel on which to reply). The response r = 10 is
then interpreted as: the challenge bit 1 is reflected
on channel C1, where the channel C1 denotes bit 0,
and channel C2 denotes bit 1). The prover therefore
implements challenge reflection with channel selec-
tion. Note that, although the prover replies with two
bits for each challenge bit, the duration of transmis-
sion of those two bits is the same as for a single
bit of the verifier’s challenge, since the second bit of
the prover’s reply is encoded in the form of channel
selection. This is illustrated on Figure 2.

The schematic of our prover implementing CRCS
is shown on Figure 3. The figure shows the signal in

4

Figure 3: Schematic of the prover (i.e., of the imple-
mentation of concatenation as its processing func-
tion using CRCS). The figure shows the signal in
the frequency domain at various stages of the cir-
cuit. The challenge-signal (with center frequency
fc) is received by the receiving antenna (on the left)
and multiplied by f∆. This multiplication shifts the
signal by ±f∆ to the channels on two sides of the
original channel. The bit of the prover’s nonce Np[i]
determines which of the two channels is used to send
the response on the transmitting antenna (on the
right).

the frequency domain as it passes through various
stages of the prover’s circuit. The prover receives
the challenge-signal (centered at the frequency fc)
on the receiving antenna. The received signal is then
multiplied by f∆ which creates two signals on two
channels each with central frequencies fc + f∆ and
fc−f∆, respectively. The current bit of the prover’s
nonce Np[i] determines which of the two channels are
used to send the response signal on the transmitting
antenna. The verifier’s signal is thus reflected back
on the channel selected by the prover. Here, the
verifier’s challenge bit can be encoded in the chal-
lenge signal using e.g., Pulse Amplitude Modulation
(PAM) or Binary Phase Shift Keying Modulation
(both of which are used with Ultra-Wide-Band rang-
ing systems). The prover’s response carries two bits,
one encoded in the signal that it sends back (the
same bit that it received by the verifier), and the
other encoded in the channel on which it responds
(i.e., Np[i]).

Here, signal multiplication and selection are done
using analog components only. Namely, the chal-
lenge signal passes through an analog mixer where
it is multiplied with a local oscillator signal with a
frequency f∆. This mixer outputs two signals on
frequencies fc +f∆ and fc−f∆, which are separated
by a high-pass and a low-pass filter, respectively. Fi-
nally, the Np[i] bit (which the prover have commit-
ted to), determines which of the two signals will be
transmitted back to the verifier.

Figure 2 shows the calculation of the distance

bound by the verifier (the signals are shown in the
time domain). The verifier notes the exact time
t0 when it starts transmitting the challenge bits
Nv[i], ...Nv[k] encoded in the signal r1(t), and then
listens on the two reply channels C1 and C2 (that
correspond to the frequencies fc + f∆ and fc − f∆).
When a reply comes back (e.g., on channel C1) the
verifier will mark the exact time tr of the arrival of
the signal. The verifier will then wait for the arrival
of the entire challenge, noting for every time slot on
which channel the reply was sent. After the entire
nonce has been received and processed by the radio,
the verifier checks that the data bits in the reply are
the same as those sent in the challenge, i.e., that
c(t) = r1(t) + r2(t). If that is the case, the distance
bound is then computed as (tr−t0) ·c, where c is the
speed of light. This bit comparison is important for
the security of our distance bounding protocol (as
we detail in Section 4); it can be efficiently done us-
ing autocorrelation, which can then simultaneously
be used to calculate the time difference (e.g., as it is
used in GPS [20]).

4 Distance Bounding Realization

In this section we present our distance bounding pro-
tocol and its realization. The protocol uses concate-
nation implemented using CRCS as the prover’s pro-
cessing function. The main security properties that
we want our protocol to achieve are resilience to dis-
tance fraud and Mafia fraud attacks.

Our protocol is shown in Figure 4. It closely
resembles the original protocol of Brands and
Chaum [3], except that it does not use rapid bit ex-
change, but instead uses full duplex communication
with signal streams. XOR is replaced with the con-
catenation function, and additional checks by the
prover and the verifier are added to make sure the
implementation of concatenation using CRCS does
not introduce vulnerabilities.

The prover starts the protocol by picking a fresh
(large) nonce Np. The prover then sends a commit-
ment to the nonce (e.g., a signed hash of the nonce)
to the verifier. Already now, the prover will activate
its distance bounding hardware and set the output
channel according to the opposite of the first bit of
the nonce Np. From this moment, any signal that
the prover receives on channel C0 will be reflected on
the output channel that is set. However, the prover
does not yet start switching between output chan-
nels.

Upon receiving the commitment, the verifier picks
a fresh (large) nonce Nv and prepares to initiate the
distance bounding phase in which it will measure

5

394 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 395

P (Prover) V (Verifier)
Pick Np

sign(commit(Np))
��

Pick Nv

r ← CRCS(Nv, Np) ��
Nv

��
r

�� Record ∆t

N ′

p ← channel(r)

sign(V,Np,Nv)
��

Verify ∆t, Nv, Np, sign(V, Np, Nv)

Figure 4: RF distance bounding protocol.

the distance bound to the prover. The verifier starts
a high precision clock to measure the (roundtrip)
time of flight of the signal and begins to transmit
his nonce Nv on channel C0. From this point on, the
verifier will also listen on the two reply channels C1

and C2 and will keep listening on the two channels
until he either receives the expected response from
the prover or until he detects an error and aborts
the protocol.

As soon as the prover receives (and demodulates)
the first bit of Nv on C0, he starts switching re-
ply channels according to the bits of his nonce Np.
Here, we note that while the first few bits are being
demodulated, the prover is still reflecting the input
(challenge) bits, but he did not start the switch-
ing of the channels (i.e., he did not start sending
back Np). The demodulation of the bits is not done
within the distance bounding hardware (that we call
the distance bounding extension), but is done in the
prover’s regular radio. It is not important how long
it takes for the prover’s radio to demodulate the
first bits, since the prover does not need to begin
to switch the output channels within any predefined
time (as long as the switching starts within the du-
ration of Nv and allows the transmission of Np).
Equally, the first part of Nv could be known and
constitute a public, fixed-length preamble upon the
detection of which the prover would start switching
the channels (i.e., would start sending Np).

When the prover starts sending Np, he will send
the bits of Np with a fixed frequency (e.g., ev-
ery 500ms) by switching channels depending on the
value of the current bit (Figure 2). In each interval,
the prover will therefore reflect back several bits of
Nv and a single bit of Np. The bit of Np is encoded
in the choice of the reply channel. The prover will,
in parallel, also receive the challenge on channel C0

using his regular radio and will demodulate it.
When the verifier has sent all the bits of his nonce,

he waits for the prover to complete the reflection of

the signal and then both the prover and verifier dis-
able their distance bounding extensions. The ver-
ifier can then use an auto-correlation detector like
the ones used in GPS receivers [20] to determine the
exact time of flight of the reflected signal. This can
also be done during the distance bounding phase,
i.e., in parallel to the analog distance bounding cir-
cuit.

After the (time-critical) distance bounding phase
is complete the prover sends a signed message con-
taining his nonce Np, the identity of the verifier V
and the verifier’s nonce Nv to the verifier. The ver-
ifier must then check five things:

• That all the bits of Np reflected by the prover
are of the same width (time duration). This
is necessary to prevent mafia fraud and is de-
scribed in more detail in Section 5.3.

• The data that was reflected back from the
prover must be exactly the same as what was
sent. I.e., when the signal r(t) = r1(t) + r2(t)
is demodulated, the message must contain Nv.
This is visualized in Figure 2.

• The value of N ′
p obtained during the distance

bounding phase must match the commitment
sent in the first protocol message.

• The signature of the final message must be valid
and it must correspond to the expected identity
of the prover.

• The time of flight of the signal ∆t must be less
than some predefined upper limit tmax. The
upper limit is application dependent. E.g., it
can be the radius of some region of interest, or it
can be the (estimated) maximum transmission
range of the radio.

The order is which these checks are performed is
not important but all checks must pass for the dis-
tance bound to be accepted. If all the checks pass,

6

the verifier calculates the distance to the prover as

d =
∆t − δp

2
· c (1)

Where c is the speed of light and δp is the very small
processing delay of the prover. In our implementa-
tion δp < 1ns resulting in a maximum error on about
15cm.

5 Security Analysis

In this section we analyze the resistance of our pro-
tocol to distance fraud and mafia fraud, as well as
attacks against CRCS.

5.1 System And Attacker Model

We consider three nodes, the prover P , the verifier
V and the attacker M . The goals for the three par-
ticipants are as follows: the verifier wants to acquire
an upper bound on the distance to the prover, i.e.,
the verifier wants to know that the prover is closer
than a certain distance. The prover wants to prove
to the verifier that he is within a certain distance.
The goal of the attacker is to disrupt this process
such that the verifier obtains an incorrect distance
bound. The verifier holds an authentic public key
of the prover. The attacker and the prover do not
collude. The attacker corresponds to the standard
Dolev-Yao attacker that controls the network and
thus can eavesdrop on all the communication be-
tween the prover and the verifier, can arbitrary in-
sert and remove messages to/from the communica-
tion channel. She is equally free to transmit nonsen-
sical signals. The attacker knows the public param-
eters of the distance bounding protocol and the type
of hardware used by the nodes and thus the process-
ing times of the prover’s and verifier’s radios. She is
only limited by the fact that it does not have access
to the secrets that are held by the prover and the
verifier and cannot break cryptographic primitives.

We consider two attacks: Distance fraud, where
the prover tries to shorten the measured distance
bound, and Mafia fraud where the attacker tries to
shorten the bound (but does not collude with the
prover). We show that our protocol resists both
attacks. There is a third type of attack in which
the attacker colludes with the prover and has access
to some, but not all, of the secret key material of
the prover (e.g., only nonces and short-term secrets).
This attack is often called the terrorist attack. We
do not specifically address terrorist attacks, but it
has been shown [4] that if needed, distance bound-

ing protocols can be extended to generally protect
against this attack.

5.2 Distance Fraud

Distance fraud is an attack performed by a malicious
prover and consists of the prover trying to shorten
the distance measured by the verifier.

The verifier uses equation (1) to calculate the dis-
tance to the prover. For the prover to “shorten”
the distance to the verifier (without actually mov-
ing closer) he must manipulate the verifiers calcula-
tion and the only thing the prover can influence is
∆t. For the prover to reduce the ∆t measured by
the verifier, thereby reducing the distance, he must
make his replies arrive at the verifier sooner than
they otherwise would, i.e., he must guess the correct
reply (i.e., guess the challenge) and send it before
the verifier expects. In our protocol, the reply which
the prover must send back is the signal he receives
on channel C0. In order to do this, the prover must
guess the content of the challenge signal since the
content of the reply is checked by the verifier as a
part of the verification process. The content of the
challenge is Nv and the probability of successfully
guessing that is given by 1

2|Nv|

.
Attacks that rely on manipulation of the modula-

tion scheme, e.g., “late commit”attacks described by
Hancke and Kuhn [14] will not work on this protocol
because the verifier uses auto-correlation to find the
exact time-of-flight of the signal (as it is done in GPS
receivers [20]) rather than using a peak or energy de-
tector. This means that any manipulation done to,
say, the first symbol of the response will not have any
effect unless all subsequent symbols are also shifted
forward. This would require the malicious prover to
guess all the symbols in advance and can therefore
only be done with negligible probability of 1

2|Nv|

.
The same argument applies to attacks where the

prover tries to guess the first bit of the nonce [8].
Because the prover doesn’t store and forward the
nonce, but instead must reflect it directly, the prover
would have to guess all the bits of the verifier’s nonce
to perform the attack. We can therefore conclude
that the prover can commit distance fraud only with
probability 1

2|Nv|

.

5.3 Mafia Fraud

Mafia fraud is an attack performed by an external
attacker that physically resides closer to the verifier
than the prover. The attack aims to make one of
the parties (either the prover or the verifier or both)
believe that the protocol was successfully executed

7

396 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 397

when, in fact, the attacker shortened the distance
measurement. The requirement that the attacker be
closer to the verifier than the prover is only necessary
because, if the attacker is further away the attack is
trivially defeated by the protection against distance
fraud attacks.

In order for an external attacker to shorten the dis-
tance measured by the verifier, the attacker must re-
spond before the prover during the distance bound-
ing phase. However, because of the checks performed
by the verifier at the end of (or during) the distance
bounding phase, it is not sufficient to just reply be-
fore the prover, the attacker must also make the
value of his nonce match the commitment sent by
the prover in the beginning of the protocol. Since
the attacker can not find a nonce to match the com-
mitment sent by the prover, e.g., find a collision for
the hash function used to generate the commitment,
the attacker is forced to replace the provers com-
mitment with his own, thereby passing the commit-
ment check. However, the attacker cannot fake the
prover’s signature in the final message so he cannot
confirm the nonce.

The attacker can get the prover to reply before
the prover receives Nv, e.g., by sending his own early
signal to the prover, however, this will result in the
prover getting N ′

v �= Nv which will be detected by
the verifier in the final message. This assumes that
any malicious change to the signal will result in a
change in the demodulated nonce Nv. If that can-
not be guarantied, e.g., because of the sample rate at
the prover or the modulation scheme used for com-
munication, the prover can record the raw incoming
signal and send it back to the verifier. The verifier
can then, e.g., use autocorrelation to make sure the
signal received by the prover is the same as what the
verifier sent.

We can therefore conclude that an attacker can
only commit mafia fraud if he can break, either the
commitment scheme or the signature scheme used in
the protocol.

Because of the way the distance bounding radio
extension is designed it is possible for an attacker
to get the current bit of the provers nonce. As ex-
plained in Section 3.1, the prover’s radio extension
will shift any signal that arrives on the center chan-
nel to either channel C1 or channel C2 depending on
the current bit of the provers nonce. An attacker
can exploit this to get the current bit of the prover’s
nonce without the prover’s knowledge. If the at-
tacker sends a very weak signal, e.g., a DSSS [21]
signal with a spreading code known only to the at-
tacker, the attacker can determine what channel the
response is sent back on, and therefore the current

Figure 5: Man in the middle attack (Mafia fraud).
The figure shows the timing of the messages sent by
the verifier (V), the attacker (M) and the prover (P).
Even if the attacker is able to learn the value of the
first bit on the prover’s nonce, the attack will fail
because the attacker is forced to make the first bit
longer than the subsequent bits if he wants to reply
early.

bit of the prover’s nonce. Unless this is prevented,
the attacker can use this information to perform a
successful mafia fraud attack.

In order to prevent this attack the prover must
make sure not to expose all the bits of his nonce
before they are needed. There are two ways this
can be ensured: Either the prover must only en-
able his distance bounding hardware once he is sure
that the verifier has started his transmission or he
must make sure that his reply bits (of Np) are of ex-
actly the same duration. Of course the time duration
must also be known and later checked by the veri-
fier. Our protocol uses the second method. Figure 5
illustrates how this measure prevents the attack. In
the example of this figure the attacker obtains the
value of the first bit of the provers nonce, and uses
it to reply early to the verifier’s challenge. However,
because the prover doesn’t expose the second bit of
his nonce until after the duration of the first bit has
expired, the attacker is forced to make the first bit
’too long’, thus getting detected.

In order to perform this attack, the attacker would
need to guess all the bits of Np, which she can do
only with the probability 1

2|Np|

.

6 Implementation and

Measurements

In this section, we describe our implementation of
the prover and the related measurement results.

Our prototype can be seen on Figure 6. The cen-
tral part of the prototype is the mixer (1) which
is responsible for shifting the received challenge up
and down in frequency. The signal from the receiv-
ing antenna comes in from the right (A) and passes

8

Figure 6: This picture shows the prototype imple-
mentation of the prover. It consists of a mixer (1), a
high-pass filter (2), a low-pass filter (3), four ampli-
fiers (4) (only two visible), a 1dB attenuator (5) and
a terminating resistor (6). The signal from the re-
ceiving antenna (A) is mixed with the local oscillator
(B) and sent to the transmitting antenna (C). The
yellow wires are power (+5V). This prototype is an
implementation of the scheme described in Figure 3.

through four amplifiers (4) to bring it up to a power
level where is can be mixed by our mixer. The lo-
cal 500MHz sine wave used for the mixing, comes
in from the bottom of the figure (B) and is passed
through a 1dB attenuator (5) to bring it to the same
level as the radio signal before mixing. The output of
the mixer is split in two and each is passed through
either a high-pass filter (2) or a low-pass filter (3) to
eliminate the unwanted channel. In this prototype
we did not implement the switching mechanism. In-
stead channel C2 is fed directly to the transmission
antenna (C). In order for the signal to split properly,
both sides must have a similar load. for this reason
we added a 50Ω resistor (6) to terminate the unused
channel C1. The implementation of the switching
mechanism can be done using a simple transistor
based switch. We note, that the switch can only
marginally increase the processing delay since, once
set to a particular channel, the switch essentially
acts as a piece of very short wire connecting the
setup to the antenna. This prototype is an imple-
mentation of the scheme described in Figure 3.

6.1 Delay At The Prover

We first wanted to see if our prototype implementa-
tion could receive a signal, shift it to another channel
and transmit it back to the verifier in ≤ 1ns.

In order to test this, we first transmit the chal-
lenge and response signals through cables so as to
better be able to control signal strength and reduce

Figure 8: Processing time at the prover. The ten
different delay measurements where done using our
measurement setup described in Section 6.1. The
figure shows that the variation in processing time is
small (σ = 61.22ps) and that the average processing
delay is µ = 912.92ps. I.e., less than 1ns.

noise (later we show that the same setup works using
wireless communication as well). The challenge sig-
nal sent on channel C0 is a 3.5GHz sine, modulated
by a 1Hz pulse so it is easy to see and capture the
start of a new“bit”. Our response signal is sent back
on channel C2 at 4.0GHz (i.e., fc = 3.5GHz and
f∆ = 0.5GHz). We generated the 3.5GHz challenge
using a function generator. The generated signal is
split by a power splitter and one end is fed, via a
1 meter cable, into our prototype. The other end
was connected to a 40Gs/s oscilloscope, via another
1 meter cable, to provide the ground truth signal to
which we compare the delay of our prototype. Be-
cause both cables have the same length, the 3.5GHz
signal (the challenge) will arrive at the same time
at the oscilloscope and at the reception point of our
prototype. The output (the response) from the pro-
totype is plugged directly into another input of the
same oscilloscope (keeping the signal path as short
as we could make it using this setup).

Figure 7(a) shows the two signals. The top (yel-
low) signal is coming directly from the function gen-
erator. It is an exact copy of the signal that arrives
at the input of our prototype (this signal arrives
at the oscilloscope and at the prototype input at
the same time). The bottom (green) signal is what
comes out of our prototype implementation. It is a
4.0GHz signal, i.e., the original signal shifted up by
500MHz. We see that the difference in arrival times
between these two signals (i.e., the processing time of
the prover) is 0.888ns. As described in Section 2 the
delay at the prover determines the theoretical advan-
tage a powerful attacker might get. If we translate
0.888ns into distance, the maximum theoretical dis-
tance by which an attacker will be able to shorten
its distance is about 12cm.

We repeated this measurement 10 times, using the
same setup. Figure 8 shows all 10 measured process-
ing times along with their average value and a 95%

9

398 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 399

Several optimizations and studies of distance
bounding were subsequently proposed for wireless
networks, including [28, 30, 5] and for sensor net-
works [18, 5, 27]. Distance bounding protocols
have also been proposed in other contexts, e.g., for
RFIDs [13, 10, 19] and ultra wide band (UWB) de-
vices [17, 12].

In [23] the authors studied information leakage
in distance bounding protocols. A mutual distance
bounding protocol using interleaved challenges and
responses was proposed in [31] and in [28] and [5]
the authors investigated the use of distance bound-
ing protocols for location verification and secure lo-
calization. Sastry, Shankar and Wagner [25] pro-
posed the so-called ”in-region verification” appropri-
ate for certain applications, such as location-based
access control. Collusion attacks on distance bound-
ing location verification protocols where considered
in [7, 6]. Ultrasonic distance bounding was used for
access control [25] and for key establishment [32].
In [22] ultrasonic distance bounding was further used
for proximity based access control to implementable
medical devices. Other attacks have been pro-
posed against distance bounding protocols in gen-
eral. The so-called “late-commit” attacks where pro-
posed in [14], where the attacker exploits the mod-
ulation scheme in order to manipulate the distance.
Bit guessing attacks [8] that accomplish the same
thing where also proposed. These attacks were fur-
ther studied in practical implementations in [11].

Until now, most of the work done in this field has
been theoretical. To our knowledge our work is the
first to propose a realizable distance bounding pro-
tocol using radio communication, with a processing
time at the prover that is low enough to provide a
useful distance granularity.

8 Conclusion

We demonstrated that radio distance bounding pro-
tocols can be implemented to match the strict pro-
cessing that these protocols require (i.e., that the
prover receives, processes and transmits signals in
≤ 1ns). This can be achieved using a specially im-
plemented concatenation as the prover’s processing
function. Through this we showed that the use of
processing functions which require that the prover
demodulates (interprets) the verifier’s challenge be-
fore responding to it, is not desirable or necessary for
distance bounding. Finally, we showed that other
processing functions such as XOR and the compari-
son function, that were used in a number of proposed
distance bounding protocols, are not best suited for
the implementation of radio distance bounding.

References

[1] Thomas Beth and Yvo Desmedt. Identifica-
tion tokens - or: Solving the chess grandmaster
problem. In CRYPTO ’90: Proceedings of the
10th Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 169–177,
London, UK, 1991. Springer-Verlag.

[2] Colin Boyd and Anish Mathuria. Protocols for
authentication and key establishment. Springer,
1998.

[3] Stefan Brands and David Chaum. Distance-
bounding protocols. In EUROCRYPT ’93,
pages 344–359, Secaucus, NJ, USA, 1994.
Springer-Verlag New York, Inc.

[4] Laurent Bussard and Walid Bagga. Distance-
bounding proof of knowledge protocols to avoid
terrorist fraud attacks. Technical report, Insti-
tut Eurecom, France, 05 2004.

[5] Srdjan Capkun and Jean-Pierre Hubaux. Se-
cure positioning of wireless devices with appli-
cation to sensor networks. In IEEE INFOCOM,
2005.

[6] Nishanth Chandran, Vipul Goyal, Ryan Mori-
arty, and Rafail Ostrovsky. Position based cryp-
tography. In CRYPTO ’09: Proceedings of the
29th Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 391–407,
Berlin, Heidelberg, 2009. Springer-Verlag.

[7] Jerry T. Chiang, Jason J. Haas, and Yih-Chun
Hu. Secure and precise location verification us-
ing distance bounding and simultaneous multi-
lateration. In ACM WiSec ’09, pages 181–192,
New York, NY, USA, 2009. ACM.

[8] Jolyon Clulow, Gerhard P. Hancke, Markus G.
Kuhn, and Tyler Moore. So near and yet so
far: Distance-bounding attacks in wireless net-
works. In Proceedings of the European Work-
shop on Security and Privacy in Ad-hoc and
Sensor Networks (ESAS), 2006.

[9] Yvo Desmedt. Position statement in rfid s&p
panel: From relative security to perceived se-
cure. In Financial Cryptography, pages 53–56,
2007.

[10] Saar Drimer and Steven J. Murdoch. Keep
your enemies close: Distance bounding against
smartcard relay attacks. In Proceedings of the
USENIX Security Symposium 2007, 2007.

11

(a) Cable (b) Wireless

Figure 7: The delay of the prover’s distance bounding radio extension. The top signal is measured at the
reception antenna of the provers radio and is transmitted on channel C0 at 3.5GHz. The bottom signal is
measured at the transmission antenna and is being transmitted at the C2 channel at 4.0GHz. The delay
between them, and thus the prover’s processing time is 0.888ns.

confidence interval. We see from the figure that the
processing time of the prover is stable between 0.8ns
and 1ns.

Note that if the same setup would have been im-
plemented in an integrated circuit, the signal path
would be a lot shorter and consequently the process-
ing time would have been smaller. We therefore do
not claim that our prototype is the best that can be
achieved, rather it shows the processing time that
can be achieved using standard SMA components.

6.2 Wireless Implementation

Since distance bounding protocols are primarily use-
ful in wireless environments, in this section we show
that our prototype equally enables distance bound-
ing using wireless communication (instead of wires).
The basic construction of the prover is the same as
in the wired setup, except that the prototype input
and output are connected to antennas. The function
generator that generates the verifiers signal and the
oscilloscope used to measure the round trip time are
likewise connected to antennas.

The result of the wireless implementation can be
seen in Figure 7(b). Unfortunately we had to use
SMA cables of about 1m to connect the antennas
because of the way the antennas are mounted. In
addition there was about .1m between the transmis-
sion antenna and the receiving antenna. This results
in a delay introduced by the cables and the space
between the antennas referred to on Figure 7(b) as

“antenna cable delay”. The output of the prototype
was passed through a high-pass filter and the in-
put passed through a low-pass filter to prevent the
transmitting antenna from feeding back into the re-
ceiving antenna. The oscilloscope used to measure
the difference in arrival time also had filters to sepa-
rate the ground truth signal, i.e., the signal coming
directly from the function generator from the one
being transmitted by the prototype. The filters al-
lowed for a full duplex wireless channel to be created
between our wireless prototype and the function gen-
erator and oscilloscope.

It should be noted that the channel switching
mechanism of our prototype is ideal for a wireless im-
plementation. Any wireless distance bounding pro-
tocol needs more than one channel (i.e., full duplex)
in order to reply as fast as possible. Encoding the
prover’s reply in the choice of channel means that
the solution is strait forward to apply without caus-
ing interference between the prover and verifier.

7 Related Work

Distance bounding, as a concept, was first proposed
by Brands and Chaum in [3] who introduced tech-
niques enabling a verifier to determine an upper-
bound on the physical distance to a prover (as sum-
marized in Section 2). In addition, they consid-
ered the case where the verifier also authenticates
the prover in addition to establishing the distance
bound.

10

400 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 401

[30] S. Čapkun, L. Buttyán, and J.-P. Hubaux.
SECTOR: Secure Tracking of Node Encounters
in Multi-hop Wireless Networks. In Proceed-
ings of the ACM Workshop on Security of Ad
Hoc and Sensor Networks (SASN), Washing-
ton, USA, October 2003.

[31] Srdjan Čapkun, Levente Buttyán, and Jean-
Pierre Hubaux. Sector: secure tracking of node
encounters in multi-hop wireless networks. In
ACM SASN ’03, pages 21–32, New York, NY,
USA, 2003. ACM.

[32] Srdjan Čapkun and Mario Čagalj. Integrity re-
gions: authentication through presence in wire-
less networks. In WiSe ’06: Proceedings of the
5th ACM workshop on Wireless security, pages
1–10. ACM, 2006.

13

[11] Manuel Flury, Marcin Poturalski, Panos Pa-
padimitratos, Jean-Pierre Hubaux, and Jean-
Yves Le Boudec. Effectiveness of Distance-
Decreasing Attacks Against Impulse Radio
Ranging. In 3rd ACM Conference on Wireless
Network Security (WiSec), 2010.

[12] S. Gezici, Zhi Tian, G.B. Giannakis,
H. Kobayashi, A.F. Molisch, H.V. Poor,
and Z. Sahinoglu. Localization via ultra-
wideband radios: a look at positioning aspects
for future sensor networks. Signal Processing
Magazine, IEEE, 22(4):70–84, July 2005.

[13] Gerhard P. Hancke and Markus G. Kuhn.
An rfid distance bounding protocol. In Se-
cureComm ’05: Proceedings of the First Inter-
national Conference on Security and Privacy
for Emerging Areas in Communications Net-
works, pages 67–73, Washington, DC, USA,
2005. IEEE Computer Society.

[14] Gerhard P. Hancke and Markus G. Kuhn. At-
tacks on time-of-flight distance bounding chan-
nels. In WiSec ’08: Proceedings of the first
ACM conference on Wireless net work secu-
rity, pages 194–202, New York, NY, USA, 2008.
ACM.

[15] Y.-C. Hu, A. Perrig, and D. B. Johnson. Packet
Leashes: A Defense against Wormhole Attacks
in Wireless Networks. In Proceedings of the
IEEE Conference on Computer Communica-
tions (InfoCom), San Francisco, USA, April
2003.

[16] Yih-Chun Hu, Adrian Perrig, and David B.
Johnson. Ariadne: a secure on-demand rout-
ing protocol for ad hoc networks. Wirel. Netw.,
11(1-2):21–38, 2005.

[17] J.-Y. Lee and R.A. Scholtz. Ranging in a Dense
Multipath Environment Using an UWB Radio
Link. IEEE Journal on Selected Areas in Com-
munications, 20(9), December 2002.

[18] Catherine Meadows, Paul Syverson, and LiWu
Chang. Towards more efficient distance bound-
ing protocols for use in sensor networks. Se-
curecomm, pages 1–5, Aug. 28 2006-Sept. 1
2006.

[19] Jorge Munilla, Andres Ortiz, and Alberto
Peinado. Distance bounding protocols with
void-challenges for RFID. Printed handout at
the Workshop on RFID Security – RFIDSec 06,
July 2006.

[20] National Space-Based Positioning, Navigation,
and Timing Coordination Office. Global posi-
tioning system. http://www.gps.gov/.

[21] Maxim Integrated Products. An introduction
to direct sequence spread spectrum communi-
cations. http://www.maxim-ic.com/, 2003.

[22] Kasper Bonne Rasmussen, Claude Castelluccia,
Thomas S. Heydt-Benjamin, and Srdjan Čap-
kun. Proximity-based access control for im-
plantable medical devices. In CCS ’09: Proceed-
ings of the 16th ACM conference on Computer
and communications security. ACM, 2009.

[23] Kasper Bonne Rasmussen and Srdjan Čapkun.
Location privacy of distance bounding proto-
cols. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications
security, pages 149–160, New York, NY, USA,
2008. ACM.

[24] Qingchun Ren and Qilian Liang. Throughput
and energy-efficiency-aware protocol for ultraw-
ideband communication in wireless sensor net-
works: A cross-layer approach. IEEE Transac-
tions on Mobile Computing, 7:805–816, 2007.

[25] Naveen Sastry, Umesh Shankar, and David
Wagner. Secure verification of location claims.
In WiSe ’03: Proceedings of the 2nd ACM work-
shop on Wireless security, New York, NY, USA,
2003. ACM.

[26] Patrick Schaller, Benedikt Schmidt, David
Basin, and Srdjan Capkun. Modeling and veri-
fying physical properties of security protocols
for wireless networks. In CSF ’09: Proceed-
ings of the 2009 22nd IEEE Computer Security
Foundations Symposium, pages 109–123, Wash-
ington, DC, USA, 2009. IEEE Computer Soci-
ety.

[27] S. Sedighpour, S. Capkun, S. Ganeriwal, and
M. Srivastava. Implementation of attacks on
ultrasonic ranging systems, nov 2005.

[28] D. Singelee and B. Preneel. Location verifica-
tion using secure distance bounding protocols.
In Mobile Adhoc and Sensor Systems Confer-
ence, 2005. IEEE International Conference on,
Nov. 2005.

[29] Nils Ole Tippenhauer and Srdjan Čapkun. Id-
based secure distance bounding and localiza-
tion. In In Proceedings of ESORICS (European
Symposium on Research in Computer Security),
2009.

12

USENIX Association 19th USENIX Security Symposium 403

The case for ubiquitous transport-level encryption

Andrea Bittau

Stanford

Michael Hamburg

Stanford

Mark Handley

UCL

David Mazières

Stanford

Dan Boneh

Stanford

Abstract

Today, Internet traffic is encrypted only when deemed

necessary. Yet modern CPUs could feasibly encrypt most

traffic. Moreover, the cost of doing so will only drop

over time. Tcpcrypt is a TCP extension designed to make

end-to-end encryption of TCP traffic the default, not the

exception. To facilitate adoption tcpcrypt provides back-

wards compatibility with legacy TCP stacks and middle-

boxes. Because it is implemented in the transport layer,

it protects legacy applications. However, it also provides

a hook for integration with application-layer authentica-

tion, largely obviating the need for applications to en-

crypt their own network traffic and minimizing the need

for duplication of functionality. Finally, tcpcrypt mini-

mizes the cost of key negotiation on servers; a server us-

ing tcpcrypt can accept connections at 36 times the rate

achieved using SSL.

1 Introduction

Why is the vast majority of traffic on the Internet not en-

crypted end-to-end? The potential benefits to end-users

are obvious—improved privacy, reduced risk of sensitive

information leaking, and greatly reduced ability by op-

pressive regimes or rogue ISPs to monitor all traffic with-

out being detected. In spite of this, end-to-end encryption

is generally used only when deemed necessary, a small

fraction of when it would be feasible.

Possible reasons for not encrypting traffic1 include:

• Users don’t care.

• Configuration is complicated and the payoff small

(especially when connecting to unknown sites).

• Application writers have no motivation.

1Conspiracy theorists might suggest other reasons, but we won’t

discuss those here.

• Encryption (and key bootstrap) are too expensive to

perform for all but critical traffic.

• The standard protocol solutions are a poor match for

the problem.

We believe that each of these points either is not true,

or can be directly addressed with well-established tech-

niques. For instance, where users actually have con-

trol, they demonstrate that they do care about encryp-

tion. Four years ago only around half of WiFi basesta-

tions used any form of encryption [3]. Today it is rare to

find an open basestation, other than ones which charge

for Internet access.

It is clear, though, that application writers have lit-

tle motivation: encryption rarely makes a difference to

whether an application succeeds. Getting it right is diffi-

cult and time consuming, doesn’t help time to market,

and developers are hard-pressed to make the business

case. For server operators, too, the process can be te-

dious. One reason people don’t use SSL is that X.509

certificates are a mild pain both for the server administra-

tor and, if the server administrator didn’t buy a certificate

from a well-known root CA, for users.

Even more important is the performance question.

SSL is by far the most commonly deployed crypto-

graphic solution, and it is expensive to deploy on servers.

Where there is a need, such as for bank login or credit

card payments, SSL is ubiquitous, but it is rarely used

outside of web pages that are especially sensitive. The

definition of “sensitive” has started to change, though;

Google recently enabled SSL on all Gmail connec-

tions [25], ostensibly as a response to eavesdropping

in China. In part this is possible today because cryp-

tographic hardware has become comparatively inexpen-

sive. This trend is set to continue; the most recent gen-

eration of Intel CPUs incorporate AES acceleration in-

structions [8], with the potential to significantly reduce

the cost of software symmetric-key encryption.

Although symmetric-key encryption is unlikely to be

404 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 405

a problem, the conventional wisdom is still that it is too

expensive to use public-key cryptography to bootstrap

a session key for all network connections. Indeed our

measurements show that a fully loaded eight-core (2 x

Quad-core Xeon X5355) server can only establish 754

uncached SSL connections per second. In fact, this lim-

itation is due to the way SSL uses public key algorithms

rather than anything fundamental. We will show that

much better server performance is possible with the right

protocol design, in part by pushing costs to the client,

which does not need to handle high connection rates.

Finally, there is the question of whether current en-

cryption protocols are a sufficiently good match for ap-

plications that do not currently use encryption. We be-

lieve they are not, for reasons we shall highlight through-

out the paper. However, we will describe a subtly differ-

ent protocol architecture that we believe is a much better

fit to the majority of applications. This is not rocket sci-

ence; it may even be considered obvious. But we believe

it makes a huge difference to the deployability of encryp-

tion and consequently of authentication in the real world.

1.1 Getting the Architecture Right

All the commonly deployed network encryption mecha-

nisms incorporate authentication into the protocol, even

if, like WPA, it is as simple as requiring out-of-band

password exchange. Indeed this is the obvious way to

engineer things; without authentication, it is not possible

to determine if your encrypted channel is with the desired

party or with a man-in-the-middle. However, we believe

that this is fundamentally the wrong design choice.

Encryption of a network connection is a general pur-

pose primitive; regardless of the application, the goal

is to prevent eavesdroppers from learning the contents

of communications. MACing of packets in a network

connection is also a general purpose primitive; no ap-

plication wants to accept forged or maliciously modi-

fied packets. Authentication, however, is not general

purpose. The mechanism used for authentication and

the information needed to perform that authentication

are application-specific. In practice, protocols blur this

distinction between general purpose encryption/integrity

and special purpose authentication. This has two conse-

quences:

• It tends to encourage inappropriate authentication

mechanisms. For example, using SSL to connect to

a bank, then simply handing the user’s password to

the bank, when it is known that people commonly

re-use passwords across sites.

• It makes it hard to integrate mechanisms low

enough in the protocol stack to really be ubiqui-

tous. For example, adding SSL to an application re-

quires modifying the source code and, potentially,

extending its application-layer protocol in a back-

wards compatible way.

To enable encryption and integrity checking in a gen-

eral way for all legacy TCP applications2, this function-

ality must be below the application layer. However it

cannot be done cleanly any lower than the transport layer

because this is the lowest place in the stack that has any

concept of a conversation. There is also the practical

consideration that encrypting below the transport layer

will prevent NAT traversal. The clear implication is that

embedding encryption and integrity protection into TCP

would provide the right general-purpose mechanism; in

fact, because TCP includes a session establishment hand-

shake, this is simple to do in a backward-compatible way.

To establish session keys in a general way, TCP-level

encryption should be divorced from higher level authen-

tication mechanisms. This suggests the use of ephemeral

public keys to establish session keys. Such a mechanism,

enabled by default, would provide protection against pas-

sive eavesdroppers for all TCP sessions, even for legacy

applications. We are not the first to suggest such “op-

portunistic” encryption. Our goal, though, is to provide

not just encryption and integrity protection, but also a

firm foundation upon which higher-level authentication

mechanisms can build. With the right architecture, a di-

verse set of authentication mechanisms can be devised,

each suitable to its own application.

The end point we hope to establish is that all TCP ses-

sions (and SCTP and DCCP, though we don’t discuss

these further here) are protected against passive eaves-

droppers, and that all applications that require authenti-

cation should, as a side effect, enjoy protection against

active man-in-the-middle attacks, all without duplica-

tion of effort. Ideally, an eavesdropper cannot tell from

watching the traffic which encrypted sessions will be au-

thenticated.

In this paper, we describe tcpcrypt, our implemen-

tation of TCP-level encryption. Although the idea is

simple, the details really matter, as we will show. We

have validated our design by building two implemen-

tations, one a Linux kernel module, the other a user-

space process using divert sockets. The latter allows

use of tcpcrypt on Linux, FreeBSD, and MacOS X with-

out modifying the kernel. Both implementations show

excellent performance; we will demonstrate that this is

no longer the factor preventing ubiquitous network en-

cryption. We have also implemented application-level

authentication protocols that use tcpcrypt to bootstrap

authentication. These include X.509 certificate-based

authentication, fast password-based mutual authentica-

tion, and PAKE. Our X.509-based authentication pro-

2The vast majority of Internet applications use TCP.

vides security equivalent to SSL, but uses batch-signing

to run 25 times faster. Moreover, we have implemented

X.509 authentication inside the OpenSSL library in a

way that preserves the same API and cleanly falls back to

vanilla SSL when appropriate. Thus, to take advantage

of tcpcrypt in SSL-enabled applications requires only a

library update.

2 Cryptographic design

The goal of tcpcrypt is to enable the best communica-

tions security possible under a wide range of circum-

stances. In the absence of any authentication, when users

browse unknown servers, they should enjoy protection

from passive eavesdropping. Though active network at-

tackers may still intercept and monitor communications

(there are also legitimate reasons for this, such as trans-

parent proxies and intrusion detection systems), it should

be possible to detect such behavior both during commu-

nications and afterward. Thus, tcpcrypt should virtu-

ally eliminate the possibility of widespread eavesdrop-

ping unbeknownst to a user population.

When an application performs any kind of endpoint

authentication, it must be able to leverage tcpcrypt to

obtain stronger protection of session data. For instance,

given a server-side X.509 certificate, the client should be

assured of the confidentiality of the data it transmits and

the integrity of the data it receives. Any time a user types

a password, it should be possible to ensure the confiden-

tiality and integrity of all data sent in either direction.

In all cases, when tcpcrypt achieves confidentiality, it

should also provide forward secrecy. As a final goal,

tcpcrypt should affect performance as little as possible.

Thus, the protocol is designed to minimize the number of

cryptographic operations and extra round trips, subject to

the limitations of needing to interoperate with legacy end

hosts and middleboxes.

2.1 Key exchange protocol

Key exchange is the biggest challenge to tcpcrypt’s per-

formance. Forward secrecy requires a pair of hosts to ex-

change a secret using an ephemeral public key or Diffie-

Hellman key exchange the first time they communicate.

These operations are far more costly than establishing a

TCP connection, but the cost can be asymmetric. For

example, a single core of the server in Section 6 can per-

form 12,243 encryptions/sec with a 2,048-bit RSA-3 key,

but only 97 decryptions/sec.

Servers typically communicate with more peers than

clients do, so it makes sense for clients to shoulder most

of the cost of key exchange. Thus, by default, tcpcrypt

performs the expensive decryption at the client (though

for generality, servers may opt to reverse the protocol).

HELLO - syn

PKCONF - syn ack

INIT1 - ack

INIT2 - ack

encryption start

NEXTK1 - syn

NEXTK2 - syn ack

encryption start

ack

Figure 1: Tcpcrypt connection establishment with key

exchange (left) and session caching (right).

Subsequent connections between the same two hosts can

use session caching to avoid any public key operations

at all, thereby ensuring that, for instance, an active-mode

FTP server need not perform RSA decryptions.

The initial key exchange works as follows. Each ma-

chine C has an ephemeral public key, KC . When C con-

nects to a server S for the first time, C chooses a random

nonce, NC ; S chooses a random secret, NS ; the two ex-

change the following messages, also shown in Figure 1:

C → S : HELLO

S → C : PKCONF, pub-cipher-list, [cookie]

C → S : INIT1, sym-cipher-list, NC , KC , [cookie]

S → C : INIT2, sym-cipher, ENCRYPT (KC , NS)

Here pub- and sym-cipher-list are used to negotiate cryp-

tographic algorithms. The optional cookie is a SYN-

cookie that must be echoed by the client to make it harder

for packets from forged source addresses to trigger any

public-key cryptographic operations in the server. This

trade-off is at the discretion of the server; if TCP’s 32-

bit initial sequence number (ISN) provides enough pro-

tection against forged packets, the option space may be

deemed better used for other purposes.

KC specifies the public key cipher and a pseudo-

random function, used below. Quantities from this pro-

tocol are then combined into a series of “session secrets”

with a Collision-resistant Pseudo-random Function, CPF

(currently HMAC):

ss[0] ← CPF
(
NS ,

{
KC , NC ,

cipher-lists, sym-cipher
})

ss[i] ← CPF (ss[i − 1], TAG NEXT KEY)

If ISNC,i and ISNS,i are TCP’s initial sequence numbers

on the client and server for session i, the two sides then

compute a master secret as follows:

mk[i] ← CPF (ss[i], {TAG KEY, ISNC,i, ISNS,i}) .

Finally, the two sides use CPF(mk[i], x) on various con-

stants x to generate encryption and MAC keys (a com-

mon technique). From this point on, all further segments

in the TCP connection are cryptographically protected.

Note that this full key exchange is only needed for the

first connection between two hosts. Hosts can cache ss[i]

406 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 407

for the largest i used till that point. Subsequent connec-

tions between the same two hosts can use this to derive

new symmetric keys, thereby avoiding any further public

key cryptography and the latency of the full handshake.

2.2 Authentication Hooks

To gain stronger benefits from tcpcrypt, applications

must be able to make statements about a connection—

e.g., “All data you read from this connection is sent by

user U’s browser,” or “Any data you write to this connec-

tion can be decrypted only by server Y.” To make such

statements, one must specify what is meant by “this con-

nection” in a way that cannot be interpreted out of con-

text. Tcpcrypt accomplishes this through session IDs. A

new getsockopt call returns a session ID, sid[i], computed

from the connection’s session secret ss[i] as follows:

sid[i] ← CPF (ss[i], TAG SESSION ID)

If both ends of a tcpcrypt connection see the same

session ID, then with overwhelming probability an at-

tacker cannot eavesdrop on or undetectably tamper with

traffic—i.e., there has not been a man-in-the-middle at-

tack. Two properties facilitate verification of session IDs.

First, they need not be kept secret. Second, with over-

whelming probability they are unique over all time, even

if one end of a connection is malicious. Hence, a crypto-

graphically endorsed session ID can only ever authenti-

cate a single tcpcrypt connection. In Section 4 we discuss

different ways applications can leverage session IDs.

2.3 Proof of Security

To increase confidence in tcpcrypt, we provide a semi-

formal proof of its security. We assume that the adver-

sary has complete control over the network, and nearly

complete control over the users. It can choose when and

to whom users attempt to connect, and what data they

send, and can delay, drop, modify, and forge packets ar-

bitrarily. Furthermore, since the session IDs sid[i] are

not secret, we assume that the adversary knows them.

We do not model malicious machines here, as the ad-

versary can emulate as many of these as it wants. We

do not model compromised machines because of space

constraints. When we write “client” or “server” in this

discussion, we mean a legitimate client or server.

We guarantee the security of tcpcrypt connections only

when the session IDs match. In this case, the guarantee

is fairly strong:

Definition 2.1 (Security guarantees). Suppose that users

U1 and U2 complete the tcpcrypt protocol on sockets S1

and S2, and arrive at sessions with the same session ID.

Then the following guarantees hold:

• The adversary has not tampered with U1 and U2’s

cipher suite choices. Assuming they have chosen a

secure cipher suite:

• Any packet sent by U1 on socket S1 (or by U2 on S2)

gives no information to the adversary other than its

length and timing.

• If, after TCP reassembly, U2 receives a sequence of

segments p1, . . . , pn, then U1 sent those segments

in that order (and no segments before them), and

similarly for segments received by U1.

We will show that, unless the adversary has broken

the underlying cryptographic primitives, its probability

of violating this guarantee is very small. Specifically:

Theorem 2.1 (Security of tcpcrypt). Suppose that an ad-

versary A can violate the tcpcrypt security guarantee

with probability ǫ. Suppose that it uses m machines in its

attack, and begins at most c connections in total. Then

there are five simple modifications of A, running in about

the same time as A, which aim to do the following things:

• Find a collision in CPF.

• Break the pseudorandomness of CPF.

• Break the public-key cipher.

• Break the MAC.

• Break the symmetric cipher.

