
ZKPDL: A Language-Based System for Efficient Zero-Knowledge Proofs
and Electronic Cash

Sarah Meiklejohn
University of California, San Diego
smeiklej@cs.ucsd.edu

C. Chris Erway
Brown University
cce@cs.brown.edu

Alptekin Küpçü
Brown University

kupcu@cs.brown.edu

Theodora Hinkle
University of Wisconsin, Madison

thea@cs.wisc.edu

Anna Lysyanskaya
Brown University

anna@cs.brown.edu

Abstract
In recent years, many advances have been made in

cryptography, as well as in the performance of commu-
nication networks and processors. As a result, many ad-
vanced cryptographic protocols are now efficient enough
to be considered practical, yet research in the area re-
mains largely theoretical and little work has been done
to use these protocols in practice, despite a wealth of po-
tential applications.

This paper introduces a simple description language,
ZKPDL, and an interpreter for this language. ZKPDL
implements non-interactive zero-knowledge proofs of
knowledge, a primitive which has received much atten-
tion in recent years. Using our language, a single pro-
gram may specify the computation required by both the
prover and verifier of a zero-knowledge protocol, while
our interpreter performs a number of optimizations to
lower both computational and space overhead.

Our motivating application for ZKPDL has been the
efficient implementation of electronic cash. As such,
we have used our language to develop a cryptographic
library, Cashlib, that provides an interface for using e-
cash and fair exchange protocols without requiring ex-
pert knowledge from the programmer.

1 Introduction
Modern cryptographic protocols are complicated,

computationally intensive, and, given their security re-
quirements, require great care to implement. However,
one cannot expect all good cryptographers to be good
programmers, or vice versa. As a result, many newly pro-
posed protocols—often described as efficient enough for
deployment by their authors—are left unimplemented,
despite the potentially useful primitives they offer to sys-
tem designers. We believe that a lack of high-level soft-
ware support (such as that provided by OpenSSL, which
provides basic encryption and hashing) presents a barrier
to the implementation and deployment of advanced cryp-

tographic protocols, and in this work attempt to remove
this obstacle.

One particular area of recent cryptographic research
which has applications for privacy-preserving systems is
zero-knowledge proofs [47, 46, 17, 39], which provide
a way of proving that a statement is true without re-
vealing anything beyond the validity of the statement.
Among the applications of zero-knowledge proofs are
electronic voting [49, 56, 38, 51], anonymous authenti-
cation [21, 36, 62], anonymous electronic ticketing for
public transportation [50], verifiable outsourced compu-
tation [9, 43], and essentially any system in which hon-
esty needs to be enforced without sacrificing privacy.
Much recent attention has been paid to protocols based
on anonymous credentials [30, 35, 24, 26, 11, 8], which
allow users to anonymously prove possession of a valid
credential (e.g., a driver’s license), or prove relationships
based on data associated with that credential (e.g., that a
user’s age lies within a certain range) without revealing
their identity or other data. These protocols also prevent
the person verifying a credential and the credential’s is-
suer from colluding to link activity to specific users. As
corporations and governments move to put an increas-
ing amount of personal information online, the need for
efficient privacy-preserving systems has become increas-
ingly important and a major focus of recent research.

Another application of zero-knowledge proofs is elec-
tronic cash. The primary aim of our work has been to
enable the efficient deployment of secure, anonymous
electronic cash (e-cash) in network applications. Like
physical coins, e-coins cannot be forged; furthermore,
given two e-coins it is impossible to tell who spent them,
or even if they came from the same user. For this rea-
son, e-cash holds promise for use in anonymous settings
and privacy-preserving applications, where free-riding
by users may threaten a system’s stability.

Actions in any e-cash system can be characterized
as in Figure 1. There are two centralized entities: the
bank and the arbiter. The bank keeps track of users’ ac-



Figure 1: An overview of the entities involved in our e-cash
system. Users may engage in buy or barter transactions, with-
draw and deposit coins as necessary, and consult the arbiter for
resolution only in the case of a dispute.

count balances, lets the users withdraw money, and ac-
cepts coin deposits. The arbiter (a trusted third party) re-
solves any disputes that arise between users in the course
of their fair exchanges. Once the users have obtained
money from the bank, they are free to exchange coins for
items (or just barter for items) and in this way create an
economy.

In previous work [10] we describe a privacy-
preserving P2P system based on BitTorrent that uses our
e-cash and fair exchange protocols to incentivize users
to share data. Here, the application of e-cash provides
protection against selfish peers, as well as an incentive
to upload for peers who have completed their download
and thus have no need to continue participating. This
system has been realized by our work on the Buy and
Barter protocols, described in Section 6.2, which allow
a user to fairly exchange e-coins for blocks of data, or
barter one block of data for another.