The sum of their probabilities of success is at least

ǫ − 3c2/2k+1

where k ≈ 256 is the minimum of the min-entropy of a

public key, or the length in bits of NS or NC .

Proof. Define NEXT(k) := CPF(k, TAG NEXT KEY).
Suppose that U1 and U2 have the same sid, and that for

U1 it is sid[i] for some i, where:

ss[0] = CPF (NS , {KC , NC , cipher-lists, sym-cipher})

sid[i] = CPF
(

NEXT
i(ss[0]), TAG SESSION ID

)

Because everything passed to CPF has a unique parse, the

sid must have been computed by U2 in the same way—

and in particular with the same values of NS , NC , KC ,

the same cipher suite lists and the same cipher choice—

or else the computation contains a hash collision. What is

more, the NS , NC , and KC values are chosen at random,

and so with probability at least 1 − 3c2/2k+1 they are

unique. For the rest of the proof, assume that this is the

case.

Now, each of U1 and U2 is either a client or a server.

Because their KC , NC and NS values match, they can’t

both be clients or both be servers; without loss of gener-

ality, say U1 is the client (which generated KC and NC),

and U2 is the server (which generated NS).

We will next show that this NS remains secret. We

first replace ENCRYPT(KC , NS) with an encryption of

zero (but the client still decrypts it to NS). If the ad-

versary notices this, then it has broken the public-key

cipher. After this change, NS is only used as a key to

CPF. Furthermore, CPF is evaluated on NS only once by

U2 and once by U1, with a nonce NC in the other argu-

ment; if the adversary replays ENCRYPT(KC , NS), then

CPF(NS , ·) will be called with different nonces. Because

CPF is pseudorandom, we can replace its outputs ss[0]
with independent random values; if the adversary notices

this, then it has broken CPF. Continuing in this manner,

we can replace ss[i], mk[i], sid[i] and the encryption and

MAC keys with random values, and the adversary will

not notice this, either.

If the initial sequence numbers do not match, the client

and server will arrive at different (secret, random) MAC

keys, and so as long as the MAC is unforgeable, nei-

ther will accept any packets at all. Otherwise since every

packet is MACed with associated data that includes the

64-bit extended sequence number, they must be received

unmodified and in order. Finally, if the symmetric cipher

is secure against chosen-plaintext attacks, the only infor-

mation that the adversary can learn about a segment is its

length and timing. This completes the proof.

3 Integration with TCP

Integrating tcpcrypt into TCP posed a number of chal-

lenges ranging from the basic to the baroque. First, we

have to extend TCP in a backwards compatible way. If a

tcpcrypt client connects to a tcpcrypt server, encryption

should be enabled by default, but if it is a legacy server,

the session must fall back to regular TCP behavior.

The same issue applies with middleboxes. Tcpcrypt

must work through NATs, so it cannot protect the TCP

ports. Tcpcrypt must also work correctly when faced

with firewalls that do not understand the tcpcrypt exten-

sions. For an example of how broken firewalls have in-

hibited innovation, we need look no further than Explicit

Congestion Notification (ECN). ECN should be harm-

less to deploy—it uses TCP options in the handshake to

negotiate the capability, then uses two bits from the old

IP Type-of-Service field to indicate congestion, and fi-

nally signals this in feedback using a previously reserved

TCP flag. ECN is built into all the main modern op-

erating systems, but is disabled by default. This is be-

cause a small number of home gateway/firewall boxes

crash when they see the reserved TCP flag set to one.

This has taught us to avoid protocol changes to TCP

that are not carried in TCP options. Firewalls might drop

unknown options, or might completely drop packets with

unknown extensions; a TCP extension needs to be robust

to either and correctly fall back to regular TCP behavior.

Finally we risk being hoisted by our own petard. Traf-

fic normalizers [9], as implemented in pf [10] and some

other firewalls, enforce conservative rules on protocol

behavior and consistency. This limits design flexibility.3

3.1 Initial TCP Handshake

Ideally the key exchange for tcpcrypt would be per-

formed in TCP’s three-way connection setup handshake,

as this would add no additional network latency to estab-

lishing encrypted sessions. We can’t quite achieve this

for the first connection between two hosts—rather, we

require adding information to the first four packets of the

session, as shown in Figure 1. To be backwards compat-

ible with regular TCP, any data we can add to the SYN

and SYN/ACK packets must fit within the TCP options

field, which is limited to 40 bytes, some of which are

required to negotiate other TCP functionality. This re-

quires HELLO and PKCONF to be small. HELLO requests

encryption; PKCONF acknowledges the use of encryption

and states the list of public key ciphers that can be used

for the subsequent key exchange. Receipt of a SYN/ACK

without PKCONF causes fallback to vanilla TCP.

The INIT1 message cannot be small, as it must contain

the client’s public key. The public key cannot fit into an

option, so instead we re-purpose the data portion of one

packet in each direction to carry it. The data payload is

only co-opted in this way after tcpcrypt negotiation has

succeeded, which ensures that key data never acciden-

tally gets passed to applications by legacy TCP stacks.

INIT2 is sent in response to INIT1 in the same way.

We use a single TCP “CRYPT” option; HELLO,

PKCONF, INIT1, and INIT2 are suboptions of CRYPT.

This reduces the use of scarce TCP option numbers, but

more importantly it ensures that if a middlebox is go-

ing to remove one option, it should remove them all.

If either host receives a TCP segment without a CRYPT

option during session establishment, tcpcrypt falls back

to vanilla TCP. This ensures interoperability with non-

tcpcrypt-aware stacks and middleboxes that strip out un-

known options. Applications can test whether tcpcrypt

is used by calling getsockopt to request the session ID,

which returns an error on downgraded connections.

Tcpcrypt also incorporates a re-keying mechanism, al-

lowing session keys to evolve later in the connection to

avoid using a single set of session keys for too long.

3.2 Session Caching

Applications such as the Web often establish more than

one TCP connection between the same pair of hosts in

rapid succession. When they do this, the amount of data

3One of us sometimes regrets writing the Normalizer paper.

408 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 409

transferred per connection can be quite small—often a

few KBytes. If we have to pay the full cost of running

the public key operations to establish these short-lived

sessions, tcpcrypt can become a bottleneck. Fortunately

we can use the same solution as SSL—cache the cryp-

tographic state from one TCP connection and use it to

bootstrap subsequent connections.

To do this we use two more CRYPT suboptions,

NEXTK1 and NEXTK2, also shown in Figure 1. We can-

not depend on the IP address in the SYN packet to locate

the correct state because the client may have moved, or a

different client may have acquired the DHCP lease used

by a previous client. Thus NEXTK1 contains nine bytes

of the next session ID, sid[i + 1]. This allows the server

to verify that it has the correct cached state before using

it to enable encryption. It also makes it hard for DoS at-

tackers to flush the server’s cache by spoofing packets.

In the event of a cache miss, the server returns PKCONF

and the protocol falls back to ordinary key exchange.

3.3 Protocol and Data Integrity

Unlike SSL, one of tcpcrypt’s goals is to provide in-

tegrity protection for the TCP session itself, defending

against attacks that might reset the connection [5], insert

data into it, or otherwise interfere with its progress [14].

To do this, tcpcrypt adds a MAC option to every TCP

packet after the INIT1/INIT2 exchange. Packets received

with an incorrect or missing MAC are silently dropped.

This MAC option authenticates a segment’s payload

as well as a pseudo-header comprising most of the TCP

header fields and options, as shown in Figure 2. We need

to be pragmatic about which fields are covered by the

pseudo-header. The TCP ports cannot be covered, as

NATs re-write them. The MAC option is zeroed out in

the pseudo-header, since it cannot authenticate itself.

Replay attacks could present a potential issue when

TCP’s sequence space wraps. Instead of sequence and

acknowledgment numbers, the pseudo-header contains

implicitly extended 64-bit values that cannot wrap. The

acknowledgment number is fed separately into the MAC

value, with a technique from [15], so as to improve the

efficiency of retransmissions (which often acknowledge

a different packet from the original).

Extended sequence numbers also solve the problem

that PAWS [13] was intended to solve, so an encrypted

TCP session might omit the timestamp option. This frees

up eight bytes of option space; if we use a 64-bit MAC

then tcpcrypt will use no more option space than most

modern TCP implementations. This is particularly rele-

vant for high performance, because when TCP’s window

is large it benefits from the robustness provided by Se-

lective Acknowledgments (SACK) [19], and we do not

wish to reduce their effectiveness.

src port dst port
seq no. (64-bit seq)

ack no. (64-bit ack)

d.off. flags window checksum urg. ptr.

options (e.g., SACK) MAC option
data (encrypted) IP length

Figure 2: A data packet using tcpcrypt. Dashed quanti-

ties are not transmitted by TCP though included in the

MAC, along with shaded fields.

More subtly, we need to be careful about middleboxes

that modify packets. If an implementation does send the

timestamp option, tcpcrypt will normalize it to zero in

the pseudoheader, as OpenBSD’s pf [10] modulates its

value. All the other options that are commonly modified

occur only in the SYN or SYN-ACK, so do not present

a problem. Tcpcrypt does provide a secure timestamp-

like suboption to CRYPT called SYNC. SYNC is covered

by the MAC, but fuzzes the clock to avoid the reasons

for which pf needs to modulate the timestamp’s value.

Moreover, the SYNC option is only required for keepalive

packets and during re-keying when the connection is oth-

erwise idle. In both cases there is no need for SACK

blocks, so the option space is less precious.

Packets with the TCP RST bit set present the final

challenge. For full protection, after session establish-

ment we would prefer to drop RST packets that do not

contain a valid MAC option. However, RST is TCP’s

mechanism for informing one side of a connection that

the other side no longer has any state for the connec-

tion. Under such circumstances it is impossible for a

legitimate host to generate a RST packet with the MAC

option. Tcpcrypt’s default behavior is to reset the con-

nection when receiving a RST with no MAC, so long

as it passes the OS’s sequence number validity checks.

However, some applications (notably BGP routing) have

a much stronger requirement to protect against connec-

tion resets. For these applications we support a set-

sockopt that mandates RST packets carry a valid MAC.

Such connections will take a long time to time out if one

side loses state; however, applications such as BGP and

SSH that might require such protection also typically use

application-level keepalives to detect liveness and so tear

down stale connections.

3.4 Application Awareness

Tcpcrypt serves a dual role: for legacy applications

it protects against passive eavesdroppers; for tcpcrypt-

aware applications it enables stronger protection, as we

will discuss below. However, it is important to avoid a

duplication of functionality.

Consider a tcpcrypt-aware web browser on a tcpcrypt-

capable host that wishes to make an authenticated con-

nection to a web server. The browser might prefer

tcpcrypt because of the availability of better password

authentication methods, but only if the web server also

supports it. Otherwise, it wishes to fall back to SSL.

A potential problem occurs when the client connects

to a legacy web server process running on a tcpcrypt-

capable host. Under such circumstances we do not wish

to use both unauthenticated tcpcrypt and authenticated

SSL encryption, which would be the default behavior.

Rather, the web browser wishes the tcpcrypt negotiation

in the SYN exchange to fail unless both the host and the

web server process can use the tcpcrypt-based authenti-

cation.

To get this correct fallback behavior, the HELLO option

includes a “Mandatory Application-Aware” bit. When

set, this bit indicates to the server that it must not enable

tcpcrypt encryption unless the server application has in-

formed the stack that it is tcpcrypt-aware. The process

uses a setsockopt on the listening socket to do this.

Our enhanced SSL implementation that uses this mecha-

nism is described in Section 5.3.

Tcpcrypt also includes a second “Advisory

Application-Aware” bit in both the HELLO and PKCONF

options. This is used for each side to indicate to the

other that the application is tcpcrypt-aware. This is used

when applications want to perform authentication over

tcpcrypt if the other side is also tcpcrypt-aware, but

where it is not necessary to fall back to an unencrypted

session if the other side is not tcpcrypt-aware. For

example, many websites with low security requirements

use HTTP Digest authentication. Such websites can still

use HTTP Digest authentication over tcpcrypt (though

we would not advise it), but if both the client and server

applications are tcpcrypt-aware, it would be possible

to drop in CMAC-based mutual authentication instead.

However, the client needs to know that the server can do

this before sending the HTTP request, and the “Advisory

Application-Aware” bit provides this information. It

is set via a setsockopt before calling connect and

retrieved at the other side via getsockopt after the

connection handshake completes.

4 Authentication examples

User authentication is an area in which there exist sim-

ple and well-known techniques qualitatively superior to

those in widespread use. For instance, websites typically

request passwords be sent straight to the server. As a re-

sult, we see many successful phishing attacks. Almost all

of these attacks could very easily be defeated with known

techniques, were it not for issues of backwards compat-

ibility in protocols and user interfaces. Thus, there are

strong incentives to make improvements to authentica-

tion in the web and other applications.

To realize this shift to better authentication protocols

we need innovation in user-interface design. Currently,

HTTP digest authentication, while better than plaintext

passwords, is seldom used because web developers shun

browsers’ ugly gray popup boxes. The challenge is to

allow some aesthetic control by web sites while simulta-

neously ensuring password entry is unambiguously dif-

ferentiated from web forms (or anything else accessi-

ble by JavaScript). Tcpcrypt itself obviously cannot im-

prove user interfaces; the aim is to ensure that when im-

provements do happen, they can easily be integrated with

tcpcrypt to provide security against active attackers.

The hook tcpcrypt provides to application-level au-

thentication is the session ID. This section gives a few

examples of how session IDs can be used, assuming

the ability to display certificate names and to input

passwords from a user securely. Though these exam-

ples require modifications to applications, such enhance-

ments can be deployed incrementally using tcpcrypt’s

Application-Aware bits described in the previous section.

Note that the prevalence of weak authentication makes

for some very low-hanging fruit. We do not claim these

obvious and well-known fixes as contributions. Nor do

we mean to imply that these techniques would not work

with application-layer traffic encryption were we to en-

hance SSL. Our point is merely to illustrate the general-

ity of the session ID abstraction and to help substantiate

our claim that tcpcrypt provides encryption as a general

building block suitable for a wide range of applications.

The key properties we rely on are that 1) if both ends

of a connection see the same session ID, then the ses-

sion data’s confidentiality and integrity are ensured, and

2) session IDs are unique over all time with overwhelm-

ing probability, even when one end of a connection is

malicious.

4.1 Certificate-based authentication

One common basis for server authentication is cer-

tificates, such as the X.509 certificates employed by

SSL. (This model may become even more prevalent if

DNSSEC gains widespread deployment.) In this model,

each server S has a long-lived public key, KS , certified

by a trusted authority to belong to a particular common

name and organization. The common name or organiza-

tion can then be presented to the user to inform her of

whom she is communicating with.

Certificates permit a trivial authentication protocol:

S → C : KS , Certificate, SIGN
(
K−1

S , Session ID
)

The server simply signs the session ID, thereby proving it

owns one end of the connection, ensuring confidentiality

410 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 411

of messages sent by the client and integrity of those sent

by the server.

The problem with the above protocol is the cost of the

SIGN function, which can be comparable to public-key

decryption. The cost for the server to compute such a

signature for every new client would be comparable to

setting up an SSL connection, which is one of the fac-

tors dissuading people from using SSL ubiquitously to-

day. While there do exist some faster signature schemes

(e.g., [7]), the certificate authorities may not be willing

to endorse non-standard algorithms.

Fortunately, there is a better approach. Heavily loaded

servers can amortize the cost of a single signature over

many sessions by signing a batch of session IDs. Session

IDs are not secret, so disclosing a batch of them to each

client is not a problem.

Once a single session has been authenticated, the same

pair of machines can use the existing connection to boot-

strap authentication of other sessions using only sym-

metric cryptography. For instance, they can exchange

a MAC key and use it to authenticate future session IDs.

4.2 Weak password authentication

Often two connection endpoints share a secret. For in-

stance, a user may remember a password, and a server

may store some secret derived from the password. To-

day, all too often passwords simply authenticate the user

to the server and not vice versa. As a basic principle,

if we deploy new authentication mechanisms, any time

a user types a password, it should mutually authenticate

the client and server to each other. There is simply no

reason ever to use a password to authenticate only one

endpoint of a communication. Even if the other end is a

server with an X.509 certificate, the certificate may have

been fraudulently obtained, or it may be for a “typo” do-

main name similar enough to the desired one that the user

doesn’t notice the error.

When a server, S, is under severe performance con-

straints, it can perform password authentication us-

ing symmetric cryptography. For instance, S may

store the secret hash value of a user’s password, h =
H(salt, realm, password); a client C can query S for

the non-secret salt, then compute h from a user-supplied

password. Section 6 benchmarks the following trivial au-

thentication protocol for such settings:

C → S : MAC (h, TAG CLIENT||Session ID)
S → C : MAC (h, TAG SERVER||Session ID)

This protocol is no more costly or hard to implement

than digest authentication [6] (in fact, possibly easier, as

it requires no randomness beyond that already reflected

in the Session ID). Yet it provides better guarantees,

namely mutual authentication of S to C as well as in-

tegrity and confidentiality of all session data. The pro-

tocol assures both C and S that the other end of the

connection knows h. Such a guarantee is different from

and complements that provided by certificates—i.e., that

a server owns a particular domain name. Domain-name

certificates offer important protection in many contexts,

but this session-ID-based protocol offers protection even

when users do not remember the correct domain name.

We note that even if an attacker hijacks DNS to

impersonate S, our protocol is resistant to phishing

for users with good passwords. The protocol can be

viewed as endorsing the session ID with h; since ses-

sion IDs are unique over time, the attacker may obtain

MAC(h, TAG CLIENT||Session ID), but this value is mean-

ingless in the context of any other connection.

Unfortunately, while the above protocol would be cat-

egorically superior to plaintext passwords and digest au-

thentication, we still do not advocate using it except for

servers on which stronger authentication would require

too much CPU time. The problem is that an attacker who

impersonates the server to obtain the first message can

then mount an offline dictionary attack on the password,

leveraging the single message exchange to guess arbitrar-

ily many passwords. Such an attack may be detectable if

the attacker cannot crack the password in time to mount

a transparent man-in-the-middle attack—but people are

used to clicking reload sometimes when web sites fail

and will not be concerned by a single connection failure.

4.3 Strong password authentication

Fortunately, as detailed in Section 6, any site that can af-

ford to use SSL today can afford to use a strong pass-

word authentication scheme with tcpcrypt. Here we

give a simple example of a Password-Authenticated Key-

Exchange (PAKE) protocol that that, while considerably

more expensive than the previous weak protocol, can

nonetheless be implemented with far less overhead than

SSL imposes today.

We use a protocol termed PAKE+

2
in [4]. The proto-

col relies on several system-wide parameter choices: a

group G of prime order q (on which the computational

Diffie Hellman problem is hard); a generator g of G; two

randomly-chosen elements of G, U and V ; two crypto-

graphic hash functions, H0 and H1, mapping strings to

elements of Zq; and finally, another hash function, H ,

onto bit strings the size of a MAC key. At the time a user

registers for an account, her client computes:

π0 = H0(password, user name, server name)
π1 = H1(password, user name, server name)
L = gπ1

The server stores π0 and L, but never sees π1. To au-

thenticate a session, the client chooses a random ele-

ment α ∈ Zq and the server chooses a random element

β ∈ Zq. The two then engage in the following protocol:

C → S : gαUπ0

S → C : gβV π0

At this point, both sides compute gαβ . They can do this

by computing either U−π0 or V −π0 and using it to re-

vert to a regular Diffie-Hellman key exchange. Then

both sides compute gπ1β . The client can do this because

it knows gβ and π1. The server can do this because it

knows: L = gπ1 and β. Finally, both sides compute:

h = H
(
π0, g

α, bβ , gαβ , gπ1β
)

Using h they complete the password authentication pro-

tocol of the previous section, but now the order of mes-

sages doesn’t matter (the client and server can each trans-

mit one of these messages before receiving the other to

reduce latency):

S → C : MAC (h, TAG SERVER||Session ID)
C → S : MAC (h, TAG CLIENT||Session ID)

While this protocol is considerably more expensive

than the one in the previous section, it has the benefit of

protecting users with weak passwords; each guess at the

password requires a separate network interaction with a

party that knows either the password or π0 and L. More-

over, the protocol is still cheaper than SSL (even com-

bined with tcpcrypt key negotiation). Therefore, we be-

lieve it is suitable for use in any application that uses both

passwords and SSL.

It is an open question whether we can design pass-

word authentication protocols that are highly efficient

at the server and offload most of the work to the

client. However, should we devise such protocols, they

can be deployed after the fact, without modification to

tcpcrypt itself. The session ID abstraction nicely sepa-

rates tcpcrypt’s confidentiality and integrity properties,

which are solved problems, from authentication, where

further innovation may be needed.

5 Implementation

To validate the protocol design and verify its perfor-

mance, we implemented tcpcrypt in the Linux kernel.

We also implemented tcpcrypt as a user-space daemon

using divert sockets; this allows tcpcrypt to be deployed

easily without requiring any kernel changes. Finally we

implemented a range of application authentication mech-

anisms over tcpcrypt.

5.1 Linux kernel implementation

Our kernel implementation of tcpcrypt consists of a

4,000-line loadable module and 70 lines added to the

core Linux 2.6.32 kernel to add the necessary hooks. For

RSA support, we ported OpenSSL v0.9.8l to the Linux

kernel. This required about 400 lines of glue code to ex-

port RSA as a Linux crypto module. We also exposed

OpenSSL’s SHA1 as we found it to perform twice as fast

as Linux’s implementation.

During the implementation, it became clear that

tcpcrypt is incompatible with TCP segmentation offload-

ing, as supported in some modern NICs. As tcpcrypt

has to copy the packet to memory to encrypt the data

and compute the MAC, segmenting it during this process

does not add significant overhead. However, a server

running so close to its performance limits that it re-

quires segmentation offloading would likely want to dis-

able tcpcrypt.

5.2 Portable userspace implementation

Our userspace tcpcrypt implementation uses divert sock-

ets to access TCP packets entering and leaving the host.

Firewall rules select the packets to be diverted, leaving

the kernel unchanged. FreeBSD’s NAT (natd) is im-

plemented this way. The main advantages of this ap-

proach are portability and ease of deployment. Our code

is 7,000 lines. We have tested it on MacOS X, FreeBSD

and Linux.

The userspace implementation is obviously slower

than the native kernel implementation, but it is ideal for

early deployment without support from OS vendors. If

tcpcrypt is successful and ships in major operating sys-

tems, it will still be a long time before older hosts are up-

graded. The userspace implementation provides a good

interim solution. It can also be run on middleboxes such

as firewalls or home gateways to protect traffic to and

from legacy local hosts against passive eavesdropping.

The userspace implementation is more complicated

than the kernel one as it must track connections, dupli-

cate much of TCP’s state machine, calculate checksums

again, and rewrite sequence and acknowledgment num-

bers since we use some bytes of the payload for INIT

messages. In SYNs the MSS is reduced to allow space

to add the MAC to subsequent packets. In addition, the

sending of application data must be delayed until the

tcpcrypt handshake completes, which we do by modulat-

ing the receive window. Finally, we implement IPC calls

to provide the equivalent of getsockopt, so the applica-

tion can extract the session ID to perform authentication.

5.3 Integrating tcpcrypt and OpenSSL

If tcpcrypt were enabled by default, then an SSL con-

nection between two tcpcrypt hosts would duplicate ef-

fort doing both tcpcrypt and SSL key exchange and en-

cryption. Tcpcrypt’s Mandatory Application-Aware bit

avoids this duplication. To verify this mechanism and to

compare the full performance of Apache running SSL-

over-tcpcrypt using batch-signing to that of vanilla SSL,

we implemented tcpcrypt support within the OpenSSL

412 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 413

v0.9.81e library. We did not modify OpenSSL’s API or

require applications to set specific parameters to gain the

benefits of tcpcrypt and batch-signing—our library is a

drop-in replacement for OpenSSL.

Our implementation uses the tcpcrypt setsockopt to

notify the kernel that the application supports tcpcrypt,

setting the Mandatory Application-Aware bit during the

handshake. After the TCP handshake, either the session

is encrypted and both sides support tcpcrypt-based au-

thentication, or the connection has fallen back to vanilla

TCP. The library code then queries with getsockopt to

get the session ID. If this returns an error, it falls back to

SSL’s handshake, otherwise it batch-signs the session ID

and sends it to the client.

We modified OpenSSL’s BIO layer to call the neces-

sary setsockopt for setting the application bit. The

SSL layer, i.e., SSL accept and SSL connect, then

deals with the signatures. Thus, so long as the appli-

cation uses the BIO API, no change to the application

is needed to use tcpcrypt-based authentication instead of

SSL authentication.

Things are not quite so clean if application program-

mers manually create sockets using the BSD socket APIs

instead of BIO, feeding them directly into SSL accept

and SSL connect. These sockets will not have the nec-

essary options set, and so tcpcrypt would disable itself

even though the SSL library is capable. In such cases, if

upgrading the application is not possible, then a sysctl

could be used to set the application bit on by default on

specific TCP ports.

Batch signing is implemented per SSL context. A

single worker thread (per SSL context) waits on a

semaphore for work and batch signs all session IDs it

finds on its work queue. The signer thread then wakes

up all threads corresponding to the session IDs signed.

For batch signing to work, the SSL server must be mul-

tithreaded. We note that this implementation naturally

scales depending on load: if a single client needs a sig-

nature, it is produced right away; when under load, mul-

tiple client session IDs will be batch signed to amortize

cost. Our OpenSSL patch and batch signing code total

700 lines of code.

5.4 Password based authentication

We implemented the weak password authentication

scheme in Section 4.2 as well as the strong scheme from

Section 4.3. The weak scheme uses CMAC-AES as

the MAC, and employs IBM’s CMAC patch [21] for

OpenSSL. We implemented the strong authentication

scheme ourselves (500 lines of code) using OpenSSL’s

built-in support for NIST Prime-Curve P-256.

6 Performance and compatibility

If we are to achieve our ultimate goal of encrypting al-

most all Internet traffic, then the cost of doing so must

be sufficiently low that the cost/benefit trade-off makes

sense, even when the benefits are small. What then are

the costs of running tcpcrypt? Roughly, the performance

cost breaks down as follows:

• The cost of the tcpcrypt key exchange.

• The cost of encrypting and MACing every packet

on the wire.

• The cost of authentication over tcpcrypt, for appli-

cations that choose to authenticate.

We must demonstrate that the first two are small enough

they will not significantly degrade the performance of

the vast majority of servers (clients are rarely the bottle-

neck, as they handle only a few connections per second

at most). We must also demonstrate that the third is at

least as cheap as current deployed solutions.

In addition, we must also demonstrate compatibility.

Tcpcrypt must not cause connections to fail that would

succeed without tcpcrypt.

6.1 Connection setup rate

Just how fast do servers need to accept connections in

practice? It is hard to get firm numbers. YouTube gets

1 billion hits per day [12], thus averaging about 11,500

hits per second. Facebook currently gets about 260 bil-

lion page views per month [20], or around 100,000 per

second. Of course a page may require more than one

TCP connection, but with HTTP/1.1 the number will be

fairly small. Facebook also has over 30,000 servers [24].

Not all these are front-end servers, but even so it becomes

clear that the number of connections that need to be han-

dled per second on each server is unlikely to be more

than a few thousand.

To get another perspective, we can examine what an

untuned operating system running an untuned web server

can achieve. This tells us how default configurations per-

form, and so what a typical server administrator might

expect. Our test machines are eight-core (two Intel Xeon

X5355 CPUs) running Linux 2.6.32. Each has 13 1Gb/s

NICs connected to client hosts via a LAN. Multiple

clients and parallel connections are needed to saturate the

server. Untuned, these servers can handle 35,500 TCP

connections per second in a simple connection setup and

teardown test, or 28,400 connections per second running

Apache serving a small static file.

To determine the effect of tcpcrypt, first we need a

better control experiment because the untuned numbers

above, although typical of most real-world installations,

fail to fully utilize the machine, leaving some idle time. It

took considerable tuning4 to get the connection setup and

teardown test to saturate all the cores. Such a setup is not

realistic for normal operation, but we wish to compare

against the best-case vanilla TCP, not one that leaves un-

used CPU cycles. We will compare this optimized TCP

against SSL and tcpcrypt.

We expect tcpcrypt to slow down TCP’s connection

throughput in two main ways. First, uncached tcpcrypt

connections use public key operations to setup a connec-

tion. This cost is predominantly born by clients, which

perform the more expensive RSA decryption operation.

We use 2048-bit RSA-3 keys in all benchmarks.

Second, packets are MACed and thus require more

CPU cycles and memory accesses. Even with connec-

tion caching, which avoids the need for public key ci-

pher operations, four out of six of the packets in an

accept/close cycle are MACed (two ACKs and two

FINs). We therefore expect a performance degrada-

tion both in the uncached and cached connection cases,

though uncached connections will be more expensive.

We expect SSL to perform less well than tcpcrypt for

two reasons. First, it requires more RTTs to complete a

connection because SSL’s handshake can only start after

TCP’s handshake. More notably, uncached SSL connec-

tions should be much slower than tcpcrypt’s because an

SSL server performs the more expensive RSA decryption

operation. However SSL also authenticates the server, so

this is not an apples-to-apples comparison. We shall ex-

amine the cost of tcpcrypt’s authentication in Section 6.2.

Connection rate (conn/s)

Protocol Native Divert

TCP server 98,434 61,515

tcpcrypt server (cached) 70,044 38,832

tcpcrypt server (uncached) 27,070 21,908

SSL server (cached) 39,785 27,348

SSL server (uncached) 754 743

tcpcrypt client (uncached) 794 749

Table 1: Connection setup rate of tcpcrypt.

Table 1 shows the results. Both the cached case (same

client reconnecting) and uncached case (new client, re-

quiring public key cipher operations) are shown. The

two columns benchmark our two tcpcrypt implementa-

tions: the kernel one (“Native”) and the userspace divert

socket one. To get divert numbers for TCP and SSL,

4This involved running multiple instances of the benchmark on dif-

ferent ports to avoid kernel locks on accept. We set the affinity of

each benchmark to one CPU, and used a different NIC per benchmark,

with the NIC’s interrupt affinity set to the same CPU as the benchmark

using the NIC. This resolved in optimal packet scheduling and load

balancing that finally brought the system to zero idle time.

we divert all traffic to userspace and back to the ker-

nel; although this isn’t useful, it allows us to separate

out the different costs and see the overhead of the divert

socket separately from additional protocol mechanism in

the tcpcrypt userspace implementation.

Tcpcrypt outperforms SSL in the uncached case by a

large margin due to reversing the asymmetric RSA costs;

the client bears this cost. Tcpcrypt’s cached performance

is also better than SSL. We note that our kernel im-

plementation is not fully optimized, so it may well be

possible to get even greater performance. For example,

we could encrypt and MAC data while copying it from

userspace rather than doing it on a later pass. This would

be an optimization similar to that for checksum calcula-

tion already used in Linux.

While TCP can be up to 41% faster for cached con-

nections and 3.6× faster for uncached ones, we believe

that the absolute performance numbers of tcpcrypt have

their own merit. Recall that a heavily loaded website

like Youtube averages 11,500 connections per second

and tcpcrypt should be able to sustain such high load.

Also recall that our untuned default configuration server

can only handle 35,500 connections running the same

benchmark of Table 1, also a target that tcpcrypt can meet

if some sessions are cached.

The divert socket implementation is slower than our

kernel one due to the multiple copies needed for each

packet, from the kernel to userspace, and then back to

the kernel. Furthermore the userspace implementation

needs to (wastefully) duplicate TCP functionality already

present in the kernel such as checksum calculations and

protocol control block lookups. However, we believe that

the absolute performance numbers of our divert socket

implementation are sufficient for many situations, espe-

cially on clients, where simple installation may be a pri-

ority over performance.

6.2 Authenticated connection setup rate

While Table 1 included SSL as a reference point, it can-

not be used to directly compare the two systems be-

cause SSL performs authentication by default and thus

is stronger than unauthenticated tcpcrypt. As tcpcrypt

leaves authentication to applications, we are free to ex-

amine different authentication schemes. Our authentica-

tion benchmarks cover: tcpcrypt with batch signing (SSL

replacement), CMAC password-based mutual authenti-

cation (vulnerable to offline dictionary attacks), batch

signing combined with CMAC, and PAKE+

2
password-

based mutual authentication (both resistant to offline dic-

tionary attacks). The benchmark and setup is identical

to our previous benchmark, but with added application-

level authentication after connection setup. We expect

tcpcrypt with batch signing to outperform SSL when

414 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 415

 0

 5000

 10000

 15000

 20000

 25000

 30000

no
auth

CMAC sign
(100)

sign
CMAC

PAKE sign
(1)

SSL

C
o

n
n

e
c
ti
o

n
s
/s

27,07026,395

18,790 18,381

1,418 751 754

Native
Divert

(a) Authentication performance comparison.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 20 40 60 80 100 120 140 160

C
o
n
n
e

c
ti
o

n
s
/s

batch sign parameter

19,533

16,438

Native
Divert

(b) Batch signing.

Figure 3: tcpcrypt’s authenticated connection setup rate.

batching more than one request, as RSA signatures will

be amortized. We expect CMAC to outperform RSA-

based authentication, because it uses symmetric cryptog-

raphy only. Our PAKE implementation is so far unop-

timized, but even so we expect it to be faster than RSA

because it replaces the expensive RSA signature with a

few elliptic-curve operations.

Figure 3 shows tcpcrypt’s authenticated connection

setup rate when using our kernel implementation (“Na-

tive”) and our userspace divert socket one. Batch signing

performs differently depending on the size of the batch

and Figure 3(b) shows how this scales. Most of the ben-

efits of batch signing arise even with a parameter as low

as 100, a number of concurrent clients easily reached

when the server is under load. Figure 3(a) clearly shows

that there is a range of performance characteristics which

applications may choose from. With SSL instead, ap-

plications are forced to use relatively low performance

one-way authentication. Clearly, one size does not fit all.

With tcpcrypt, applications can choose any combination

of one-way or two-way authentication and higher perfor-

mance at lower security or lower performance at higher

security. For example, a busy web forum might choose

CMAC for its authentication as it requires two-way au-

thentication and high performance, but perhaps is not so

security-critical that it needs to thwart offline dictionary

Connect time (ms)

Protocol LAN WAN

TCP 0.2 105

Tcpcrypt cached 0.3 103

Tcpcrypt not cached 11.3 219

Tcpcrypt CMAC 11.4 320

Tcpcrypt PAKE 15.2 426

SSL cached 0.7 210

SSL not cached 11.6 321

Table 2: Connection setup time.

attacks. This setup would perform 36x faster than SSL

on uncached connections, providing stronger (two-way)

authentication. A bank instead, might choose PAKE for

its authentication, performing slower, but still twice as

fast as SSL. Alternatively if a certificate is available,

signing plus CMAC could be 24x faster than SSL and

still resist offline dictionary attacks. A site requiring only

one-way authentication, like a checkout from an online

shop that does not require login, can perform up to 26x

faster than SSL when loaded and handling over 150 con-

current requests. Tcpcrypt with batch signing is therefore

a viable drop-in replacement for SSL, as in all cases its

connection setup performance is superior (we shall ex-

amine data throughput in Section 6.4). Authentication

adds little cost to tcpcrypt: 2% penalty with CMAC or

28% with batch signing under load. We believe this per-

formance to be practical for many servers.

For most clients the performance of the divert socket

implementation will be sufficient, providing an easily in-

stalled alternative.

Hardware is often used to offload expensive public key

cryptography. For example, Sun’s UltraSPARC T1 has

a Modular Arithmetic Unit for RSA, and can do 2,300

2048-bit signatures per second using all 32 cores [18].

Tcpcrypt outperforms this using only eight general pur-

pose cores, showing how careful protocol design can

avoid the need to throw hardware (and money) at the

problem. We argue that offloading asymmetric encryp-

tion is no longer needed for network encryption.

6.3 Connection latency

Throughput is not the only important metric—

connection setup latency is also important. We

compare the connection setup time from the client’s

point of view for TCP, SSL and tcpcrypt. We expect

tcpcrypt to setup connections faster than SSL because

tcpcrypt’s handshake requires fewer round trips. Table 2

shows the time to establish a connection on a LAN

(0.2ms RTT) and on a WAN (100ms RTT).

When the connection is cached, tcpcrypt adds very

little delay to TCP because no extra RTTs are needed.

Tcpcrypt does extra work to advance keys and MAC

the ACK, hence it takes fractionally longer. SSL

cached takes considerably longer because its negotiation

can only start after TCP’s handshake finishes whereas

tcpcrypt uses the three-way handshake. In the non-

cached case tcpcrypt and SSL perform similarly on the

LAN as RSA dominates the cost. The main difference

is that tcpcrypt is client-limited whereas SSL is server-

limited. On the WAN, RTT dominates; tcpcrypt costs

one RTT more than TCP, but one RTT less than SSL as

it needs fewer messages to complete the handshake. Au-

thenticating an uncached tcpcrypt connection, for exam-

ple using CMAC or PAKE, adds extra latency.

With batch-signing there might be a concern that the

queuing of requests to be signed might add extra latency.

In fact this is not the case—our implementation signs

whatever queue is available as fast as it can. Even the fact

that tcpcrypt with signing requires two RSA operations

does not add to latency—the expensive decrypt operation

on the client takes place in parallel with the sign opera-

tion on the server, so negligible extra latency is required

beyond the extra RTT needed for authentication.

The main effect of batch signing is in fact to reduce la-

tency as the server becomes loaded. This is shown in Fig-

ure 4, which graphs connection latency against the num-

ber of connections per second the server handles. As the

load increases eventually the server saturates and the la-

tency increases extremely rapidly. The figure shows SSL

latency and tcpcrypt latency when the maximum batch

size has been artificially limited to 1, 5 and 10. SSL and

tcpcrypt with a batch size of one are indistinguishable on

this graph, so we only plot one line. It is clear that when

the server has CPU cycles to spare, the batch size has

no adverse effect on latency. In fact, quite the reverse—

batching reduces the variance (the plot shows 10th and

90th percentiles as error bars), because short-term varia-

tions in arrival rate map into variation in batch size rather

than variation in CPU load. More importantly, allowing

larger batch sizes allows the server to saturate much later,

and so maintain this low latency across a much wider

range of server workloads.

6.4 Data transfer rates

We now account for the cost of symmetric encryption

and determine the maximum data throughput one can ex-

pect with tcpcrypt. We benchmark data throughput when

transmitted with TCP, tcpcrypt and SSL. To fully satu-

rate the CPU we ran one benchmark program per core

and NIC pair, setting the affinity of the benchmark and

NIC to a particular core. Otherwise, packet scheduling

was suboptimal resulting in idle time. We expect SSL

and tcpcrypt performance to be similar as both are do-

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000C
o

n
n

e
c
ti
o

n
 l
a

te
n

c
y
 (

m
s
)

-
lo

g
s
c
a

le

Connections/s - logscale

SSL (batch 1)
batch 5

batch 10
batch 100

Figure 4: Latency as connection rate increases.

Transfer Throughput (Mbit/s)

Protocol Native Divert

TCP 12,954+ 3,357

tcpcrypt AES-SHA1 3,968 1,752

SSL AES-SHA1 3,692 1,939

Table 3: tcpcrypt’s data throughput.

ing AES128 and HMAC-SHA1. Obviously, vanilla TCP

will be fastest as it need not encrypt or MAC.

Table 3 shows the data throughput of tcpcrypt, for our

kernel implementation (“Native”) and our userspace di-

vert socket one. We were unable to saturate the CPU

on the TCP benchmark (11% idle time) as we saturated

all available NICs on the server. Tcpcrypt outperforms

SSL by 7.4%. This was unexpected as the two essen-

tially perform the same tasks: AES and SHA1. We are

using different implementations for AES (Linux’s ker-

nel vs. OpenSSL) though we found the two to perform

similarly when benchmarked individually. The funda-

mental differences between tcpcrypt and SSL are that

SSL must do its own data segmentation and encapsula-

tion (in addition to TCP’s) thus needs more work than

tcpcrypt. SSL MACs at a message boundary which

can span multiple packets, whereas tcpcrypt must MAC

once per packet. Tcpcrypt is MACing slightly more data

as it includes packet headers, though the cost of SSL’s

message encapsulation seems to outweigh the additional

bytes MACed by tcpcrypt. Overall, however, CPUs are

powerful enough to fully encrypt a one Gigabit link, and

in fact even more. Client machines seldom have more ca-

pacity than that, and even our userspace implementation

provides sufficient performance for those cases.

Most relevant to servers, higher rates are possible

by using faster ciphers and MACs; tcpcrypt achieves

7,486Mbit/s using Salsa20/12 and UMAC. High-speed

AES is possible too now that AES-enhanced CPUs are

becoming ubiquitous, like Intel’s Westmere CPU [8],

Sun’s UltraSPARC T2 [2] and VIA’s processors [1]. On

a dual-core 3.33GHz desktop i5 with a 10Gb/s NIC,

416 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 417

Apache, static content (req/s)

Protocol Native Divert

TCP 60,156 27,196

tcpcrypt (cached) 42,440 20,034

tcpcrypt (uncached) 19,153 14,215

SSL (cached) 19,787 12,063

SSL (uncached) 737 705

Table 4: Apache performance serving static content.

tcpcrypt performed 8,835Mbit/s using AES-UMAC,

even without TCP segmentation offloading and optimiza-

tions in tcpcrypt. As an experiment, we were able to

saturate 10Gb/s by using jumbo frames or by overclock-

ing the box to 3.75GHz. We thus soon expect CPUs that

will permit 10Gig AES networking—in fact, this is likely

possible today if a six-core server i5 is used.

6.5 Application performance: Apache

We now study the overhead of tcpcrypt when used in a

real application. We test the Apache web server (v2.2.11)

serving a 44 byte static file. This setup has low ap-

plication overhead, emphasizing overhead imposed by

the networking stack. With a default configuration, our

server can handle 28,400 requests per second though the

CPUs remain unsaturated. To fully saturate CPUs, we

must run multiple Apache instances, each on a different

TCP port, serving traffic on a different NIC. Based on

our microbenchmarks, we expect tcpcrypt to outperform

SSL and have lower performance than TCP. We do not

perform any authentication on this tcpcrypt benchmark,

so SSL provides stronger guarantees in this case. How-

ever, as discussed earlier, authentication can be added to

tcpcrypt at a relatively low cost if needed.

Table 4 shows the results of our Apache benchmark.

Because real-world web traffic is a mix of new and re-

turning clients, connection setup can quickly become a

bottleneck for SSL. Tcpcrypt, on the other hand, main-

tains a high connection rate (31% of native TCP) even

for new clients. Note also that the case of small, static

files is a worst-case benchmark for connection setup. We

tried benchmarking WordPress, a more CPU-intensive

application. Neither tcpcrypt nor SSL caused a measur-

able slowdown. This test demonstrates that ubiquitous

encryption is feasible when the application is the bottle-

neck, and in most cases even if it is not.

6.6 Compatibility

Incremental deployment is one of our chief goals. Es-

sentially this entails gracefully falling back to TCP so

that connections are guaranteed to succeed. Users will

not enable tcpcrypt if doing causes their connections to

fail. Tcpcrypt falls back gracefully so long as packets

with the CRYPT option do not get dropped. Otherwise,

tcpcrypt might indefinitely send SYN packets with the

CRYPT option, and the connection would fail when it

would succeed using a virgin SYN packet. To gauge

whether this is a problem, we initiated tcpcrypt connec-

tions to the top 10,000 sites listed on Alexa. Specifically,

we sent a SYN with the CRYPT-HELLO option set, ex-

pecting to get a SYN-ACK back. If not, we considered

the packet dropped. We retransmitted SYNs to detect

packet loss. This gives a rough estimate of how many

connections would fail because of tcpcrypt.

Of the Alexa top 10,000 sites, we found 15 (0.015%)

that did not respond with a SYN-ACK to a tcpcrypt SYN.

Of these, three were on the same network. Given such a

low failure rate, we are optimistic that tcpcrypt will work

most of the time and can be safely deployed. However,

by default, tcpcrypt will try to revert to standard TCP in

case it does not receive a SYN-ACK after sending a few

tcpcrypt SYNs to ensure reachability.

We do not expect tcpcrypt to suffer ECN’s fate in

terms of compatibility. ECN used reserved bits in the

TCP header which would trigger IDSs and cause unde-

fined behavior. Instead, tcpcrypt uses options as dic-

tated by TCP’s specification and is not anomalous in

any way—for instance, even during re-keying the proto-

col design ensures that retransmissions always produce

the same payload bytes for a given range of sequence

numbers. We thus believe that tcpcrypt can safely be

deployed on today’s Internet as it will, for the majority

of users, provide stronger security without breaking con-

nections or noticeably reducing performance.

7 Related work

We categorize related work based on the networking

stack layer it operates in. The network layer is domi-

nated by IPSec-based solutions. IPSec [16] encrypts all

data above the network layer. However, IPSec has not

enjoyed widespread deployment and use, so a reasonable

fear is that tcpcrypt could endure the same fate. Fortu-

nately, several factors make it easier to deploy tcpcrypt

and provide greater incentive to do so, leaving us some

hope that ubiquitous encryption can succeed at the trans-

port layer even if it has not at the network layer.

A big challenge to IPSec is that it breaks middleboxes

that require access to the transport layer. Given the in-

creasing prevalence of NAT in particular, this excludes

a large portion of the population from using IPSec.

Tcpcrypt, by contrast, operates at the transport layer and

so avoids these problems. Another challenge for IPSec

is that it is hard to create a notion of a “session” in a

connection-less environment (the network layer). Thus,

while IPSec is good at authenticating hosts to one an-

other for purposes such as virtual private networks, it

would be difficult and cumbersome to authenticate indi-

vidual users, processes, and connections between hosts.

Moreover, some transport-level security issues, such as

protecting against wrapped acknowledgment numbers,

are harder to reason about in IPSec.

Conversely, there are several incentives for deploying

tcpcrypt that have no analogue with IPSec. One is that it

can be integrated in a backwards-compatible way with

SSL and significantly increase performance. By con-

trast, SSL over IPSec would require double-encryption,

reducing performance. Second, TCP multipath requires a

means of authenticating the same endpoint with multiple

IP addresses, which tcpcrypt makes much easier. That

said, tcpcrypt is less general than IPSec, which encrypts

everything above IP, including UDP.

Better Than Nothing Security (BTNS) [26] is IPSec

without a PKI, thus providing no security guarantees

against active attackers. This is similar to default

tcpcrypt. However, tcpcrypt additionally exposes the

necessary hooks so that applications can perform au-

thenticate in a variety of ways to guarantee security.

Opportunistic encryption using IKE [23] specifies how

to use IPSec with certificates obtained from DNSSEC.

Tcpcrypt would need application support to integrate

with DNSSEC.

We found no privacy solutions integrated into the

transport layer. There are, however, integrity solutions.

TCP MD5 [11] and AO [27] provide authentication and

integrity protection within TCP. Tcpcrypt provides more

functionality than these options by providing encryption.

Moreover, tcpcrypt is fundamentally different as it re-

quires no user setup. The session is established using

ephemeral keys, and authentication can happen over the

session itself. TCP MD5 and AO require establishing

pre-shared secrets through out-of-band means. The main

use of TCP MD5 and AO is to protect manually con-

figured BGP sessions, which tcpcrypt can do as well by

disabling unauthenticated RST packets. Also, TCP AO

does not interoperate with NATs (which is okay for its in-

tended use, as BGP is not usually spoken through NATs).

The dominant encryption solution above the transport

layer is SSL [22]. Tcpcrypt offers a number of bene-

fits over SSL, including better server performance, in-

trinsic forward secrecy, and integrity protection for the

TCP session itself. Tcpcrypt is also more general, as it

supports arbitrary authentication mechanisms and does

not require a PKI. Finally, tcpcrypt is backward com-

patible with legacy applications and legacy hosts, which

should ease ubiquitous deployment. Being more general,

tcpcrypt can be used as a drop-in replacement for SSL,

and we have in fact produced an SSL library that falls

back to SSL if tcpcrypt is unavailable.

ObsTCP [17] also aims to provide opportunistic en-

cryption, but is only designed to provide security in ag-

gregate, not for specifically targeted connections. The

author states, “We continue to advocate TLS as the only

user facing transport security,” meaning ObsTCP will

duplicate encryption done by TLS, not protect transport

headers, and not integrate with application-level authen-

tication. ObsTCP requires no new TCP options and no

extra round trips for connection setup, but the downside

is that applications must be modified and that the first

connection between two hosts remains unencrypted un-

less one knows that the other supports ObsTCP.

While tcpcrypt combines only well-known techniques,

no other existing protocol can accomplish all of its

goals. Specifically, tcpcrypt can be incrementally de-

ployed on today’s Internet, works out-of-the-box (even

through NATs) without manual configuration, provides

high enough performance to be on by default, and allows

applications to integrate transport-layer security with ar-

bitrary higher-level authentication techniques. The Inter-

net demands higher security, hardware is ready for it, and

the cryptographic techniques were waiting to be pieced

together; tcpcrypt does so, and we believe our evaluation

shows it could be readily deployed.

8 Conclusion

Tcpcrypt demonstrates that ubiquitous encryption of

TCP traffic is technically feasible on modern hardware.

By leveraging the asymmetry of common public key ci-

phers, it is possible for a server to accept and service

around 20,000 tcpcrypt connections per second without

session caching. Even higher rates are possible with

caching. Data transfer rates are not an issue either; AES-

SHA1 encryption and integrity protection can be done at

several gigabits per second without hardware support on

2008-era hardware. The newest Intel CPUs incorporat-

ing AES instructions are even faster—tcpcrypt can reach

9Gb/s using AES-UMAC on a dual-core i5 desktop, sug-

gesting that six-core i5 servers should handle 10Gb/s.

These results suggest that tcpcrypt should have a neg-

ligible impact on the vast majority of applications.

The main contribution of this work is not performance,

though this is a prerequisite. There are no new crypto-

graphic primitives, nor is the protocol especially novel.

The main contribution is from putting well-understood

components together in the right way to permit rapid and

universal deployment of opportunistic encryption, and

then providing the right hooks to encourage innovation

and deployment of much better and more appropriate

application-level authentication. This ability to integrate

transport-layer security with application-level authenti-

cation largely obviates the need for applications to en-

crypt their own network traffic, thereby minimizing du-

plication of functionality.

418 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 419

As an example, we showed how a simple batch-

signing server-authentication scheme can leverage

tcpcrypt to provide forward secrecy and the same se-

curity as SSL while handling 25 times the connections

per second. At the same time, the protocol allows an

SSL server to fall back gracefully to regular SSL behav-

ior when one or the other side cannot utilize tcpcrypt for

authentication.

We also demonstrated the use of tcpcrypt to bootstrap

both weak and strong password-based mutual authentica-

tion (using CMAC and PAKE respectively). Password-

based authentication without mutual authentication, even

over SSL, really should be a thing of the past. Using

tcpcrypt with batch signing and CMAC mutual authenti-

cation is strictly stronger than HTTP Digest authentica-

tion over an SSL session, and more than 20 times faster.

Using tcpcrypt and our unoptimized PAKE implementa-

tion is almost twice as fast as SSL, and provides stronger

security. Many other authentication mechanisms are pos-

sible; we believe that tcpcrypt’s generality and simple

application-level hooks are exactly what is required to

get application writers to think about the form of authen-

tication they really need, once they can address authen-

tication separately from the question of how to encrypt

session data.

Finally, tcpcrypt interoperates seamlessly with legacy

applications, TCP stacks, and middleboxes, making it

easy to deploy incrementally. For all of the above

reasons, we believe that it now makes sense to make

transport-layer encryption the default. Make it happen

by installing tcpcrypt from http://tcpcrypt.org.

Acknowledgments

We thank Alan Eustace, Daniel Giffin, Eric Grosse, Brad

Karp, Adam Langley, the anonymous reviewers, and our

shepherd, Nikita Borisov, for information, suggestions,

feedback, and other assistance. This work was funded

by gifts from Intel (to Brad Karp) and from Google, by

NSF awards CNS-0716806 (A Clean-Slate Infrastructure

for Information Flow Control) and CCR-0331542 (POR-

TIA), and by the EU FP7 Trilogy project.

References

[1] VIA Padlock Security Engine.

[2] Ultra-FAST Cryptography on the Sun UltraSPARC T2.

http://blogs.sun.com/bmseer/entry/ultra_fast_

cryptography_on_the.

[3] BITTAU, A., HANDLEY, M., AND LACKEY, J. The final nail in

WEP’s coffin. In SP ’06: Proceedings of the 2006 IEEE Sym-

posium on Security and Privacy (Washington, DC, USA, 2006),

IEEE Computer Society, pp. 386–400.

[4] BONEH, D., AND SHOUP, V. A graduate course in applied cryp-

tography. Version 0.1, from http://cryptobook.net, 2008.

[5] FEDERAL COMMUNICATIONS COMMISSION. Commission

orders Comcast to end discriminatory network management

practices. http://hraunfoss.fcc.gov/edocs_public/

attachmatch/DOC-284286A1.pdf.

[6] FRANKS, J., HALLAM-BAKER, P., HOSTETLER, J.,

LAWRENCE, S., LEACH, P., LUOTONEN, A., AND STEW-

ARD, L. HTTP authentication: Basic and digest access

authentication. RFC 2617, 1999.

[7] GRANBOULAN, L. How to repair ESIGN. In Security in Com-

puter Networks (2003), vol. 2576 of LNCS, pp. 234–240.

[8] GUERON, S. Intel Advanced Encryption Standard (AES) Instruc-

tions Set. Intel White Paper, Rev 03.

[9] HANDLEY, M., PAXSON, V., AND KREIBICH, C. Network in-

trusion detection: evasion, traffic normalization, and end-to-end

protocol semantics. In SSYM’01: Proceedings of the 10th con-

ference on USENIX Security Symposium (Berkeley, CA, USA,

2001), USENIX Association, pp. 9–9.

[10] HANSTEEN, P. N. M. The Book of PF - A No-Nonsense Guide

to the OpenBSD Firewall. No Starch Press, 2007.

[11] HEFFERNAN, A. Protection of BGP Sessions via the TCP MD5

Signature Option. RFC 2385, 1998.

[12] HURLEY, C. Y,000,000,000utube. The Official YouTube

Blog, http://youtube-global.blogspot.com/2009/10/

y000000000utube.html.

[13] JACOBSON, V., BRADEN, R., AND BORMAN, D. TCP exten-

sions for high performance. RFC 1323, 1992.

[14] JONCHERAY, L. A simple active attack against tcp. In SSYM’95:

Proceedings of the 5th conference on USENIX UNIX Security

Symposium (Berkeley, CA, USA, 1995), USENIX Association.

[15] KATZ, J., AND LINDELL, A. Y. Aggregate message authentica-

tion codes. In Topics in Cryptology – CT-RSA (2008).

[16] KENT, S., AND ATKINSON, R. Security Architecture for the

Internet Protocol. RFC 2401, 1998.

[17] LANGLEY, A. Obfuscated TCP. http://code.google.com/

p/obstcp/wiki/Transcript.

[18] LIN, C.-C. RSA Performance of Sun Fire T2000.

http://blogs.sun.com/chichang1/entry/rsa_

performance_of_sun_fire.

[19] MATHIS, M., MAHDAVI, J., FLOYD, S., AND ROMANOW, A.

TCP selective acknowledgement options. RFC 2018, 1996.

[20] MCCARTHY, C. Pingdom: Facebook is killing it on page

views. CNET News, http://news.cnet.com/8301-13577_

3-10428394-36.html.

[21] PETER WALTENBERG. AES-GCM, AES-CCM, CMAC updated

for OpenSSL 1.0 beta 2 – revised.

[22] RESCORLA, E. SSL and TLS: Designing and Building Secure

Systems. Addison-Wesley Professional, 2000.

[23] RICHARDSON, M., AND REDELMEIER, D. Opportunistic En-

cryption using the Internet Key Exchange (IKE). RFC 4322 (In-

formational), December 2005.

[24] ROTHSCHILD, J. High performance at massive scale - lessons

learned at Facebook. Seminar at UCSD.

[25] SCHILLACE, S. Default HTTP access for Gmail.

http://gmailblog.blogspot.com/2010/01/

default-https-access-for-gmail.html.

[26] TOUCH, J., BLACK, D., AND WANG, Y. Problem and Applica-

bility Statement for Better-Than-Nothing Security (BTNS). RFC

5387 (Informational), November 2008.

[27] TOUCH, J., MANKIN, A., AND BONICA, R. The TCP authenti-

cation option. Internet draft (work in progress), July 2009.

Automatic Generation of Remediation Procedures for Malware Infections

Roberto Paleari1, Lorenzo Martignoni2, Emanuele Passerini1,
Drew Davidson3, Matt Fredrikson3, Jon Giffin4, Somesh Jha3

1Università degli Studi di Milano
{roberto, ema}@security.dico.unimi.it

2Università degli Studi di Udine
lorenzo.martignoni@uniud.it

3University of Wisconsin
{davidson, mfredrik, jha}@cs.wisc.edu

4Georgia Institute of Technology
giffin@cc.gatech.edu

Abstract
Despite the widespread deployment of malware-
detection software, in many situations it is difficult to
preemptively block a malicious program from infecting
a system. Rather, signatures for detection are usually
available only after malware have started to infect a large
group of systems. Ideally, infected systems should be
reinstalled from scratch. However, due to the high cost
of reinstallation, users may prefer to rely on the remedi-
ation capabilities of malware detectors to revert the ef-
fects of an infection. Unfortunately, current malware de-
tectors perform this task poorly, leaving users’ systems
in an unsafe or unstable state. This paper presents an
architecture to automatically generate remediation pro-
cedures from malicious programs—procedures that can
be used to remediate all and only the effects of the mal-
ware’s execution in any infected system. We have imple-
mented a prototype of this architecture and used it to gen-
erate remediation procedures for a corpus of more than
200 malware binaries. Our evaluation demonstrates that
the algorithm outperforms the remediation capabilities of
top-rated commercial malware detectors.

1 Introduction

One of the most pressing problems faced by the In-
ternet community today is the widespread diffusion of
malware. To defend against malware, users rely on
signature- or behavior-based anti-malware software that
attempts to detect and prevent malware from damaging
an end-host. Unfortunately, in many cases detection and
prevention are not possible. Malware authors have per-
fected the practice of automatically creating a large num-
ber of variants, or malware that appears new to detectors
but exhibits the same behavior when executed. For new
malware and variants, signatures for detection are rarely
available by the time malware reaches a network, leaving
a time window in which systems are susceptible to infec-
tion. In these situations, the ability to detect and remove

the malware after infection is not enough—it is also im-
perative that any harmful changes to the system made by
the malware are remediated (or reverted).

The safest way to remediate a system is to format
the permanent storage and re-install the operating sys-
tem from scratch. While effective, this approach is also
costly and usually results in a loss of valuable personal
data, particularly when data backups are incomplete or
non-existent. Rather, end-users and administrators may
prefer to remove only those resources left behind by the
malware, leaving the rest of the system intact. Unfor-
tunately, current anti-malware products perform poorly
at this task. A recent study demonstrated that even top-
rated commercial anti-malware software fails to revert
the effects of all the actions performed by malware dur-
ing infections [15]. Needless to say, partially-remediated
systems are unstable and prone to error.

In this paper, we present a system that automatically
generates remediation procedures from malware bina-
ries. These remediation procedures can be executed on
infected systems to restore the state to a clean config-
uration, and are capable of remediating the effects of a
malware sample a posteriori, without observing the in-
fection take place. The fact that our remediation proce-
dures are generated to cover a particular malware binary,
rather than a specific sequence of system events resulting
in an infected state [7, 19], amounts to a substantial break
from previous technologies. Using our system, one can
generate a single general-purpose executable that is ca-
pable of reversing the effects of a malware sample on an
arbitrary number of hosts after the fact. In other words,
one does not need to be aware of our system, or make
use of it, until after the infection takes place. To achieve
this goal, we rely on a combination of dynamic program
analysis and semantic generalization to produce models
of infection behavior that are resilient to common mal-
ware anti-analysis techniques, such as the use of nonde-
terminstic file names or the omission of malicious behav-
ior on some runs of the program. Then, we translate these

1

420 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 421

behavior models directly into executable procedures that
remediate the effects of a malware infection.

We have implemented our ideas in a prototype tool.
Using the prototype, we automatically generated reme-
diation procedures on a corpus of more than 200 binary
malware samples belonging to approximately 50 distinct
families. We evaluated the practical effectiveness of each
procedure by testing its ability to recognize all of the
harmful effects of a malware execution (true positives)
while leaving benign aspects of the system intact (true
negatives). The results of our evaluation attest to the ef-
fectiveness of our technique: in total, we reversed 98%
of the harmful effects while generating only a single false
positive, although we were not able to remediate user-
specific resource changes such as deleted documents and
personal file mutations. In contrast, the best commercial
anti-malware product remediated only 82% of the effects
of our corpus.
In summary, we make the following contributions:

• We present an architecture to automatically gener-
ate remediation procedures given binary malware
samples. To the best of our knowledge, our architec-
ture is the first to work under the assumption that in-
formation relating to a specific infection is not avail-
able; rather, characteristic infection patterns are ob-
served and generalized to produce effective proce-
dures in this setting.

• We evaluated an implementation of our framework
on on more than 200 real malware samples and
found that it was able to remediate the resulting in-
fections more effectively than existing commercial
antivirus products. We have made this implementa-
tion available as an open-source package 1.

The rest of this paper is organized as follows: In Sec-
tion 2 we discuss related work. In Section 3.1, we de-
scribe the problem that our architecture solves by pre-
senting a realistic example, and in Section 3.2 we outline
our approach, relating it to the example. In Section 4,
we formalize the problem of malware remediation and
present the technical details of our approach. In Sec-
tion 5, we evaluate the effectiveness of our approach by
testing a prototype implementation against real malware.
In Section 6 we discuss the limitations of our approach,
the security implications, and potential avenues for fu-
ture work. We present concluding remarks in Section 7.

2 Related Work

Our contributions relate to ongoing research on behavior-
based malware analysis, on the execution of untrusted

1The URL for this tool is http://www.cs.wisc.edu/
∼mfredrik/remediate

applications in trusted systems, and on the automatic
generation of signatures to detect malicious network traf-
fic.

Behavior-Based Malware Analysis: The prevalence
of packed, polymorphic, and metamorphic malware
highlights the deficiencies of traditional detection ap-
proaches based on syntactic signatures. This has urged
researchers and security practitioners to focus on solu-
tions that base policy on the behavior exhibited by un-
trusted software. Behavior-based techniques attempt to
infer security-relevant information about an untrusted
program either by analyzing it statically [16] or by ob-
serving its operation dynamically [1, 11, 21]. The major
drawback of current behavior-based techniques is their
high computational overhead. Recently, Kolbitsch et al.
developed an efficient analysis solution intended to re-
place traditional anti-malware on the desktop [8]. Closer
in spirit to the work presented here is that of Christodor-
escu et al. [4]. They described an automatic approach
that derives formal specifications of malicious behavior
by comparing the observed dynamic behavior of mali-
cious and benign applications. Their technique uses de-
pendence graphs, which express the relationships among
various low-level behavior events, and is similar in many
ways to our high-level behavior abstraction component
(see Section 4.2.1). Another area of much recent activity
is that of automatic classification of malware into fami-
lies [2, 18]. For that type of work, malware is grouped
into clusters, which correspond to families, by some no-
tion of behavioral similarity. Our technique uses a form
of behavioral grouping as a means to remediate a system,
but we go further than malware classification by attempt-
ing to remove the harmful effects of the malware on the
system.

Execution of Untrusted Applications: In addition to
work that attempts to detect or prevent the execution of
malicious software, some work has been done to miti-
gate the harmful effects of software a posteriori. Hsu
et al. presented a framework for automatically repairing
an infected system after monitoring the execution of the
malware [7]. The actual work of remediating a system
given a detailed description of the malicious execution
is similar to the way that we construct remediation pro-
cedures from generalized behavior models. Liang et al.
described an alternative approach called Alcatraz [10].
In Alcatraz, an untrusted application is executed inside
of a sandbox, and any change it makes is not commit-
ted until the program is confirmed to be innocuous. The
manner in which a program is deemed innocuous is con-
sidered orthogonal to the main issue of sandboxing. The
idea was later tweaked [19] so that all state changes made

2

by an application are cached, and upon program termina-
tion the user decides whether or not to keep any changes.
The primary differences between these techniques and
the one presented in this paper is that they rely on in-
formation regarding specific execution traces, whereas
our remediation procedures use generalized notions of
the behavior of a malware instance. As such, our sys-
tem can remediate harmful effects of malware, including
some effects that were not observed in a trace.

Automatic Signature Generation: The generalized
behavior models that we use to construct executable re-
mediation procedures can be viewed as generic signa-
tures relating the effects of a malicious program on sys-
tem resources. Different approaches have been proposed
for automatically generating attack signatures. Poly-
graph [14] is one of the first systems proposed by re-
searchers to address the problem of generating network
signatures to detect polymorphic worms. Polygraph
identifies invariant fragments of packets that are found in
all the network flows generated by the same worm, since
they are necessary for the worm to successfully exploit a
given vulnerability. These fragments are then combined
into signatures using different techniques. Hamsa [9]
addresses the same problem using a different algorithm
that identifies and combines invariants. Hamsa’s signa-
tures have better accuracy and are more resilient against
attacks than Polygraph. Finally, Nemean [20] gener-
ates semantics-aware signatures to detect network intru-
sions. Nemean’s methodology, consisting of high-level
network traffic abstraction, clustering, and generalization
using automata learning, is similar to ours. However,
we operate on a fundamentally different domain than
Nemean, which generates signatures of network packet
traces.

3 Overview

In this section, we motivate our work using a realistic
example of a malware infection and present our architec-
ture by walking through the steps that it takes to remedi-
ate the example.

3.1 Motivation
Consider the malware whose pseudo-code is shown
in Figure 1. This program generates a random file-
name located in the system directory, drops a mali-
cious payload into the file, creates a new registry value
that causes the payload to be executed at system boot
time, tampers with the system’s network name resolver
(c:\...\etc\hosts), and infects a benign system li-
brary (c:\windows\user32.dll). Our goal is to gen-
erate a procedure that remediates infections caused by

any possible execution of this code. In this case, re-
covery includes: (1) deleting the file containing a copy
of the malicious payload, (2) deleting the registry key
created to start the malware at boot, (3) disinfecting
c:\windows\user32.dll, and (4) restoring the original
configuration of the name resolver c:\...\etc\hosts. It
is important that the effects of all malicious actions taken
by the malware are removed. For example, consider what
happens when (1), (2), and (3) are remediated, but not
(4). In this case, all internet traffic on the host remains
subject to hijacking by the malware, so the system is still
in a dangerous configuration. Many commercial prod-
ucts would leave the system in this configuration [15].

Completely remediating the effects of the malware in
Figure 1 is not as straightforward as the example might
suggest. First, high-level source code is usually not avail-
able when dealing with real malware. Given the well-
known difficulty of statically analysing adversarial bi-
nary code [13], this means we must partially rely on
dynamic information. Although this example does not
illustrate it, there is a possibility that the malware con-
tains paths that are rarely executed under normal circum-
stances. Any harmful effects produced on such a path
would be difficult to account for in a remediation pro-
cedure, because the problem of discovering such an ef-
fect dynamically is extremely difficult. Secondly, mal-
ware can appear to be nondetermistic by relying on sub-
tle details in its environment, such as the system clock
or pseudorandom number generator. This behavior is of-
ten present even on common paths, and is apparent in
our example, despite its simplicity: Both the filename of
the malicious payload and the name of the registry value
used to activate the payload depend on randomness.

Given the limited nature of dynamic program informa-
tion, it may be hard to generate a remediation procedure
that precisely accounts for all of the nondeterminism in
a program. Procedures that do so may mistakenly iden-
tify benign system resources as malicious and attempt to
remediate them. Consider a remediation procedure that
attempts to account for the nondeterminism in our exam-
ple by looking for all files in the system directory with
the suffix .exe. While this policy would effectively cap-
ture the nondeterminism in the payload filename, any at-
tempt to remediate resources based on it would result in
the unacceptable removal of benign executables. Con-
versely, procedures that do not attempt to generalize ex-
ecution behavior are likely to miss some malicious ef-
fects that must be remediated. For example, after run-
ning the sample malware once, we might find that the
payload is delivered in c:\windows\poqwz.exe. If a re-
mediation procedure does not generalize this information
and only ever looks for this file when remediating infec-
tions caused by other executions of this malware, then it
will miss the payload file most of the time, as it is not

3

422 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 423

1 / / g e n e r a t e random f i l e and v a l u e names
2 filename = "po" + random_alpha () + random_alpha () + random_alpha () + ".exe" ;
3 valuename = (random_int () % 2) ? "qv" : "vq" ;
4 . . .
5 / / drop m a l i c i o u s code
6 f = CreateFile (”c:\windows\” + filename , GENERIC_WRITE , . . .) ;
7 WriteFile (f , malicious_buf , . . .) ;
8 WriteFile (f , other_malicious_buf , . . .) ;
9 . . .

10 / / s t a r t t h e newly c r e a t e d e x e c u t a b l e a t boo t
11 RegOpenKey (HKEY_LOCAL_MACHINE , "...\Windows\CurrentVersion\Run" , &r) ;
12 if (RegQueryValueEx (r , valuename , NULL , REG_SZ , . . .) == ERROR_FILE_NOT_FOUND)
13 RegSetKeyValue (r , valuename , REG_SZ , filename , . . .) ;
14 . . .
15 / / i n f e c t u s e r 32 . d l l
16 g = CreateFile ("c:\windows\user32.dll" , FILE_APPEND_DATA , . . . , OPEN_EXISTING , . . .) ;
17 WriteFile (g , malicious_buf , . . .) ;
18 . . .
19 / / h i j a c k HTTP c o n n e c t i o n s t o www. g oog l e . com and www. c i t i b a n k . com
20 h = CreateFile ("c:\windows\system32\drivers\etc\hosts" , . . . , OPEN_EXISTING , . . .) ;
21 ReadFile (h , buf , . . .) ;
22 WriteFile (f , "67.42.10.3 www.google.com\n67.42.10.3 www.citibank.com" , . . .) ;
23 . . .
24 / / d e l e t e main e x e c u t a b l e
25 DeleteFile ("c:\malware.exe") ;

Figure 1: Pseudo-code of a sample malicious program.

possible to observe the malware long enough to see all
possible variants of the payload file name.

3.2 Architecture Overview
The architecture we have developed for generating re-
mediation procedures from malware binaries is shown in
Figure 2. It has three primary components: (1) an execu-
tion monitor that infers the malware’s high-level behav-
iors from a low-level trace, (2) a component that gener-
alizes the high-level behaviors from multiple executions
of the malware, and (3) a component that produces exe-
cutable remediation procedures from generalized behav-
iors. The entire system works sequentially, with each
component using the information produced by the one
preceding it.

High-Level Behavior Extraction: The high-level be-
havior extraction component (numbered 1 in Figure 2)
analyzes the semantics of a program to produce a se-
quence of meaningful behaviors relevant to remediation.
Because malware authors usually obfuscate their bina-
ries, we rely on dynamic information to infer these be-
haviors; we execute binaries in a special environment (an
emulator) to extract a low-level execution trace, perform
analysis using manually constructed rules, and arrive at a
high-level trace [11]. Table 1 lists the high-level behav-
iors we consider. Each behavior modifies the state of the
system in some way and is parameterized by a set of ar-
guments that determine which aspects of the system state
are affected. The behaviors currently listed correspond to
those that commonly occur in malware, that are manda-
tory to infect a system, and were constructed manually to

reflect the salient behavioral features of most malware.
However, our technique can be extended to operate over
a wider set of high-level behaviors.

The environment in which a program runs typically
affects its behavior, and malware often exhibits a certain
degree of nondeterminism. To account for these factors,
we collect several high-level behavior traces for each
sample. To do so, we vary the environment by chang-
ing factors that malware typically rely on, such as lo-
cale, service pack level, and so forth. Although not sup-
ported by our current implementation, path exploration
techniques [12] can be applied in this component to ac-
count for a more complete subset of the malware’s be-
havior, as in Bouncer [5]. The lack of path exploration
techniques is not a fundamental limitation of our system,
and can be easily plugged into our system.

Our high-level behavior extractor would infer that
the sample malware from Figure 1 demonstrates the
FileCreation, RegistryCreation, DropAndAutostart,
and FileInfection behaviors, with different argu-
ments for FileCreation, RegistryCreation, and
DropAndAutostart on each execution.

Behavior Generalization: After producing a set of
high-level behavior traces for a malware sample, we at-
tempt to account for nondeterminism by creating a gen-
eral, abstract model of behavior that accounts for all of
the concrete traces we observed (numbered 2 in Fig-
ure 2). Note that generalization attempts to overapprox-
imate existing paths, thus encompassing future paths,
rather than explore as many new paths as possible. In ef-
fect, this patches some of the incompleteness of dynamic

4

Malware

Behavior
monitoring

High-level
behavior
analysis

S
1

S
2

S
3

S
4

1

Behavior
clustering

B1

B2

B3

B4

Cluster gen-
eralization

2 Remediation
procedure
generation

C
1

C
2

C
3

3
C1

C2

C3

Remediation
procedure

Figure 2: Architecture of the system for generating remediation procedures. In this figure, S denotes a system call
trace, B denotes a high-level behavior trace inferred from a system call trace, C denotes a cluster, and C̄ denotes a
generalized cluster.

analysis by extrapolating observed information to future,
unseen executions of the malware. This is accomplished
by recognizing when distinct behaviors from multiple
high-level traces, with possibly different arguments, are
actually instances of the same malicious activity. We re-
fer to this matching of behaviors as clustering. When a
cluster is identified, the arguments of its constituent be-
haviors are generalized to tolerate any differences that
may be present in the actual values. Thus, nondetermin-
ism is accounted for via overapproximation by ensuring
that this generalization extends to future, unseen execu-
tions.
In the malware from Figure 1, our technique would

cluster all instances of the same high-level behavior to-
gether. For example, all instances of DropAndAutostart
would be clustered together and all instances of
FileInfection would be clustered together. Be-
cause there is likely variation among the arguments of
DropAndAutostart, we construct a regular expression
to tolerate minor differences while ensuring that be-
nign files are not mistakenly identified. The final re-
sult of the computation for this behavior would be a
DropAndAutoStart behavior with generic file argument
c:\windows\po[[:alpha:]]{3}.exe to generalize the
random filename at line 2, generic registry key/value pair
...\CurrentVersion\Run for the registry touched at line
11, and (qv|vq) for the registry value randomly created
at line 3.

Remediation Procedure Generation: The third com-
ponent of our architecture (numbered 3 in Figure 2) gen-
erates executable remediation procedures from the gen-
eralized behaviors produced in the previous step. The
resulting procedure examines the state of the system on

which it runs in search of symptoms of an infection, and
removes the symptoms whenever possible. It attempts
to match each resource (file, process, or registry key) on
the system against the constraints associated with each
generalized high-level behavior. For our running exam-
ple, each file is matched against the regular expression
c:\windows\po[[:alpha:]]{3}.exe associated with the
first argument of the DropAndAutoStart behavior, an-
other regular expression associated with the second ar-
gument, and a final one describing the content of the file.
If such a file is found, then the registry values under the
key ...\CurrentVersion\Run are matched against the
regular expression (qv|vq). If such a value is found and
its data matches the current filename being considered,
then all of the resources (the file and registry key pair)
are removed. Currently, we only produce remediation
procedures that operate on system files. For technical
reasons explained in Section 4, we do not handle user-
specific files and resources. While this is a limitation
of our current approach, we hope to remove it in future
work.

4 Generating Remediation Procedures

In this section, we present the details of our sys-
tem for generating remediation procedures. We begin
by formalizing the problem solved by our system and
continue component-by-component describing the algo-
rithms used to solve the problem.

4.1 Problem Description
When malware runs on a system, it may infect the system
by changing its persistent state in an undesirable way.

5

424 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 425

R
es

ou
rc

e
cr

ea
tio

n

Behavior Arguments Description
FileCreation File name and content Creation of a new file
RegistryCreation Key name and content Creation of a new registry value
DropAndAutostart File name and content. Key name

and content
Creation of a new file and of a registry value con-
taining its name (to execute the file automatically at
every boot)

DropAndExecute File and process name Creation and execution of a new executable

R
es

ou
rc

e
in

fe
ct

io
n FileInfection File name and content. List of pre-

served regions
Infection of an existing file

RegistryInfection Key name and content Replacement of an existing registry value

R
es

ou
rc

e
de

le
tio

n

FileDeletion File name Deletion of an existing file
RegistryDeletion Key name Deletion of an existing registry value

Table 1: High-level behaviors considered for remediation.

For our purposes, the state S of a system is modeled
as an association from resource names N to data from
a domain D. Individual elements of S are referred to
as resources. To simplify notation, we let S stand for
the set of possible system states. Because most malware
is written for Windows platforms, our targeted resource
namespace consists of Windows filenames, registry key
and value names, and process names. The data domain
is the set of all finite-length bit strings.

The infection behavior of a malware can be under-
stood as a transition relation between system states.
There are three ways in which the malware can mod-
ify the state of a system: (1) resources may be com-
pletely removed from the system, (2) new resources may
be added to the system, and (3) the data corresponding
to existing resources may be mutated. Because the infec-
tion behavior of a malware can be succinctly described
in terms of these three operations and the resources over
which they operate, we represent it using an infection re-
lation R ⊆ S × N × S × S that encodes this informa-
tion. Intuitively, the infection relation describes the way
in which a particular malware changes the state of a sys-
tem. Given an element (S, Nrem , Sadd , Smut) ∈ R, the
malware transforms state S into a new state by removing
the resources labeled by Nrem , adding the resources in
Sadd , and modifying the resources in Smut . Note that the
infection behavior is described as a relation rather than a
function mapping. This is because of the fact that mal-
ware may behave nondeterministically when it infects a
system—it may infect the same system state in different
ways on two distinct executions.

After a given piece of malware has infected a system,
the goal of remediation is to undo the effects of the in-
fection, returning the system to a clean state. More pre-
cisely, given a malware binary, we seek to construct an

infection relation for that malware that describes its be-
havior. We can then use the information in the infection
relation to enact changes on the system that remediate
the effects of the malware: restoring any files that were
removed (Nrem) or mutated (Smut), and removing files
that were added (Sadd). We package this functionality
as an executable remediation procedure, as described in
Section 3.2. In general, there are a number of approaches
that may realize the goal of constructing the infection re-
lation corresponding to a given malware. In this paper,
we focus on applying dynamic analysis to the malware
sample to extract the information necessary to construct
the infection relation.

In practice, it is not usually possible to reconstruct the
true infection relation from a malware binary. Rather, we
compute a relation that overapproximates the actual be-
havior for a finite set of execution paths exhibited by the
malware. For example, we overapproximate the resource
names involved in the DropAndAutoStart behavior
of Figure 1 by creating a regular expression that matches
all of the resource names on the set of execution traces
we observed. Furthermore, our approximate infection re-
lations do not contain information regarding the removal
or mutation of non-system files, as it is generally not pos-
sible to restore this state without additional information
not encoded in the malware. Of course, using an ap-
proximate infection relation for remediation introduces
the possibility of false negatives and false positives. A
false negative occurs when the remediation fails to prop-
erly reverse the changes left by the malware. Similarly, a
false positive occurs when remediation affects resources
that were not touched by the malware. Both types of er-
ror are possible given the way we construct approximate
infection relations. For example, false positives may re-
sult from the overapproximation of resource names with

6

regular expressions, whereas false negatives may result
from the fact that we do not account for all possible exe-
cution paths in the malware. Thus, it is our goal to con-
struct an approximate infection relation that minimizes
false positives and false negatives

4.2 System Details
This section details the specific algorithms and subsys-
tems used in the three main components of our system
(depicted in Figure 2).

4.2.1 High-Level Behavior Extraction

Intuitively, the problem of high-level behavior extraction
is to derive a concise description of the behavior seman-
tics demonstrated by a malware sample. Given a mal-
ware sample m and a set D of high-level behavior tem-
plates that describe events related to system state modifi-
cation, the goal of this task is to produce a sequence of in-
stances of the members of D, along with a corresponding
low-level description of system events that match each
template instance.

The set of behavior templates used in our prototype
is given in Table 1. To infer high-level behaviors from
a stream of system calls, we use multilayer behavior
specifications, as proposed in previous work [11]. Al-
though the details of the inference algorithm are beyond
the scope of this paper, we give a brief account of the
main points here. Each high-level behavior is described
in terms of a hierarchical model. Each level of the hierar-
chy is composed of a set of behavior summaries and their
accompanying behavior graphs. The graph for a given
behavior summary encodes the behavior operationally, in
terms of events and the dependencies among them. The
events in a graph at a particular level are defined in terms
of the summaries of levels lower in the hierarchy. The
top level of the hierarchy corresponds to the final output
of the inference, and the layers beneath it provide de-
tails of incremental specificity, until the lowest level is
reached. In our prototype, the lowest level corresponds
to a system call trace collected in a virtual environment.
We use a modified version of QEMU [3] to monitor an
application for its system call trace.

The nodes in the behavior graphs at each layer cor-
respond to events that are observed by the monitor, and
the edges correspond to data dependencies between the
events. For example, in the graphs at the lowest level,
system calls that operate on the same resource handle
have edges between their representative nodes that re-
flect this dependency. At the highest level, this relation-
ship is preserved by edges that denote the fact that the
corresponding set of high-level behaviors operate on the
same file. Representing high-level behavior graphs hier-

archically has one crucial advantage: the same high-level
behavior can be described in terms of multiple alterna-
tive intermediate behaviors. For example, our high-level
behavior DropAndAutostart can be represented in terms
of all possible low-level system call sequences that cre-
ate a new file, write executable content into it, and then
change the system configuration to activate the dropped
file at boot time. Because there are numerous distinct
ways to accomplish this high-level task in terms of sys-
tem calls, it is important to account for all of them in a
clean and straightforward way. Our heirarchical behavior
model formalism allows this, and thus makes our system
more resilient to this type of evasion.
Figure 3 shows a sample system call trace and two

of the high-level behaviors extracted from it. The fig-
ure shows both the concrete graphs and the template
instances that were matched. The first four system
calls in the trace (members s1 through s4) are exe-
cuted by the malware sample to replicate its payload
into a new file. These calls are associated with the
layer-1 behavior FileCreation. Similarly, the system
calls s11, s13, and s14 are associated with the layer-1
behavior RegistryCreation, and the last system call
(s41) with the behavior FileDeletion. Since the be-
haviors FileCreation and RegistryCreation are re-
lated, the algorithm infers the high-level layer-2 behav-
ior DropAndAutostart, which represents the fact that
the malware replicates and configures the system to exe-
cute the malicious payload at boot. Note that this high-
level behavior was inferred hierarchically; the fact that
DropAndAutoStart is present in the trace was inferred
only from layer-1 behaviors, which were in turn inferred
from system calls originally found in the trace. By
modularizing the template definitions in this way, our
high-level behavior inference technique gains a certain
amount of resilience to obfuscations and differences in
malware implementation [11].

4.2.2 Behavior Clustering

Given a set of high-level behavior traces {B1, . . . ,Bm}
corresponding to multiple executions of the same mal-
ware sample, behavior clustering identifies elements of
distinct traces that correspond to the same malicious ac-
tivity. An admissible clustering for a given set of traces is
a set of behavior sets {C1, C2, . . . , Cn} that satisfies two
conditions:

1. All behaviors in a given cluster Ci have the same
type. For example, all behaviors are of type
DropAndAutostart.

2. The clustering partitions the set of all events in ev-
ery execution trace: no behavior is in more than one
cluster, and each behavior is in some cluster.

7

426 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 427

s1 NtCreateFile("poqwz.exe") → f
s2 NtWriteFile(f, "...malicious code...")
s3 NtWriteFile(f, "...other malicious code...")
s4 NtClose(f)
...
s11 NtOpenKey("Run") → r
s12 NtQueryValueKey(r, "vq") → FAILURE

s13 NtSetValueKey(r, "vq", "poqwz.exe")
s14 NtClose(r)
...
s21 NtOpenFile("...\system32\user32.dll") → g
s22 NtWriteFile(g, "...malicious data...")
s23 NtClose(g)
...
s31 NtOpenFile("c:\windows\hosts") → h
s32 NtReadFile(h, 1024) → "# Copyright (c)..."

s33 NtWriteFile(h, "67.42.10.3 www.google.com...")
s34 NtWriteFile(h, "67.42.10.3 www.citibank.com...")
s35 NtClose(h)
...
s41 NtDeleteFile("c:\malware.exe")

(a)

DropAndAutostart FileDeletion

FileCreation RegistryCreation

s1 s3

s2

s4

s11

s13

s14

s41

La
ye

r0
La

ye
r1

La
ye

r2

High-Level Behavior Summaries
DropAndAutostart("poqwz.exe", data, "Run", "vq",

"poqwz.exe")
FileCreation("poqwz.exe", data)
FileDeletion("c:\malware.exe")
RegistryCreation("Run", "vq", "poqwz.exe")

(b)

Figure 3: The system call trace for our sample malware.exe (a) and high-level behaviors generated from the trace
(b).

In later stages of the system, it generalizes behaviors
in the same cluster by overapproximating their argument
values. Thus, desirable clusterings are those that lead to
tighter overapproximations, while still grouping related
behaviors together in order to allow generalization. As
an example, Figure 4 shows two high-level traces of our
sample malicious program. We denote the jth behavior
observed in the ith execution trace as bi

j . For these traces,
we want to group behaviors b1

1 and b2
1 because they cor-

respond to the same activity, and generalizing their ar-
guments leads to a tight overapproximation: we can use
regular expressions that match a fairly small set of strings
(namely, po[[: alpha :]]{3}.exe). Similarly, we want to
group b1

2 with b2
2 and b1

3 with b2
3. However, had the sec-

ond trace contained another DropAndAutostart behav-
ior for an executable named avkiller.exe, then cluster-
ing b1

1 with this behavior would have resulted in a poor
generalization. An optimal clustering is one that includes
all related high-level behaviors so that generalization will
create a powerful regular expression that finds all traces
of a malicious behavior. On the other hand, an optimal
clustering must not include unrelated high-level behav-
iors, as a generalization of such a cluster is likely to
match benign system resources.

Cluster Formation: Exhaustively searching for the
optimal clustering of {B1, . . . ,Bm} is infeasible, as
there are an exponential number of possibilities. Thus,
we do not attempt to find an optimal clustering and in-
stead rely on the heuristic method shown in Algorithm 1.
The algorithm begins by finding the execution trace with
the greatest number of high-level behaviors Bmax , and
creating an initial clustering by placing each bmax

i in
its own cluster Ci. Then, for each remaining behavior

trace Bj , the events are enumerated in execution order
and added to the first cluster that satisfies the admissibil-
ity criterion discussed above. We discuss the details of
matching event types below. If an event cannot be added
to any existing cluster, then a new cluster is initialized
with the current event. This process is repeated until no
traces remain, at which point the current set of clusters is
returned as the final result.

Intuitively, the heuristics in this algorithm rely on two
asssumptions: (1) distinct executions of the malware ex-
hibit similar malicious behaviors, and (2) the ordering of
malicious behaviors between executions is similar. By
selecting the trace with the greatest number of events to
seed the clustering process and assuming that different
executions contain a similar set of behaviors, we seek
clusterings that group as many behaviors together as pos-
sible. By adding events to existing clusters in execution
order and assuming that the order does not vary substan-
tially between executions, we seek clusterings that match
similar argument values, thus resulting in tighter over-
approximations in the behavior generalization phase of
the system. Furthermore, these heuristics allow our al-
gorithm to operate efficiently: Algorithm 1 runs in time
linear in the number of execution traces and the length of
the traces.

For an example of how Algorithm 1 works, consider
the two high-level execution traces depicted in Figure 4.
As both traces are of equal length, the first is chosen,
in this case B1. Clusters C1, C2, and C3 are initial-
ized with behaviors b1

1, b1
2, and b1

3, respectively. b1
1 and

b2
1 can then be matched, as they are both instances of

the DropAndAutostart high-level behavior. Simi-
larly, b1

2 is matched to b2
2, and b1

3 is matched to b2
3. Fi-

nally, the algorithm returns clusters {C1, C2, C3} where

8

B1 B2

b1

1
b2

1

b1

2
b2

2
b1

3

b2

3

b1
1
: DropAndAutostart("c:\...\poqwz.exe", data, "...\Run",

"vq", "poqwz.exe")

b1
2
: FileDeletion("c:\malware.exe")

b1
3
: FileInfection("...\etc\hosts", "67.42...", data)

b2
1
: DropAndAutostart("c:\...\pobxz.exe", data, "...\Run",

"vq", "pobxz.exe")

b2
2
: FileDeletion("c:\malware.exe")

b2
3
: FileInfection("...\etc\hosts", "67.42...", data)

DropAndAutostart

FileCreation RegistryCreation

DropAndAutostart

FileCreationRegistryCreation

FileDeletion FileDeletionFileInfection FileInfection

Figure 4: High-level behavior clustering.

C1 = {b1
1, b

2
1} represents DropAndAutostart behav-

iors, C2 = {b1
2, b

2
2} represents FileDeletion behav-

iors, and C3 = {b1
3, b

2
3} represents FileInfection

behaviors.

Behavior Comparison: Our clustering algorithm re-
quires a sub-algorithm, isomorphic, to compare two be-
haviors. Intuitively, we perform this comparison by nor-
malizing the graphs corresponding to each behavior and
then checking whether the resulting normalized graphs
are isomorphic. There is an important advantage in com-
paring the behavior graphs rather than their high-level
summaries: nondeterminism in a malicious program typ-
ically affects the summary of the behavior, but not the
low-level operations used to achieve the behavior. There-
fore, this approach is more resilient to nondeterminism
and performs a more thorough comparison, eventually
yielding more precise results.

The normalization we perform on each graph mainly
consists of abstracting away details of the behavior that
are likely affected by nondeterminism. System call ar-
guments that represent resource names are replaced by
constants that denote their type. For example, we use
a different constant for each file and registry type. Se-
quences of system calls that operate sequentially on the
same resource are replaced with a single, batch call that
is semantically identical. Finally, we ignore system calls
whose effects are later killed, i.e. overwritten or other-
wise reversed. In this way, our normalization step pro-

duces more succinct graph representations of the mal-
ware’s behavior that are largely independent of common
forms of nondeterminism.

After normalizing two graphs for comparison, we use
the VFlib2 graph isomorphism algorithm [6]. Although
isomorphism is a difficult problem and may be inefficient
to compute on large graphs, we point out that the normal-
ized behavior graphs resulting from real-world programs
are typically quite small, comprising no more than a few
dozen nodes.

4.2.3 Behavior Generalization

After clustering, we have several sets of behaviors
grouped by semantic similarity but still differing in cer-
tain details. For example, when we build clusters we
group together behaviors that differ in the specific re-
sources they identify. The goal of behavior generaliza-
tion is to produce a single canonical behavior that rep-
resents all of the members of a given cluster, as well as
variations of the members that are likely to result from
other executions of the malware. In terms of the def-
initions presented in Section 4.1, behavior generaliza-
tion produces high-level behaviors with arguments con-
structed to accurately represent the resources modified
by observed executions, while generalizing to potential
future executions.

Algorithm 2 presents Generalize , our procedure for
generalizing a behavior cluster. Intuitively, generaliza-

9

428 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 429

Algorithm 1 Cluster(B,Bmax)
Require: B is a set of high-level behavior traces

{B1,B2, . . . ,Bm}
Bmax is the high-level behavior trace containing the maxi-
mum number of high-level behaviors

Result: A set of clusters of high-level behaviors of
{B1,B2, . . . ,Bm}
C ← ∅
for bmax

j ∈ Bmax do
add new cluster {bi

j} to C
end for
for all Bi ∈ B/Bmax do
{Traces are enumerated in the order of collection.}
for all bi

j ∈ Bi do
{Behaviors are enumerated in execution order.}
for all Ck ∈ C do

if isomorphic(bi
j , bk) where bk is a behavior in Ck

then
Ck ← Ck ∪ {bi

j}
end if

end for
if bi

j is not in any cluster then
add new cluster {bi

j} to C
end if

end for
end for
return (C)

tion is performed on each high-level behavior argument
individually, and the individual results are eventually
combined to produce the generalized behavior. Because
each cluster member represents the same high-level be-
havior, and therefore has the same number of arguments
as the others, we are assured that all of the relevant infor-
mation is included in the generalization. Furthermore,
because all arguments for the behaviors that we are inter-
ested in have straightforward canonical representations
as strings, the problem of generalizing each argument
can be reduced to the problem of generalizing sets of
strings. Generalize proceeds in this vein, iterating over
each argument for the behaviors in a given cluster C. Af-
ter collecting each string for a given argument in a set Ai,
a probabilistic finite-state automaton (PSFA) that accepts
all of the strings in Ai is constructed using the simulated
beam annealing algorithm [17]. By merging states that
are probabilistically very similar, the resulting automaton
accepts a superset of Ai, thus resulting an initial gener-
alization.
After building the PFSA, certain regions of the state

transition diagram are examined for reduction using a set
G of generalization rules, which are templates for gen-
erating regular expressions that overapproximate high-
level behavior arguments. We refer to a single-entry
single-exit region as one whose entry is composed of a
node n1 that is the immediate dominator of the exit node

Algorithm 2 Generalize(C,G, δ)
Require: C is a cluster of behaviors that differ only in argu-

ment values, G is a set of generalization rules, δ is the density
threshold.

Result: A generalized high-level behavior.
{Loop through all arguments for behaviors in cluster C}
for i = 0 to |args(C0)| do

Ai ← ∅
{Gather all values for current argument}
for c in C do

Ai ← Ai ∪ argsi(c)
end for
{Generate PFSA that captures argument values}
(V, E) ← PFSA(Ai)
{Find dense regions in the PFSA}
for (n1, n2) in V × V − {(n, n) | n ∈ V } do

if ¬idom(e1, e2) or ¬ipdom(n2, n1) or
numpaths(n1, n2) < δ then

continue
end if
for r in G do

E′ ← r(paths(n1, n2))
E ← (E − paths(n1, n2)) ∪ E′

end for
end for
{Build regular expression for the current arguments}
Gi ← regexp(E)

end for
{Return new behavior with type matching C, and gen-
eralized reg. exp. arguments}
return name(C0)(G0, . . . , G), 0 ≤ n < |args(C0)|

n2, which is the immediate postdominator of n1. Fur-
thermore, we require that the number of paths between
n1 and n2 be at least δ. The actual value of δ is es-
timated empirically. This information is represented in
Algorithm 2 with the relations idomE and ipdomE , as
well as the function numpathsE . When a suitable single-
entry single-exit region is found, each rule in G is applied
in an attempt to generalize it. The generalization rules
that we use have been chosen on the basis of experience
and consider information such as the number of paths in
the region, the probabilities associated with the paths, the
lengths of the paths, and the characters composing the
strings associated with each path. If a rule is able to gen-
eralize the region, then it returns a smaller set of edges
that are used to replace the original region. Otherwise,
the rule returns the original region, and the next rule is
applied. After all rules in G have been applied, a reg-
ular expression is built from the resulting PFSA, which
is eventually used as an argument in the final general-
ized behavior. The final behavior is represented in Algo-
rithm 2 by name(C0)(G0, . . . , Gn). Here, name(C0)
returns the behavior name of the high-level behavior C0,
which is used to build the final generalized behavior from

10

1 DropAndAutostart("c:\windows\...poagp.exe",data,"...Windows\CurrentVersion\Run","vq","poagp.exe")
2 DropAndAutostart("c:\windows\...pobxz.exe",data,"...Windows\CurrentVersion\Run","vq","pobxz.exe")
3 DropAndAutostart("c:\windows\...pocra.exe",data,"...Windows\CurrentVersion\Run","qv","pocra.exe")
4 DropAndAutostart("c:\windows\...pomfq.exe",data,"...Windows\CurrentVersion\Run","vq","pomfq.exe")
5 DropAndAutostart("c:\windows\...pommp.exe",data,"...Windows\CurrentVersion\Run","qv","pommp.exe")
6 DropAndAutostart("c:\windows\...popwz.exe",data,"...Windows\CurrentVersion\Run","qv","popwz.exe")
7 DropAndAutostart("c:\windows\...pouwk.exe",data,"...Windows\CurrentVersion\Run","vq","pouwk.exe")

Figure 5: Sample cluster grouping seven different occurrences of the DropAndAutostart behavior manifested by
our sample malware (the corresponding graphs are omitted for conciseness).

the individual argument generalizations.
As an illustration of this algorithm, consider the clus-

ter presented in Figure 5. We apply the PFSA algorithm
to the first argument to arrive at the minimal automaton
shown in Figure 6. The automaton contains a single-
entry single-exit region with several paths, as highlighted
in the figure, that encodes the variable substring of the
filename. One of the generalization rules that we use
is triggered by the fact that this region is dense, i.e. it
contains many paths from entry to exit, as well as the
fact that it contains only alphabetic characters. Thus, it
returns a single edge labeled [[: alpha :]]{3}, which is a
wildcard sequence that denotes all alphabetic strings of
length three. The generalized PFSA results in the reg-
ular expression c : \windows\po[[: alpha :]]{3}.exe,
which is capable of identifying all the names of
the files that our sample malicious program could
touch on the system. After applying Generalize to
all arguments of DropAndAutostart, we obtain a
generic model of the cluster behavior represented by
DropAndAutostart(“c : \windows\po[[: alpha :]]{3}
.exe”, data, “...Windows\CurrentVersion\Run”,
“(vq|qv)”).

4.2.4 Generating Concrete Remediation Procedures

Each generalized high-level behavior must be remediated
differently. Our approach to generating executable re-
mediation procedures may be understood conceptually
in two parts. First, the generalized high-level behaviors
for each cluster are used to construct an approximate in-
fection relation R as discussed in Section 4.1. Then, we
use a generic procedure that scans the infection relation,
and changes the state of the system based on the contents
of each entry. When constructing the infection relation,
our procedure uses a model of a clean, bare installation
of the operating system installed on the machine for the
first system state component of each tuple. The use of
a bare installation enables us to remediate infected sys-
tem resources up to the correct service pack installed on
the system, but not personal or application-specific re-
sources.

The remainder of this section details the way that spe-
cific high-level behaviors are translated into entries in the
abstract infection relation, as well as the way that the

Algorithm 3 Remediate(S, R)

(Sabs , Nrem , Sadd , Smut) ← (Sabs , Nrem , Sadd , Smut) ∈
R such that S has the same operating system version as Sabs

for s in Sadd do
cases s:

(name, data) : if file name exists, with contents
matching data then remove name .

((key , value), data) : if (key , value) exists with
contents matching data
then remove (key , value).

((file, key , value), (data, regdata)) :
if file exists and is a suffix of some element of
Dregdata that also exists in a key matching

(key , value) then remove file and
(key , value).

((file, procname), data) :
if procname and (file, data) exist matching
file , data , procname and procname is a
suffix of file then remove file and
kill procname .

end cases
end for
for i in Imut do

cases i:
(file, data) : Remove (file, data) and replace it

with (file, data ′) ∈ β(S)
((key , value), data) : Remove ((key , value), data)

and replace it with
((key , value), data) ∈ β(S).

end cases
end for

abstract infection relation is used to generate a concrete
(executable) remediation procedure.

Newly-Created Resources: Remediating resources
that are created by malware is straightforward, because
the remediation procedure only needs information re-
garding the names and data of newly-created resources
to completely remove the corresponding resources from
the system. Our remediation procedures are capable of
removing files and registry keys. To account for the pos-
sibility that the infection could create resources that were
not observed in a high-level behavior trace during anal-
ysis, we instead use generalized high-level behaviors in
the infection relation R.

11

430 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 431

. . .

w

r

g

f

m

x

w

c : \ w i n p o

u

c

d

m

b

q

k

a

p

q

z

. e x e

Single-entry-single-exit region

Figure 6: A fragment of the minimized automaton constructed to generalize the first argument of the
DropAndAutostart behavior, starting from the occurrences of the argument reported in Figure 5.

For the high-level file creation behavior
FileCreation(name, data), we find the resource
for name and data and append this pair to Sadd .
Similarly, for the high-level registry creation behavior
RegistryCreation (key , value, data), we associate
the key/value pair to the corresponding data and add
them as a pair to Sadd . As shown in Algorithm 3, the
remediation procedure processes these entries in the
infection relation R by checking for the existence of the
resource names on the system and removing them if they
exist with the contents specified by Rα.

Remediating the DropAndAutostart and
DropAndExecute behaviors is more complicated,
as doing so involves multiple resources that are related
in a constrained manner. To handle a high-level behavior
of the form:

DropAndAutostart(file, data, key , value, regdata)

we group the resource names: file, key, value together as
a compound resource name for a new element in Sadd ,
and group data and regdata together for the correspond-
ing data component. The remediation procedure acts on
such an entry by scanning system resources for names
that match the file name and registry key/value pairs. If a
match is found, the corresponding resources are removed
only if the concrete filename is a suffix of the concrete
registry data and the concrete data matches the abstract
data.

For example, when the procedure encounters the gen-
eralized DropAndAutostart from Figure 5, it will aug-
ment Sadd with the following resource:

(c : \windows\po[[: alpha :]]{3}\.exe,
(...\CurrentVersion, Run),
(data, po[[: alpha :]]{3}\.exe))

The remediation procedure will then
search the system for a file that matches

c : \windows\po[[: alpha :]]{3}.exe, as well as
the registry key (...\CurrentVersion, Run), and will
remove the resources only if the value of the registry key
matches the name of any file that matches the regular
expression.

Infected Resources: Remediating infected resources
is more challenging than newly-created resources. In
general, it is not possible to know the contents of a file
before infection takes place, so it is not possible to re-
store their contents to a clean state. The exception to this
fact is with operating system files, which are common
to all systems and can thus be known to the remediation
procedure a priori.

A naive approach to remediating high-level
FileInfection(name, region, data) behaviors
would be to replace the entire file with the corresponding
file in the bare operating system. However, uninfected
regions of data may be removed by this technique, which
could result in the loss of important system data, or
leave the system in an inconsistent state. To avoid this
circumstance, high-level behavior traces keep track of
uninfected regions regions in addition to file name file
and infected data data. We update the Smut component
of R to account for a FileInfection behavior only
if there is an actual file in the clean operating system
state whose name matches the file. In this case, Smut is
updated with the contents of file in the bare operating
system state, modified by preserving the portions listed
in regions and overwriting the rest with data. As indi-
cated in Algorithm 3, when the remediation procedure
finds file, it replaces the infected regions with a pristine
copy from the bare operating system.
Similarly, when a high-level

RegistryInfection((key , value), data) behavior
is encountered, and it is determined that a counterpart of
(key , value) exists in the bare operating system, Smut is
modified by adding the key/value pair together with the

12

modified data to the list of infected resources. As with
infected files, Algorithm 3 remediates these resources
by locating a pristine copy of (key , value) in the bare
operating system and replacing the infected resource
with it.

Deleted Resources: Currently, most malware is writ-
ten with the intent of leveraging infected systems to per-
petrate profitable, albeit illicit, activities. Therefore, it
is very rare to see malware removing system resources,
as doing so would render the system useless for money-
making activities. For this reason, our remediation pro-
cedures do not handle deleted resources.

5 Evaluation

We applied our remediation procedure generation algo-
rithm to over two hundred malware samples collected in
the wild. We evaluated the quality of the generated pro-
cedures with respect to two metrics: false positives and
false negatives. A false positive occurs when a resource
is mistakenly identified as being part of a malware in-
fection and subsequently remediated. A false negative
occurs when a resource that was actually involved in an
infection is not identified and left untouched by the re-
mediation procedure. The results of our evaluation tes-
tify to the effectiveness of our technique: we observed a
low false negative rate, with more than 98% of the ma-
licious resources successfully remediated, and only one
false positive was encountered. Finally, we compare our
results to the remediation capabilities of the three com-
mercial products that performed best in previous experi-
ments [15].

5.1 Experimental Setup

Our experiments were performed over a corpus of 200
malicious programs, obtained through our own honey-
pot, and a web crawler that crawls known malicious do-
mains for executable files. Several traces for each sam-
ple were collected by executing it in multiple distinct en-
vironments. To extract a wide range of behaviors from
each sample, we modified the environments along a va-
riety of dimensions, including locale, timezone, and the
set of installed applications. Specifically, for each sam-
ple we performed the following steps:

1. Execute the sample three times in five different en-
vironments, collecting a system call trace for each
execution. Apply the algorithm described in Sec-
tion 4.2 to generate a remediation procedure from
the collected data.

2. Infect twenty-five test environments, all of them dis-
tinct from those used to collect traces, with the sam-
ple.

3. Execute the generated remediation procedure in
each test environment.

4. Compare the remediated state to the original (clean)
state. Tally the false positives and false negatives.

Although we do not attempt to extract all possible exe-
cution paths from the malware, this strategy allows us to
observe a reasonable range of malware behavior in vari-
ous settings.

5.2 False Negatives
Figure 7 compares the false negative rate of our
automatically-generated remediation procedures with
the three top-rated commercial malware detectors eval-
uated in [15]: Nod32 Anti-Virus 3.0, Panda Anti-Virus
9.0.5, and Kaspersky Anti-Virus 2009. The graph depicts
the average number of malicious resources that were re-
mediated over the entire malware corpus. Resources are
divided into three categories: files, registry keys, and
processes. Each of these classes is further divided into
two subcategories: primary and ancillary. Primary re-
sources are composed of executable files, registry keys
that activate process creation, and processes that arise
from files dropped or infected by the malware sample.
Roughly, we argue that all other resources are not as crit-
ical to the security of the system, and are thus considered
ancillary.

For the majority of these categories and subcategories,
our remediation procedures are more complete than com-
mercial anti-malware products. For example, our proce-
dures were able to remediate more than 99% of the pri-
mary file resources, whereas the best commercial prod-
uct we tested reached only 82% in this subcategory. Sim-
ilarly, our procedures remediated 99% of primary reg-
istry activities, while commercial products did not ex-
ceed 86%. Furthermore, while ancillary objects are of-
ten ignored by commercial remediation procedures, our
procedures remediated 95% of ancilliary files and 98%
of ancilliary registry activities. The portion of file and
registry resources that were not remediated by our proce-
dures correspond to behaviors that were never observed
while collecting traces. This illustrates the primary limi-
tation of our dynamic analysis-based approach and high-
lights a clear avenue for improvement in future work. Fi-
nally, our procedures remediated 100% of primary pro-
cess resources. However, the performance on ancillary
processes is significantly lower. This is a result of the fact
that our processes do not have access to enough informa-
tion to discern a benign process from a process spawned
by the malware using a pre-existing benign file.

13

432 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 433

 0

 20

 40

 60

 80

 100

Files
(primary)

Files
(ancillary)

Reg. keys
(primary)

Reg. keys
(ancillary)

Processes
(primary)

Processes
(ancillary)

%
 a

ct
iv

iti
es

 re
ve

rte
d

Our approach Nod32 Panda Kaspersky

Figure 7: Comparison of the completeness of our automatically generated remediation procedures with the complete-
ness of the procedures employed in three top-rated commercial malware detectors.

5.3 False Positives

To quantify false positives, we compared the set of re-
sources affected by each malware sample in each test en-
vironment with the set of resources our procedures re-
mediated in each test environment. Any remediated re-
source not affected by the corresponding malware sam-
ple in at least one trace is considered a false positive.
We found that only one of our procedures produced any
false positives. The cause of this false positive, not sur-
prisingly, was a high-level behavior argument specified
by a very general regular expression. This implies that
the nondeterminism demonstrated by the corresponding
malware sample was too complex to be easily described
by a regular language. Thus, one area for future work
is utilizing more expressive language classes, such as
context-free grammars, for generalizing argument val-
ues.

6 Discussion

We are aware of some limitations of our system. Some of
these limitations could be exploited by attackers to cause
the system to produce remediation procedures that are of
limited value. In this section, we discuss these limita-
tions and present some solutions that we will investigate
in the future to address the limitations.

We constructed the models that we use to detect high-
level behaviors by leveraging years of experience in mal-

ware analysis, and we carefully tested all models to en-
sure that they cannot be evaded. However, since we can-
not prove that these models are perfect, we must take into
account the possibility that attackers could find newways
to perform some high-level malicious activities without
being detected. Moreover, in our proof-of-concept im-
plementation, multiple execution traces are obtained by
executing the same malware in several different operat-
ing system configurations. If attackers introduced dan-
gerous behaviors to their malicious programs that are not
triggered in our monitoring environment, then the result-
ing procedure would not be able to remediate such be-
haviors. Clearly, one area for future work is in expanding
the coverage of the dynamic behavioral analysis. While
our approach covers some of the potential behavior of the
sample, more sophisticated techniques [12, 21] can be
applied to increase the likelihood that all relevant paths
through the malware are explored.

The high-level behaviors observed in multiple execu-
tion traces are clustered to identify the instances of the
same behavior. If the clusters we generate did not in-
clude all the instances of the same behavior, or if they
included instances of different behaviors, then the reme-
diation procedures constructed by generalizing the be-
haviors associated to each cluster would be too specific
or too generic. An attacker could write malicious pro-
grams that manifest certain behaviors to break the clus-
tering. Similarly, the regular expressions used by our re-
mediation procedures to identify affected resources are

14

generalized heuristically. Attackers could develop mali-
cious programs that affect resources in a way that induces
us to perform very aggressive generalization (e.g. create
files with random names anywhere in the file system) and
thus to generate remediation procedures that remove be-
nign files. We plan to address these problems in the fu-
ture. One approach is to introduce a feedback loop while
clustering behaviors and generating regular expressions
to validate the quality of the results. This feedback loop
would repeat the process until no further progress can be
made. Finally, we assert that it is not possible to cause
our algorithm to generate a procedure that modifies ex-
isting files in a harmful way. This follows from the fact
that system files are only ever restored to their original
state by the procedure, not modified.

We currently generate a remediation procedure for
each malware sample we analyze. We plan to extend
our system to generate remediation procedures that cover
more than one malware sample. For example, it would be
useful to generate remediation procedures that are capa-
ble of operating on all samples for a given malware fam-
ily. Because the generated procedures will likely have
to account for a much higher degree of nondeterminism
than those that target only a single sample, additional
care must be taken to ensure that the high-level behav-
iors models are not too general, thus resulting in false
positives.

7 Conclusion

In this paper, we have presented a technique for auto-
matically generating malware remediation procedures.
Given a malware binary, our system produces executable
code that removes the harmful effects of executing that
malware on a system. We use dynamic analysis and be-
havior generalization to account for the difficulties posed
by real malware, thus allowing our procedures to effec-
tively remediate many possible executions of the mal-
ware without witnessing the actual infection take place.
This contribution represents a major break with previ-
ous automatic remediation techniques, which required
detailed information about the particular infection being
targeted. We implemented our technique and evaluated
its effectiveness on more than 200 malware binaries. The
performance of our prototype is quite good: on average,
98% of the harmful effects are remediated, and we en-
countered only a single false positive. In the future, we
plan to build on this work by extending it to work on
entire families, as well as exploring more precise tech-
niques for generalizing observed malware behaviors.

References

[1] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A
tool for analyzing malware. In 15th European Insti-
tute for Computer Antivirus Research (EICAR) An-
nual Conference, Hamburg, Germany, Apr. 2006.

[2] U. Bayer, P. Milani, C. Hlauschek, C. Kruegel, and
E. Kirda. Scalable, behavior-based malware clus-
tering. In 16th Annual Network and Distributed
System Security Symposium (NDSS), 2009.

[3] F. Bellard. QEMU, a fast and portable dynamic
translator. http://fabrice.bellard.
free.fr/qemu/.

[4] M. Christodorescu, C. Kruegel, and S. Jha. Min-
ing specifications of malicious behavior. In 6th
Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ES-
EC/FSE), Dubrovnik, Croatia, 2007.

[5] M. Costa, M. Castro, L. Zhou, L. Zhang, and
M. Peinado. Bouncer: Securing software by block-
ing bad input. In 21st ACM Symposium on Operat-
ing Systems Principles (SOSP), 2007.

[6] P. Foggia. The vflib graph matching library, ver-
sion 2.0. http://amalfi.dis.unina.it/
graph/db/vflib-2.0/.

[7] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su.
Back to the future: A framework for automatic mal-
ware removal and system repair. In 22nd Annual
Computer Security Applications Conference (AC-
SAC), 2006.

[8] C. Kolbitsch, P. M. Comparetti, C. Kruegel,
E. Kirda, X. Zhou, and X. Wang. Effective and effi-
cient malware detection at the end host. In USENIX
Security Symposium, 2009.

[9] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and
B. Chavez. Hamsa: Fast signature generation for
zero-day polymorphic worms with provable attack
resilience. In IEEE Symposium on Security and Pri-
vacy, Oakland, California, 2006.

[10] Z. Liang, V. N. Venkatakrishnan, and R. Sekar. Iso-
lated program execution: An application transpar-
ent approach for executing untrusted programs. In
19th Annual Computer Security Applications Con-
ference (ACSAC), 2003.

15

434 19th USENIX Security Symposium USENIX Association

[11] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha,
and J. C. Mitchell. A layered architecture for de-
tecting malicious behaviors. In International Sym-
posium on Recent Advances in Intrusion Detection
(RAID), Sept. 2008.

[12] A. Moser, C. Kruegel, and E. Kirda. Exploring mul-
tiple execution paths for malware analysis. In IEEE
Symposium on Security and Privacy, Oakland, Cal-
ifornia, 2007.

[13] A. Moser, C. Kruegel, and E. Kirda. Limits of static
analysis for malware detection. In 23rd Annual
Computer Security Applications Conference (AC-
SAC), 2007.

[14] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically generating signatures for polymor-
phic worms. In IEEE Symposium on Security and
Privacy, Oakland, California, 2005.

[15] E. Passerini, R. Paleari, and L. Martignoni. How
good are malware detectors at remediating infected
systems? In 6th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment
(DIMVA), Como, Italy, July 2009.

[16] M. D. Preda, M. Christodorescu, S. Jha, and S. De-
bray. A semantics-based approach to malware de-
tection. ACM Transactions on Programming Lan-
guages and Systems, 30(5):25.1–25.54, Aug. 2008.

[17] A. Raman, P. Andreae, and J. Patrick. A beam
search algorithm for PFSA inference. Pattern Anal-
ysis and Applications, 1(2):121–129, 1998.

[18] K. Rieck, T. Holz, C. Willems, P. Düssel, and
P. Laskov. Learning and classification of malware
behavior. In 5th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment
(DIMVA), 2008.

[19] W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrish-
nan. One-way isolation: An effective approach for
realizing safe execution environments. In 12th Sym-
posium on Network and Distributed Systems Secu-
rity (NDSS), 2005.

[20] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha.
An architecture for generating semantics-aware sig-
natures. In 14th USENIX Security Symposium, Bal-
timore, MD, 2005.

[21] H. Yin, D. Song, M. Egele, E. Kirda, and
C. Kruegel. Panorama: Capturing system-wide in-
formation flow for malware detection and analysis.
In 14th ACM Conference on Computer and Com-
munications Security (CCS), Alexandria, VA, 2007.

16

USENIX Association 19th USENIX Security Symposium 435

Re: CAPTCHAs – Understanding CAPTCHA-Solving Services in an
Economic Context

Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon McCoy,
Geoffrey M. Voelker and Stefan Savage

University of California, San Diego
{mmotoyam, klevchen, ckanich, dlmccoy, voelker, savage}@cs.ucsd.edu

Abstract
Reverse Turing tests, or CAPTCHAs, have become an
ubiquitous defense used to protect open Web resources
from being exploited at scale. An effective CAPTCHA
resists existing mechanistic software solving, yet can
be solved with high probability by a human being. In
response, a robust solving ecosystem has emerged, re-
selling both automated solving technology and real-
time human labor to bypass these protections. Thus,
CAPTCHAs can increasingly be understood and evaluated
in purely economic terms; the market price of a solution
vs the monetizable value of the asset being protected. We
examine the market-side of this question in depth, ana-
lyzing the behavior and dynamics of CAPTCHA-solving
service providers, their price performance, and the un-
derlying labor markets driving this economy.

1 Introduction

Questions of Internet security frequently reflect under-
lying economic forces that create both opportunities and
incentives for exploitation. For example, much of today’s
Internet economy revolves around advertising revenue,
and consequently, a vast array of services—including e-
mail, social networking, blogging—are now available to
new users on a basis that is both free and largely anony-
mous. The implicit compact underlying this model is that
the users of these services are individuals and thus are
effectively “paying” for services indirectly through their
unique exposure to ad content. Unsurprisingly, attack-
ers have sought to exploit this same freedom and acquire
large numbers of resources under singular control, which
can in turn be monetized (e.g., via thousands of free Web
mail accounts for sourcing spam e-mail messages).

CAPTCHAs were developed as a means to limit the
ability of attackers to scale their activities using auto-
mated means. In its most common implementation, a
CAPTCHA consists of a visual challenge in the form of

alphanumeric characters that are distorted in such a way
that available computer vision algorithms have difficulty
segmenting and recognizing the text. At the same time,
humans, with some effort, have the ability to decipher
the text and thus respond to the challenge correctly. To-
day, CAPTCHAs of various kinds are ubiquitously de-
ployed for guarding account registration, comment post-
ing, and so on.

This innovation has, in turn, attached value to the
problem of solving CAPTCHAs and created an indus-
trial market. Such commercial CAPTCHA solving comes
in two varieties: automated solving and human labor.
The first approach defines a technical arms race between
those developing solving algorithms and those who de-
velop ever more obfuscated CAPTCHA challenges in re-
sponse. However, unlike similar arms races that revolve
around spam or malware, we will argue that the underly-
ing cost structure favors the defender, and consequently,
the conscientious defender has largely won the war.

The second approach has been transformative, since
the use of human labor to solve CAPTCHAs effectively
side-steps their design point. Moreover, the combination
of cheap Internet access and the commodity nature of
today’s CAPTCHAs has globalized the solving market;
in fact, wholesale cost has dropped rapidly as providers
have recruited workers from the lowest cost labor mar-
kets. Today, there are many service providers that can
solve large numbers of CAPTCHAs via on-demand ser-
vices with retail prices as low as $1 per thousand.

In either case, we argue that the security of CAPTCHAs
can now be considered in an economic light. This prop-
erty pits the underlying cost of CAPTCHA solving, ei-
ther in amortized development time for software solvers
or piece-meal in the global labor market, against the
value of the asset it protects. While the very existence of
CAPTCHA-solving services tells us that the value of the
associated assets (e.g., an e-mail account) is worth more
to some attackers than the cost of solving the CAPTCHA,
the overall shape of the market is poorly understood. Ab-

436 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 437

(a) Aol. (b) mail.ru (c) phpBB 3.0

(d) Simple Machines Forum (e) Yahoo! (f) youku

Figure 1: Examples of CAPTCHAs from various Internet properties.

sent this understanding, it is difficult to reason about the
security value that CAPTCHAs offer us.

This paper investigates this issue in depth and, where
possible, on a empirical basis. We document the commer-
cial evolution of automated solving tools (particularly via
the successful Xrumer forum spamming package) and
how they have been largely eclipsed by the emergence
of the human-based CAPTCHA-solving market. To char-
acterize this latter development, our approach is to en-
gage the retail CAPTCHA-solving market on both the sup-
ply side and the demand side, as both a client and as
“workers for hire.” In addition to these empirical mea-
surements, we also interviewed the owner and operator
of a successful CAPTCHA-solving service (MR. E), who
has provided us both validation and insight into the less
visible aspects of the underlying business processes.1 In
the course of our analysis, we attempt to address key
questions such as which CAPTCHAs are most heavily tar-
geted, the rough solving capacity of the market leaders,
the relationship of service quality to price, the impact
of market transparency and arbitrage, the demographics
of the underlying workforce and the adaptability of ser-
vice offerings to changes in CAPTCHA content. We be-
lieve our findings, or at least our methodology, provide
a context for reasoning about the net value provided by
CAPTCHAs under existing threats and offer some direc-
tions for future development.

The remainder of this paper is organized as fol-
lows: Section 2 reviews CAPTCHA design and provides
a qualitative history and overview of the CAPTCHA-
solving ecosystem. Next, in Section 3 we empirically
characterize two automated solver systems, the popular
Xrumer package and a specialized reCaptcha solver. In
Sections 4 and 5 we then characterize today’s human-
powered CAPTCHA-solving services, first describing our

1By agreement, we do not identify MR. E or the particular service
he runs. While we cannot validate all of his statements, when we tested
his service empirically our results for measures such as response time,
accuracy, capacity and labor makeup were consistent with his reports,
supporting his veracity.

data collection approach and then presenting our experi-
ments to measure key qualities such as response time, ac-
curacy, and capacity. Section 6 describes the demograph-
ics of the CAPTCHA-solving labor pool. Finally, we dis-
cuss the implications of our results in Section 7 along
with potential directions for future research.

2 Background

The term “CAPTCHA” was first introduced in 2000 by
von Ahn et al. [21], describing a test that can differentiate
humans from computers. Under common definitions [4],
the test must be:

• Easily solved by humans,
• Easily generated and evaluated, but
• Not easily solved by computer.

Over the past decade, a number of different techniques
for generating CAPTCHAs have been developed, each
satisfying the properties described above to varying de-
grees. The most commonly found CAPTCHAs are visual
challenges that require the user to identify alphanumeric
characters present in an image obfuscated by some com-
bination of noise and distortion.2 Figure 1 shows ex-
amples of such visual CAPTCHAs. The basic challenge
in designing these obfuscations is to make them easy
enough that users are not dissuaded from attempting a so-
lution, yet still too difficult to solve using available com-
puter vision algorithms.

The issue of usability has been studied on a functional
level—focusing on differences in expected accuracy and
response time [3, 19, 22, 26]—but the ultimate effect of
CAPTCHA difficulty on legitimate goal-oriented users is
not well documented in the literature. That said, Elson et
al. provide anecdotal evidence that “even relatively sim-
ple challenges can drive away a substantial number of po-

2There exists a range of non-textual and even non-visual CAPTCHAs
that have been created but, excepting Microsoft’s Asirra [9], we do not
consider them here as they play a small role in the current CAPTCHA-
solving ecosystem.

2

tential customers” [9], suggesting CAPTCHA design re-
flects a real trade-off between protection and usability.

The second challenge, defeating automation, has re-
ceived far more attention and has kicked off a competi-
tion of sorts between those building ever more sophisti-
cated algorithms for breaking CAPTCHAs and those cre-
ating new, more obfuscated CAPTCHAs in response [7,
11, 16, 17, 18, 25]. In the next section we examine this
issue in more depth and explain why, for economic rea-
sons, automated solving has been relegated to a niche
status in the open market.

Finally, an alternative regime for solving CAPTCHAs
is to outsource the problem to human workers. Indeed,
this labor-based approach has been commoditized and
today a broad range of providers operate to buy and sell
CAPTCHA-solving service in bulk. We are by no means
the first to identify the growth of this activity. In particu-
lar, Danchev provides an excellent overview of several
CAPTCHA-solving services in his 2008 blog post “In-
side India’s CAPTCHA solving economy” [5]. We are,
however, unaware of significant quantitative analysis of
the solving ecosystem and its underlying economics. The
closest work to our own is the complementary study of
Bursztein et al. [3] which also uses active CAPTCHA-
solving experiments, but is focused primarily on the issue
of CAPTCHA difficulty rather than the underlying busi-
ness models.

3 Automated Software Solvers

From the standpoint of an adversary, automated solv-
ing offers a number of clear advantages, including both
near-zero marginal cost and near-infinite capacity. At
a high level, automated CAPTCHA solving combines
segmentation algorithms, designed to extract individ-
ual symbols from a distorted image, with basic op-
tical character recognition (OCR) to identify the text
present in CAPTCHAs. However, building such algo-
rithms is complex (by definition, since CAPTCHAs are
designed to evade existing vision techniques), and auto-
mated CAPTCHA solving often fails to replicate human
accuracy. These constraints have in turn influenced the
evolution of automated CAPTCHA solving as it transi-
tioned from a mere academic contest to an issue of com-
mercial viability.

3.1 Empirical Case Studies

We explore these issues empirically through two rep-
resentative examples: Xrumer, a mature forum spam-
ming tool with integrated support for solving a range
of CAPTCHAs and reCaptchaOCR, a modern specialized
solver that targets the popular reCaptcha service.

Xrumer

Xrumer [24] is a well-known forum spamming tool,
widely described on “blackhat” SEO forums as being one
of the most advanced tools for bypassing many differ-
ent anti-spam mechanisms, including CAPTCHAs. It has
been commercially available since 2006 and currently re-
tails for $540, and we purchased a copy from the au-
thor at this price for experimentation. While we would
have liked to include several other well known spamming
tools (SEnuke, AutoPligg, ScrapeBox, etc), the cost of
these packages range from $97 to $297, which would
render this study prohibitively expensive.

Xrumer’s market success in turn led to a surge of
spam postings causing most service providers targeted
by Xrumer to update their CAPTCHAs. This development
kicked off an “arms race” period in Xrumer’s evolution
as the author updated solvers to overcome these obsta-
cles. Version 5.0 of Xrumer was released in October of
2008 with significantly improved support for CAPTCHA
solving. We empirically verified that 5.0 was capable
of solving the default CAPTCHAs for then current ver-
sions of a number of major message boards, including:
Invision Power Board (IPB) version 2.3.0, phpBB ver-
sion 3.0.2, Simple Machine Forums (SMF) version 1.1.6,
and vBulletin version 3.6. These systems responded in
kind, and when we installed versions of these packages
released shortly after Xrumer 5.0 (in particular, phpBB
and vBulletin) we verified that their CAPTCHAs had been
modified to defeat Xrumer’s contemporaneous solver.
Today, we have found that the only major message fo-
rum software whose default CAPTCHA Xrumer can solve
is Simple Machines Forum (SMF).

With version 5.0.9 (released August 2009), Xrumer
added integration for human-based CAPTCHA-solving
services: Anti-Captcha (an alias for Antigate) and
CaptchaBot. We take this as an indication that the author
of Xrumer found the ongoing investment in CAPTCHA-
solving software to be insufficient to support customer
requirements.3 That said, Xrumer can be configured
to use a hybrid software/human based approach where
Xrumer detects instances of CAPTCHAs vulnerable to its
automated solvers and uses human-based solvers oth-
erwise. In the current version of Xrumer (5.0.12), the
CAPTCHA-related development seems to focus on sup-
porting automatic navigation and CAPTCHA “extraction”
(detecting the CAPTCHA and identifying the image file
to send to the human-based CAPTCHA-solving service)
of more Web sites, as well as evading other anti-spam
techniques.

3The developers of Xrumer have recently been advertising en-
hanced CAPTCHA-solving functionality in their forthcoming “7.0 Elite”
version (including support for reCaptcha), but the release date has been
steadily postponed and, as of this writing (June 2010), version 5.0.12 is
the latest.

3

438 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 439

When compared with developers targeting “high-
value” CAPTCHAs (e.g., reCaptcha, Microsoft, Yahoo,
Google, etc.), Xrumer has mostly targeted “weaker”
CAPTCHAs and seems to have a policy of only includ-
ing highly efficient and accurate software-based solvers.
In our tests, all but one included solver required a second
or less per CAPTCHA (on a netbook class computer with
only a 1.6-GHz Intel Atom CPU) and had an accuracy of
100%. The one more difficult case was the solver for the
phpBB version 3 forum software with the GD CAPTCHA
generator and foreground noise. In this case, Xrumer had
an accuracy of only 35% and required 6–7 seconds per
CAPTCHA to execute.

reCaptchaOCR

At the other end of the spectrum, we obtained a spe-
cialized solver focused singularly on the popular re-
Captcha service. Wilkins developed the solver as a proof
of concept [23]. The existence of this OCR-based re-
Captcha solver was reported in a blog posting on De-
cember 15, 2009 [6]. Although developed to defeat an
earlier version of reCaptcha CAPTCHAs (Figure 2a), re-
CaptchaOCR was also able to defeat the CAPTCHA vari-
ant in use at the time of release (Figure 2b). Subse-
quently, reCaptcha changed their CAPTCHA-generation
code again to the version as of this writing (Figure 2c).
The tool has not been updated to solve this new variant.

We tested reCaptchaOCR on 100 randomly selected
CAPTCHAs of the early 2008 variant and 100 randomly
selected CAPTCHAs of the late 2009 variant. We scored
the answers returned using the same algorithm that re-
Captcha uses by default. reCaptcha images consist of
two words, a control word for which the correct solu-
tion is known, and the other a word for which the solu-
tion is unknown (the service is used to opportunistically
implement human-based OCR functionality for difficult
words). By default reCaptcha will mark a solution as cor-
rect if it is within an edit distance of one of the control
word. However, while we know the ground truth for both
words in our tests, we do not know which was the control
word. Thus, we credited the solver with half a correct so-
lution for each word it solved correctly in the CAPTCHA,
reasoning that there was a 50% chance of each word be-
ing the control word.

We observed an accuracy of 30% for the 2008-era test
set and 18% for the 2009-era test set using the default
setting of 613 iterations,4 far lower than the average hu-
man accuracy for the same challenges (75–90% in our
experiments).

Finally, we measured the overhead of reCaptchaOCR.
On a laptop using a 2.13-GHz Intel Core 2 Duo each so-

4The solver performs multiple iterations and uses the majority so-
lution to improve its accuracy.

lution required an average of 105 seconds. By reducing
the number of iterations to 75 we could reduce the solv-
ing time to 12 seconds per CAPTCHA, which is in line
with the response time for a human solver. At this num-
ber of iterations, reCaptchaOCR still achieved similar ac-
curacies: 29% for the 2008-era CAPTCHAs and 17% for
the 2009-era CAPTCHAs.

3.2 Economics
Both of these examples illustrate the inherent challenges
in fielding commercial CAPTCHA-solving software.

While the CAPTCHA problem is often portrayed in
academia as a technical competition between CAPTCHA
designers and computer vision experts, this perspective
does not capture the business realities of the CAPTCHA-
solving ecosystem. Arms races in computer security
(e.g., anti-virus, anti-spam, etc.) traditionally favor the
adversary, largely because the attacker’s role is to gen-
erate new instances while the defender must recognize
them—and the recognition problem is almost always
much harder. However, CAPTCHAs reverse these roles
since Web sites can be agile in their use of new CAPTCHA
types, while attackers own the more challenging recog-
nition problem. Thus, the economics of automated solv-
ing are driven by several factors: the cost to develop new
solvers, the accuracy of these solvers and the responsive-
ness of the sites whose CAPTCHAs are attacked.

While it is difficult to precisely quantify the develop-
ment cost for new solvers, it is clear that highly skilled
labor is required and such developers must charge com-
mensurate fees to recoup their time investment. Anecdo-
tally, we contacted one such developer who was offering
an automated solving library for the current reCaptcha
CAPTCHA. He was charging $6,500 on a non-exclusive
basis, and we did not pay to test this solver.

At the same time, as we saw with reCaptchaOCR, it
can be particularly difficult to produce automated solvers
that can deliver human-comparable accuracy (especially
for “high-value” CAPTCHAs). While it seems that accu-
racy should be a minor factor since the cost of attempt-
ing a CAPTCHA is all but “free”, in reality low success
rates limit both the utility of a solver and its useful life-
time. In particular, over short time scales, many forums
will blacklist an IP address after 5–7 failed attempts.
More importantly, should a solver be put into wide use,
changes in the gross CAPTCHA success rate over longer
periods (e.g., days) is a strong indicator that a software
solver is in use—a signature savvy sites use to revise
their CAPTCHAs in turn.5

Thus, for a software solver to be profitable, its price
must be less than the total value that can be extracted

5We are aware that some well-managed sites already have alterna-
tive CAPTCHAs ready for swift deployment in just such a situation.

4

(a) Early 2008 (b) December 16th 2009 (c) January 24th 2010

Figure 2: Examples of CAPTCHAs downloaded directly from reCaptcha at different time periods.

in the useful lifetime before the solver is detected and
the CAPTCHA changed. Moreover, for this approach to
be attractive, it must also cost less than the alterna-
tive: using a human CAPTCHA-solving service. To make
this tradeoff concrete, consider the scenario in which a
CAPTCHA-solving service provider must choose between
commissioning a new software solver (e.g., for a variant
of a popular CAPTCHA) or simply outsourcing recogni-
tion piecemeal to human laborers. If we suppose that it
costs $10,000 to implement a solver for a new CAPTCHA
type with a 30% accuracy (like reCaptchaOCR), then it
would need to be used over 65 million times (20 mil-
lion successful) before it was a better strategy than sim-
ply hiring labor at $0.5/1,000.6 However, the evidence
from reCaptcha’s response to reCaptchaOCR suggests
that CAPTCHA providers are well able to respond before
such amortization is successful. Indeed, in our interview,
MR. E said that he had dabbled with automated solving
but that new solvers stopped working too quickly. In his
own words, “It is a big waste of time.”

For these reasons, software solvers appear to have
been relegated to a niche status in the solving
ecosystem—focusing on those CAPTCHAs that are static
or change slowly in response to pressure. While a tech-
nological breakthrough could reverse this state of affairs,
for now it appears that human-based solving has come to
dominate the commercial market for service.

4 Human Solver Services

Since CAPTCHAs are only intended to obstruct au-
tomated solvers, their design point can be entirely
sidestepped by outsourcing the task to human labor
pools, either opportunistically or on a “for hire” basis. In
this section, we review the evolution of this labor market,
its basic economics and some of the underlying ethical
issues that informed our subsequent measurement study.

4.1 Opportunistic Solving
Opportunistic human solving relies on convincing an in-
dividual to solve a CAPTCHA as part of some other un-
related task. For example, an adversary controlling ac-
cess to a popular Web site might use its visitors to op-

6Moreover, human labor is highly flexible and can be used for the
wide variety of CAPTCHAs demanded by customers, while a software
solver inevitably is specialized to one particular CAPTCHA type.

portunistically solving third-party CAPTCHAs by offer-
ing these challenges as its own [1, 8]. A modern vari-
ant of this approach has recently been employed by the
Koobface botnet, which asks infected users to solve a
CAPTCHA (under the guise of a Microsoft system man-
agement task) [13]. However, we believe that retention
of these unwitting solvers will be difficult due to the high
profile nature and annoyance of such a strategy, and we
do not believe that opportunistic solving plays a major
role in the market today.

4.2 Paid Solving

Our focus is instead on paid labor, which we believe now
represents the core of the CAPTCHA-solving ecosystem,
and the business model that has emerged around it. Fig-
ure 3 illustrates a typical workflow and the business rela-
tionships involved.

The premise underlying this approach is that there ex-
ists a pool of workers who are willing to interactively
solve CAPTCHAs in exchange for less money than the
solutions are worth to the client paying for their services.

The earliest description we have found for such a re-
lationship is in a Symantec Blog post from September
2006 that documents an advertisement for a full-time
CAPTCHA solver [20]. The author estimates that the re-
sulting bids were equivalent to roughly one cent per
CAPTCHA solved, or $10/1,000 (solving prices are com-
monly expressed in units of 1,000 CAPTCHAs solved).
Starting from this date, one can find increasing num-
bers of such advertisements on “work-for-hire” sites such
as getafreelancer.com, freelancejobsearch.com, and mis-
tersoft.com. Shortly thereafter, retail CAPTCHA-solving
services began to surface to resell such capabilities to a
broad range of customers.

Moreover, a fairly standard business model has
emerged in which such retailers aggregate the demand
for CAPTCHA-solving services via a public Web site
and open API. The example in Figure 3 shows the
DeCaptcher service performing this role in steps �
and �. In addition, these retailers aggregate the sup-
ply of CAPTCHA-solving labor by actively recruiting
individuals to participate in both public and private
Web-based “job sites” that provide online payments for
CAPTCHAs solved. PixProfit, a worker aggregator for the
DeCaptcher service, performs this role in steps �–� in
the example.

5

440 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 441

DeCaptcher
(Customer Front End)

PixProfit
(Worker Back End)

demenoba

1 7

2 3

6
demenoba

5 4

Figure 3: CAPTCHA-solving market workflow: � GYC Automator attempts to register a Gmail account and is challenged with a
Google CAPTCHA. � GYC uses the DeCaptcher plug-in to solve the CAPTCHA at $2/1,000. � DeCaptcher queues the CAPTCHA

for a worker on the affiliated PixProfit back end. � PixProfit selects a worker and pays at $1/1,000. � Worker enters a solution to
PixProfit, which � returns it to the plug-in. � GYC then enters the solution for the CAPTCHA to Gmail to register the account.

4.3 Economics

While the market for CAPTCHA-solving services has
expanded, the wages of workers solving CAPTCHAs
have been declining. A cursory examination of histori-
cal advertisements on getafreelancer.com shows that, in
2007, CAPTCHA solving routinely commanded wages as
high as $10/1,000, but by mid-2008 a typical offer had
sunk to $1.5/1,000, $1/1,000 by mid-2009, and today
$0.75/1,000 is common, with some workers earning as
little as $0.5/1,000.

This downward price pressure reflects the commodity
nature of CAPTCHA solving. Since solving is an unskilled
activity, it can easily be sourced, via the Internet, from
the most advantageous labor market—namely the one
with the lowest labor cost. We see anecdotal evidence of
precisely this pattern as advertisers switched from pur-
suing laborers in Eastern Europe to those in Bangladesh,
China, India and Vietnam (observations further corrobo-
rated by our own experimental results later).

Moreover, competition on the retail side exerts
pressure for all such employers to reduce their wages
in turn. For example, here is an excerpt from a recent
announcement at typethat.biz, the “worker side” of one
such CAPTCHA-solving service:

009-12-14 13:54 Admin post

Hello, as you could see, server was unstable

last days. We can’t get more captchas

because of too high prices in comparison

with other services. To solve this problem,

unfortunately we have to change the rate,

on Tuesday it will be reduced.

Shortly thereafter, typethat.biz reduced their offered
rate from $1/1,000 to $0.75/1,000 to stay competitive.

These changes reflect similar decreases on the re-
tail side: the customer cost to have 1,000 CAPTCHAs
solved is now commonly $2/1,000 and can be as low as
$1/1,000. To protect prices, a number of retailers have
tried to tie their services to third-party products with
varying degrees of success. For example, GYC Automa-
tor is a popular “black hat” bulk account creator for
Gmail, Yahoo and Craigslist; Figure 3 shows GYC’s
role in the CAPTCHA ecosystem, with the tool scrap-
ing a CAPTCHA in step � and supplying a CAPTCHA
solution in step �. GYC has a relationship with the
CAPTCHA-solving service Image2Type (not to be con-
fused with ImageToType). Similarly, SENuke is a blog
and forum spamming product that has integral sup-
port for two “up-market” providers, BypassCaptcha and
BeatCaptchas. In both cases, this relationship allows
the CAPTCHA-solving services to charge higher rates:
roughly $7/1,000 for BypassCaptcha and BeatCaptchas,
and over $20/1,000 for Image2Type. It also provides an
ongoing revenue source for the software developer. For
his service, MR. E confirms that software partners bring
in many customers (indeed, they are the majority revenue
source) and that he offers a variety of revenue sharing op-
tions to attract such partners.

However, such large price differences encourage arbi-
trage, and in some cases third-party developers have cre-
ated plug-ins to allow the use of cheaper services on such
packages. Indeed, in the case of GYC Automator, an in-
dependent developer built a DeCaptcher plug-in which

6

reduced the solving cost by over an order of magnitude.
This development has created an ongoing conflict be-
tween the seller of GYC Automator and the distributor of
the DeCaptcher plug-in. Other software developers have
chosen to forgo large margin revenue sharing in favor of
service diversity. For example, modern versions of the
Xrumer package can use multiple price-leading services
(Antigate and CaptchaBot).

Finally, while it is challenging to measure profitability
directly, we have one anecdotal data point. In our discus-
sions with MR. E, whose service is in the middle of the
price spectrum, he indicated that routinely 50% of his
revenue is profit, roughly 10% is for servers and band-
width, and the remainder is split between solving labor
and incentives for partners.

4.4 Active Measurement Issues

The remainder of our paper focuses on active measure-
ment of such services, both by paying for solutions and
by participating in the role of a CAPTCHA-solving la-
borer. The security community has become increasingly
aware of the need to consider the legal and ethical context
of its actions, particularly for such active involvement,
and we briefly consider each in turn for this project.

In the United States (we restrict our brief discussion to
U.S. law since that is where we operate), there are sev-
eral bodies of law that may impinge on CAPTCHA solv-
ing. First, even though the services being protected are
themselves “free”, it can be argued that CAPTCHAs are
an access control mechanism and thus evading them ex-
ceeds the authorization granted by the site owner, in po-
tential violation of the Computer Fraud and Abuse Act
(and certainly of their terms of service). While this in-
terpretation is debatable, it is a moot point for our study
since we never make use of solved CAPTCHAs and thus
never access any of the sites in question. A trickier issue
is raised by the Digital Millennium Copyright Act’s anti-
circumvention clause. While there are arguments that
CAPTCHA solvers provide a real use outside circumven-
tion of copyright controls (e.g., as aids for the visually
impaired) it is not clear—especially in light of increas-
ingly common audio CAPTCHA options—that such a de-
fense is sufficient to protect infringers. Indeed, Ticket-
master recently won a default judgment against RMG
Technologies (who sold automated software to bypass
the Ticketmaster CAPTCHA) using just such an argu-
ment [2]. That said, while one could certainly apply the
DMCA against those offering a service for CAPTCHA-
solving purposes, it seems a stretch to include individual
human workers as violators since any such “circumven-
tion” would include innate human visual processes.

Aside from potential legal restrictions, there are also
related ethical concerns; one can do harm without such

actions being illegal. In considering these questions, we
use a consequentialist approach – comparing the con-
sequences of our intervention to an alternate world in
which we took no action — and evaluate the outcome
for its cost-benefit tradeoff.

On the purchasing side, we impart no direct impact
since we do not actually use the solutions on their respec-
tive sites. We do have an indirect impact however since,
through purchasing services, we are providing support
to both workers and service providers. In weighing this
risk, we concluded that the indirect harm of our relatively
small investment was outweighed by the benefits that
come from better understanding the nature of the threat.
On the solving side, the ethical questions are murkier
since we understand that solutions to such CAPTCHAs
will be used to circumvent the sites they are associated
with. To sidestep this concern, we chose not to solve
these CAPTCHAs ourselves. Instead, for each CAPTCHA
one of our worker agents was asked to solve, we proxied
the image back into the same service via the associated
retail interface. Since each CAPTCHA is then solved by
the same set of solvers who would have solved it any-
way, we argue that our activities do not impact the gross
outcome. This approach does cause slightly more money
to be injected into the system, but this amount is small.

Finally, we consulted with our human subjects liaison
on this work and we were told that the study did not re-
quire approval.

5 Solver Service Quality

In this section we present our analysis of CAPTCHA-
solving services based on actively engaging with a range
of services as a client. We evaluate the customer inter-
face, solution accuracy, response time, availability, and
capacity of the eight retail CAPTCHA-solving services
listed in Table 1.

We chose these services through a combination of Web
searching and reading Web forums focused on “black-
hat” search-engine optimization (SEO). In October of
2009, we selected the eight listed in Table 1 because
they were well-advertised and reflected a spectrum of
price offerings at the time. Over the course of our study,
two of the services (CaptchaGateway and CaptchaBy-
pass) ceased operation—we suspect because of compe-
tition from lower-priced vendors.

5.1 Customer Account Creation
For most of these services, account registration is accom-
plished via a combination of the Web and e-mail: con-
tact information is provided via a Web site and subse-
quent sign-up interactions are conducted largely via e-
mail. However, most services presented some obstacles

7

442 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 443

Service $/1K Bulk Dates (2009–2010) Requests Responses

Antigate (AG) $1.00 Oct 06 – Feb 01 (118 days) 28,210 27,726 (98.28%)
BeatCaptchas (BC) $6.00 Sep 21 – Feb 01 (133 days) 28,303 25,708 (90.83%)
BypassCaptcha (BY) $6.50 Sep 23 – Feb 01 (131 days) 28,117 27,729 (98.62%)
CaptchaBot (CB) $1.00 Oct 06 – Feb 01 (118 days) 28,187 22,677 (80.45%)
CaptchaBypass (CP) $5.00 Sep 23 – Dec 23 (91 days) 17,739 15,869 (89.46%)
CaptchaGateway (CG) $6.60 Oct 21 – Nov 03 (13 days) 1,803 1,715 (95.12%)
DeCaptcher (DC) $2.00 Sep 21 – Feb 01 (133 days) 28,284 24,411 (86.31%)
ImageToText (IT) $20.00 Oct 06 – Feb 01 (118 days) 14,321 13,246 (92.49%)

Table 1: Summary of the customer workload to the CAPTCHA-solving services.

to account creation, reflecting varying degrees of due
diligence.

For example, both CaptchaBot and Antigate required
third-party “invitation codes” to join their services,
which we acquired from the previously mentioned fo-
rums. Interestingly, Antigate guards against Western
users by requiring site visitors to enter the name of
the Russian prime minister in Cyrillic before grant-
ing access—an innovation we refer to as a “culturally-
restricted CAPTCHA”.7 Some services require a live
phone call for account creation, for which we used an
anonymous mobile phone to avoid any potential biases
arising from using a University phone number. In our ex-
perience, however, the burden of proof demanded is quite
low and our precautions were likely unnecessary. For ex-
ample, setting up an ImageToText account required a val-
idation call, but the only question asked was “Did you
open an account on ImageToText?” Upon answering in
the affirmative (in a voice clearly conflicting with the
gender of the account holder’s name), our account was
promptly enabled. For one service, DeCaptcher, we cre-
ated multiple accounts to evaluate whether per-customer
rate limiting is in use (we found it was not).

Finally, each service typically requires prepayment by
customers, in units defined by their price schedule (1,000
CAPTCHAs is the smallest “package” generally offered).
To fund each account, we used prepaid VISA gift cards
issued by a national bank unaffiliated with our university.

5.2 Customer Interface
Most services provide an API package for uploading
CAPTCHAs and receiving results, often in multiple pro-
gramming languages; we generally used the PHP-based
APIs. BeatCaptchas and BypassCaptcha did not offer

7In principle, such an approach could be used to artificially restrict
labor markets to specific cultures (i.e., CAPTCHA labor protectionism).
However it is an open problem if such a general form of culturally-
restricted CAPTCHA can be devised that has both a large number of
examples and a low false reject rate from its target population.

pre-built API packages, so we implemented our own API
in Ruby to interface with their Web sites. The client APIs
generally employ one of two methods when interacting
with their corresponding services. In the first, the API
client performs a single HTTP POST that uploads the im-
age to the service, waits for the CAPTCHA to be solved,
and receives the answer in the HTTP response; Beat-
Captchas, BypassCaptcha, CaptchaBypass and Captch-
aBot utilize this method.

In the second, the client performs one HTTP POST to
upload the image, receives an image ID in the response,
and subsequently polls the site for the CAPTCHA solu-
tion using the image ID; Antigate, CaptchaGateway, and
ImageToText employ this approach. These APIs recom-
mend poll rates between 1–5 seconds; we polled these
services once per second. DeCaptcher uses a custom pro-
tocol that is not based on HTTP, although they also offer
an HTTP interface. One interesting note about ImageTo-
Text is that customers must verify that their API code
works in a test environment before gaining access to the
actual service. The test environment allows users to see
the CAPTCHAs they submit and solve them manually.

5.3 Service Pricing
Several of the services, notably Antigate and De-
Captcher, offer bidding systems whereby a customer can
offer payment over the market rate in exchange for higher
priority access to solvers when load is high. In our ex-
perience, DeCaptcher charges customers their full bid
price, while Antigate typically charges at a lower rate de-
pending on load (as might happen in a second-price auc-
tion). To effectively use Antigate, we set our bid price to
$2/1,000 solutions since we experienced a large volume
of load shedding error codes at the minimum bid price
of $1/1,000 (Section 5.9 reports on our experiences with
service load in more detail). We have not seen price fluc-
tuations on the worker side of these services, and thus
we believe that this overage represents pure profit to the
service provider.

8

5.4 Test Corpus

We evaluated the eight CAPTCHA-solving services in Ta-
ble 1 as a customer over the course of about five months
using a representative sample of CAPTCHAs employed
by popular Web sites. To collect this CAPTCHA work-
load, we assembled a list of 25 popular Web sites with
unique CAPTCHAs based on the Alexa rank of the site
and our informal assessment of its value as a target (see
Figure 5 for the complete list). We also used CAPTCHAs
from reCaptcha, a popular CAPTCHA provider used by
many sites. We then collected about 7,500 instances of
each CAPTCHA directly from each site. For the capacity
measurement experiments (Section 5.8), we used 12,000
instances of the Yahoo CAPTCHA graciously provided to
us by Yahoo.

5.5 Verifying Solutions

To assess the accuracy of each service, we needed to de-
termine the correct solution for each CAPTCHA in our
corpus. We used the services themselves to do this for
us. For each instance, we used the most frequent solution
returned by the solver services, after normalizing cap-
italization and whitespace. If there was more than one
most frequent solution, we treated all answers as incor-
rect (taking this to mean that the CAPTCHA had no cor-
rect solution). Table 1 shows the overall accuracy of each
service as given by our method.

To validate this heuristic, we randomly selected 1,025
CAPTCHAs having at least one service-provided solution
and manually examined the images. Of these, we were
able to solve 1,009, of which 940 had a unique plural-
ity that agreed with our solution, giving an error rate
for the heuristic of just over 8%. Of the 16 CAPTCHAs
(1.6%) we could not solve, seven were entirely unread-
able, six had ambiguous characters (e.g., ‘0’ vs. ‘o’, ‘6’
vs. ‘b’), and three were rendered ambiguous due to over-
lapping characters. (We note that Bursztein et al. [3] re-
moved CAPTCHAs with no majority from their calcula-
tion, which resulted in a higher estimated accuracy than
we found in our study.)

5.6 Quality of Service

To assess the accuracy, response time, and service avail-
ability of the eight CAPTCHA solving services, we con-
tinuously submitted CAPTCHAs from our corpus to each
service over the course of the study. We submitted a
single CAPTCHA every five minutes to all services si-
multaneously, recording the time when we submitted the
CAPTCHA and the time when we received the response.
Recall that ImageToText, Antigate and CaptchaGateway
require customers to poll the service for the response to

BypassCaptcha
CaptchaBypass

CaptchaBot
Antigate

CaptchaGateway
ImageToText
Decaptcher

BeatCaptchas

20% 15% 10% 5% 0%

19.9%

13.4%

13.3%

12.4%

11.9%

11.3%

10.3%

10.3%

Median Error Rate
0 5 10 15 20

14.1

15.9

12.8

9.6

21.3

9.4

17.1

17.3

Median Response Time (seconds)

Figure 4: Median error rate and response time (in seconds) for
all services. Services are ranked top-to-bottom in order of in-
creasing error rate.

Youku
Slashdot
Taobao

reCaptcha
Bebo

Wikipedia
AOL

Yandex
Google
Conduit

Dailymotion
MSN
QQ

Yahoo
Maktoob
MySpace

Sina
digg
FC2

Baidu
Friendster

eBay
VKontakte
Skyrock
Rediff
PayPal

20% 15% 10% 5% 0%

57.4%

30.9%

29.5%

27.9%

25.2%

23.6%

20.5%

15.3%

14.0%

13.4%

13.4%

12.8%

11.8%

11.6%

11.5%

10.9%

10.3%

10.1%

10.1%

9.5%

9.3%

8.5%

7.6%

6.9%

5.0%

4.9%

Median Error Rate

0 5 10 15 20

17.1

15.7

14.8

17.3

15.0

17.3

16.0

15.4

15.7

13.8

14.5

16.0

12.9

15.2

13.8

15.9

15.0

14.0

15.1

12.9

15.1

14.8

13.9

16.3

14.8

13.9

Median Response Time (seconds)

Figure 6: Median error rate and response time (in seconds) for
all CAPTCHAs. CAPTCHAs are ranked top-to-bottom in order of
increasing error rate.

a submitted CAPTCHA; we paused one second between
each poll call.

Table 1 also summarizes the dates, durations, and
number of CAPTCHA requests we submitted to the ser-
vices; Figure 5 presents the error rate and mean response
time at a glance for each combination of solver service
and CAPTCHA type. We used each service for up to 118
days, submitting up to 28,303 requests per service during
that period. We were not able to submit the same num-
ber of CAPTCHAs to all services for a number of rea-
sons. For example, services would go offline temporar-
ily, or we would rewrite parts of our client implementa-
tion, thus requiring us to temporarily remove the service
from the experiment. Furthermore, CaptchaGateway and
CaptchaBypass ceased operation during our study.

9

444 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 445

Error Rate

Median Response Time

Youku
Slashdot
Taobao

reC
aptcha

Bebo

W
ikipedia
AO

L
Yandex

G
oogle

conduit

D
ailym

otion
M

SN
Q

Q
Yahoo

M
aktoob

M
ySpace
Sina

digg
FC

2
Baidu

Friendster

eBay
Vkontakte

Skyrock
R

ediff

PayPal

�

�

�

�
�
�
�
�

�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�
�

�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

�
�
�
�

�

�

�
�
�

�

�

�

�
�
�
�

�

�

�

�
�
�
�
�

�

�

�
�

�

�

�

�

�

�
�
�
�

�

�

�
�

�

�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�
�
�
�

�

�

�
�

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�

�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�

�

�

Antigate
ImageToText
CaptchaBot

BypassCaptcha
BeatCaptchas

Decaptcher
CaptchaBypass

CaptchaGateway

12

12

16

15

19

19

19

21

8

9

13

14

17

16

14

17

�
�
�
�
�
�
�
�

�
�
�
�
�

�

�

�

�
�
�
�

�

�

�
�

�
�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

BypassCaptcha
CaptchaBypass

CaptchaBot
Antigate

CaptchaGateway
ImageToText
Decaptcher

BeatCaptchas

66

60

59

59

44

52

56

54

12

3

5

5

7

5

5

4

Figure 5: Error rate and median response time for each combination of service and CAPTCHA type. The area of each circle upper
table is proportional to the error rate (among solved CAPTCHAs). In the lower table, circle area is proportional to the response time
minus ten seconds (for increased contrast); negative values are denoted by unshaded circles. Numeric values corresponding to the
values in the leftmost and rightmost columns are shown on the side. Thus, the error rate of BypassCaptcha on Youku CAPTCHAs is
66%, and for BeatCaptchas on PayPal 4%. The median response time of CaptchaGateway on Youku is 21 seconds, and 8 seconds
for Antigate on PayPal.

Accuracy

A CAPTCHA solution is only useful if it is correct. The
left bar plot in Figure 4 shows the median error rate for
each service. Overall the services are reasonably accu-
rate: with the exception of BypassCaptcha, 86–89% of
responses 8 were correct. This level of accuracy is in line
with results reported by Bursztein et al. [3] for human
solvers and substantially better than the accuracy of re-
CaptchaOCR (Section 3).

By design, CAPTCHAs vary in difficulty. Do the ob-
served error rates reflect such differences? The top half
of Figure 5 shows service accuracy (in terms of its er-
ror rate) on each CAPTCHA type. The area of each circle
is proportional to a service’s mean error rate on a par-
ticular CAPTCHA type. Services are arranged along the
y-axis in order of increasing accuracy, with the most ac-
curate (lowest error rate) at the top and the least accurate
(highest error rate) at the bottom. CAPTCHA types are ar-
ranged in decreasing order of their median error rate. The
median error rate of each type is also shown in Figure 6.

Accuracy clearly depends on the type of CAPTCHA.
The error rate for ImageToText with Youku, for instance,
is 5 times its PayPal error rate. Furthermore, the ranking
of CAPTCHA accuracies are generally consistent across

8The error rate is over received responses and does not include re-
jected requests. We consider response rate to be a measure of availabil-
ity rather than accuracy.

the services—all services have relatively poor accuracy
on Youku and good accuracy on PayPal.

Based on the data, one might conclude that a group
of CAPTCHAs on the left headed by Youku, reCaptcha,
Slashdot, and Taobao are “harder” than the rest. How-
ever an important factor affecting solution accuracy (as
well as response time) in our measurements is worker fa-
miliarity with a CAPTCHA type. In the case of Youku, for
instance, workers may simply be unfamiliar with these
CAPTCHAs. On the other hand, workers are likely famil-
iar with reCaptcha CAPTCHAs (see Section 6.6), which
may genuinely be “harder” than the rest. As a point of
comparison, MR. E reported in our interview that his ser-
vice experiences a 5–10% error rate. Since his CAPTCHA
mix is likely different, and less diverse, than our full set,
his claim seems reasonable.

Response Time

In addition to accuracy, customers want services that
solve CAPTCHAs quickly. Figure 7 shows the cumulative
distribution of response times of each service. The curves
of CaptchaBot, CaptchaBypass, ImageToText, and Anti-
gate exhibit the quantization effect of polling—either in
the client API or on the server—as a stair-step pattern.
The shape of the distributions is characteristically log-
normal, with a median response of 14 seconds (across
all services) and a third-quartile response time of 20
seconds—well within the session timeout of most Web

10

sites. For convenience, Figure 4 also shows median re-
sponse times for each service. In contrast to Bursztein et
al. [3], who used a different labor pool (Amazon Me-
chanical Turk), we found no significant difference in re-
sponse times of correct and incorrect responses.

Services differ considerably in the relative response
times they provide to their customers. Antigate (for
which we paid a slight premium for priority service as
described in Section 5.3) and ImageToText provided the
fastest service with median response times of 9.6 seconds
and 9.4 seconds, respectively, with 90% of CAPTCHAs
solved under 25 seconds. CaptchaGateway was the slow-
est service we measured, with a median of 21.3 seconds
and 10% of responses taking over a minute; it was also
one of the two services that ceased operation during our
study. The remaining services fall in between those ex-
tremes. MR. E reported that his service trains workers
to achieve response times of 10–12 seconds on average,
which is consistent with our measurements of his service.

DeCaptcher and BeatCaptchas have very similar dis-
tributions. We have seen evidence (i.e., error messages
from BeatCaptchas that are identical to ones documented
for the DeCaptcher API) that suggests that BeatCaptchas
uses DeCaptcher as a back end. Antigate returns some
correct responses unusually quickly (a few seconds), for
which we currently do not have an explanation; we have
ruled out caching effects.

Services have an advantage if they have better re-
sponse times than their competition, and the services we
measured differ substantially. We suspect that it is a com-
bination of two factors: software and queueing delay in
the service infrastructure, and worker efficiency. Anti-
gate, for instance, appears to have an unusually large la-
bor pool (Section 5.8), which may enable them to keep
queueing delay low. Similarly, ImageToText appears to
have an adaptive, high-quality labor pool (Section 6.4).
We observed additional delays of 5 seconds due to load
(Section 5.9), but load likely affects all services similarly.

We found that accuracy varied with the type of
CAPTCHA. A closely related issue is to what degree re-
sponse time also varies according to CAPTCHA type. The
bottom of Figure 5 shows response times by CAPTCHA
type. Services are listed along the y-axis from slowest
(top) to fastest service (bottom). The area of each circle
is proportional to the median response time of a service
on a particular CAPTCHA type minus ten seconds (for
greater contrast). Shaded circles are times in excess of
ten seconds, unshaded circles are times less than ten sec-
onds. For example, the median response time of Antigate
on PayPal CAPTCHAs—8 seconds—is shown as an un-
shaded circle. Note that CAPTCHA types are still sorted
by accuracy. The right half of Figure 4 aggregates re-
sponse times by service, showing the median response
time of each.

0

0 10 20 30 40 50 60
Response Time (seconds)

0%

25%

50%

75%

100%

Antigate
ImageToText
CaptchaBot
BypassCaptcha
CaptchaBypass
Decaptcher
BeatCaptchas
CaptchaGateway

Figure 7: Cumulative distribution of response times for each
service.

0 10 20 30 40 50 60

$1

$5

$10

$50

$100

Antigate CaptchaBot
Decaptcher

ImageToText

CaptchaGateway

BeatCaptchas, BypassCaptcha, CaptchaBypass

Required Response Time (seconds)

Pr
ic

e
pe

r 1
K

C
or

re
ct

 S
ol

ut
io

ns

Figure 8: Price for 1,000 correctly-solved CAPTCHAs within a
given response time threshold.

We see some variation in response time among
CAPTCHA types. Youku and reCaptcha, for instance,
consistently induce longer response times across ser-
vices, whereas Baidu, eBay, and QQ consistently have
shorter response times. However, the variation in re-
sponse times among the services dominates the varia-
tion due to CAPTCHA type. The fastest CAPTCHAs that
DeCaptcher solves (e.g., Baidu and QQ) are slower on
average than the slowest CAPTCHAs that Antigate and
ImageToText solve.

5.7 Value
CAPTCHA solvers differ in terms of accuracy, response
time, and price. The value of a particular solver to a
customer depends upon the combination of all of these
factors: a customer wants to pay the lowest price for
both fast and accurate CAPTCHAs. For example, sup-
pose that a customer wants to create 1,000 accounts on
an Internet service, and the Internet service requires that
CAPTCHAs be solved within 30 seconds. When using a
CAPTCHA solver, the customer will have to pay to have
at least 1,000 CAPTCHAs solved, and likely more due to
solutions with response times longer than the 30-second

11

446 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 447

Hour of Day

Pe
rc

en
ta

ge

0
20

40
60

80
10

0

0 5 10 15 20

0
5

10
15

20
25

30

R
es

po
ns

e
Ti

m
e

(s
)Reported Load

Correct Rate
Reject Rate
Response Time

Hour of Day

Pe
rc

en
ta

ge

0
20

40
60

80
10

0

0 5 10 15 20

0
5

10
15

20
25

30

R
es

po
ns

e
Ti

m
e

(s
)

Reported Load
Correct Rate
Reject Rate
Response Time

Figure 9: Load reported by (a) Antigate and (b) DeCaptcher as a function of time-of-day in one-hour increments. For comparison,
we show the percentage of correct responses and rejected requests per hour, as well as the average response time per hour.

threshold (recall that customers do not have to pay for in-
correct solutions). From this perspective, the solver with
the best value may not be the one with the cheapest price.

Figure 8 explores the relationship among accuracy, re-
sponse time, and price for this scenario. The x-axis is
the time threshold T within which a CAPTCHA is useful
to a customer. The y-axis is the adjusted price per bun-
dle of 1,000 CAPTCHAs that are both solved correctly
and solved within time T . Each curve corresponds to a
solver. Each solver charges a price per CAPTCHA solved
(Table 1), but not all solved CAPTCHAs will be useful to
the customer. The adjusted price therefore includes the
overhead of solving CAPTCHAs that take longer than T
and are effectively useless. Consider an example where a
customer wants to have 1,000 correct CAPTCHAs solved
within 30 seconds, a solver charges $2/1,000 CAPTCHAs,
and 70% of the solver’s CAPTCHA responses are cor-
rect and returned within 30 seconds. In this case, the
customer will effectively pay an adjusted price of $2 ×
(1/0.70) = $2.86/1, 000 useful CAPTCHAs.

The results in Figure 8 show that the solver with the
best value depends on the response time threshold. For
high thresholds (more than 25 seconds), both Antigate
and CaptchaBot provide the best value and ImageToText
is the most expensive as suggested by their bulk prices
(Table 1). However, below this threshold the rankings be-
gin to change. Antigate begins to have better value than
CaptchaBot due to having consistently better response
times. In addition, ImageToText starts to overtake the
other services. Even though its bulk price is 5x that of
DeCaptcher, for instance, its service is a better value for
having CAPTCHAs solved within 8 seconds (albeit at a
premium adjusted price).

5.8 Capacity

Another point of differentiation is solver capacity,
namely how many CAPTCHAs a service can solve in a
given unit of time. In addition to low-rate measurements,

we also attempted to measure a service’s maximum ca-
pacity using bursts of CAPTCHA requests. Specifically,
we measured the number and rate of solutions returned
in response to a given offered load, substantially increas-
ing the load in increments until the service appeared
overloaded. We carried out this experiment successfully
for five of the services. Of them, Antigate had by far
the highest capacity, solving on the order of 27 to 41
CAPTCHAs per second. Even at our highest sustained of-
fered load (1,536 threads submitting CAPTCHAs simulta-
neously, bid set at $3/1,000), our rejection rate was very
low, suggesting that Antigate’s actual capacity may in
fact be higher. Due to financial considerations, we did
not attempt higher offered loads.

For the remaining services, we exceeded their avail-
able capacity. We took a non-negligible reject rate to
be an indicator of the service running at full capacity.
Both DeCaptcher and CaptchaBot were able to sustain a
rate of about 14–15 CAPTCHAs per second, with Beat-
Captchas and BypassCaptchas sustaining a solve rate of
eight and four CAPTCHAs per second, respectively.

Based on these rates, we can calculate a rough esti-
mate of the number of workers at these services. Assum-
ing 10–13 seconds per CAPTCHA (based on our inter-
view with MR. E, and consistent with our measured la-
tencies of his service in the 10–20 second range), Anti-
gate would have had at least 400–500 workers avail-
able to service our request. Since we did not exceed
their available capacity, the actual number may be larger.
Both DeCaptcher and CaptchaBot, at a solve rate of 15
CAPTCHAs per second mentioned above, would have had
130–200 workers available.

5.9 Load and Availability

Customers can poll the transient load on the services and
offer payment over the market rate in exchange for higher
priority access when load is high. During our background
CAPTCHA data collection for these services, we also

12

recorded the transient load that they reported. From these
measurements, we can examine to what extent services
report substantial load, and correlate reported load with
other observable metrics (response time, reject rate) to
evaluate the validity of the load reports. Because De-
Captcher charges the full customer bid independent of
actual load, for instance, it might be motivated to report
a false high load in an attempt to encourage higher bids
from customers.

Figure 9 shows the average reported load as a function
of the time of day (in the US Pacific time zone) for both
services: for each hour, we compute the average of all
load samples taken during that hour for all days of our
data set. Antigate reports a higher nominal background
load than DeCaptcher, but both services clearly report a
pronounced diurnal load effect.

For comparison, we also overlay three other ser-
vice metrics for each hour across all days: average re-
sponse time of solved CAPTCHAs, percentage of submit-
ted CAPTCHAs rejected by the service, and the percent-
age of responses with correct solutions. Response time
correlates with reported load, increasing by 5 seconds
during high load for each service—suggesting that the
high load reports are indeed valid. The percentage of re-
jected requests for DeCaptcher further validates the load
reports. When our bids to DeCaptcher were at the base
price of $2/1,000 at times of high load, DeCaptcher ag-
gressively rejected our work requests. To confirm that a
higher bid resulted in lower rejection rates, we measured
available capacity at 5PM (US Pacific time) at the base
price of $2 and then, a few minutes later, at $5, obtaining
solve rates of 8 and 18 CAPTCHAs per second, respec-
tively. Although not conclusive, this experience suggests
that higher bids may be necessary to achieve a desired
level of service at times of high load. Likewise, Antigate
exhibits better quality of service when bidding $1 over
the base price, though bidding over this amount produced
no noticeable improvement (we tested up to $6/1,000).

As further evidence, recall that for Antigate we had to
offer premium bids before the service would solve our re-
quests (Section 5.2). As a result, even during high loads
Antigate did not reject our requests, presumably priori-
tizing our requests over others with lower bids.

Finally, as expected, accuracy is independent of load:
workers are shielded from load behind work queues,
solving CAPTCHAs to their ability unaffected by the of-
fered load on the system.

6 Workforce

Human CAPTCHA solving services are effectively aggre-
gators. On one hand, they aggregate demand by provid-
ing a singular point for purchasing solving services. At
the same time, they aggregate the labor supply by provid-

Figure 10: Portion of a PixProfit worker interface displaying a
Microsoft CAPTCHA.

ing a singular point through which workers can depend
on being offered consistent CAPTCHA solving work for
hire. Thus, for each of the publicly-facing retail sites de-
scribed previously, there is typically also a private “job
site” accessed by workers to receive CAPTCHA images
and provide textual solutions. Identifying these job sites
and which retail service they support is an investigative
challenge. For this study, we focused our efforts on two
services for which we feel confident about the mapping:
Kolotibablo and PixProfit. Kolotibablo is a Russian-run
job site that supplies solutions for the retail service Anti-
gate (which, along with CaptchaBot, is the current price
leader).

6.1 Account Creation
For each job site, account creation is similar to the retail
side, but due diligence remains minimal. As a form of
quality control, some job sites will evaluate new work-
ers using a corpus of “test” CAPTCHAs (whose solutions
are known a priori) before they allow them to solve ex-
ternally provided CAPTCHAs. For this reason, we discard
the first 30 CAPTCHAs provided by PixProfit, which we
learned by experience correspond to test CAPTCHAs.

6.2 Worker Interface
Services provide workers with a Web based interface
that, after logging in, displays CAPTCHAs to be solved
and provides a text box for entering the solution (Fig-
ure 10 shows an example of the interface for PixProfit).
Each site also tracks the number of CAPTCHAs solved,
the number that were reported as correct (by customers
of the retail service), and the amount of money earned.
PixProfit also assigns each worker a “priority” based
on solution accuracy. Better accuracy results in more
CAPTCHAs to solve during times of lower load. If a
solver’s accuracy decreases too much, services ban the
account. In our experiments, our worker agents always
used fresh accounts with the highest level of priority.

13

448 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 449

Language Example AG BC BY CB DC IT All

English 51.1 37.6 4.76 40.6 39.0 62.0 39.2
Chinese (Simp.) 48.4 31.0 0.00 68.9 26.9 35.8 35.2
Chinese (Trad.) 52.9 24.4 0.00 63.8 30.2 33.0 34.1
Spanish 1.81 13.8 0.00 2.90 7.78 56.8 13.9
Italian 3.65 8.45 0.00 4.65 5.44 57.1 13.2
Tagalog 0.00 5.79 0.00 0.00 7.84 57.2 11.8
Portuguese 3.15 10.1 0.00 1.48 3.98 48.9 11.3
Russian 24.1 0.00 0.00 11.4 0.55 16.5 8.76
Tamil 2.26 21.1 3.26 0.74 12.1 5.36 7.47
Dutch 4.09 1.36 0.00 0.00 1.22 31.1 6.30
Hindi 10.5 5.38 2.47 1.52 6.30 9.49 5.94
German 3.62 0.72 0.00 1.46 0.58 29.1 5.91
Malay 0.00 1.42 0.00 0.00 0.55 29.4 5.23
Vietnamese 0.46 2.07 0.00 0.00 1.74 18.1 3.72

Korean 0.00 0.00 0.00 0.00 0.00 20.2 3.37
Greek 0.45 0.00 0.00 0.00 0.00 15.5 2.65

Arabic 0.00 0.00 0.00 0.00 0.00 15.3 2.56
Bengali 0.45 0.00 9.89 0.00 0.00 0.00 1.72
Kannada 0.91 0.00 0.00 0.00 0.55 6.14 1.26
Klingon 0.00 0.00 0.00 0.00 0.00 1.12 0.19
Farsi 0.45 0.00 0.00 0.00 0.00 0.00 0.08

Table 2: Percentage of responses from the services with correct answers for the language CAPTCHAs.

6.3 Worker Wages

Kolotibablo pays workers at a variable rate depending on
how many CAPTCHAs they have solved. This rate varies
from $0.50/1,000 up to over $0.75/1,000 CAPTCHAs.
PixProfit is the equivalent supplier for DeCaptcher and
offers a somewhat higher rate of $1/1,000. Typically,
workers must earn a minimum amount of money be-
fore payout ($3.00 at PixProfit and $1.00 at Kolotibablo),
and services commonly provide payment via an online e-
currency system such as WebMoney.

While we cannot directly measure the gross wages
paid by either service, Kolotibablo provides a public list
to its workers detailing the monthly earnings for the top
100 solvers each day (presumably as a worker incentive).
We monitored these earnings for two months beginning
on Dec. 1st, 2009. On this date, the average monthly
payout among the top 100 workers was $106.31. How-
ever, during December, Kolotibablo revised its bonus
payout system, which reduced the payout range by ap-
proximately 50% (again reflecting downward price pres-
sure on CAPTCHA-solving labor). As a result, one month
later on Jan. 1st, 2010, the average monthly payout to
the top 100 earners decreased to $47.32. In general,
these earnings are roughly consistent with wages paid to

low-income textile workers in Asia [12], suggesting that
CAPTCHA-solving is being outsourced to similar labor
pools; we investigate this question next.

6.4 Geolocating Workers

We crafted CAPTCHAs whose solutions would reveal
information about the geographic demographics of the
CAPTCHA solvers. We created CAPTCHAs using words
corresponding to digits in the native script of various
languages (“uno”, “dos”, “tres”, etc., for the CAPTCHA
challenge in Spanish), where the correct solution is the
sequence of Roman numerals corresponding to those
words (“1”, “2”, “3”, etc.) for any CAPTCHA in any lan-
guage. Ideally, such CAPTCHAs should be easy to grasp
and fast to solve by the language’s speakers, yet substan-
tially less likely to be solved by non-speakers or random
chance. We expect a measurably high accuracy for ser-
vices employing workers familiar with those languages.

Table 2 lists the languages we used in this experiment
along with an example three-digit CAPTCHA in the lan-
guage corresponding to the solution “123”. For broad
global coverage, we selected 21 languages based on a
combination of factors including global exposure (En-

14

glish), prevalence of world-wide native speakers (Chi-
nese, Spanish, English, Hindi, Arabic), regions of ex-
pected low-cost labor markets with inexpensive Inter-
net access (India, China, Southeast Asia, Latin America),
and developed regions unlikely to be sources of afford-
able CAPTCHA labor (e.g., Western Europe) and lastly
one synthetic language as a control (Klingon [15]).

The CAPTCHA we submitted had instructions in the
language for how to solve the CAPTCHA (e.g., “Por favor
escriba los números abajo” for Spanish), as well as an
initial word and Roman numeral as a concrete example
(“uno”, “1”). In our experiments, we randomly generated
222 unique CAPTCHAs in each language and submitted
them to the six services still operating in January 2010.
We rotated through languages such that we submitted a
CAPTCHA in this format once every 20–25 minutes. The
CAPTCHAs did not repeat digits to reduce the correlated
effect of a random guess. As a result, the actual proba-
bility for guessing a CAPTCHA is 1/504 (9 × 8 × 7, re-
duced by 1 due to the example), although workers un-
aware of the construction would still be making guesses
out of 1,000 possibilities.

Table 2 also shows the accuracy of the services when
presented with these CAPTCHAs. The accuracy corre-
sponds to a response with all three digits correct (since
we created them we have their ground truth). For a con-
venient ordering, we sort the languages by the average
accuracy across all services.

The results paint a revealing picture. First, although
Roman alphanumerics in typical CAPTCHAs are glob-
ally comprehensible—and therefore easily outsourced—
English words for numerals represent a noticeable se-
mantic gap for presumably non-English speakers. Very
high accuracies on normal CAPTCHAs drop to 38–62%
for the challenge presented in English.

Second, workers at a number of the services exhibit
strong affinities to particular languages. Five of the ser-
vices have accuracies for Chinese (Traditional and Sim-
plified) either substantially higher or nearly as high as
English. The services evidently include a sizeable work-
force fluent in Chinese, likely mainland China with avail-
able low-cost labor. In addition, Antigate has apprecia-
ble accuracies for Russian and Hindi, presumably draw-
ing on workforces in Russia and India. Similarly for
CaptchaBypass and Russian; BeatCaptcha and Tamil,
Portuguese, and Spanish; and DeCaptcher and Tamil.
Other non-trivial accuracies in Bengali and Tagalog sug-
gest further recruitment in India and southeast Asia. Ser-
vices with non-trivial accuracies in Portuguese, Spanish,
and Italian could be explained by a workforce familiar
with one language who can readily deduce similar words
in the other Romance languages. Consistent with these
observations, MR. E reported in our interview that they

Figure 11: Custom Asirra CAPTCHA: workers must type the
letters corresponding to pictures of cats.

draw from labor markets in China, India, Bangladesh,
and Vietnam.

Finally, the results for ImageToText are impressive.
Relative to the other services, ImageToText has appre-
ciable accuracy across a remarkable range of languages,
including languages where none of the other services
had few if any correct solutions (Dutch, Korean, Viet-
namese, Greek, Arabic) and even two correct solutions
of CAPTCHAs in Klingon. Either ImageToText recruits a
truly international workforce, or the workers were able to
identify the CAPTCHA construction and learn the correct
answers. ImageToText is the most expensive service by
a wide margin, but clearly has a dynamic and adaptive
labor pool.

Time Zone. As another approach for using CAPTCHAs
to reveal demographic information about workers—in
this case, their time zone—we translated the following
instruction into 14 of the languages as CAPTCHA im-
ages: “Enter the current time”. We sent these CAPTCHAs
to each of the six services at the same rate as the other
language CAPTCHAs with numbers. We received 15,775
responses, with the most common response being a re-
type of the instruction in the native language. Of the re-
maining responses, we received 1,583 (10.0%) with an
answer in a recognizable time format. Of those, 77.9%
of them came from UTC+8, further reinforcing the esti-
mation of a large labor pool from China; the two other
top time zones were the Indian UTC+5.5 with 5.7% and
Eastern Europe UTC+2 with 3.0%.

6.5 Adaptability
As a final assessment, we wanted to examine how both
CAPTCHA services and solvers adapt to changes in state-
of-the-art CAPTCHA generation. We focused on the re-
cently proposed Asirra CAPTCHA [9], which is based
on identifying pictures of cats and dogs among a set of
12 images. Using the corpus of images provided by the
Asirra authors, we hand crafted our own version of the

15

450 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 451

Kolotibablo (Antigate) PixProfit (DeCaptcher)
Service # CAPTCHAs % Total % Cum. Service # CAPTCHAs % Total % Cum.

Microsoft 6,552 25.5% 25.5% Microsoft 12,135 43.1% 43.1%
Vkontakte.ru 5,908 23.0% 48.5% reCaptcha 10,788 38.3% 81.4%
Mail.ru 3,607 14.0% 62.5% Google 1,202 4.3% 85.7%
Captcha.ru 2,476 9.6% 72.2% Yahoo 1,307 3.7% 89.3%
reCaptcha 921 3.6% 75.8% AOL 415 1.5% 90.8%
Other (18 sites) 3680 14.3% 90.1% Other (18 sites) 1086 3.9% 94.7%
Unknown 2551 9.9% 100% Unknown 1505 5.3% 100%

Total 25,695 Total 28,166

Table 3: The top 5 targeted CAPTCHA types on Kolotibablo and PixProfit, based on CAPTCHAs observed posing as workers.

 0
 10
 20
 30
 40
 50
 60
 70

01/18 01/20 01/22 01/24 01/26 01/28 01/30 02/01

Er
ro

r R
at

e

Date

%
%
%
%
%
%
%
%

Figure 12: ImageToText error rate for the custom Asirra
CAPTCHA over time.

CAPTCHA suitable for use with standard solver image
APIs. Figure 11 shows an example. We wrote the in-
structions “Find all cats” in English, Chinese (Simpl.),
Russian and Hindi across the top, as the majority of
the workers speak one of these languages. We submitted
this image once every three minutes to all services over
12 days. ImageToText displayed a remarkable adapt-
ability to this new CAPTCHA type, successfully solv-
ing the CAPTCHA on average 39.9% of the time. Fig-
ure 12 shows the declining error rate for ImageToText; as
time progresses, the workers become increasingly adept
at solving the CAPTCHA. The next closest service was
BeatCaptchas, which succeeded 20.4% of the time. The
remaining services, excluding DeCaptcher, had success
rates below 7%.

Coincidentally, as we were evaluating our own ver-
sion of the Asirra CAPTCHA, on January 17th, 2010 De-
Captcher began offering an API method that supported it
directly—albeit at $4 per 1,000 Asirra solves (double its
base price). Microsoft had deployed the Asirra CAPTCHA
on December 8th, 2009 on Club Bing. Demand for solv-
ing this CAPTCHA was apparently sufficiently strong
enough that DeCaptcher took only five weeks to incorpo-
rate it into their service. We then performed the same ex-
periment described above using the new DeCaptcher API
method and received 1,494 responses. DeCaptcher suc-
cessfully solved 696 (46.5%) requests with a median re-
sponse time of 39 seconds, about 2.3 times its median of
17 seconds for regular CAPTCHAs. DeCaptcher appears

to have factored in the longer solve times for the Asirra
CAPTCHAs into the charged price. From what we can tell,
though, DeCaptcher does not pay PixProfit workers dou-
ble the amount for solving them, consequently increasing
its profit margin on these new CAPTCHAs.

6.6 Targeted Sites

Customers of CAPTCHA-solving services target a num-
ber of different Web sites. Using our worker accounts
on Kolotibablo and PixProfit, the public worker sites
of Antigate and DeCaptcher, respectively, we can iden-
tify which Web sites are targeted by the customers of
these services. Over the course of 82 days we recorded
over 25,000 CAPTCHAs from Kolotibablo and 28,000
CAPTCHAs from PixProfit.

To identify the Web sites from which these CAPTCHAs
originated, we first grouped the CAPTCHAs by image di-
mensions. Most groups consisted of a single CAPTCHA
type, which we confirmed visually. We then attempted to
identify the Web sites from which these CAPTCHAs were
taken. In this manner we identified 90% of Kolotibablo
CAPTCHAs and 94% of PixProfit CAPTCHAs.

Table 3 shows the top five CAPTCHA types we ob-
served on Kolotibablo and PixProfit, with the remaining
identified CAPTCHA types (18 CAPTCHA in both cases)
representing 14% and 4% of the CAPTCHA volume on
Kolotibablo and PixProfit respectively. Both distribu-
tions of CAPTCHA types are highly skewed: on PixProfit,
the top two CAPTCHAs types represent 81% of the vol-
ume, with the top five accounting for 91%. Kolotibablo
is not quite as concentrated, but the top five still account
for 76% of its volume.

Clearly the markets for the services are different. Al-
though Microsoft is by far the most common target for
both, PixProfit tailors to CAPTCHAs from large global
services (Google, Yahoo, AOL, and MySpace) whereas
Russian sites otherwise dominate Kolotibablo (VKon-
takte.ru, Mail.ru, CAPTCHA.ru, Mamba.ru, and Yan-
dex) — a demographic that correlates well with the ob-
served worker fluency in Russian for Antigate (Table 2).

16

7 Discussion and Conclusion

By design, CAPTCHAs are simple and easy to solve by
humans. Their “low-impact” quality makes them attrac-
tive to site operators who are wary of any defense that
could turn away visitors. However, this same quality has
made them easy to outsource to the global unskilled la-
bor market. In this study, we have shed light on the
business of solving CAPTCHAs, showing it to be a well-
developed, highly-competitive industry with the capac-
ity to solve on the order of a million CAPTCHAs per
day. Wholesale and retail prices continue to decline, sug-
gesting that this is a demand-limited market; an asser-
tion further supported by our informal survey of several
freelancer forums where workers in search of CAPTCHA-
solving work greatly outnumber CAPTCHA-solving ser-
vice recruitments. One may well ask: Do CAPTCHAs ac-
tually work? The answer depends on what it is that we
expect CAPTCHAs to do.
Telling computers and humans apart. The original
purpose of CAPTCHAs is to distinguish humans from ma-
chines. To this day, no completely general means of solv-
ing CAPTCHAs has emerged, nor is the cat-and-mouse
game of creating automated solvers viable as a business
model. In this regard, then, CAPTCHAs have succeeded.
Preventing automated site access. Today, the re-
tail price for solving one million CAPTCHAs is as
low as $1,000. Indeed, for well-motivated adversaries,
CAPTCHAs are an acceptable cost of doing business
when measured against the value of gaining access to the
protected resource. E-mail spammers, for example, solve
CAPTCHAs to gain access to Web mail accounts from
which to send their advertisements, while blog spam-
mers seek to acquire organic “clicks” and influence result
placement on major search engines. Thus, in an absolute
sense, CAPTCHAs do not prevent large-scale automated
site access.
Limiting automated site access. However, it is short-
sighted to evaluate CAPTCHAs as a defense in isolation.
Rather, they exert friction on the underlying economic
model and should be evaluated in terms of how effi-
ciently they can undermine the attacker’s profitability.

Put simply, a CAPTCHA reduces an attacker’s expected
profit by the cost of solving the CAPTCHA. If the at-
tacker’s revenue cannot cover this cost, CAPTCHAs as
a defense mechanism have succeeded. Indeed, for many
sites (e.g., low PageRank blogs), CAPTCHAs alone may
be sufficient to dissuade abuse. For higher-value sites,
CAPTCHAs place a utilization constraint on otherwise
“free” resources, below which it makes no sense to target
them. Taking e-mail spam as an example, let us suppose
that each newly registered Web mail account can send
some number of spam messages before being shut down.
The marginal revenue per message is given by the aver-

age revenue per sale divided by the expected number of
messages needed to generate a single sale. For pharma-
ceutical spam, Kanich et al. [14] estimate the marginal
revenue per message to be roughly $0.00001; at $1 per
1,000 CAPTCHAs, a new Web mail account starts to break
even only after about 100 messages sent.9

Thus, CAPTCHAs naturally limit site access to those
attackers whose business models are efficient enough to
be profitable in spite of these costs and act as a drag on
profit for all actors. Indeed, MR. E reported that while
his service had thousands of customers, 75% of traffic
was generated by a small subset of them (5–10).
The role of CAPTCHAs today. Continuing our reason-
ing, the profitability of any particular scam is a function
of three factors: the cost of CAPTCHA-solving, the ef-
fectiveness of any secondary defenses (e.g., SMS valida-
tion, account shutdowns, additional CAPTCHA screens,
etc.) and the efficiency of the attacker’s business model.
As the cost of CAPTCHA solving decreases, a site oper-
ator must employ secondary defenses more aggressively
to maintain a given level of fraud.

Unfortunately, secondary defenses are invariably more
expensive both in infrastructure and customer impact
when compared to CAPTCHAs. However, a key observa-
tion is that secondary defenses need only be deployed
quickly enough to undermine profitability (e.g., within a
certain number of messages sent, accounts registered per
IP, etc.). Indeed, the optimal point for this transition is
precisely the point at which the attacker ”breaks even.”
Before this point it is preferable to use CAPTCHAs to
minimize the cost burden to the site owner and the poten-
tial impact on legitimate users. While we do not believe
that such economic models have been carefully devel-
oped by site owners, we see evidence that precisely this
kind of tradeoff is being made. For example, a number of
popular sites such as Google are now making aggressive
use of secondary mechanisms to screen account sign-
ups (e.g., SMS challenges), but only after a CAPTCHA is
passed and some usage threshold is triggered (e.g., mul-
tiple sign-ups from the same IP address).10

In summary, we have argued that CAPTCHAs, while
traditionally viewed as a technological impediment to
an attacker, should more properly be regarded as an
economic one, as witnessed by a robust and mature
CAPTCHA-solving industry which bypasses the underly-

9These numbers should be taken with a grain of salt, both be-
cause the cited study is but a single data point, and because they stud-
ied SMTP-based spam, which generally has lower deliverability than
Webmail-based spam. Anecdotally, the retail cost of Webmail-based
delivery can be over 100 times more than via SMTP from raw bots.

10Anecdotally, this strategy appears effective for now and Gmail ac-
counts on the underground market have gone from a typical asking
price of $8/1,000, to being hard to come by at any price. We will not
be surprised, however, if this mechanism leads to the monetization of
smartphone botnets, or mobots [10], in response.

17

452 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 453

ing technological issue completely. Viewed in this light,
CAPTCHAs are a low-impact mechanism that adds fric-
tion to the attacker’s business model and thus minimizes
the cost and legitimate user impact of heavier-weight sec-
ondary defenses. CAPTCHAs continue to serve this func-
tion, but as with most such defensive mechanisms, they
simply work less efficiently over time.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Rachna Dhamija, for their feedback as well as
Luis von Ahn for his input and discussion early on in the
project. We also thank Jonathan Wilkins for granting us
access to reCaptchaOCR, Jon Howell and Jeremy Elson
for discussions about the Asirra CAPTCHA, and the vol-
unteers who assisted in manual identification of targeted
CAPTCHAs. We are particularly indebted to MR. E for
his generosity and time in answering our questions and
sharing his insights about the technical and business as-
pects of operating a CAPTCHA-solving service. Finally
we would also like to thank Anastasia Levchenko and
Ilya Kolupaev for their assistance. This work was sup-
ported in part by National Science Foundation grants
NSF-0433668 and NSF-0831138, by the Office of Naval
Research MURI grant N000140911081, and by gener-
ous research, operational and in-kind support from Ya-
hoo, Microsoft, HP, Google, and the UCSD Center for
Networked Systems (CNS). McCoy was supported by a
CCC-CRA-NSF Computing Innovation Fellowship.

References

[1] BBC news PC stripper helps spam to spread. http://

news.bbc.co.uk/2/hi/technology/7067962.stm.
[2] Ticketmaster, LLC v. RMG Technologies, Inc., et al 507

F.Supp.2d 1096 (C.D. Ca., October 16, 2007).
[3] E. Bursztein, S. Bethard, J. C. Mitchell, D. Jurafsky, and

C. Fabry. How good are humans at solving CAPTCHAs?
a large scale evaluation. In IEEE S&P ’10, 2010.

[4] M. Chew and D. Tygar. Image recognition CAPTCHAs.
In Information Security, 7th International Conference,
ISC 2004, pages 268–279. Springer, 2004.

[5] D. Danchev. Inside India’s CAPTCHA solving
economy. http://blogs.zdnet.com/security/?p=

1835, 2008.
[6] D. Danchev. Report: Google’s reCAPTCHA flawed.

http://blogs.zdnet.com/security/?p=5123,
2009.

[7] R. Datta, J. Li, and J. Z. Wang. Exploiting the
Human-Machine Gap in Image Recognition for Design-
ing CAPTCHAs. IEEE Transactions on Information
Forensics and Security, 4(3):504–518, 2009.

[8] M. Egele, L. Bilge, E. Kirda, and C. Kruegel. CAPTCHA
Smuggling: Hijacking Web Browsing Sessions to Create

CAPTCHA Farms. In The 25th Symposium On Applied
Computing (SAC), pages 1865–1870. ACM, March 2010.

[9] J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirra:
a CAPTCHA that exploits interest-aligned manual image
categorization. In CCS ’07, pages 366–374, New York,
NY, USA, 2007. ACM.

[10] C. Fleizach, M. Liljenstam, P. Johansson, G. M. Voelker,
and A. Méhes. Can You Infect Me Now? Malware Propa-
gation in Mobile Phone Networks. In Proceedings of the
ACM Workshop on Recurring Malcode (WORM), Wash-
ington D.C., Nov. 2007.

[11] A. Hindle, M. W. Godfrey, and R. C. Holt. Reverse Engi-
neering CAPTCHAs. In Proc. of the 15th Working Con-
ference on Reverse Engineering, pages 59–68, 2008.

[12] L. Jassin-O’Rourke Group. Global Ap-
parel Manufacturing Labor Cost Analysis
2008. http://www.tammonline.com/files/

GlobalApparelLaborCostSummary2008.pdf, 2008.
[13] R. F. Jonell Baltazar, Joey Costoya. The heart of KOOB-

FACE: C&C and social network propagation. http:

//us.trendmicro.com/us/trendwatch/research-

and-analysis/white-papers-and-articles/,
October 2009.

[14] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. Spamalytics: an em-
pirical analysis of spam marketing conversion. In CCS
’08, pages 3–14, New York, NY, USA, 2008. ACM.

[15] The Klingon language institute. http://www.kli.org,
Accessed February 2010.

[16] G. Mori and J. Malik. Recognizing objects in adversar-
ial clutter: Breaking a visual CAPTCHA. In CVPR, vol-
ume 1, pages 134–141, 2003.

[17] G. Moy, N. Jones, C. Harkless, and R. Potter. Distor-
tion estimation techniques in solving visual CAPTCHAs.
pages II: 23–28, 2004.

[18] PWNTcha. Pretend We’re Not a Turing computer but
a human antagonist. http://caca.zoy.org/wiki/

PWNtcha.
[19] G. Sauer, H. Hochheiser, J. Feng, and J. Lazar. Towards

a universally usable CAPTCHA. In SOUPS ’08, 2008.
[20] Symantec. A captcha-solving service. http:

//www.symantec.com/connect/blogs/captcha-

solving-service.
[21] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.

Captcha: Using hard AI problems for security. In Ad-
vances in Cryptology - EUROCRYPT, 2003.

[22] S.-Y. Wang, H. S. Baird, and J. L. Bentley. CAPTCHA
challenge tradeoffs: Familiarity of strings versus degrada-
tion of images. In ICPR ’06, 2006.

[23] J. Wilkins. Strong captcha guidelines v1.2. http://

bitland.net/captcha.pdf.
[24] Xrumer. http://www.botmasternet.com/.
[25] J. Yan and A. S. El Ahmad. A low-cost attack on a Mi-

crosoft CAPTCHA. In CCS ’08, pages 543–554, New
York, NY, USA, 2008. ACM.

[26] J. Yan and A. S. El Ahmad. Usability of CAPTCHAs
or usability issues in CAPTCHA design. In SOUPS ’08,
pages 44–52, New York, NY, USA, 2008. ACM.

18

Chipping Away at Censorship Firewalls with User-Generated Content

Sam Burnett, Nick Feamster, and Santosh Vempala
School of Computer Science, Georgia Tech

{sburnett, feamster, vempala}@cc.gatech.edu

Abstract

Oppressive regimes and even democratic governments
restrict Internet access. Existing anti-censorship systems
often require users to connect through proxies, but these
systems are relatively easy for a censor to discover and
block. This paper offers a possible next step in the cen-
sorship arms race: rather than relying on a single system
or set of proxies to circumvent censorship firewalls, we
explore whether the vast deployment of sites that host
user-generated content can breach these firewalls. To ex-
plore this possibility, we have developed Collage, which
allows users to exchange messages through hidden chan-
nels in sites that host user-generated content. Collage has
two components: a message vector layer for embedding
content in cover traffic; and a rendezvous mechanism
to allow parties to publish and retrieve messages in the
cover traffic. Collage uses user-generated content (e.g.,
photo-sharing sites) as “drop sites” for hidden messages.
To send a message, a user embeds it into cover traffic and
posts the content on some site, where receivers retrieve
this content using a sequence of tasks. Collage makes it
difficult for a censor to monitor or block these messages
by exploiting the sheer number of sites where users can
exchange messages and the variety of ways that a mes-
sage can be hidden. Our evaluation of Collage shows
that the performance overhead is acceptable for sending
small messages (e.g., Web articles, email). We show how
Collage can be used to build two applications: a direct
messaging application, and a Web content delivery sys-
tem.

1 Introduction

Network communication is subject to censorship and
surveillance in many countries. An increasing number
of countries and organizations are blocking access to
parts of the Internet. The Open Net Initiative reports
that 59 countries perform some degree of filtering [36].

For example, Pakistan recently blocked YouTube [47].
Content deemed offensive by the government has been
blocked in Turkey [48]. The Chinese government reg-
ularly blocks activist websites [37], even as China has
become the country with the most Internet users [19];
more recently, China has filtered popular content sites
such as Facebook and Twitter, and even require their
users to register to visit certain sites [43]. Even demo-
cratic countries such as the United Kingdom and Aus-
tralia have recently garnered attention with controversial
filtering practices [35, 54, 55]; South Korea’s president
recently considered monitoring Web traffic for political
opposition [31].

Although existing anti-censorship systems—notably,
onion routing systems such as Tor [18]—have allowed
citizens some access to censored information, these sys-
tems require users outside the censored regime to set up
infrastructure: typically, they must establish and main-
tain proxies of some kind. The requirement for running
fixed infrastructure outside the firewall imposes two lim-
itations: (1) a censor can discover and block the infras-
tructure; (2) benevolent users outside the firewall must
install and maintain it. As a result, these systems are
somewhat easy for censors to monitor and block. For ex-
ample, Tor has recently been blocked in China [45]. Al-
though these systems may continue to enjoy widespread
use, this recent turn of events does beg the question of
whether there are fundamentally new approaches to ad-
vancing this arms race: specifically, we explore whether
it is possible to circumvent censorship firewalls with in-
frastructure that is more pervasive, and that does not re-
quire individual users or organizations to maintain it.

We begin with a simple observation: countless sites al-
low users to upload content to sites that they do not main-
tain or own through a variety of media, ranging from
photos to blog comments to videos. Leveraging the large
number of sites that allow users to upload their own con-
tent potentially yields many small cracks in censorship
firewalls, because there are many different types of me-

454 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 455

dia that users can upload, and many different sites where
they can upload it. The sheer number of sites that users
could use to exchange messages, and the many differ-
ent ways they could hide content, makes it difficult for a
censor to successfully monitor and block all of them.

In this paper, we design a system to circumvent cen-
sorship firewalls using different types of user-generated
content as cover traffic. We present Collage, a method
for building message channels through censorship fire-
walls using user-generated content as the cover medium.
Collage uses existing sites to host user-generated con-
tent that serves as the cover for hidden messages (e.g.,
photo-sharing, microblogging, and video-sharing sites).
Hiding messages in photos, text, and video across a wide
range of host sites makes it more difficult for censors to
block all possible sources of censored content. Second,
because the messages are hidden in other seemingly in-
nocuous messages, Collage provides its users some level
of deniability that they do not have in using existing sys-
tems (e.g., accessing a Tor relay node immediately impli-
cates the user that contacted the relay). We can achieve
these goals with minimal out-of-band communication.

Collage is not the first system to suggest using covert
channels: much previous work has explored how to build
a covert channel that uses images, text, or some other
media as cover traffic, sometimes in combination with
mix networks or proxies [3, 8, 17, 18, 21, 38, 41]. Other
work has also explored how these schemes might be bro-
ken [27], and others hold the view that message hiding
or “steganography” can never be fully secure. Collage’s
new contribution, then, is to design covert channels based
on user-generated content and imperfect message-hiding
techniques in a way that circumvents censorship firewalls
that is robust enough to allow users to freely exchange
messages, even in the face of an adversary that may be
looking for such suspicious cover traffic.

The first challenge in designing Collage is to develop
an appropriate message vector for embedding messages
in user-generated content. Our goal for developing a
message vector is to find user-generated traffic (e.g., pho-
tos, blog comments) that can act as a cover medium, is
widespread enough to make it difficult for censors to
completely block and remove, yet is common enough
to provide users some level of deniability when they
download the cover traffic. In this paper, we build mes-
sage vectors using the user-generated photo-sharing site,
Flickr [24], and the microblogging service, Twitter [49],
although our system in no way depends on these partic-
ular services. We acknowledge that some or all of these
two specific sites may ultimately be blocked in certain
countries; indeed, we witnessed that parts of Flickr were
already blocked in China when accessed via a Chinese
proxy in January 2010. A main strength of Collage’s de-
sign is that blocking a specific site or set of sites will not

Censor

User-generated
Content Host
(Rendezvous

point)

Upload
Media with

Hidden Data

Sender's Machine

Application

Collage

Receiver's Machine

Download
Media with

Hidden Data

Send
Censored
Message

Application

Collage

Receive
Censored
Message

Figure 1: Collage’s interaction with the network. See
Figure 2 for more detail.

fully stem the flow of information through the firewall,
since users can use so many sites to post user-generated
content. We have chosen Flickr and Twitter as a proof of
concept, but Collage users can easily use domestic equiv-
alents of these sites to communicate using Collage.

Given that there are necessarily many places where
one user might hide a message for another, the second
challenge is to agree on rendezvous sites where a sender
can leave a message for a receiver to retrieve. We aim
to build this message layer in a way that the client’s traf-
fic looks innocuous, while still preventing the client from
having to retrieve an unreasonable amount of unwanted
content simply to recover the censored content. The ba-
sic idea behind rendezvous is to embed message seg-
ments in enough cover material so that it is difficult for
the censor to block all segments, even if it joins the sys-
tem as a user; and users can retrieve censored messages
without introducing significant deviations in their traffic
patterns. In Collage, senders and receivers agree on a
common set of network locations where any given con-
tent should be hidden; these agreements are established
and communicated as “tasks” that a user must perform
to retrieve the content (e.g., fetching a particular URL,
searching for content with a particular keyword). Fig-
ure 1 summarizes this process. Users send a message
with three steps: (1) divide a message into many erasure-
encoded “blocks” that correspond to a task, (2) embed
these blocks into user-generated content (e.g., images),
and (3) publish this content at user-generated content
sites, which serve as rendezvous points between senders
and receivers. Receivers then retrieve a subset of these
blocks to recover the original message by performing one
of these tasks.

This paper presents the following contributions.

• We present the design and implementation of Col-
lage, a censorship-resistant message channel built
using user-generated content as the cover medium.
An implementation of the Collage message channel
is publicly available [13].

• We evaluate the performance and security of Col-
lage. Collage does impose some overhead, but the
overhead is acceptable for small messages (e.g., ar-

2

ticles, emails, short messages), and Collage’s over-
head can also be reduced at the cost of making the
system less robust to blocking.

• We present Collage’s general message-layer ab-
straction and show how this layer can serve as the
foundation for two different applications: Web pub-
lishing and direct messaging (e.g., email). We de-
scribe and evaluate these two applications.

The rest of this paper proceeds as follows. Section 2
presents related work. In Section 3, we describe the de-
sign goals for Collage and the capabilities of the cen-
sor. Section 4 presents the design and implementation
of Collage. Section 5 evaluates the performance of Col-
lage’s messaging layer and applications. Section 6 de-
scribes the design and implementation of two applica-
tions that are built on top of this messaging layer. Sec-
tion 7 discusses some limitations of Collage’s design and
how Collage might be extended to cope with increasingly
sophisticated censors. Section 8 concludes.

2 Background and Related Work

We survey other systems that provide anonymous, con-
fidential, or censorship-resistant communication. We
note that most of these systems require setting up a
dedicated infrastructure of some sort, typically based
on proxies. Collage departs significantly from this ap-
proach, since it leverages existing infrastructure. At the
end of this section, we discuss some of the challenges
in building covert communications channels using exist-
ing techniques, which have also been noted in previous
work [15].

Anonymization proxies. Conventional anti-censorship
systems have typically consisted of simple Web proxies.
For example, Anonymizer [3] is a proxy-based system
that allows users to connect to an anonymizing proxy
that sits outside a censoring firewall; user traffic to and
from the proxy is encrypted. These types of systems pro-
vide confidentiality, but typically do not satisfy any of
the other design goals: for example, the existence of any
encrypted traffic might be reason for suspicion (thus vi-
olating deniability), and a censor that controls a censor-
ing firewall can easily block or disrupt communication
once the proxy is discovered (thus violating resilience).
A censor might also be able to use techniques such as
SSL fingerprinting or timing attacks to link senders and
receivers, even if the underlying traffic is encrypted [29].
Infranet attempts to create deniability for clients by em-
bedding censored HTTP requests and content in HTTP
traffic that is statistically indistinguishable from “innocu-
ous” HTTP traffic [21]. Infranet improves deniability,
but it still depends on cooperating proxies outside the

firewall that might be discovered and blocked by cen-
sors. Collage improves availability by leveraging the
large number of user-generated content sites, as opposed
to a relatively smaller number of proxies.

One of the difficult problems with anti-censorship
proxies is that a censor could also discover these prox-
ies and block access to them. Feamster et al. pro-
posed a proxy-discovery method based on frequency
hopping [22]. Kaleidoscope is a peer-to-peer overlay
network to provide users robust, highly available access
to these proxies [42]. This system is complementary to
Collage, as it focuses more on achieving availability, at
the expense of deniability. Collage focuses more on pro-
viding users deniability and preventing the censor from
locating all hosts from where censored content might be
retrieved.

Anonymous publishing and messaging systems.
CovertFS [5] is a file system that hides data in photos
using steganography. Although the work briefly men-
tions challenges in deniability and availability, it is easily
defeated by many of the attacks discussed in Section 7.
Furthermore, CovertFS could in fact be implemented us-
ing Collage, thereby providing the design and security
benefits described in this paper.

Other existing systems allow publishers and clients
to exchange content using either peer-to-peer networks
(Freenet [12]) or using a storage system that makes
it difficult for an attacker to censor content without
also removing legitimate content from the system (Tan-
gler [53]). Freenet provides anonymity and unlinkabil-
ity, but does not provide deniability for users of the sys-
tem, nor does it provide any inherent mechanisms for re-
silience: an attacker can observe the messages being ex-
changed and disrupt them in transit. Tangler’s concept of
document entanglement could be applied to Collage to
prevent the censor from discovering which images con-
tain embedded information.

Anonymizing mix networks. Mix networks (e.g.,
Tor [18], Tarzan [25], Mixminion [17]) offer a network
of machines through which users can send traffic if they
wish to communicate anonymously with one another.
Danezis and Dias present a comprehensive survey of
these networks [16]. These systems also attempt to pro-
vide unlinkability; however, previous work has shown
that, depending on its location, a censor or observer
might be able to link sender and receiver [4, 6, 23, 33, 39,
40]. These systems also do not provide deniability for
users, and typically focus on anonymous point-to-point
communication. In contrast, Collage provides a deniable
means for asynchronous point-to-point communication.
Finally, mix networks like Tor traditionally use a pub-

3

456 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 457

lic relay list which is easily blocked, although work has
been done to try to rectify this [44, 45].

Message hiding and embedding techniques. Collage
relies on techniques that can embed content into cover
traffic. The current implementation of Collage uses an
image steganography tool called outguess [38] for
hiding content in images and a text steganography tool
called SNOW [41] for embedding content in text. We
recognize that steganography techniques offer no for-
mal security guarantees; in fact, these schemes can and
have been subject to various attacks (e.g., [27]). Danezis
has also noted the difficulty in building covert channels
with steganography alone [15]: not only can the algo-
rithms be broken, but also they do not hide the identi-
ties of the communicating parties. Thus, these functions
must be used as components in a larger system, not as
standalone “solutions”. Collage relies on the embedding
functions of these respective algorithms, but its security
properties do not hinge solely on the security properties
of any single information hiding technique; in fact, Col-
lage could have used watermarking techniques instead,
but we chose these particular embedding techniques for
our proof of concept because they had readily available,
working implementations. One of the challenges that
Collage’s design addresses is how to use imperfect mes-
sage hiding techniques to build a message channel that is
both available and offers some amount of deniability for
users.

3 Problem Overview

We now discuss our model for the censor’s capabilities
and our goals for circumventing a censor who has these
capabilities. It is difficult, if not impossible, to fully de-
termine the censor’s current or potential capabilities; as a
result, Collage cannot provide formal guarantees regard-
ing success or deniability. Instead, we present a model
for the censor that we believe is more advanced than cur-
rent capabilities and, hence, where Collage is likely to
succeed. Nevertheless, censorship is an arms race, so as
the censor’s capabilities evolve, attacks against censor-
ship firewalls will also need to evolve in response. In
Section 7, we discuss how Collage’s could be extended
to deal with these more advanced capabilities as the cen-
sor becomes more sophisticated.

We note that although we focus on censors, Collage
also depends on content hosts to store media containing
censored content. Content hosts currently do not appear
to be averse to this usage (e.g., to the best of our knowl-
edge, Collage does not violate the Terms of Service for
either Flickr or Twitter), although if Collage were to be-
come very popular this attitude would likely change. Al-
though we would prefer content hosts to willingly serve

Collage content (e.g., to help users in censored regimes),
Collage can use many content hosts to prevent any single
host from compromising the entire system.

3.1 The Censor
We assume that the censor wishes to allow some Internet
access to clients, but can monitor, analyze, block, and al-
ter subsets of this traffic. We believe this assumption is
reasonable: if the censor builds an entirely separate net-
work that is partitioned from the Internet, there is little
we can do. Beyond this basic assumption, there is a wide
range of capabilities we can assume. Perhaps the most
difficult aspect of modeling the censor is figuring out
how much effort it will devote to capturing, storing, and
analyzing network traffic. Our model assumes that the
censor can deploy monitors at multiple network egress
points and observe all traffic as it passes (including both
content and headers). We consider two types of capabil-
ities: targeting and disruption.

Targeting. A censor might target a particular user be-
hind the firewall by focusing on that user’s traffic pat-
terns; it might also target a particular suspected content
host site by monitoring changes in access patterns to that
site (or content on that site). In most networks, a cen-
sor can monitor all traffic that passes between its clients
and the Internet. Specifically, we assume the censor can
eavesdrop any network traffic between clients on its net-
work and the Internet. A censor’s motive in passively
monitoring traffic would most likely be either to deter-
mine that a client was using Collage or to identify sites
that are hosting content. To do so, the censor could moni-
tor traffic aggregates (i.e., traffic flow statistics, like Net-
Flow [34]) to determine changes in overall traffic pat-
terns (e.g., to determine if some website or content has
suddenly become more popular). The censor can also ob-
serve traffic streams from individual users to determine
if a particular user’s clickstream is suspicious, or other-
wise deviates from what a real user would do. These
capabilities lead to two important requirements for pre-
serving deniability: traffic patterns generated by Collage
should not skew overall distributions of traffic, and the
traffic patterns generated by an individual Collage user
must resemble the traffic generated by innocuous indi-
viduals.

To target users or sites, a censor might also use Col-
lage as a sender or receiver. This assumption makes some
design goals more challenging: a censor could, for exam-
ple, inject bogus content into the system in an attempt to
compromise message availability. It could also join Col-
lage as a client to discover the locations of censored con-
tent, so that it could either block content outright (thus
attacking availability) or monitor users who download
similar sets of content (thus attacking deniability). We

4

also assume that the censor could act as a content pub-
lisher. Finally, we assume that a censor might be able to
coerce a content host to shut down its site (an aggressive
variant of actively blocking requests to a site).

Disruption. A censor might attempt to disrupt commu-
nications by actively mangling traffic. We assume the
censor would not mangle uncensored content in any way
that a user would notice. A censor could, however, inject
additional traffic in an attempt to confuse Collage’s pro-
cess for encoding or decoding censored content. We as-
sume that it could also block traffic at granularities rang-
ing from an entire site to content on specific sites.

The costs of censorship. In accordance with Bellovin’s
recent observations [7], we assume that the censor’s ca-
pabilities, although technically limitless, will ultimately
be constrained by cost and effort. In particular, we as-
sume that the censor will not store traffic indefinitely,
and we assume that the censor’s will or capability to an-
alyze traffic prevents it from observing more complex
statistical distributions on traffic (e.g., we assume that it
cannot perform analysis based on joint distributions be-
tween arbitrary pairs or groups of users). We also assume
that the censor’s computational capabilities are limited:
for example, performing deep packet inspection on ev-
ery packet that traverses the network or running statisti-
cal analysis against all traffic may be difficult or infea-
sible, as would performing sophisticated timing attacks
(e.g., examining inter-packet or inter-request timing for
each client may be computationally infeasible or at least
prohibitively inconvenient). As the censorship arms race
continues, the censor may develop such capabilities.

3.2 Circumventing the Censor

Our goal is to allow users to send and receive mes-
sages across a censorship firewall that would otherwise
be blocked; we want to enable users to communicate
across the firewall by exchanging articles and short mes-
sages (e.g., email messages and other short messages). In
some cases, the sender may be behind the firewall (e.g.,
a user who wants to publish an article from within a cen-
sored regime). In other cases, the receiver might be be-
hind the firewall (e.g., a user who wants to browse a cen-
sored website).

We aim to understand Collage’s performance in real
applications and demonstrate that it is “good enough” to
be used in situations where users have no other means
for circumventing the firewall. We therefore accept that
our approach may impose substantial overhead, and we
do not aim for Collage’s performance to be comparable
to that of conventional networked communication. Ulti-
mately, we strive for a system that is effective and easy
to use for a variety of networked applications. To this

end, Collage offers a messaging library that can support
these applications; Section 6 describes two example ap-
plications.

Collage’s main performance requirement is that the
overhead should be small enough to allow content to be
stored on sites that host user-generated content and to al-
low users to retrieve the hidden content in a reasonable
amount of time (to ensure that the system is usable), and
with a modest amount of traffic overhead (since some
users may be on connections with limited bandwidth).
In Section 5, we evaluate Collage’s storage requirements
on content hosting sites, the traffic overhead of each mes-
sage (as well as the tradeoff between this overhead and
robustness and deniability), and the overall transfer time
for messages.

In addition to performance requirements, we want
Collage to be robust in the face of the censor that we
have outlined in Section 3.1. We can characterize this ro-
bustness in terms of two more general requirements. The
first requirement is availability, which says that clients
should be able to communicate in the face of a censor
that is willing to restrict access to various content and
services. Most existing censorship circumvention sys-
tems do not prevent a censor from blocking access to
the system altogether. Indeed, regimes such as China
have blocked or hijacked applications ranging from web-
sites [43] to peer-to-peer systems [46] to Tor itself [45].
We aim to satisfy availability in the face of the censor’s
targeting capabilities that we described in Section 3.1.

Second, Collage should offer users of the system some
level of deniability; although this design goal is hard to
quantify or formalize, informally, deniability says that
the censor cannot discover the users of the censorship
system. It is important for two reasons. First, if the
censor can identify the traffic associated with an anti-
censorship system, it can discover and either block or
hijack that traffic. As mentioned above, a censor observ-
ing encrypted traffic may still be able to detect and block
systems such as Tor [18]. Second, and perhaps more im-
portantly, if the censor can identify specific users of a
system, it can coerce those users in various ways. Past
events have suggested that censors are able and willing
to both discover and block traffic or sites associated with
these systems and to directly target and punish users who
attempt to defeat censorship. In particular, China re-
quires users to register with ISPs before purchasing Inter-
net access at either home or work, to help facilitate track-
ing individual users [10]. Freedom House reports that in
six of fifteen countries they assessed, a blogger or online
journalist was sentenced to prison for attempting to cir-
cumvent censorship laws—prosecutions have occurred
in Tunisia, Iran, Egypt, Malaysia, and India [26]—and
cites a recent event of a Chinese blogger who was re-
cently attacked [11]. As these regimes have indicated

5

458 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 459

Application
Layer

Message
Layer

Message Data

decode

Message Data

send

encode
Vector
Layer

Block Block Block

Vector

receive

Block Block Block

ApplicationSec. 7

Sec. 4.2

Sec. 4.1

Application

Figure 2: Collage’s layered design model. Operations
are in ovals; intermediate data forms are in rectangles.

their willingness and ability to monitor and coerce indi-
vidual users, we believe that attempting to achieve some
level of deniability is important for any anti-censorship
system.

By design, a user cannot disprove claims that he en-
gages in deniable communication, thus making it easier
for governments and organizations to implicate arbitrary
users. We accept this as a potential downside of deniable
communications, but point out that organizations can al-
ready implicate users with little evidence (e.g., [2]).

4 Collage Design and Implementation

Collage’s design has three layers and roughly mimics the
layered design of the network protocol stack itself. Fig-
ure 2 shows these three layers: the vector, message, and
application layers. The vector layer provides storage for
short data chunks (Section 4.1), and the message layer
specifies a protocol for using the vector layer to send
and receive messages (Section 4.2). A variety of appli-
cations can be constructed on top of the message layer.
We now describe the vector and message layers in de-
tail, deferring discussion of specific applications to Sec-
tion 6. After describing each of these layers, we discuss
rendezvous, the process by which senders and receivers
find each other to send messages using the message layer
(Section 4.3). Finally, we discuss our implementation
and initial deployment (Section 4.4).

4.1 Vector Layer

The vector layer provides a substrate for storing short
data chunks. Effectively, this layer defines the “cover
media” that should be used for embedding a message.
For example, if a small message is hidden in the high
frequency of a video then the vector would be, for ex-
ample, a YouTube video. This layer hides the details of
this choice from higher layers and exposes three oper-
ations: encode, decode, and isEncoded. These op-
erations encode data into a vector, decode data from an
encoded vector, and check for the presence of encoded
data given a secret key, respectively.

Collage imposes requirements on the choice of vec-
tor. First, each vector must have some capacity to hold
encoded data. Second, the population of vectors must
be large so that many vectors can carry many messages.
Third, to satisfy both availability and deniability, it must
be relatively easy for users to deniably send and receive
vectors containing encoded chunks. Fourth, to satisfy
availability, it must be expensive for the censor to disrupt
chunks encoded in a vector. Any vector layer with these
properties will work with Collage’s design, although the
deniability of a particular application will also depend
upon its choice of vector, as we discuss in Section 7.

The feasibility of the vector layer rests on a key obser-
vation: data hidden in user-generated content serves as a
good vector for many applications, since it is both popu-
lous and comes from a wide variety of sources (i.e., many
users). Examples of such content include images pub-
lished on Flickr [24] (as of June 2009, Flickr had about
3.6 billion images, with about 6 million new images per
day [28]), tweets on Twitter [49] (Twitter had about half
a million tweets per day [52], and Mashable projected
about 18 million Twitter users by the end of 2009 [50]),
and videos on YouTube [56], which had about 200, 000
new videos per day as of March 2008 [57].

For concreteness, we examine two classes of vector
encoding algorithms. The first option is steganography,
which attempts to hide data in a cover medium such that
only intended recipients of the data (e.g., those possess-
ing a key) can detect its presence. Steganographic tech-
niques can embed data in a variety of cover media, such
as images, video, music, and text. Steganography makes
it easy for legitimate Collage users to find vectors con-
taining data and difficult for a censor to identify (and
block) encoded vectors. Although the deniability that
steganography can offer is appealing, key distribution is
challenging, and almost all production steganography al-
gorithms have been broken. Therefore, we cannot simply
rely on the security properties of steganography.

Another option for embedding messages is digital wa-
termarking, which is similar to steganography, except
that instead of hiding data from the censor, watermarking
makes it difficult to remove the data without destroying
the cover material. Data embedded using watermarking
is perhaps a better choice for the vector layer: although
encoded messages are clearly visible, they are difficult to
remove without destroying or blocking a large amount of
legitimate content. If watermarked content is stored in a
lot of popular user-generated content, Collage users can
gain some level of deniability simply because all popular
content contains some message chunks.

We have implemented two example vector layers. The
first is image steganography applied to images hosted on
Flickr [24]. The second is text steganography applied to
user-generated text comments on websites such as blogs,

6

send(identifier, data)

1 Create a rateless erasure encoder for data.
2 for each suitable vector (e.g., image file)
3 do
4 Retrieve blocks from the erasure coder to

meet the vector’s encoding capacity.
5 Concatenate and encrypt these blocks using

the identifier as the encryption key.
6 encode the ciphertext into the vector.
7 Publish the vector on a user-generated

content host such that receivers
can find it. See Section 4.3.

receive(identifier)

1 Create a rateless erasure decoder.
2 while the decoder cannot decode the message
3 do
4 Find and fetch a vector from a

user-generated content host.
5 Check if the vector contains encoded

data for this identifier.
6 if the vector is encoded with message data
7 then
8 decode payload from the vector.
9 Decrypt the payload.

10 Split the plaintext into blocks.
11 Provide each decrypted block to

the erasure decoder.
12 return decoded message from erasure decoder

Figure 3: The message layer’s send and receive opera-
tions.

YouTube [56], Facebook [20], and Twitter [49]. De-
spite possible and known limitations to these approaches
(e.g., [27]), both of these techniques have working imple-
mentations with running code [38, 41]. As watermark-
ing and other data-hiding techniques continue to become
more robust to attack, and as new techniques and im-
plementations emerge, Collage’s layered model can in-
corporate those mechanisms. The goal of this paper is
not to design better data-hiding techniques, but rather to
build a censorship-resistant message channel that lever-
ages these techniques.

4.2 Message Layer
The message layer specifies a protocol for using the vec-
tor layer to send and receive arbitrarily long messages
(i.e., exceeding the capacity of a single vector). Observ-
able behavior generated by the message layer should be
deniable with respect to the normal behavior of the user
or users at large.

Figure 3 shows the send and receive operations.
send encodes message data in vectors and publishes

them on content hosts, while receive finds encoded vec-
tors on content hosts and decodes them to recover the
original message. The sender associates a message iden-
tifier with each message, which should be unique for an
application (e.g., the hash of the message). Receivers
use this identifier to locate the message. For encoding
schemes that require a key (e.g., [38]), we choose the
key to be the message identifier.

To distribute message data among several vectors,
the protocol uses rateless erasure coding [9, 32], which
generates a near-infinite supply of short chunks from a
source message such that any appropriately-sized sub-
set of those chunks can reassemble the original mes-
sage. For example, a rateless erasure coder could take a
80 KB message and generate 1 KB chunks such that any
100-subset of those chunks recovers the original mes-
sage. Step 1 of send initializes a rateless erasure encoder
for generating chunks of the message; step 4 retrieves
chunks from the encoder. Likewise, step 1 of receive
creates a rateless erasure decoder, step 11 provides re-
trieved chunks to the decoder, and step 12 recovers the
message.

Most of the remaining send operations are straightfor-
ward, involving encryption and concatenation (step 5),
and operation of the vector layer’s encode function
(step 6). Likewise, receive operates the vector layer’s
decode function (step 8), decrypts and splits the pay-
load (steps 9 and 10). The only more complex operations
are step 7 of send and step 4 of receive, which publish
and retrieve content from user-generated content hosts.
These steps must ensure (1) that senders and receivers
agree on locations of vectors and (2) that publishing and
retrieving vectors is done in a deniable manner. We now
describe how to meet these two requirements.

4.3 Rendezvous: Matching Senders to
Receivers

Vectors containing message data are stored to and re-
trieved from user-generated content hosts; to exchange
messages, senders and receivers must first rendezvous.
To do so, senders and receivers perform sequences of
tasks, which are time-dependent sequences of actions.
An example of a sender task is the sequence of HTTP
requests (i.e., actions) and fetch times corresponding to
“Upload photos tagged with ‘flowers’ to Flickr”; a cor-
responding receiver task is “Search Flickr for photos
tagged with ‘flowers’ and download the first 50 images.”
This scheme poses many challenges: (1) to achieve deni-
ability, all tasks must resemble observable actions com-
pleted by innocuous entities not using Collage (e.g.,
browsing the Web), (2) senders must identify vectors
suitable for each task, and (3) senders and receivers must

7

460 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 461

agree on which tasks to use for each message. This sec-
tion addresses these challenges.

Identifying suitable vectors. Task deniability depends
on properly selecting vectors for each task. For exam-
ple, for the receiver task “search for photos with key-
word flowers,” the corresponding sender task (“publish
a photo with keyword flowers”) must be used with pho-
tos of flowers; otherwise, the censor could easily identify
vectors containing Collage content as those vectors that
do not match their keywords. To achieve this, the sender
picks vectors with attributes (e.g., associated keywords)
that match the expected content of the vector.

Agreeing on tasks for a message. Each user maintains
a list of deniable tasks for common behaviors involv-
ing vectors (Section 4.1) and uses this list to construct
a task database. The database is simply a table of pairs
(Ts, Tr), where Ts is a sender task and Tr is a receiver
task. Senders and receivers construct pairs such that Ts

publishes vectors in locations visited by Tr. For exam-
ple, if Tr performs an image search for photos with key-
word “flowers” then Ts would publish only photos with
that keyword (and actually depicting flowers). Given
this database, the sender and receiver map each message
identifier to one or more task pairs and execute Ts and
Tr, respectively.

The sender and receiver must agree on the mapping
of identifiers to database entries; otherwise, the receiver
will be unable to find vectors published by the sender. If
the sender’s and receiver’s databases are identical, then
the sender and receiver simply use the message identi-
fier as an index into the task database. Unfortunately,
the database may change over time, for a variety of rea-
sons: tasks become obsolete (e.g., Flickr changes its page
structure) and new tasks are added (e.g., it may be ad-
vantageous to add a task for a new search keyword dur-
ing a current event, such as an election). Each time the
database changes, other users need to be made aware of
these changes. To this end, Collage provides two oper-
ations on the task database: add and remove. When a
user receives an advertisement for a new task or a with-
drawal of an existing task he uses these operations to up-
date his copy of the task database.

Learning task advertisements and withdrawals is ap-
plication specific. For some applications, a central
authority sends updates using Collage’s own message
layer, while in others updates are sent offline (i.e., sep-
arate from Collage). We discuss these options in Sec-
tion 6. One feature is common to all applications: de-
lays in propagation of database updates will cause dif-
ferent users to have slightly different versions of the task
database, necessitating a mapping for identifiers to tasks
that is robust to slight changes to the database.

Figure 4: The expected number of common tasks when
mapping the same message identifier to a task subset, be-
tween two task databases that agree on varying percent-
ages of tasks.

To reconcile database disagreements, our algorithm
for mapping message identifiers to task pairs uses con-
sistent hash functions [30], which guarantee that small
changes to the space of output values have minimal im-
pact on the function mapping. We initialize the task
database by choosing a pseudorandom hash function h
(e.g., SHA-1) and precomputing h(t) for each task t. The
algorithm for mapping an identifier M to a m-subset of
the database is simple: compute h(M) and take the m
entries from the task database with precomputed hash
values closest to h(M); these task pairs are the mapping
for M .

Using consistent hashing to map identifiers to task
pairs provides an important property: updating the
database results in only small changes to the mappings
for existing identifiers. Figure 4 shows the expected
number of tasks reachable after removing a percentage
of the task database and replacing it with new tasks.
As expected, increasing the number of tasks mapped for
each identifier decreases churn. Additionally, even if half
of the database is replaced, the sender and receiver can
agree on at least one task when three or more tasks are
mapped to each identifier. In practice, we expect the dif-
ference between two task databases to be around 10%, so
three tasks to each identifier is sufficient. Thus, two par-
ties with slightly different versions of the task database
can still communicate messages: although some tasks
performed by the receiver (i.e., mapped using his copy
of the database) will not yield content, most tasks will.

Choosing deniable tasks. Tasks should mimic the nor-
mal behavior of users, so that a user who is perform-
ing these tasks is unlikely to be pinpointed as a Collage

8

user (which, in and of itself, could be incriminating). We
design task sequences to “match” those of normal visi-
tors to user-generated content sites. Tasks for different
content hosts have different deniability criteria. For ex-
ample, the task of looking at photos corresponding to a
popular tag or tag pair offers some level of deniability,
because an innocuous user might be looking at popular
images anyway. The challenge, of course, is finding sets
of tasks that are deniable, yet focused enough to allow a
user to retrieve content in a reasonable amount of time.
We discuss the issue of deniability further in Section 7.

4.4 Implementation
Collage requires minimal modification to existing infras-
tructure, so it is small and self-contained, yet modu-
lar enough to support many possible applications; this
should facilitate adoption. We have released a version of
Collage [13].

We have implemented Collage as a 650-line Python
library, which handles the logic of the message layer, in-
cluding the task database, vector encoding and decod-
ing, and the erasure coding algorithm. To execute tasks,
the library uses Selenium [1], a popular web browser au-
tomation tool; Selenium visits web pages, fills out forms,
clicks buttons and downloads vectors. Executing tasks
using a real web browser frees us from implementing an
HTTP client that produces realistic Web traffic (e.g., by
loading external images and scripts, storing cookies, and
executing asynchronous JavaScript requests).

We represent tasks as Python functions that perform
the requisite task. Table 1 shows four examples. Each
application supplies definitions of operations used by the
tasks (e.g., FindPhotosOfFlickrUser). The task
database is a list of tasks, sorted by their MD5 hash;
to map an identifier to a set of tasks, the database finds
the tasks with hashes closest to the hash of the message
identifier. After mapping, receivers simply execute these
tasks and decode the resulting vectors. Senders face a
more difficult task: they must supply the task with a vec-
tor suitable for that task. For instance, the task “publish
a photo tagged with ‘flowers”’ must be supplied with a
photo of flowers. We delegate the task of finding vectors
meeting specific requirements to a vector provider. The
exact details differ between applications; one of our ap-
plications searches a directory of annotated photos, while
another prompts the user to type a phrase containing cer-
tain words (e.g., “Olympics”).

5 Performance Evaluation

This section evaluates Collage according to the three per-
formance metrics introduced in Section 3: storage over-
head on content hosts, network traffic, and transfer time.

We characterize Collage’s performance by measuring its
behavior in response to a variety of parameters. Recall
that Collage (1) processes a message through an erasure
coder, (2) encodes blocks inside vectors, (3) executes
tasks to distribute the message vectors to content hosts,
(4) retrieves some of these vectors from content hosts,
and (5) decodes the message on the receiving side. Each
stage can affect performance. In this section, we evalu-
ate how each of these factors affects the performance of
the message layer; Section 6 presents additional perfor-
mance results for Collage applications using real content
hosts.

• Erasure coding can recover an n-block message
from (1+ ε

2)n of its coded message blocks. Collage
uses ε = 0.01, as recommended by [32], yielding an
expected 0.5% increase in storage, traffic, and trans-
fer time of a message.

• Vector encoding stores erasure coded blocks inside
vectors. Production steganography tools achieve
encoding rates of between 0.01 and 0.05, translating
to between 20 and 100 factor increases in storage,
traffic, and transfer time [38]. Watermarking algo-
rithms are less efficient; we hope that innovations in
information hiding can reduce this overhead.

• Sender and receiver tasks publish and retrieve
vectors from content hosts. Tasks do not affect the
storage requirement on content hosts, but each task
can impose additional traffic and time. For exam-
ple, a task that downloads images by searching for
them on Flickr can incur hundreds of kilobytes of
traffic before finding encoded vectors. Depending
on network connectivity, this step could take any-
where from a few seconds to a few minutes and can
represent an overhead of several hundred percent,
depending on the size of each vector.

• The number of executed tasks differs between
senders and receivers. The receiver performs as
many tasks as necessary until it is able to decode
the message; this number depends on the size of
the message, the number of vectors published by
the sender, disagreements between sender and re-
ceiver task databases, the dynamics of the content
host (e.g., a surge of Flickr uploads could “bury”
Collage encoded vectors), and the number of tasks
and vectors blocked by the censor. While testing
Collage, we found that we needed to execute only
one task for the majority of cases.

The sender must perform as many tasks as neces-
sary so that, given the many ways the receiver can
fail to obtain vectors, the receiver will still be able
to retrieve enough vectors to decode the message.
In practice, this number is difficult to estimate and

9

462 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 463

Content host Sender task Receiver task
Flickr PublishAsUser(‘User’, Photo, MsgData) FindPhotosOfFlickrUser(‘User’)
Twitter PostTweet(‘Watching the Olympics’, MsgData) SearchTwitter(‘Olympics’)

Table 1: Examples of sender and receiver task snippets.

vectors are scarce, so the sender simply uploads as
many vectors as possible.

We implemented a Collage application that publishes
vectors on a simulated content host, allowing us to ob-
serve the effects of these parameters. Figure 5 shows the
results of running several experiments across Collage’s
parameter space. The simulation sends and receives a
23 KB one-day news summary. The message is erasure
coded with a block size of 8 bytes and encoded into sev-
eral vectors randomly drawn from a pool for vectors with
average size 200 KB. Changing the message size scales
the metrics linearly, while increasing the block size only
decreases erasure coding efficiency.

Figure 5a demonstrates the effect of vector encoding
efficiency on required storage on content hosts. We used
a fixed-size identifier-to-task mapping of ten tasks. We
chose four send rates, which are multiples of the mini-
mum number of tasks required to decode the message:
the sender may elect to send more vectors if he believes
some vectors may be unreachable by the receiver. For
example, with a send rate of 10x, the receiver can still
retrieve the message even if 90% of vectors are unavail-
able. Increasing the task mapping size may be necessary
for large send rates, because sending more vectors re-
quires executing more tasks. These results give us hope
for the future of information hiding technology: current
vector encoding schemes are around 5% efficient; ac-
cording to Figure 5a, this a region where a significant
reduction in storage is possible with only incremental
improvements in encoding techniques (i.e., the slope is
steep).

Figure 5b predicts total sender and receiver traffic
from task overhead traffic, assuming 1 MB of vector stor-
age on the content host. As expected, blocking more vec-
tors increases traffic, as the receiver must execute more
tasks to receive the same message content. Increasing
storage beyond 1 MB decreases receiver traffic, because
more message vectors are available for the same block-
ing rate. An application executed on a real content host
transfers around 1 MB of overhead traffic for a 23 KB
message.

Finally, Figure 5c shows the overall transfer time for
senders and receivers, given varying time overheads.
These overheads are optional for both senders and re-
ceivers and impose delays between requests to evade
timing analysis by the censor. For example, Collage
could build a distribution of inter-request timings from

the user’s normal (i.e., non-Collage) traffic and impose
this timing distribution on Collage tasks. We simulated
the total transfer time using three network connection
speeds. The first (768 Kbps download and 384 Kbps
upload) is a typical entry-level broadband package and
would be experienced if both senders and receivers are
typical users within the censored domain. The second
(768/10000 Kbps) would be expected if the sender has a
high-speed connection, perhaps operating as a dedicated
publisher outside the censored domain; one of the ap-
plications in Section 6 follows this model. Finally, the
6000/1000 Kbps connection represents expected next-
generation network connectivity in countries experienc-
ing censorship. In all cases, reasonable delays are im-
posed upon transfers, given the expected use cases of
Collage (e.g., fetching daily news article). We confirmed
this result: a 23 KB message stored on a real content host
took under 5 minutes to receive over an unreliable broad-
band wireless link; sender time was less than 1 minute.

6 Building Applications with Collage

Developers can build a variety of applications using the
Collage message channel. In this section, we outline re-
quirements for using Collage and present two example
applications.

6.1 Application Requirements

Even though application developers use Collage as a se-
cure, deniable messaging primitive, they must still re-
main conscious of overall application security when us-
ing these primitives. Additionally, the entire vector layer
and several parts of the message layer presented in Sec-
tion 4 must be provided by the application. These com-
ponents can each affect correctness, performance, and
security of the entire application. In this section, we dis-
cuss each of these components. Table 2 summarizes the
component choices.

Vectors, tasks, and task databases. Applications spec-
ify a class of vectors and a matching vector encoding al-
gorithm (e.g., Flickr photos with image steganography)
based on their security and performance characteristics.
For example, an application requiring strong content de-
niability for large messages could use a strong steganog-
raphy algorithm to encode content inside of videos.

10

(a) Storage, for various sender redundancies (b) Traffic, for various vector block rates (c) Transfer time, for various network connectivity
rates (download/upload)

Figure 5: Collage’s performance metrics, as measured using a simulated content host.

Web Content Proxy (Sec. 6.2) Covert Email (Sec. 6.3) Other options
Vectors Photos Text Videos, music
Vector encoding Image steganography Text steganography Video steganography, digital watermarking
Vector sources Users of content hosts Covert Email users Automatic generation, crawl the Web
Tasks Upload/download Flickr photos Post/receive Tweets Other user-generated content host(s)
Database distribution Send by publisher via proxy Agreement by users Prearranged algorithm, “sneakernet”
Identifier security Distributed by publisher, groups Group key Existing key distribution infrastructure

Table 2: Summary of application components.

Tasks are application-specific: uploading photos to
Flickr is different from posting tweets on Twitter. Appli-
cations insert tasks into the task database, and the mes-
sage layer executes these tasks when sending and receiv-
ing messages. The applications specify how many tasks
are mapped to each identifier for database lookups. In
Section 4.3, we showed that mapping each identifier to
three tasks ensures that, on average, users can still com-
municate even with slightly out-of-date databases; appli-
cations can further boost availability by mapping more
tasks to each identifier.

Finally, applications must distribute the task database.
In some instances, a central authority can send the
database to application users via Collage itself. In other
cases, the database is communicated offline. The appli-
cation’s task database should be large enough to ensure
diversity of tasks for messages published at any given
time; if n messages are published every day, then the
database should have cn tasks, where c is at least the
size of the task mapping. Often, tasks can be generated
programmatically, to reduce network overhead. For ex-
ample, our Web proxy (discussed next) generates tasks
from a list of popular Flickr tags.

Sources of vectors. Applications must acquire vectors
used to encode messages, either by requiring end-users
to provide their own vectors (e.g., from a personal photo
collection), automatically generating them, or obtaining

them from an external source (e.g., a photo donation sys-
tem).

Identifier security. Senders and receivers of a message
must agree on a message identifier for that message. This
process is analogous to key distribution. There is a gen-
eral tradeoff between ease of message identifier distri-
bution and security of the identifier: if users can easily
learn identifiers, then more users will use the system, but
it will also be easier for the censor to obtain the identi-
fier; the inverse is also true. Developers must choose a
distribution scheme that meets the intended use of their
application. We discuss two approaches in the next two
sections, although there are certainly other possibilities.

Application distribution and bootstrapping. Users ul-
timately need a secure one-time mechanism for obtain-
ing the application, without using Collage. A variety of
distribution mechanisms are possible: clients could re-
ceive software using spam or malware as a propagation
vector, or via postal mail or person-to-person exchange.
There will ultimately be many ways to distribute appli-
cations without the knowledge of the censor. Other sys-
tems face the same problem [21]. This requirement does
not obviate Collage, since once the user has received the
software, he or she can use it to exchange an arbitrary
number of messages.

To explore these design parameters in practice, we built
two applications using Collage’s message layer. The first

11

464 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 465

Figure 6: Proxied Web content passes through multiple
parties before publication on content hosts. Each group
downloads a different subset of images when fetching the
same URL.

is a Web content proxy whose goal is to distribute content
to many users; the second is a covert email system.

6.2 Web Content Proxy

We have built an asynchronous Web proxy using Col-
lage’s message layer, with which a publisher in an un-
censored region makes content available to clients inside
censored regimes. Unlike traditional proxies, our proxy
shields both the identities of its users and the content
hosted from the censor.

The proxy serves small Web documents, such as arti-
cles and blog posts, by steganographically encoding con-
tent into images hosted on photo-sharing websites like
Flickr and Picasa. A standard steganography tool [38]
can encode a few kilobytes in a typical image, mean-
ing most hosted documents will fit within a few images.
To host many documents simultaneously, however, the
publisher needs a large supply of images; to meet this
demand, the publisher operates a service allowing gen-
erous users of online image hosts to donate their im-
ages. The service takes the images, encodes them with
message data, and returns the encoded images to their
owners, who then upload them to the appropriate image
hosts. Proxy users download these photos and decode
their contents. Figure 6 summarizes this process. Notice
that the publisher is outside the censored domain, which
frees us from worrying about sender deniability.

To use a proxy, users must discover a publisher, reg-
ister with that publisher, and be notified of an encryp-
tion key. Publishers are identified by their public key
so discovering publishers is reduced to a key distribution
exercise, albeit that these keys must be distributed with-
out the suspicion of the censor. Several techniques are
feasible: the key could be delivered alongside the client
software, derived from a standard SSL key pair, or dis-

tributed offline. Like any key-based security system, our
proxy must deal with this inherent bootstrapping prob-
lem.

Once the client knows the publisher’s public key, it
sends a message requesting registration. The message
identifier is the publisher’s public key and the message
payload contains the public key of the client encrypted
using the publisher’s public key. This encryption ensures
that only the publisher knows the client’s public key. The
publisher receives and decrypts the client’s registration
request using his own private key.

The client is now registered but doesn’t know where
content is located. Therefore, the publisher sends the
client a message containing a group key, encrypted using
the client’s public key. The group key is shared between a
small number of proxy users and is used to discover iden-
tifiers of content. For security, different groups of users
fetch content from different locations; this prevents any
one user from learning about (and attacking) all content
available through the proxy.

After registration is complete, clients can retrieve con-
tent. To look up a URL u, a client hashes u with a keyed
hash function using the group key. It uses the hash as the
message identifier for receive.

Unlike traditional Web proxies, only a limited amount
of content is available though our proxy. Therefore,
to accommodate clients’ needs for unavailable content,
clients can suggest content to be published. To suggest a
URL, a client sends the publisher a message containing
the requested URL. If the publisher follows the sugges-
tion, then it publishes the URL for users of that client’s
group key.

Along with distributing content, the publisher pro-
vides updates to the task database via the proxy itself
(at the URL proxy://updates). The clients oc-
casionally fetch content from this URL to keep syn-
chronized with the publisher’s task database. The con-
sistent hashing algorithm introduced in Section 4.3 al-
lows updates to be relatively infrequent; by default, the
proxy client updates its database when 20% of tasks have
been remapped due to churn (i.e., there is a 20% reduc-
tion in the number of successful task executions). Fig-
ure 4 shows that there may be many changes to the task
database before this occurs.

Implementation and Evaluation. We have imple-
mented a simple version of the proxy and can use it
to publish and retrieve documents on Flickr. The task
database is a set of tasks that search for combinations
(e.g., “vacation” and “beach”) of the 130 most popular
tags. A 23 KB one-day news summary requires nine
JPEG photos (≈ 3 KB data per photo, plus encoding
overhead) and takes approximately 1 minute to retrieve
over a fast network connection; rendering web pages and
large photos takes a significant fraction of this time. Note

12

that the document is retrieved immediately after publi-
cation; performance decays slightly over time because
search results are displayed in reverse chronological or-
der. We have also implemented a photo donation service,
which accepts Flickr photos from users, encodes them
with censored content, and uploads them on the user’s
behalf. This donation service is available for down-
load [13].

6.3 Covert Email

Although our Web proxy provides censored content to
many users, it is susceptible to attack from the censor
for precisely this reason: because no access control is
performed, the censor could learn the locations of pub-
lished URLs using the proxy itself and potentially mount
denial-of-service attacks. To provide greater security and
availability, we present Covert Email, a point-to-point
messaging system built on Collage’s message layer that
excludes the censor from sending or receiving messages,
or observing its users. This design sacrifices scalability:
to meet these security requirements, all key distribution
is done out of band, similar to PGP key signing.

Messages sent with Covert Email will be smaller and
potentially more frequent than for the proxy, so Covert
Email uses text vectors instead of image vectors. Us-
ing text also improves deniability, because receivers are
inside the censored domain, and publishing a lot of
text (e.g., comments, tweets) is considered more deni-
able than many photos. Blogs, Twitter, and comment
posts can all be used to store message chunks. Because
Covert Email is used between a closed group of users
with a smaller volume of messages, the task database is
smaller and updated less often without compromising de-
niability. Additionally, users can supply the text vectors
needed to encode content (i.e., write or generate them),
eliminating the need for an outside vector source. This
simplifies the design.

Suppose a group of mutually trusted users wishes to
communicate using Covert Email. Before doing so, it
must establish a shared secret key, for deriving message
identifiers for sending and receiving messages. This one-
time exchange is done out-of-band; any exchange mech-
anism works as long as the censor is unaware that a key
exchange takes place. Along with exchanging keys, the
group establishes a task database. At present, a database
is distributed with the application; the group can aug-
ment its task database and notify members of changes
using Covert Email itself.

Once the group has established a shared key and a task
database, its members can communicate. To send email
to Bob, Alice generates a message identifier by encrypt-
ing a tuple of his email address and the current date, us-
ing the shared secret key. The date serves as a salt and

ensures variation in message locations over time. Al-
ice then sends her message to Bob using that identifier.
Here, Bob’s email address is used only to uniquely iden-
tify him within the group; in particular, the domain por-
tion of the address serves no purpose for communication
within the group.

To receive new mail, Bob attempts to receive mes-
sages with identifiers that are the encryption of his email
address and some date. To check for new messages, he
checks each date since the last time he checked mail.
For example, if Bob last checked his mail yesterday, he
checks two dates: yesterday and today.

If one group member is outside the censored domain,
then Covert Email can interface with traditional email.
This user runs an email server and acts as a proxy for
the other members of the group. To send mail, group
members send a message to the proxy, requesting that
it be forwarded to a traditional email address. Like-
wise, when the proxy receives a traditional email mes-
sage, it forwards it to the requisite Covert Email user.
This imposes one obvious requirement on group mem-
bers sending mail using the proxy: they must use email
addresses where the domain portion matches the domain
of the proxy email server. Because the domain serves no
other purpose in Covert Email addresses, implementing
this requirement is easy.

Implementation and Evaluation. We have imple-
mented a prototype application for sending and retriev-
ing Covert Email. Currently, the task database is a set
of tasks that search posts of other Twitter users. We
have also written tasks that search for popular keywords
(e.g., “World Cup”). To demonstrate the general ap-
proach, we have implemented an (insecure) proof-of-
concept steganography algorithm that stores data by al-
tering the capitalization of words. Sending a short 194-
byte message required three tweets and took five sec-
onds. We have shown that Covert E-mail has the po-
tential to work in practice, although this application ob-
viously needs many enhancements before general use,
most notably a secure text vector encoding algorithm and
more deniable task database.

7 Threats to Collage

This section discusses limitations of Collage in terms of
the security threats it is likely to face from censors; we
also discuss possible defenses. Recall from Section 3.2
that we are concerned with two security metrics: avail-
ability and deniability. Given the unknown power of the
censor and lack of formal information hiding primitives
in this context, both goals are necessarily best effort.

13

466 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 467

7.1 Availability

A censor may try to prevent clients from sending and re-
ceiving messages. Our strongest argument for Collage’s
availability depends on a censor’s unwillingness to block
large quantities of legitimate content. This section dis-
cusses additional factors that contribute to Collage’s cur-
rent and future availability.

The censor could block message vectors, but a cen-
sor that wishes to allow access to legitimate content may
have trouble doing so since censored messages are en-
coded inside otherwise legitimate content, and message
vectors are, by design, difficult to remove without de-
stroying the cover content. Furthermore, some encod-
ing schemes (e.g., steganography) are resilient against
more determined censors, because they hide the presence
of Collage data; blocking encoded vectors then also re-
quires blocking many legitimate vectors.

The censor might instead block traffic patterns resem-
bling Collage’s tasks. From the censor’s perspective, do-
ing so may allow legitimate users access to content as
long as they do not use one of the many tasks in the task
database to retrieve the content. Because tasks in the
database are “popular” among innocuous users by de-
sign, blocking a task may also disrupt the activities of
legitimate users. Furthermore, if applications prevent the
censor from knowing the task database, mounting this
attack becomes quite difficult.

The censor could block access to content hosts,
thereby blocking access to vectors published on those
hosts. Censors have mounted this attack in practice; for
example, China is currently blocking Flickr and Twitter,
at least in part [43]. Although Collage cannot prevent
these sites from being blocked, applications can reduce
the impact of this action by publishing vectors across
many user-generated content sites, so even if the cen-
sor blocks a few popular sites there will still be plenty of
sites that host message vectors. One of the strengths of
Collage’s design is that it does not depend on any spe-
cific user-generated content service: any site that can
host content for users can act as a Collage drop site.

The censor could also try to prevent senders from pub-
lishing content. This action is irrelevant for applications
that perform all publication outside a censored domain.
For others, it is impractical for the same reasons that
blocking receivers is impractical. Many content hosts
(e.g., Flickr, Twitter) have third-party publication tools
that act as proxies to the publication mechanism [51].
Blocking all such tools is difficult, as evidenced by Iran’s
failed attempts to block Twitter [14].

Instead of blocking access to publication or retrieval
of user-generated content, the censor could coerce con-
tent hosts to remove vectors or disrupt the content inside
them. For certain vector encodings (e.g., steganography)

the content host may be unable to identify vectors con-
taining Collage content; in other cases (e.g., digital wa-
termarking), removing encoded content is difficult with-
out destroying the outward appearance of the vector (e.g.,
removing the watermark could induce artifacts in a pho-
tograph).

7.2 Deniability

As mentioned in Section 3.1, the censor may try to
compromise the deniability of Collage users. Intuitively,
a Collage user’s actions are deniable if the censor can-
not distinguish the use of Collage from “normal” Internet
activity. Deniability is difficult to quantify; others have
developed metrics for anonymity [39], and we are work-
ing on quantitative metrics for deniability in our ongoing
work. Instead, we explore deniability somewhat more in-
formally and aim to understand how a censor can attack
a Collage user’s deniability and how future extensions to
Collage might mitigate these threats. The censor may at-
tempt to compromise the deniability of either the sender
or the receiver of a message. We explore various ways
the censor might mount these attacks, and possible ex-
tensions to Collage to defend against them.

The censor may attempt to identify senders. Appli-
cations can use several techniques to improve deniabil-
ity. First, they can choose deniable content hosts; if a
user has never visited a particular content host, it would
be unwise to upload lots of content there. Second, vec-
tors must match tasks; if a task requires vectors with cer-
tain properties (e.g., tagged with “vacation”), vectors not
meeting those requirements are not deniable. The vec-
tor provider for each application is responsible for ensur-
ing this. Finally, publication frequency must be indistin-
guishable from a user’s normal behavior and the publi-
cation frequency of innocuous users.

The censor may also attempt to identify receivers, by
observing their task sequences. Several application pa-
rameters affect receiver deniability. As the size of the
task database grows, clients have more variety (and thus
deniability), but must crawl through more data to find
message chunks. Increasing the number of tasks mapped
to each identifier gives senders more choice of publica-
tion locations, but forces receivers to sift through more
content when retrieving messages. Increasing variety of
tasks increases deniability, but requires a human author
to specify each type of task. The receiver must decide
an ordering of tasks to visit; ideally, receivers only visit
tasks that are popular among innocuous users.

Ultimately, the censor may develop more sophisticated
techniques to defeat user deniability. For example, a cen-
sor may try to target individual users by mounting timing
attacks (as have been mounted against other systems like
Tor [4, 33]), or may look at how browsing patters change

14

across groups of users or content sites. In these cases,
we believe it is possible to extend Collage so that its re-
quest patterns more closely resemble those of innocuous
users. To do so, Collage could monitor a user’s normal
Web traffic and allow Collage traffic to only perturb ob-
servable distributions (e.g., inter-request timings, traffic
per day, etc.) by small amounts. Doing so could obvi-
ously have massive a impact on Collage’s performance.
Preliminary analysis shows that over time this technique
could yield sufficient bandwidth for productive commu-
nication, but we leave its implementation to future work.

8 Conclusion

Internet users in many countries need safe, robust mech-
anisms to publish content and the ability to send or pub-
lish messages in the face of censorship. Existing mecha-
nisms for bypassing censorship firewalls typically rely on
establishing and maintaining infrastructure outside the
censored regime, typically in the form of proxies; un-
fortunately, when a censor blocks these proxies, the sys-
tems are no longer usable. This paper presented Collage,
which bypasses censorship firewalls by piggybacking
messages on the vast amount and types of user-generated
content on the Internet today. Collage focuses on provid-
ing both availability and some level of deniability to its
users, in addition to more conventional security proper-
ties.

Collage is a further step in the ongoing arms race to
circumvent censorship. As we discussed, it is likely that,
upon seeing Collage, censors will take the next steps to-
wards disrupting communications channels through the
firewall—perhaps by mangling content, analyzing joint
distributions of access patterns, or analyzing request
timing distributions. However, as Bellovin points out:
“There’s no doubt that China—or any government so-
minded—can censor virtually everything; it’s just that
the cost—cutting most communications lines, and de-
ploying enough agents to vet the rest—is prohibitive.
The more interesting question is whether or not ‘enough’
censorship is affordable.” [7] Although Collage itself
may ultimately be disrupted or blocked, it represents an-
other step in making censorship more costly to the cen-
sors; we believe that its underpinnings—the use of user-
generated content to pass messages through censorship
firewalls—will survive, even as censorship techniques
grow increasingly more sophisticated.

Acknowledgments

This work was funded by NSF CAREER Award CNS-
0643974, an IBM Faculty Award, and a Sloan Fellow-
ship. We thank our shepherd, Micah Sherr, and the
anonymous reviewers for their valuable guidance and
feedback. We also thank Hari Balakrishnan, Mike Freed-
man, Shuang Hao, Robert Lychev, Murtaza Motiwala,
Anirudh Ramachandran, Srikanth Sundaresan, Valas
Valancius, and Ellen Zegura for feedback.

References

[1] Selenium Web application testing system. http://www.
seleniumhq.org.

[2] Riaa sues computer-less family, 234 others, for file shar-
ing. http://arstechnica.com/old/content/2006/
04/6662.ars, apr 2006.

[3] Anonymizer. http://www.anonymizer.com/.
[4] A. Back, U. Möller, and A. Stiglic. Traffic analysis attacks and

trade-offs in anonymity providing systems. In I. S. Moskowitz,
editor, Proceedings of Information Hiding Workshop (IH 2001),
pages 245–257. Springer-Verlag, LNCS 2137, April 2001.

[5] A. Baliga, J. Kilian, and L. Iftode. A web based covert file sys-
tem. In HOTOS’07: Proceedings of the 11th USENIX workshop
on Hot topics in operating systems, pages 1–6, Berkeley, CA,
USA, 2007. USENIX Association.

[6] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker.
Low-resource routing attacks against tor. In Proceedings of the
Workshop on Privacy in the Electronic Society (WPES 2007),
Washington, DC, USA, Oct. 2007.

[7] S. M. Bellovin. A Matter of Cost. New York Times
Room for Debate Blog. Can Google Beat China?
http://roomfordebate.blogs.nytimes.com/
2010/01/15/can-google-beat-china/#steven,
Jan. 2010.

[8] P. Boucher, A. Shostack, and I. Goldberg. Freedom systems 2.0
architecture. White paper, Zero Knowledge Systems, Inc., De-
cember 2000.

[9] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. In Proc.
ACM SIGCOMM, pages 56–67, Vancouver, British Columbia,
Canada, Sept. 1998.

[10] China Web Sites Seeking Users’ Names. http:
//www.nytimes.com/2009/09/06/world/asia/
06chinanet.html, Sept. 2009.

[11] Chinese blogger Xu Lai stabbed in Beijing bookshop.
http://www.guardian.co.uk/world/2009/feb/
15/china-blogger-xu-lai-stabbed, Feb. 2009.

[12] I. Clarke. A distributed decentralised information storage and
retrieval system. Master’s thesis, University of Edinburgh, 1999.

[13] Collage. http://www.gtnoise.net/collage/.
[14] Could Iran Shut Down Twitter? http:

//futureoftheinternet.org/
could-iran-shut-down-twitter, June 2009.

[15] G. Danezis. Covert communications despite traffic data retention.
[16] G. Danezis and C. Diaz. A survey of anonymous communica-

tion channels. Technical Report MSR-TR-2008-35, Microsoft
Research, January 2008.

[17] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: De-
sign of a Type III Anonymous Remailer Protocol. In Proceedings
of the 2003 IEEE Symposium on Security and Privacy, pages 2–
15, May 2003.

15

468 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 469

[18] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proc. 13th USENIX Security Sympo-
sium, San Diego, CA, Aug. 2004.

[19] China is number one. The Economist, Jan. 2009. http:
//www.economist.com/daily/chartgallery/
displaystory.cfm?story_id=13007996.

[20] Facebook. http://www.facebook.com/.
[21] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and

D. Karger. Infranet: Circumventing Web censorship and surveil-
lance. In Proc. 11th USENIX Security Symposium, San Francisco,
CA, Aug. 2002.

[22] N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan, and
D. Karger. Thwarting Web censorship with untrusted messenger
discovery. In 3rd Workshop on Privacy Enhancing Technologies,
Dresden, Germany, Mar. 2003.

[23] N. Feamster and R. Dingledine. Location diversity in anonymity
networks. In ACM Workshop on Privacy in the Electronic Society,
Washington, DC, Oct. 2004.

[24] Flickr. http://www.flickr.com/.
[25] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymiz-

ing network layer. In Proc. 9th ACM Conference on Computer
and Communications Security, Washington, D.C., Nov. 2002.

[26] Freedom on the Net. Technical report, Freedom House,
Mar. 2009. http://www.freedomhouse.org/
uploads/specialreports/NetFreedom2009/
FreedomOnTheNet_FullReport.pdf.

[27] J. Fridrich, M. Goljan, and D. Hogea. Attacking the outguess. In
Proceedings of the ACM Workshop on Multimedia and Security,
2002.

[28] Future of Open Source: Collaborative Culture. http:
//www.wired.com/dualperspectives/article/
news/2009/06/dp_opensource_wired0616, June
2009.

[29] A. Hintz. Fingerprinting websites using traffic analysis. In Work-
shop on Privacy Enhancing Technologies, San Francisco, CA,
Apr. 2002.

[30] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the world wide web.
In STOC ’97: Proceedings of the twenty-ninth annual ACM sym-
posium on Theory of computing, pages 654–663, New York, NY,
USA, 1997. ACM.

[31] South Korea mulls Web watch , June 2008.
http://www.theinquirer.net/inquirer/news/091/1042091/south-
korea-mulls-web-watch.

[32] P. Maymounkov. Online codes. Technical Report TR2002-833,
New York University, Nov. 2002.

[33] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of Tor.
In Proceedings of the 2005 IEEE Symposium on Security and Pri-
vacy. IEEE CS, May 2005.

[34] Cisco netflow. http://www.cisco.com/en/US/
products/ps6601/products_ios_protocol_
group_home.html.

[35] Uproar in Australia Over Plan to Block Web
Sites, Dec. 2008. http://www.nytimes.
com/aponline/2008/12/26/technology/
AP-TEC-Australia-Internet-Filter.html?_r=1.

[36] OpenNet Initiative. http://www.opennet.net/.
[37] Report on china’s filtering practices, 2008. Open Net Initiative.

http://opennet.net/sites/opennet.net/files/
china.pdf.

[38] Outguess. http://www.outguess.org/.
[39] A. Serjantov and G. Danezis. Towards an information theoretic

metric for anonymity. In R. Dingledine and P. Syverson, editors,
Proceedings of Privacy Enhancing Technologies Workshop (PET
2002). Springer-Verlag, LNCS 2482, April 2002.

[40] A. Serjantov and P. Sewell. Passive attack analysis for
connection-based anonymity systems. In Proceedings of ES-

ORICS 2003, Oct. 2003.
[41] The SNOW Home Page. http://www.darkside.com.

au/snow/.
[42] Y. Sovran, J. Li, and L. Subramanian. Pass it on: Social networks

stymie censors. In Proceedings of the 7th International Workshop
on Peer-to-Peer Systems, Feb. 2008.

[43] TechCrunch. China Blocks Access To Twitter, Facebook After
Riots. http://www.techcrunch.com/2009/07/07/
china-blocks-access-to-twitter-facebook-after-riots/.

[44] Tor: Bridges. http://www.torproject.org/bridges.
[45] Tor partially blocked in China, Sept. 2009.

https://blog.torproject.org/blog/
tor-partially-blocked-china.

[46] TorrentFreak. China Hijacks Popular BitTor-
rent Sites. http://torrentfreak.com/
china-hijacks-popular-bittorrent-sites-081108/,
May 2008.

[47] Pakistan move knocked out YouTube, Jan. 2008.
http://www.cnn.com/2008/WORLD/asiapcf/02/
25/pakistan.youtube/index.html.

[48] Turkey blocks YouTube access, Jan. 2008. http:
//www.cnn.com/2008/WORLD/europe/03/13/
turkey.youtube.ap/index.html.

[49] Twitter. http://www.twitter.com.
[50] 18 Million Twitter Users by End of 2009.

http://mashable.com/2009/09/14/
twitter-2009-stats/, Sept. 2009.

[51] Ultimate List of Twitter Applications.
http://techie-buzz.com/twitter/
ultimate-list-of-twitter-applications-and-websites.
html, 2009.

[52] State of the Twittersphere. http://bit.ly/sotwitter,
2009.

[53] M. Waldman and D. Mazières. Tangler: A censorship-resistant
publishing system based on document entanglements. In Proc.
8th ACM Conference on Computer and Communications Secu-
rity, Philadelphia, PA, Nov. 2001.

[54] The Accidental Censor: UK ISP Blocks Wayback Machine, Jan.
2009. Ars Technica. http://tinyurl.com/dk7mhl.

[55] Wikipedia, Cleanfeed & Filtering, Dec. 2008.
http://www.nartv.org/2008/12/08/
wikipedia-cleanfeed-filtering.

[56] Youtube - broadcast yourself. http://www.youtube.com/.
[57] YouTube Statistics. http://ksudigg.wetpaint.com/

page/YouTube+Statistics, Mar. 2008.

16

Fighting Coercion Attacks in Key Generation

using Skin Conductance

Payas Gupta
School of Information Systems

Singapore Management University

payas.gupta.2008@phdis.smu.edu.sg

Debin Gao
School of Information Systems

Singapore Management University

dbgao@smu.edu.sg

Abstract

Many techniques have been proposed to generate keys

including text passwords, graphical passwords, biomet-

ric data and etc. Most of these techniques are not resis-

tant to coercion attacks in which the user is forcefully

asked by an attacker to generate the key to gain access to

the system or to decrypt the encrypted file. We present

a novel approach in generating cryptographic keys to

fight against coercion attacks. Our novel technique in-

corporates the user’s emotional status, which changes

when the user is under coercion, into the key generation

through measurements of the user’s skin conductance.

We present a model that generates cryptographic keys

with one’s voice and skin conductance. In order to ex-

plore more, a preliminary user study with 39 subjects was

done which shows that our approach has moderate false-

positive and false-negative rates. We also present the at-

tacker’s strategy in guessing the cryptographic keys, and

show that the resulting change in the password space un-

der such attacks is small.

1 Introduction

Many techniques have been proposed to generate strong

cryptographic keys for secure communication and au-

thentication. Some of these techniques, e.g., those us-

ing biometrics [15, 24, 27, 28, 35], offer desirable secu-

rity properties including ease of use, unforgettability, un-

forgeability (to some extent), high entropy and etc. How-

ever, most of these schemes are not resistant to coercion

attacks in which the user is forcefully asked by an at-

tacker to reveal the key [32]. When the user’s life is

threatened by an attacker, one would have to surrender

the key, and the system will be compromised despite all

the security properties described above. In this paper, we

present a novel approach to protection against coercion

attacks in generating keys.

For a cryptographic key generation technique to be co-

ercion attack resistant, it is required that when the user

is under coercion, he/she will have no way of generat-

ing the key, or the key generated will never be the same

as the one generated when he/she is not being coerced.

If this requirement is met, then an adversary would not

apply any threat to him/her because the adversary under-

stands that the user would not be able to generate the key

when he is threatened to do so. Here we assume that the

coercion resistance property is publicly known to every-

one, including the attackers; otherwise it might lead to

a dangerous situation for the user, a problem we do not

address in this paper.

To show how desirable it is to have a coercion-resistant

cryptographic key generation technique, here we list a

few scenarios in which such a technique could be useful:

• Bank’s vault and safe: According to statistics re-

leased by the FBI [17], there were 1, 094 reported

robberies (out of which 58 cases were of vault/safe

robberies) of commercial banks between July 1,

2009 and September 30, 2009 totaling more than

$9.4 million. If such systems are used to fight

against these attacks, then managers will never be

forced to open the vault.

• Cockpit doors on airliners: The hijackers of the

September 11, 2001 use the fueled aircraft as a mis-

sile to destroy ground targets. If the cockpit doors

on airliners are well equipped with coercion resisted

techniques, then hijackers can never force a flight

attendant to open the door.

• Secret/capability holders in a war: secret and ca-

pability holders would not be forced to reveal the

secret or use the capability.

In this paper, we explore the incorporation of user’s

emotional status (through the measure of skin conduc-

tance) into the process of key generation to achieve co-

ercion resistance. We demonstrate this possibility by in-

corporating skin conductance into a previously proposed

470 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 471

key generation technique using biometrics [24] (see Fig-

ure 1).

Figure 1: Coercion attacks in key generation

Incorporating skin conductance information into key

generation is nontrivial. First, the fact that a change in a

user’s emotional status leads to changes in a user’s skin

conductance does not necessarily mean that our proposed

technique is coercion resistant. If known patterns exist

in such changes, an attacker might be able to guess the

skin conductance of the user when he is not nervous by,

e.g., flipping a few bits of the feature key (see Section 4)

generated from the skin conductance of the user when he

is nervous. We analyze this attack and its consequences,

and show that the reduction in password space is small.

Second, we hope that the key generation algorithm

will take in the least amount of user specific informa-

tion except the live data collected when it is used. This is

because the key generation algorithm might be executed

from the client’s machine, and the inputs to the algorithm

could potentially be retrieved by the attacker during a

coercion attack. However, when dealing with biomet-

rics data, removing such user specific information from

the inputs of the algorithm is not plausible, as different

people have different sets of consistent and inconsistent

biometric features. The algorithm would have too high

false-negative rates without this additional user specific

information. We propose using only user-specific feature

lookup tables which contain valid key shares or garbage.

We also analyze conceivable attacks that result from our

proposal.

Third, it is nontrivial how a user study can be per-

formed to evaluate our technique. We need to collect bio-

metric data corresponding to different emotional states

of real human beings. Efforts in this area are more de-

manding than traditional efforts to get pattern recogni-

tion data [31]. To analyze the effectiveness of our pro-

posal, we perform a user study to see how one’s skin

conductance changes when he/she is being coerced. This

is used to evaluate the false-positive and false-negative

rates of our model, and to analyze the attacker’s strategy

in guessing the cryptographic key. With 39 participants

in our user study, we find that our technique enjoys mod-

erate false-positive and false-negative rates in key gen-

eration. Furthermore, we find that the reduction in the

password space for an informed attacker is small.

The rest of the paper is organized as follows. In Sec-

tion 2, we discuss some state-of-the-art approaches in

cryptographic key generation and recognition of emo-

tional response. Background knowledge about the cho-

sen biometrics and fingerprint are discussed in Section 3.

In Section 4, we present the details of our approach in

key generation using skin conductance and voice. The

user study and results are presented in Sections 5 and

Section 6 respectively. We conclude in Section 7 with

some plausible future work.

2 Related Work

In this section we review some of the techniques and

methodologies used to generate cryptographic keys from

biometrics and some previous work on the emotion

recognition schemes using physiological signals.

Many key generation techniques from biometrics, e.g.,

voice, iris, face, fingerprints, keystroke dynamics, and

etc., have been proposed in the last decade [15, 24, 27,

28, 35]. The pioneer work in cryptographic key genera-

tion from behavioral biometrics uses keystroke dynamics

of a user while typing the password [25]. The features

of interest are the duration of keystrokes and the latency

between each pair of keystrokes. The generated crypto-

graphic key is called the hardened password. However

the password generated is not very long and is suscepti-

ble to brute-force attacks [25]. Another method using se-

cret sharing was proposed to generate the biometric key

from voice [24]. The distinguishing biometric features

are selected based on the separation between the authen-

tic and the imposter data, and then binarized by some

thresholds. However, this method is not resistant to coer-

cion attacks (which our proposed model trying to target),

as the attacker can force the user to speak out the pass-

word in a normal way. We will discuss key generation

approach from voice in more detail in the formal frame-

work of our model (see Section 3).

Another work on key generation from voice uses

phonemes instead of words, as it is possible to gener-

ate larger keys with shorter sequences [15]. Using the

information of the voice model and the phoneme infor-

mation of the segments, a set of features are created to

train an SVM (Support Vector Machine) that could gen-

erate a cryptographic key. False-positives and entropy of

the system were not demonstrated, which does not give a

clear picture of the security of the scheme.

2

There are many risk and security concerns over bio-

metric systems [32, 33, 40]. Some of the threat mod-

els include fake biometrics at the sensor, tampering with

the stored templates, coercion attacks. Biometrics live-

ness detection is proposed to thwart fake biometrics at-

tacks, e.g., by using perspiration in the skin [1] or blood

flow [22]. However, no previous work has been proposed

to resist coercion attacks in generating cryptographic

keys using biometrics. There have been suggestions like

panic alarm or duress code to fight against coercion at-

tacks, but they are different from what we are propos-

ing here because in previous schemes users choose not

to generate the key but to send a signal to authorities

without catching the adversary’s attention, whereas in

our scheme we require that users simply will not be able

to generate the key. It is clear that our scheme offers

much stronger security properties.

Previous work also shows that emotion recognition us-

ing physiological signals, affects from speech, and facial

expressions have various success rates between 60% and

98% [31]. Although many techniques have been pro-

posed for emotion recognition [31, 20, 29, 21], none has

looked into the incorporation of emotional status into key

generation as what we propose in this paper.

3 Background

In this section, we present some background knowledge

of voice and skin conductance, and discuss why in future

an addition of fingerprint in our model would be better

as an authentication measure for the protection against

coercion attack. We also discuss the reasons for the se-

lection of these features and the advantages over others

in terms of acceptability, feasibility and usability.

3.1 Why Skin Conductance?

An emotion is a mental and physiological state associ-

ated with a wide variety of feelings, thoughts, and be-

havior. Emotions are subjective experiences, often as-

sociated with mood, temperament, personality, and dis-

position [11]. This emotional behavioral change is the

key component in our model in fighting against coer-

cion attack. Several physiological peripheral activities

have been found to be related to emotional processing of

situations. Many physiological parameters were studied

for emotion recognition, e.g., heart beat rate [3] (HR),

skin conductance [23] (SC), EMG (Electromyography)

signals, ECG (Electrocardiography) signals, body tem-

perature, BVP (Blood Volume Pulse) signals, and etc.,

among which HR and SC are especially attractive due to

their strong association with behavioral activation sys-

tem (BAS) and behavioral inhibition system (BIS) re-

spectively [14].

SC is the change in the electrical properties of an in-

dividual person’s skin caused by an interaction between

environmental events and the individual psychological

state. Human skin is a good conductor of electricity and

when subject to a weak electrical current, a change in the

skin conductance level occurs [42]. We chose SC over

HR for the following reasons.

1. The skin conductance is one of the fastest respond-

ing measures of stress response [16]. It is one of the

most robust and non-invasive physiological mea-

sures of autonomic nervous system activity [7]. Re-

searchers have linked skin conductance response to

stress and autonomic nervous system arousal [37].

2. The change in HR not only accounts for stress but

for many other reasons, including jogging or doing

some heavy work load. SC, on the other hand, has

been shown to be a promising measure in experi-

mental studies [36] for its reliability.

3. According to [41], HR is also impacted when stress

levels rise but the shifts take a bit of time to happen

and by the time the changes are noticeable the trig-

gering stimulus is long past, whereas SC responses

are rapid and easy to measure.

4. HR is not suitable to our model due to prevail-

ing feasibility issues. HR can be measured using

an Electrocardiogram (ECG) machine or a stetho-

scope. Using an ECG machine is impractical be-

cause it is very cumbersome due to many (at least

three) electrodes required and installation costs [6].

Stethoscope is not good either because different

placements of the stethoscope could lead to high

FTC rate (failure to capture rate) [30].

5. Using SC has an extra advantage as it can be mea-

sured simultaneously while fingerprints are being

scanned. This ensures that SC is measured from

the authentic person (more on this in the coming

subsection). The wide acceptance of finger scan-

ning [18, 39] also suggest that SC measurement

would have the potential to gain user acceptance.

There are some limitations of using skin conductance as

with any other biometric. Some skin lotions can be used

to manipulate the skin conductance level. In a test done

by [34], the usage of specific solutions produced signif-

icant increase in skin water content, and was indicated

by increase in skin conductance level. According to the

product after the application of the cream by EncoSkin,

skin moisture level can be significantly increased which

can be monitored by skin conductance [12].

3

472 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 473

3.2 Why Voice?

Voice has been used previously to generate cryptographic

keys [15, 24]. Voice as a biometric is desirable for gener-

ating keys for two important reasons. First, it is the most

familiar way of communication, which makes it ideal for

many applications. Second, voice is a dynamic biometric

and is not static like iris or fingerprint. A user can have

different keys for different accounts by just changing the

password (what to pronounce) or the vocalization of the

same password (how to pronounce) to generate differ-

ent cryptographic keys. In an event of key compromise a

new cryptographic key can be easily generated. Note that

voice has a potential disadvantage when used in fighting

against coercion, namely that the attacker may blame the

user for intentionally pronouncing the wrong password.

We demonstrated our technique with voice; however, our

scheme is not limited to using voice, other biometric can

be used as well.

3.3 Why Fingerprint?

A potential threat to our biometric system is to use spo-

ken password from the genuine user (under stress) and

SC responses from another person (normal emotional

state). To ensure that SC is not unforgeable, one can

make use of a device to collect fingerprint and skin con-

ductance of the user at the same time so that the finger-

print of the user can be checked and mapped to his/her

skin conductance signal. However, we did not demon-

strate how to use this as a measure in our proposed model

as this is not the contribution of this paper and is left for

the future work.

4 Key Generation from Voice and Skin

Conductance

In order to show how skin conductance can be used to

fight against coercion attacks in cryptographic key gen-

eration, in this section, we present the details of a cryp-

tographic key generation technique using voice and skin

conductance. Note the criteria behind choosing skin con-

ductance and voice in Section 3. Other biometrics in lieu

of voice could be used as well. Our way of using voice is

similar (with some differences) to an earlier proposal of

generating cryptographic keys using voice [24]. Table 1

shows some notations used in the rest of this paper.

4.1 An Overview

Inputs to our model include the voice captured when the

user utter the password into the microphone and the skin

conductance measured. Figure 2 shows the input devices

Figure 2: Input devices

we used in our experimental setup. Output of our model

is a cryptographic key generated.

In the first phase (Figure 3 (a)–(h)), features ex-

tracted from the spoken password are used to generate

a sequence of frames fV (1), . . . , fV (n) (3 (c)), from

which an optimal segmentation of s segments (compo-

nent sounds) (3 (f)). The segmentation obtained are then

mapped to the feature descriptor using a random αV

plane (3 (g)). Furthermore, features are also extracted

from the SC sample and the corresponding feature de-

scriptors are computed (3 (h)). These feature descrip-

tors should be “sufficiently similar” for the same user and

“sufficiently different” for different users. By the end of

the first phase, we have feature descriptors for both voice

and SC signal.

In the second phase (Figure 3 (i)–(l)), we perform

lookup table generation and cryptographic key recon-

struction. A total of NV samples from voice and NSC

samples from SC are used to generate lookup tables TV

and TSC . In cryptographic key reconstruction, feature

keys are generated from the spoken password (mV bits)

and SC (mSC bits). The two lookup tables generated

and the features keys are then used to generate the cryp-

tographic key.

In the next two subsections, we will present these two

phases in more detail.

4.2 Phase I: Feature descriptors derivation

4.2.1 Feature descriptors from voice

In the last six decades, speech recognition and speaker

recognition have advanced a lot [8]. A speaker recog-

nition system usually has three modules: feature ex-

traction, pattern matching and decision making, among

which feature extraction is especially important to our

research as it estimates a set of features from the speech

signal that represent the speaker-specific information.

These features should be consistent for each speaker and

should not change over time. The way we extract these

features and derive the feature descriptors is very simi-

lar to the previous approach [24], except that we use the

4

Figure 3: Design overview, refer to Section 4.2 for detailed description

5

474 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 475

General Notations Notations related to Spoken Password Notations related to Skin Conductance

K cryptographic key V Voice SC Skin Conductance

C a set of centroids NV # samples in V during training NSC # samples in SC during training

c a centroid in C fV frame vector fSC vector containing sampled values of SC

m m = mV + mSC φV feature descriptor φSC feature descriptor

n number of frames ℓ number of frames

TV lookup table generated using V TSC lookup table generated using SC

mV total bits in a feature descriptor of V mSC total bits in a feature descriptor of SC

bV feature key using V bSC feature key using SC

s number of segments

R segment vector

Table 1: Notations

Mel-frequency Cepstral Coefficients (MFCCs) instead of

linear cepstrum [24]. MFCC has advantages over linear

cepstrum that the frequency bands are equally spaced on

the mel scale, which approximates the human auditory

system’s response more closely than the linearly-spaced

frequency bands used in the linear cepstrum [13].

Associating centroids to the acoustic model We con-

vert the raw speech signal into a sequence of acoustic

feature vectors in terms of the Mel-frequency Cepstral

Coefficients (MFCCs) [10]. In the next paragraph we

provide a short description on the extraction of MFCC

(see Figure 4).

Figure 4: Block diagram of extracting MFCC

The voice signal is first divided into blocks of 20 to 30
msec (see Figure 3(a)), and Discrete Fourier Transform

(DFT) is performed to obtain the frequency representa-

tion of each block. The neighboring frequencies in each

block are grouped into bins of overlapping triangular

bands of equal bandwidth. These bins are equally spaced

on a Mel-scale instead of a normal scale as the lower fre-

quencies are perceptually more important than the higher

frequencies. The content of each band is now summed

and the logarithmic of each sum is computed. To see this

effect in time domain, Discrete Cosine Transform is ap-

plied to yield a “spectrum like” representation ψ(t) that

collectively make up an MFC, and ψ(1), . . . ψ(12) are

called MFCC, where higher order coefficients are dis-

carded. This vector is called a frame (fV).

We run a sliding window of 30 msec over an utterance

to obtain blocks 10 msec apart from one another, and ex-

tract the MFCC, �ψ(1), . . . ψ(12)�, for each block (see

Figure 3(b)). n frames are obtained from utterance of the

password (see Figure 3(c)). An acoustic model of vec-

tors from a speaker-independent and text-independent

database of voice signals is obtained, from which vector

quantization is used to partition the acoustic model into

clusters (see Figure 3(d)). A multivariate normal distri-

bution for each cluster is generated, where each cluster

is parameterized by the vector c of a component-wise

means (called a centroid) and the covariance matrix Σ
for the vectors in the cluster. The density function for

this distribution is

P (c | x) =
1

(2π)δ/2
√

det(Σ)
e−(x−c)T

Σ
−1

(x−c)/2

where δ is the dimension of the vectors. We denote the

set of centroids as C.

Segmentation of frames After getting the centroids

from a speaker-independent database of voice signals,

we try to obtain the transcription, i.e., the starts and ends,

of the phonemes of an individual user’s utterance.

To do this, we perform segmentation on the spo-

ken password. Let fV (1), . . . fV (n) be the sequence

of frames from the utterance, and F (R1), . . . F (Rs) be

the sequence of s segments (s is a constant and same

for all users), where F (Ri) is the ith segment contain-

ing the sequence of frames fV (j), . . . fV (j′) such that,

1 ≤ j ≤ j′ ≤ n. Intuitively, each F (Ri) corresponds to

one “component sound” of the user’s utterance.

We did this with an iterative approach (see algo-

rithm 1). Ranges R1, . . . , Rs are first initialized to be

equally long. We then calculate the matching centroid c
for a segment F(R), i.e., the one for which the likelihood

of F(R) w.r.t. c is maximum. Dynamic programming is

then used to determine a new segmentation for that frame

sequence. This process is repeated until an optimal seg-

mentation is obtained, which is mapped to the feature

descriptor (see Figure 3(e,f)).

Feature descriptor Having derived a segmentation for

a spoken password, we next define the feature descriptor

(φV) of this segmentation that is typically the same when

the same user speaks out the same utterance. To do this,

6

Algorithm 1 Spoken password segmentation

Segmentation (fV (1), . . . , fV (n), s)

1: Score
′

←− 0

2: for i = 1 to s do

3: Ri ←−

„

j (i − 1) × n

s

k

,
j i × n

s

k

«

4: end for

5: repeat

6: Score ←− Score
′

7: for i = 1 to s do

8: while ∀c ∈ C do

9: L(F (Ri)|c) ←−
Y

j ∈ Ri

(fV (j)|c)

10: end while

11: c(Ri) ←− arg max
c ∈ C

{L(F (R)|c)}

12: end for

13: let
[s

i=1
R

′

i ←− [1, n]

14: Score
′

←−
s

Y

i = 1

L(F (R
′

i|c(Ri)))

15: Ri ←− R
′

i

16: until Score
′

- Score < ∆

we use a fixed vector αV , and define the ith bit of the

feature descriptor as (see Figure 3(g))

φV (i) = αV .(µV (Ri) − c(Ri)), ∀ 1 ≤ i ≤ s

That is, we normalize µV (Ri) with c(Ri) and let φV (i)

be the linear combination of components in it as specified

by αV . This process results in a feature descriptor (φV),

where NV feature descriptors are then generated from

NV voice samples and used to generate a lookup table

TV (in Phase II).

4.2.2 Feature descriptor from skin conductance

When some external or internal stimuli occur that makes

a person stressed, the skin becomes a better conductor of

electricity. This conductance can be measured between

two points on the body (e.g., two fingers) and the level of

electrical conductance is called skin conductance. Since

we want to detect changes in the emotional status of a

person, we record skin conductance over a time period.

SC signal was measured with our device and sam-

pled at a frequency of 30 samples per second. Let

fSC(1), . . . , fSC(ℓ) denote the sampled values obtained

from the SC signal. We model the feature values into a

feature descriptor (φSC) in a similar way as we did in the

processing of voice. We choose a random vector αSC=

[αSC(1), αSC(2), . . . , αSC(mSC)] (mSC is a constant),

and use the Euclidean distance between all the points of

the αSC vector and fSC to compute the distance measure

M and henceforth the feature descriptor (φSC).

M(i, j) = αSC(i) × fSC(j) ∀ 1 ≤ i ≤ mSC , 1 ≤ j ≤ ℓ

φSC is the mean of all the distance measures for each

αSC (i) values (see Figure 3(h)), i.e.,

φSC(i) =
1

ℓ

ℓ∑
j=1

M(i, j) ∀ 1 ≤ i ≤ mSC

Note that the upper bound of αSC (i) needs to be care-

fully chosen to maintain a good entropy on the feature

descriptor of different people. Also note that we do not

store skin conductance information directly but rather the

feature descriptor generated from the distance measure is

stored (same as in the case of voice). NSC feature de-

scriptors are derived from NSC SC samples and then are

used to generate a lookup table TSC (in Phase II).

4.3 Phase II: Lookup table and crypto-

graphic key generation

We explain how we obtained the feature descriptors from

voice and skin conductance in the previous subsection.

Here, we will explain how we constructed lookup tables

(training of the model) and obtained the cryptographic

keys from the tables (usage of the model). The basic idea

is that each entry of the lookup tables contains a share of

the correct key or some garbage value, and the feature

descriptor is used to determine the corresponding entry

from the lookup table. In the end, the shares from the

lookup tables are used to reconstruct the key.

4.3.1 Lookup table generation

Intuitively, if a feature descriptor is the same as the one

recorded previously (i.e., in training), then the system

should choose the correct key share from the lookup ta-

ble, or the garbage otherwise. In order to tolerate some

small deviation of a user’s utterance and skin conduc-

tance, we calculate the mean (µφV
(i), µφSC

(i)) and stan-

dard deviation (σφV
(i), σφSC

(i)) of each feature descrip-

tor over NV , NSC training samples, and define the par-

tial feature descriptors BV , BSC as

BV (i) =

8

>

<

>

:

0, if µφV
(i) + kσφV

(i) < tV

1, if µφV
(i) - kσφV

(i) > tV

⊥, otherwise

∀ 1 ≤ i ≤ mV

BSC(i) =

8

>

<

>

:

0, if µφSC
(i) + kσφSC

(i) < tSC

1, if µφSC
(i) - kσφSC

(i) > tSC

⊥, otherwise

∀ 1 ≤ i ≤ mSC

for some threshold tV and tSC respectively (see Fig-

ure 3(j)). This phase is the training phase in our model.

Here k is a parameter to acquire a tradeoff between se-

curity and usability. With the increase in value of k, the

user has better chance to generate the key successfully,

but will hamper the security of the scheme. More pre-

cisely, the increase in the value of k will increase the

7

476 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 477

false-positive rate and decrease the false-negative rate (as

shown in our results in the evaluation Section 6).

The idea of defining the partial feature descriptor

in this way is illustrated in Figure 5 (where the set

{B, µ, σ, t} is replaced by {BV , µφV
, σφV

, tV } and

{BSC , µφSC
, σφSC

, tSC} for voice and skin conductance

respectively). If the ith feature descriptor is consistently

same i.e. µ(i) + kσ(i) < t (the first case in Figure 5),

then there is a high probability that the value of the ith

feature descriptor will be less than t during key recon-

struction. Therefore, we can let the cell T (i, 0) of the

lookup table contain a valid share of the key (and let

T (i, 1) contain random bits). If the ith feature descrip-

tor is consistently different, i.e. the value of the feature

descriptor is unreliable (when compared to the thresh-

old t as in the third case in Figure 5), we let both T (i, 0)
and T (i, 1) contain valid shares (typically different). Un-

like [24], lookup tables are not encrypted (for discussion

on this, see section 4.4).

Figure 5: Definition of partial descriptor

Having valid shares in both T (i, 0) and T (i, 1)
leads to different key shares used and consequently

different keys being generated, which might not be

desirable in systems that require a unique key. To

solve this problem, a random cryptographic key K
(unique for each user) is first generated, which is then

encrypted with all possible valid keys (KHi
) that can

be derived from <TV �TSC>. The key generation

template therefore comprises of key K encrypted

with Z = |KHi
| derived keys and the lookup tables

<TV �TSC>. Thus, the template = <<TV |TSC>,

<EKH1
(K�B), EKH2

(K�B), . . . , EKHZ
(K�B)>>,

where EKHi
(msg) is a publicly known encryption

algorithm and B is a unique string associated to each

user which helps us to determine whether the decryption

is correct or not in section 4.3.2.

4.3.2 Cryptographic key reconstruction

When a user tries to reconstruct the cryptographic key,

he/she first presents his/her spoken password and the skin

conductance. The model collect this information, ex-

tracts the features and generates the feature descriptors

for both voice and the SC. Corresponding shares from the

lookup tables are chosen based on the feature descriptors.

bV (i) =

(

0 if φV (i) < tV

1 otherwise
∀ 1 ≤ i ≤ mV

bSC(i) =

(

0 if φSC(i) < tSC

1 otherwise
∀ 1 ≤ i ≤ mSC

For example, if the feature descriptor φSC (i) is less than

the threshold tSC , then bSC(i) = 0 and TSC(i, 0) is cho-

sen from TSC as a key share; otherwise bSC(i) = 1 and

TSC(i, 1) is chosen (see Figure 3(i)). bV and bSC are the

feature keys and are obtained from voice and SC respec-

tively.

A key K ′ is derived by concatenating the key shares

(see Figure 3(k)). This derived key is then used to de-

crypt the |KHi
| encrypted keys stored in the template. If

the decryption succeeds (by matching the released B and

the stored B), then the key K is released.

KD =

(

DK′ (EKHi
(K|B)), if K ′ = KHi

Random, if K′ �= KHi

where, DK′(msg) is a publicly known decryption algo-

rithm.

4.4 Discussions

While we try to use the consistency of voice and skin

conductance to generate the correct key only when it is

the genuine user in the normal emotional state, the incon-

sistency of voice and skin conductance poses challenges,

too. Voice produced and skin conductance measured of

the genuine user in a non-stressed emotional status might

change due to tiredness, illness, noise, and etc.

We used an error correction technique, in particu-

lar, hamming distance, to improve the usability of the

scheme. mCd different keys are derived from any freshly

generated key K ′ obtained from the feature descriptors

and T (similar to the one derived in section 4.3.2), which

are d distance away from the derived key K ′. All of these
mCd keys are then used to decrypt the encrypted keys be-

fore giving any negative answer to the user. If the decryp-

tion succeeds then the key K is released. For example, if

d = 2 and length of the key is m, then mC2 different

keys are derived. Thus, |KHi
| ×m C2 decryptions are

performed in attempting to recover K.

Another issue concerns the privacy of the biometric

data used. Ballard et al. propose using randomized bio-

metric templates protected with low-entropy passwords

to provide strong biometric privacy [4]. One can use this

in conjunction with our model to provide both coercion

resistance and biometric privacy. However, it is unclear

whether the use of low-entropy passwords may have a

negative impact on coercion resistance since, intuitively,

an attacker may blame the user for providing the wrong

8

low-entropy password in a coercion (similar problem dis-

cussed in section 3.2). We leave this as future work to

develop a solution that satisfies both requirements.

5 Experimental Setup

We presented our design in generating a cryptographic

key using voice and skin conductance in Section 4. It is

important to test it out with real human beings to evalu-

ate its performance. However, this is difficult as we need

to find a way to make the participants feel stressed or

nervous. It is clear that we cannot actually coerce them

to do something by, e.g., putting a gun over their heads.

Nevertheless, we performed case studies to induce stress

on the participants and measure their voice and skin con-

ductance. (IRB approval was obtained from our univer-

sity before the user study.) We present the experimental

setup in this section and the evaluation results and dis-

cussion in the next section.

5.1 Demographics

Since we were going to induce stress on the participants,

we decided to concentrate on the younger generation (un-

dergraduate and graduate students in the age from 18 to

30). We had altogether 43 participants, from which 4
participants detached the sensors from their fingers when

they were nervous during the experiment. Therefore, we

successfully performed our experiments on 39 partici-

pants, out of which 22 were male and 17 were female.

5.2 Experimental settings

Participants were asked to sit in a small office where the

overhead fluorescent lights were turned off and a dim red

incandescent lamp was turned on to reduce the possible

electrical interference with the monitoring equipments.

The room was air conditioned to approximately 72◦F and

humidity level was generally dry. This is done in accor-

dance to the variation of skin conductance in different

environmental conditions [36].

Skin conductance sensors1 were attached to the three

middle fingers of the participant to record SC (shown in

Figure 2). The participant was also asked to keep her left

hand (with sensors attached) as still as possible to avoid

interference from the sensors. Fake heart rate tags were

tied to the wrist, which gave an illusion of monitoring the

heart rate.

Initially, there was an incomplete disclosure regarding

the purpose and the steps of the study in order to ensure

that the participant’s responses will not be affected by her

knowledge of the research.

5.3 Procedure

We ran two experiments (e1 and e2). Each experiment

consisted of two parts, where the first parts (e1n and e2n)

were conducted when the participants were in a normal

(calm) condition, and the second parts (e1s and e2s) were

conducted when the participants were stressed.

We ran experiment e1n by

• showing nice (geographical) pictures one after an-

other and short phrases (the spoken password em-

bedded) which are related to the pictures, and ask-

ing the participant to read them out;

• showing fake visual heartbeats at a normal rate at

the bottom of the screen and correspondingly play-

ing heartbeats sound.

In order to capture the emotional responses in the

stress scenario in e1s,

• a frightening horror movie was played, replacing

the nice pictures;

• the rate of the heartbeats were gradually increased

to induce more stress on the participant;

• the participant was asked to read out some short

phrases at the end of each horror scene (rather than

along with the video) to avoid distraction.

Similar studies have been performed previously to

measure the stress level in users [26, 19].

In e2, we went a bit further to induce more stress on

the participant. Figure 6 shows the change in skin con-

ductance in response to different events in e2. During e2,

the participant was asked to type a few sentences (e.g.,

“Work is much more fun than fun”) shown to her in a

fixed period of time. She was also warned (prior to the

experiment) not to press the “ALT” key on the keyboard,

as it would cause the computer program to crash and all

data would be lost (event A). We then left the partici-

pant alone in the room to continue typing (event B). We

configured the computer to restart after 3 minutes irre-

spective of whether the participant actually touched the

“ALT” key or not. The computer would then boot from

a USB drive into MS-DOS and display some error mes-

sages (event C). This completes the first part of e2, i.e.,

e2n.

Stress started to develop at this point in time as the

participant believed that she had pressed the “ALT” key

which caused data loss on the computer (event D). We

purposely left the participant alone so that stress could

develop further and she could not get immediate help to

resolve the “problem”. After that, the researcher entered

the room and examined the keyboard and the computer

(event E) and then accused the participant of her negli-

gent act of pressing the “ALT” key (event F). This turned

9

478 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 479

0 100 200 300 400 500 600 700 800
6

7

8

9

10

11

12

13

14

15

Time (sec)

S
k
i
n

C
o
n
d
u
c
t
a
n
c
e

(

µ
S
)

A B C D E
F

Figure 6: Change of skin conductance in e2

out to be successful in making the participant stressed as

we observed that many participants were nervous at this

point in time. Some kept saying “sorry”; some tried very

hard to fix the “problem”, and some started calling for

help. There were also voluntary confession statements

from the participants, e.g., “I hit the ALT key by mistake

in place of typing the ‘X’ key”, “It was a mistake from

my side.”.

5.4 Discussion

In this section, we discuss the difference of the emotional

state of a user in real life and in our user study, and limi-

tations of our experiment.

1. Training of the system

• Real life: the user is in a (controlled) envi-

ronment specified by our system, in which the

stress level is low. This allows us to generate

the lookup table for that particular user with

the normal skin conductance level.

• User study: the user is in exactly the (con-

trolled) environment specified by our system,

i.e., when watching a relaxation movie.

2. Trying to generate the cryptographic key; no coer-

cion

• Real life: a user could be in various emotional

states, including being happy, sad, angry, etc.

• User study: same as in training when the user

is watching a relaxation movie. In this work,

we only try to analyze how our system per-

forms when users are calm and relaxed. It

remains future work to analyze how it works

when the user is in other emotional states. We

do expect the false-negative rate to rise when

the user is in other emotional states.

3. Trying to generate the cryptographic key; in coer-

cion

• Real life: a user can be forced/coerced in

many different ways, e.g., a gun to the head,

or a knife under the throat, etc.

• User study: watching a horror movie and be-

ing forced to plead guilty (having damaged a

notebook computer). We tried our best to ap-

proximate the real-life scenarios, but there is a

limit we could go when doing this to real hu-

man beings (e.g., IRB restriction). However,

we believe that what we did is a clever way of

studying human behavior when being coerced.

Discussions above highlight some limitations of our

scheme, e.g., we have not tested how it reacts to other

emotional status (happy, sad, angry, etc.) and how skin

conductance may change naturally (due to oily fingers,

etc.). There are two other important limitations in the

present study. First, our study does not test the repeata-

bility of using our scheme, i.e., we did not ask the partici-

pants to come back and try again. The second limitation

comes with the over-controlled environment, e.g., quiet

office (because of the use of voice), controlled temper-

ature and humidity [9](because of the use of skin con-

ductance), and etc. It remains further work to test our

scheme in different settings.

6 Evaluation and Discussion

In this section, we analyze the data collected in our user

study. We first describe how we partition the data into

different groups (e.g., for training and test purposes), see

Section 6.1. We then present a series of analysis on the

false-positive and false-negative rates (Section 6.2). Fi-

nally we show the change in the password space where

an attacker has perfect knowledge of our design and the

content stored. We show that this change in the password

space in this worst case is small (Section 6.3).

6.1 Training and Testing Datasets

We have collected voice and skin conductance signals

for 39 participants. For each participant, we have col-

lected many samples of the signals when the participant

is either calm or stressed. Table 2 shows the number of

samples we collected in each experiment for each par-

ticipant. Voice signals are typically 2 to 3 seconds long,

while skin conductance signals are about 10 seconds long

to avoid fluctuations.

Figure 7 shows how we obtain dataset to

• split original sample sets {νfull
e1n, ωfull

e1n, ωfull
e2n} into

two equal halves {νtrain
e1n , ωtrain

e1n , ωtrain
e2n } and {νtest

e1n,

ωtest
e1n, ωtest

e2n} to obtain datasets for training and test-

ing (see the half circles);

10

Feature e1n e1s e2n e2s

Voice
of samples 26 5 0 0

Notation νfull
e1n νfull

e1s - -

SC
of samples 26 60 18 60-80

Notation ωfull
e1n ωfull

e1s ωfull
e2n ωfull

e2s

Table 2: Number of samples collected for each partici-

pant

• combine different voice samples and skin conduc-

tance samples to create new datasets to test our sys-

tem (see circles in the middle column). {νtrain
e1n &

ωtrain
e1n }, {νtest

e1n & ωtest
e1n}, {νtrain

e1n & ωtrain
e2n }, {νtest

e1n

& ωtest
e2n} are combined to create {ξtrain

e1n }, {ξtest
e1n},

{ξtrain
e2n }, {ξtest

e2n} respectively.

• to obtain the stress dataset {νfull
e1s & ωfull

e1s}, {νfull
e1s &

ωfull
e2s} are combined to create {ξfull

e1s}, {ξfull
e2s} respec-

tively.

Figure 7: Splitting and combining datasets

Note that the voice and skin conductance samples that

are combined together might not have been captured at

exactly the same time. We allow a time gap because an

attacker might record the voice of the victim to be used

in conjunction with the skin conductance of the victim at

a slightly different time. Both samples were captured in

the same part of the experiment, though, i.e., both from

e1s or both from e2s.

6.2 Accuracy of our model

The false-negative rate of our system is defined as the

percentage of failed login attempts by a legitimate user

with her cryptographic key generated, averaged over all

users in a population A. Similarly, the false-positive

rate is defined as the percentage of failed detection of

attempts by illegitimate users or legitimate users in a

stressful situation, averaged over all users in a popula-

tion A.

Voice samples only We first evaluate the voice samples

we collected in our experiments. The purpose is to check

out the false-positive and false-negative rates, in an event

if only voice samples are used to generate cryptographic

keys. The system is trained with νtrain
e1n

of user ai, and

is tested against νfull
e1n of user aj where i �= j, ∀ j ∈

A to calculate the false-positive rates; and against νtest
e1n

of user ai to calculate the false-negative rates. Results

are averaged on all users in A. We try different random

αV vectors and choose the one that yields the smallest

sum of the false-positive and false-negative rates. We try

different settings of the hamming distance parameter d,

and find that 2 gives a reasonable tradeoff between false-

positive and false-negative rates. The false-positive and

false-negative rates for different values of k are plotted

in Figure 8.

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

2

4

6

8

10

12

14

16

k −−>

P
e
rc

e
n

ta
g

e

False Positive

False Negative

Figure 8: False-positive and false-negative rates for spo-

ken passwords

Figure 8 shows that we manage to get a comparable

accuracy with the previous work [24] in terms of the

false-negative rate. False-positive rate was not reported

in [24].

Skin conductance only Next, we evaluate the skin

conductance samples to see how well they reflect the

change in the participants’ emotional status. We show

the results in Figure 9(a) and Figure 9(b) for experiment

e1 and e2, respectively. The different color lines denotes

different ‘k’ values in Figure 9 and Figure 10. The sys-

tem is trained with ωtrain
e1n

(and ωtrain
e2n

, respectively) of user

ai, and is tested against the stressed full data set, ωfull
e1s

(and ωfull
e2s

, respectively) of the same user ai to calculate

the false-positive rates; or against the normal test data

set, ωtest
e1n (and ωtest

e2n , respectively) of the same user ai to

calculate the false-negative rates. Results are averaged

over all users in A.

11

480 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 481

1

1.5

2

1 2 3 4 5 6 7 8

0

10

20

30

40

50

k
 −

−
>

Threshold (t
SC

) −−>

P
e

rc
e

n
ta

g
e

 −
−

>
k=1.25

k=1.375

k=1.5

k=1.625

k=1.75

k=1.875

False Positive

False Negative

k=1.25

k=1.875

(a) e1

1

1.5

2

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

k
−−

>

Threshold (t
SC

) −−>

P
e

rc
e

n
ta

g
e

 −
−

>

k=1.25

k=1.375

k=1.5

k=1.625

k=1.75

k=1.875

False Negatives

False Positives

k=1.25

k=1.875

(b) e2

Figure 9: False-positive and false-negative rates for skin

conductance

Note that the false-positive and false-negative rates are

higher for e1 in Figure 9(a). We believe, this is because

of the reason that the intensity of some of the horror

videos was not very high, which did not result in a no-

ticeable change in the skin conductance for many users.

We can observe the tradeoff of various settings of k
and the threshold from these figures. In general, this

shows that whenever a user is under stress, her skin con-

ductance can be used to differentiate between the two

emotional state with good accuracy. For example in e2,

when k = 1.25 and tSC = 2.1, we obtained a false-

positive rate of 3.2% and a false-negative rate of 2.2%
(see Figure 9(b)). If we increase the value of k from 1.25

to 1.875 in both Figures 9(a) and 9(b), we could see

a decrease in the false-negative rates (increasing usabil-

ity) and increase in the false-positive rates (compromis-

ing with the security). We used the hamming distance

parameter d = 2 in our setting.

Voice combined with skin conductance Voice and

skin conductance samples are combined as shown in Fig-

ure 7 to obtain the samples needed in this evaluation.

We first train the system with ξtrain
e2n , and then evaluate

the system against three different datasets to evaluate the

false-positive and false-negative rates.

a ξfull
e2n of user aj where i �= j, ∀ j ∈ A: when a differ-

ent person tries to generate the key (Figure 10(a));

b ξfull
e2s of user ai: when the same user tries to generate

the key when she is being coerced (Figure 10(b));

c ξtest
e2n

of user ai: when the same user tries to gen-

erate the key when she is not being coerced (Fig-

ure 10(c)).

We evaluate the false-positive rates in the first two

cases and the false-negative rates in the third case. Re-

sults are averaged over all users in A. We use a hamming

distance parameter d = 4, and show the results in Fig-

ure 10.

1

1.5

2

1 2 3 4 5 6 7 8

0

5

10

15

20

25

k
 −

−
>

Threshold (t
SC

)−−>

P
e
rc

e
n

ta
g

e
 −

−
>

k=1.25

k=1.375

k=1.5

k=1.625

k=1.75

k=1.875

False Positive

k=1.25

k=1.875

(a) False-positive against ξfull
e2n

of user aj i �= j

1

1.5

2

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

k
−−

>

Threshold (t
SC

) −−>

P
e

rc
e

n
ta

g
e

 −
−

>

k=1.25

k=1.375

k=1.5

k=1.625

k=1.75

k=1.875False Positive

k=1.25

k=1.875

(b) False-positive against ξfull
e2s

of user ai

1

1.5

2

1 2 3 4 5 6 7 8

0

1

2

3

4

5

k
−
−
>

Threshold (t
SC

)−−>

P
e
rc

e
n

ta
g

e
 −

−
>

k=1.25

k=1.375

k=1.5

k=1.625

k=1.75

k=1.875

k=1.25

False Negative

k=1.875

(c) False-negative against ξtest
e2n

of user ai

Figure 10: False-positive and false-negative rates for

voice combined with skin conductance

12

These results show that generating cryptographic keys

from voice and skin conductance is effective in fighting

coercion attacks, as we observe false-positive rates be-

tween 6% to 15% for 1 ≤ tSC ≤ 4, which can also

rise up to 22% for tSC ≥ 5. False-negative rates are

between 0% and 4.5% for all values of tSC . Further ef-

forts are needed to reduce the false-positive and false-

negative rates. Same as in the previous subsection, if we

increase the value of k from 1.25 to 1.875, we could see

a decrease in the false-negative rates and increase in the

false-positive rates.

6.3 Change in password space

In this subsection, we discuss more advanced attacks on

our system (if implemented) beside forcing the victim

to obtain her spoken password and skin conductance. If

such system is implemented, then we need to approx-

imate the entropy in the worst case of these advanced

attacks, in which the attacker makes use of the group in-

formation about the skin conductance and information

stored in the key generation module.

The group information about skin conductance refers

to the patterns observed in the change in the users’

feature key generated from the skin conductance (bSC)

when they are coerced. An attacker could use this in-

formation to selectively modify the victims skin conduc-

tance feature key in order to improve the probability of

generating the correct key. To know how we obtained the

feature key (bSC) for SC, see section 4.

Although we do not store any biometric information

of the user directly on the device (see discussions in

Section 4), we still need to store the lookup tables (TV

and TSC) which are derived from the user specific data

(e.g., feature descriptors). Although this table can be en-

crypted with a user password as discussed in previous

work [24], however we try not to rely the security of our

model on the secrecy of this table because we are dealing

with coercion attacks. In the rest of this subsection, we

assume that an attacker has perfect knowledge in both

the group information about skin conductance and the

lookup tables. We want to approximate the guessing en-

tropy, i.e., the reduction in the password space for this

more powerful attacker.

More precisely, we assume in the worst case that an

attacker has access to

• the lookup tables TV and TSC ;

• the recorded spoken password of the user and the

corresponding feature key {bV (i)};

• the recorded skin conductance when the user

is stressed and the corresponding feature key

{bS
SC(i)};

• the database D which contains the mapping of the

SC feature keys when users are normal ({bN
SC(i)})

to the scenario when they are stressed ({bS
SC(i)})

for all users in a population A.

A sample database D for such mapping of SC is shown

in Table 3 for |A| users. Each row in the table is a

record of the feature key of a user when she is normal

and stressed, and the last column shows the index of the

feature keys that had changed from bN
SC to bS

SC .

bN
SC

bS
SC

Flipped bits’ pos.

1 011011011011 001101110011 2,4,5,7,9

2 010010010111 010100110110 4,5,7,12

.

.

.
.
.
.

.

.

.
.
.
.

|A| 010101001100 111111100110 1,3,5,7,9,11

Table 3: A sample Database D

The attacker’s strategy would be to analyze D to learn

patterns in which people’s feature keys {bN
SC} changes

to {bS
SC}, e.g., whenever the i-th index of the feature key

changes, the j-th one will change too.

These patterns can be easily learned by applying a well

studied technique called association rule mining [2]. The

attacker can then use these patterns to reduce the pass-

word space. Here, we use a simple example to demon-

strate the idea.

We first represent the password space by a sequence of

0’s (the corresponding index in {bS
SC} will definitely not

change when a user’s emotional status changes), 1’s (the

corresponding index in {bS
SC} will definitely change),

and ∗’s (don’t know), e.g., [1, ∗, ∗] represents a password

space in which only the first index of {bS
SC} will change,

and therefore the password space is 22 = 4. When the at-

tacker makes use of a pattern learned, e.g., “the change of

the first index of {bS
SC} implies the change of the second

one”, he can convert the password space from [1, ∗, ∗]
to [1, 1, ∗], since the second index of the {bS

SC} will defi-

nitely change, too. With this, the password space reduces

to 21 = 2.

We present the detailed algorithm with an example in

estimating this reduction in the password space in the

Appendix A.

We constructed the database D with the skin conduc-

tance samples collected in our user study, mine all as-

sociation rules, and then use the above algorithm to find

out the change in the password space. Figure 11 shows

the results for different settings of the threshold and min-

imum confidence in the association rule mining.

k is set to 1.25 in this experiment, and the minimum sup-

port is set to 30%. Note that the original password space

is 2mSC = 250. Although in the worst case the effective

number of bits to represent the password space reduces

13

482 19th USENIX Security Symposium USENIX Association USENIX Association 19th USENIX Security Symposium 483

1 2 3 4 5 6 7
25

30

35

40

45

50

Threshold (t
SC

)−−>

E
ff

e
c

ti
v

e
 P

a
s

s
w

o
rd

 S
p

a
c

e
 (

b
it

s
)

min. conf = 40

min. conf = 70

min. conf = 100

Figure 11: Password Space reduction

by roughly 20%, many settings of the threshold value re-

sult in only 10% reduction.

Another way to attack our system is to make the user

take a sedative to relieve his/her anxiety before capturing

SC. The attacker can then use this skin conductance to

generate the key. We are trying to collaborate with med-

ical practitioners and researchers to see the correlation

between the two skin conductances, one under normal

condition without taking any sedative and the other un-

der coercion and having taken the sedative. For now this

remains as a future work.

7 Conclusion and Future Work

In this paper we present a novel approach for fighting

against coercion attacks in generating cryptographic keys

using skin conductance (SC) of a person. In coercion

attack, the attacker forces a user to grant him access

to the system. SC was used to determine the person’s

overall arousal state i.e. (emotional status). The change

in the emotional status of a person results in different

keys. We discussed the reasons of adopting SC as an

emotional response parameter and why it was preferred

over other physiological signals like Electrocardiogra-

phy, Electromyography, Heart Rate, respiration, skin

temperature etc. In this paper, we have chosen skin con-

ductance along with voice in generating cryptographic

keys; however, one can choose any other biometric for

e.g. iris, fingerprint, face etc. in lieu of voice. Crypto-

graphic key is generated using lookup table method as

discussed in [24].

In our knowledge the presented work is the first in

fighting coercion attacks in generating cryptographic

keys. We conducted two experiments in our user study

and have shown some interesting results. The proposed

model was tested with 39 user’s voice and skin con-

ductance data to compute the false-positive and false-

negative rate. Furthermore our results showed that the

cryptographic key generated in two different scenarios

are different for the same person. This bolsters our

heuristic to use skin conductance for fighting against co-

ercion attacks. As both skin conductance and voice are

not static biometrics, in some cases we obtained high

false-negatives. We evaluated the security of the pro-

posed model in terms of entropy and several threat mod-

els and discussed how difficult it is for an attacker, in an

event when she has full information about the key gener-

ation module; the skin conductance of the victim in the

stressful scenario; and the group information about the

skin conductance.

Note that guessing entropy and guessing distance [5]

might provide deeper insight in the security of our model.

We leave it as our future work. In terms of feasibility, in

future we will also like to see in some possibilities of

building the system (may be a mobile device) with all

three: voice, skin conductance and fingerprint extraction

mechanism to authenticate to the system. Furthermore,

we would like to look into other emotional responses like

happy, joy, anger, sad etc., to make the claim of using

SC in fighting coercion attacks stronger. This paper does

not study the repeatability of the key using the proposed

scheme and is left as a future work.

Acknowledgments We are deeply grateful to Lucas

Ballard for comments and suggestions in key construc-

tion, as well as David Lo for helpful discussions on the

analysis of the password space.

References

[1] ABHYANKAR, A., AND SCHUCKERS, S. Integrating a wavelet

based perspiration liveness check with fingerprint recognition.

Pattern Recognition 42, 3 (2009), 452–464.

[2] AGRAWAL, R., IMIELIŃSKI, T., AND SWAMI, A. Mining as-
sociation rules between sets of items in large databases. In SIG-

MOD ’93: Proceedings of the 1993 ACM SIGMOD international

conference on Management of data (New York, NY, USA, 1993),

ACM, pp. 207–216.

[3] ANTTONEN, J., AND SURAKKA, V. Emotions and heart rate
while sitting on a chair. In CHI ’05: Proceedings of the SIGCHI

conference on Human factors in computing systems (New York,

NY, USA, 2005), ACM, pp. 491–499.

[4] BALLARD, L., KAMARA, S., MONROSE, F., AND REITER,

M. K. Towards practical biometric key generation with ran-

domized biometric templates. In CCS ’08: Proceedings of the

15th ACM conference on Computer and communications secu-

rity (New York, NY, USA, 2008), ACM, pp. 235–244.

[5] BALLARD, L., KAMARA, S., AND REITER, M. K. The practical

subtleties of biometric key generation. In SS’08: Proceedings of

the 17th conference on Security symposium (Berkeley, CA, USA,
2008), USENIX Association, pp. 61–74.

[6] BIEL, L., PETTERSSON, O., PHILIPSON, L., AND WIDE, P.

Ecg analysis: a new approach in human identification. Instru-

mentation and Measurement, IEEE Transactions on 50, 3 (Jun

2001), 808–812.

[7] CACIOPPO, J. T., AND TASSINARY, L. G. Inferring psychologi-

cal significance from physiological signals. American Psycholo-

gist 45, 1 (Jan 1990), 16–28.

14

[8] CAMPBELL, J. P. Speaker recognition: a tutorial. Proceedings

of the IEEE 85, 9 (1997), 1437–1462.

[9] CONKLIN, J. E. Three Factors Affecting the General Level of

Electrical Skin-Resistance. The American Journal of Psychology

64, 1 (Jan 1951), 78–86.

[10] DAVIS, S., AND MERMELSTEIN, P. Comparison of paramet-
ric representations for monosyllabic word recognition in contin-

uously spoken sentences. Acoustics, Speech, and Signal Process-

ing [see also IEEE Transactions on Signal Processing], IEEE

Transactions on 28, 4 (1980), 357–366.

[11] EKMAN, P. Basic Emotions, vol. 476 of Handbook of Cognition

and Emotion. T. Dalgleish and M. Power, John Wiley & Sons

Ltd. Sussex UK, 1999.

[12] ENCOSKIN. ENCOLL’s Collagen Technology, 2010.

http://www.encoll.com/SkinCare and Dietary

Products.htm.

[13] FANG, Z., GUOLIANG, Z., AND ZHANJIANG, S. Comparison
of different implementations of mfcc. J. Comput. Sci. Technol.

16, 6 (2001), 582–589.

[14] FOWLES, D. C. The Three Arousal Model: Implications of

Gray’s Two-Factor Learning Theory for Heart Rate, Electroder-

mal Activity, and Psychopathy. Psychophysiology 17, 2 (1980),

87–104.

[15] GARCÍA PERERA, L., NOLAZCO FLORES, J., AND MEX PER-

ERA, C. Cryptographic-Speech-Key Generation Architecture Im-

provements. In IbPRIA05 (2005), p. II:579.

[16] HELANDER, M. Applicability of drivers’ electrodermal response
to the design of the traffic environment. Journal of Applied Psy-

chology 63, 4 (1978), 481–488.

[17] INVESTIGATION, F. B. O. Bank crime statistics (bcs)

federal insured financial institutions july 1, 2009 september

30, 2009. http://www.fbi.gov/publications/bcs/

bcs2009/bank crime 2009q3.htm.

[18] JAIN, A. K., ROSS, A., AND PANKANTI, S. Biometrics: a

tool for information security. IEEE Transactions on Information

Forensics and Security 1, 2 (2006), 125–143.

[19] JOHNSON, K. J., AND FREDRICKSON, B. L. We all look the

same to me: Positive emotions eliminate the own-race bias in
face recognition. Psychological Science 16 (2005), 875–881.

[20] KIM, J. Bimodal Emotion Recognition using Speech and Phys-

iological Changes. In In M. Grimm, K. Kroschel (Ed.), Robust

Speech Recognition and Understanding. I-Tech Education and

Publishing, Vienna, Austria, 2007, pp. 265–280.

[21] KIM1, K. H., BANG, S. W., AND KIM, S. R. Emotion recogni-

tion system using short-term monitoring of physiological signals.

Medical and Biological Engineering and Computing 42, 3 (May

2004), 419–427.

[22] LAPSLEY, P. D., LEE, J. A., PARE, JR., D. F., AND HOFFMAN,
N. Anti-fraud biometric scanner that accurately detects blood

flow. US Patent # 5737439, 1998.

[23] LEE, C. K., YOO, S. K., PARK, Y., KIM, N., JEONG, K., AND

LEE, B. Using Neural Network to Recognize Human Emotions

from Heart Rate Variability and Skin Resistance. In 27th Annual

International Conference of the Engineering in Medicine and Bi-

ology Society, 2005. IEEE-EMBS 2005 (2005), pp. 5523–5525.

[24] MONROSE, F., REITER, M. K., LI, Q., AND WETZEL, S. Cryp-

tographic Key Generation from Voice(Extended Abstract). In SP

’01: Proceedings of the 2001 IEEE Symposium on Security and

Privacy (Washington, DC, USA, 2001), IEEE Computer Society,

p. 202.

[25] MONROSE, F., REITER, M. K., AND WETZEL, S. Password

hardening based on keystroke dynamics. International Journal

of Information Security 1, 2 (2002), 69–83.

[26] NACHSON, I., AND FELDMAN, B. Psychological Stress Eval-

uator - Validity Study. Crime and Social Deviance 7, 2 (1979),

65–81.

[27] NANDAKUMAR, K., JAIN, A. K., AND PANKANTI, S.

Fingerprint-Based Fuzzy Vault: Implementation and Perfor-
mance. IEEE Transactions on Information Forensics and Security

2, 4 (2007), 744–757.

[28] NANDAKUMAR, K., NAGAR, A., AND JAIN, A. Hardening Fin-

gerprint Fuzzy Vault Using Password. In ICB07 (2007), Springer

Berlin / Heidelberg, pp. 927–937.

[29] NASOZ, F., ALVAREZ, K., LISETTI, L., AND FINKELSTEIN, N.

Emotion recognition from physiological signals using wireless

sensors for presence technologies. Cognition, Technology and

Work 6, 1 (2004), 4–14.

[30] PHUA, K., CHEN, J., DAT, T. H., AND SHUE, L. Heart sound

as a biometric. Pattern Recogn. 41, 3 (2008), 906–919.

[31] PICARD, R. W., VYZAS, E., AND HEALEY, J. Toward Ma-
chine Emotional Intelligence: Analysis of Affective Physiologi-

cal State. IEEE Transaction Pattern Analysis Matching Intelli-

gence 23, 10 (2001), 1175–1191.

[32] PRABHAKAR, S., PANKANTI, S., AND JAIN, A. K. Biometric

recognition: Security and privacy concerns. IEEE Security and

Privacy 1, 2 (2003), 33–42.

[33] RATHA, N. K., CONNELL, J. H., AND BOLLE, R. M. An Anal-

ysis of Minutiae Matching Strength. In AVBPA ’01: Proceedings

of the Third International Conference on Audio- and Video-Based

Biometric Person Authentication (London, UK, 2001), Springer-

Verlag, pp. 223–228.

[34] SAKAI, K., AND QUICK, T. W. Moisturizing skin preparation,

July 1988.

[35] SANTOS A, M. F., AGUILAR A, J. F., AND GARCIA A, J. O.

Cryptographic key generation using handwritten signature. Bio-

metric Technologies for Human Identification III, Processing of

SPIE (2006).

[36] SCHMIDT, S., AND WALACH, H. Electrodermal Activity (EDA)

- State of the Art Measurement and Techniques for Parapsycho-

logical Purposes. Journal of Parapsychology 64 (June 2000), 139
– 163.

[37] SELYE, H. The Stress of Life. McGraw-Hill, 1956, ch. 1-7.

[38] TO THE WILD DIVINE, J. Skin conductance aquisition device,

Lightstone. http://www.wilddivine.com/.

[39] UIDIA. Unique Identification Authority of India Card Project-

India. http://www.uidaicards.com/.

[40] ULUDAG, U., AND JAIN, A. Attacks on biometric systems:

a case study in fingerprints. In Proc. SPIE-EI 2004, Secu-

rity, Seganography and Watermarking of Multimedia Contents VI

(2004), pp. 622 – 633.

[41] VALENTINE, D. Skin Conductance One Of The Fastest Ways

To Test Stress, 2009. http://www.articlesbase.com/health-
articles/skin-conductance-one-of-the-fastest-ways-to-test-stress-

1464442.html, [Online; accessed 16-November-2009].

[42] WESTERINK, J. H. D. M., VAN DEN BROEK, E. L., SCHUT,

M. H., VAN HERK, J., AND TUINENBREIJE, K. Computing

Emotion Awareness Through Galvanic Skin Response and Fa-

cial Electromyography, vol. 8 of Philips Research Book Series.

Springer Netherlands, New York, December 2007.

A Guessing Entropy for Skin Conductance

Let R be the set of rules the attacker can use to reduce

the password space from S to S
′. So, for a rule Ri

antecedent(A) ⇒ consequent(C)

15

484 19th USENIX Security Symposium USENIX Association

such that, A=[y1, . . . , yEa
] and C=[z1, . . . , zEc

], where

Ea are the elements in the antecedent and Ec in con-

sequent. The process of calculating the new password

space from a given one is shown in algorithm 2. S′ indi-

cates a lower bound for the password space which shows

the minimum number of combinations an attacker needs

to guess if he has a full knowledge of the mappings in the

database.

Let Ψ denote the candidate set and Φ be the large

itemset, ΨI and ΦI are the two dimensional vectors

derived from the rules R1, . . . , RI . Each item (ΨI
J)

in a ΨI is a vector of the form [x1, x2, . . . , xmSC
], ∀

0 ≤ J ≤ L, where xi ∈ (0, 1, ∗) and L = |ΨI |. Sim-

ilarly, each item (ΦI
J) in a ΦI is also vector of the form

[x1, x2, . . . , xmSC
], ∀ 0 ≤ J ≤ L, where xi ∈ (0, 1, ∗)

and L = |ΦI |.

Algorithm 2 Reduced Password Space for SC

PasswdSpace (R)
1: Φ0

1
←− [∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . , ∗]

2: S ←− 2mSC

3: for I = 1 to |R| do

4: L ←− length(ΦI−1)

5: ΨI ←− NULL

6: for J = 1 to L do

7: if any
“

(ΦI−1

J,y1
, ΦI−1

J,y2
, . . . ,ΦI−1

J,yEa
) == ∗

”

then

8: ΨI ←− ΨI
S

split(ΦI−1

J
)

9: else

10: ΨI ←− ΨI
S

ΦI−1

11: end if

12: end for

13: ΨI ←− unique
`

ΨI
´

14: cnt ←− 1

15: L ←− length(ΨI)

16: for J = 1 to L do

17: if

0

@

Ea
Y

p = 1

ΨI
J,yp

== 1&

Ec
Y

q = 1

ΨI
J,zq

== 0

1

A then

18: delete
“

ΨI
J

”

19: else

20: ΦI
cnt ←− ΨI

J
21: cnt++

22: end if

23: end for

24: end for

25: S′ ←− Φ|R|

∗ denotes don’t care and can be assigned 0 or 1. The

set of rules R obtained are passed to the algorithm 2 to

generate S′. Φ0
1 is initialized to [∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . ∗] and S

= 2mSC . Below is the short description of the functions

used in the algorithm.

• length(ΨI) - gives the total vectors in the candi-

date set ΨI i.e. |ΨI |.

• any(ΦJ
I (y1, y2, . . . , yEa

) == ∗) - a boolean func-
tion

=

(

1, (ΦI
J,y1

== ∗) ∨ . . . ∨ (ΦI
J,yEa

) == ∗)

0, else

• split(ΦI
J) - this function generates a new candidate

set ΨI from a large itemset ΦI−1 based on a rule

RI . It generates the vectors for ΨI s.t.

– Mark yi, if (ΦI−1

J,yi
== ∗), ∀ yi ∈

[y1, . . . , yEa
].

– Generate all possible combination of the

marked bits; which implies if total number of

marked bits are mb then total possible com-

binations are 2mb. For e.g. if ΦI
J = [***1*1]

and the rule RI is 1 ⇒ 2, then the result is

([11 ∗ 1 ∗ 1] [10 ∗ 1 ∗ 1] [01 ∗ 1 ∗ 1] [00 ∗ 1 ∗ 1])

• unique(ΨI) - gives the unique vectors from ΨI .

• delete(ΨI
J) - delete ΨI

J from the candidate set ΨI .

During the Candidate Itemset Generation, a ∗ in the

large itemset triggers a split; 1 and 0 indicates do noth-

ing. However during the Large Itemset Generation a 1 in

a candidate itemset triggers add 1; 0 indicates do noth-

ing. During the whole procedure, each time one rule is

used and the sets which does not comply with that rule

are omitted to create the new set. The final password

space is calculated by computing the total number of vec-

tors which can be generated using Φ|R|, where Φ|R| is the

final large itemset generated from the rules R1, . . . , R|R|.

An example shown in Table 4 with 5 elements, to how

to generate the candidate itemset and the large itemset

from 3 rules. The total number of guesses which an at-

tacker needs to make is 14 which implies the effective

number of bits in the new password space are 4; original

was 5.

R Candidate Large

Itemset Itemset

Initialization Φ0

1
∗ ∗ ∗ ∗ ∗

R1 1 ⇒ 3
Ψ1

1
1 ∗ ∗ ∗ ∗ Φ1

1
1 ∗ 1 ∗ ∗

Ψ1

2
0 ∗ ∗ ∗ ∗ Φ1

2
0 ∗ ∗ ∗ ∗

R2 (1, 2) ⇒ 5

Ψ2

1
101 ∗ ∗ Φ2

1
101 ∗ ∗

Ψ2

1
111 ∗ ∗ Φ2

1
111 ∗ 1

Ψ2

2
01 ∗ ∗∗ Φ2

2
01 ∗ ∗∗

Ψ2

3
00 ∗ ∗∗ Φ2

3
00 ∗ ∗∗

R3 5 ⇒ 1

Ψ3

1
101 ∗ 0 Φ3

1
101 ∗ 0

Ψ3

2
101 ∗ 1 Φ3

2
101 ∗ 1

Ψ3

3
111 ∗ 1 Φ3

3
111 ∗ 1

Ψ3

4
01 ∗ ∗1 Φ3

4
01 ∗ ∗0

Ψ3

5
01 ∗ ∗0 Φ3

5
00 ∗ ∗0

Ψ3

6
00 ∗ ∗1

Ψ3

7
00 ∗ ∗0

Table 4: Generating candidate set and large itemset

Notes

1We use a physiological data acquisition device called Lightstone

from WildDivine [38].

16