These e-cash protocols can also be used for payments
in other systems that face free-riding problems, such as
anonymous onion routing [27]. In such a system, routers
would be paid for forwarding messages using e-cash,
thus providing incentives to route traffic on behalf of oth-
ers in a manner similar to that proposed by Androulaki et
al. [2]. Since P2P systems like these require each user to
perform many cryptographic exchanges, the need to pro-
vide high performance for repeated executions of these
protocols is paramount.

1.1 Our contribution
In this paper, we hope to bridge the gap between de-

sign and deployment by providing a language, ZKPDL
(Zero-Knowledge Proof Description Language), that en-
ables programmers and cryptographers to more easily

implement privacy-preserving protocols. We also pro-
vide a library, Cashlib, that builds upon our language to
provide simple access to cryptographic protocols such as
electronic cash, blind signatures, verifiable encryption,
and fair exchange.

The design and implementation of our language and
library were motivated by collaborations with systems
researchers interested in employing e-cash in high-
throughput applications, such as the P2P systems de-
scribed earlier. The resulting performance concerns, and
the complexity of the protocols required, motivated our
library’s focus on performance and ease of use for both
the cryptographers designing the protocols and the sys-
tems programmers charged with putting them into prac-
tice. These twin concerns led to our language-based ap-
proach and work on the interpreter.

The high-level nature of our language brings two ben-
efits. First, it frees the programmer from having to worry
about the implementation of cryptographic primitives,
efficient mathematical operations, generating and pro-
cessing messages, etc.; instead, ZKPDL allows the spec-
ification of a protocol in a manner similar to that of theo-
retical descriptions. Second, it allows our library to make
performance optimizations based on analysis of the pro-
tocol description itself.

ZKPDL permits the specification of many widely-
used zero-knowledge proofs. We also provide an in-
terpreter that generates and verifies proofs for protocols
described by our language. The interpreter performs
optimizations such as precomputation of expected ex-
ponentiations, translations to prevent redundant proofs,
and caching compiled versions of programs to be loaded
when they are used again on different inputs. More de-
tails on these optimizations are provided in Section 4.2.

Our e-cash library, Cashlib, described in Section 6, sits
atop our language to provide simple access to higher-
level cryptographic primitives such as e-cash [27], blind
signatures [25], verifiable encryption [28], and optimistic
fair exchange [10, 52]. Because of the modular nature of
our language, we believe that the set of primitives pro-
vided by our library can be easily extended to include
other zero-knowledge protocols.

Finally, we hope that our efforts will encourage pro-
grammers to use (and extend) our library to implement
their cryptographic protocols, and that our language will
make their job easier; we welcome contribution by our
fellow researchers in this effort. Documentation and
source code for our library can be found online at http:
//github.com/brownie/cashlib.

2 Cryptographic Background
There are two main modern cryptographic primitives

used in our framework: commitment schemes and zero-



knowledge proofs. Briefly, a commitment scheme can
be thought of as cryptographically analogous to an enve-
lope. When a user Alice wants to commit to a value, she
puts the value in the envelope and seals it. Upon receiv-
ing a commitment, a second user Bob cannot tell which
value is in the envelope; this property is called hiding (in
this analogy, let’s assume Alice is the only one who can
open the envelope). Furthermore, because the envelope
is sealed, Alice cannot sneak another value into the enve-
lope without Bob knowing: this property is called bind-
ing. To eventually reveal the value inside the envelope,
all Alice has to do is open it (cryptographically, she does
this by revealing the private value and any randomness
used to form the commitment; this collection of values is
aptly referred to as the opening of the commitment). We
employ both Pedersen commitments [65] and Fujisaki-
Okamoto commitments [42, 37], which rely on the secu-
rity of the Discrete Log assumption and the Strong RSA
assumption respectively.

Zero-knowledge proofs [47, 46] provide a way of
proving that a statement is true to someone without that
person learning anything beyond the validity of the state-
ment. For example, if the statement were “I have access
to this sytem” then the verifier would learn only that I
really do have access, and not, for example, how I gain
access or what my access code is. In our library, we make
use of sigma proofs [34], which are three-message proofs
that achieve a weaker variant of zero-knowledge known
as honest-verifier zero-knowledge. We do not implement
sigma protocols directly; instead, we use the Fiat-Shamir
heuristic [41] that transforms sigma protocols into non-
interactive (fully) zero-knowledge proofs, secure in the
random oracle model [13].

A primitive similar to zero-knowledge is the idea of a
proof of knowledge [12], in which the prover not only
proves that a statement is true, but also proves that it
knows a reason why the statement is true. Extending
the above example, this would be equivalent to proving
the statement “I have access to the system, and I know a
password that makes this true.”

In addition to these cryptographic primitives, our li-
brary also makes uses of hash functions (both univer-
sal one-way hashes [61] and Merkle hashes [60]), digital
signatures [48], pseudo-random functions [45], and sym-
metric encryption [33]. The security of the protocols in
our library relies on the security of each of these individ-
ual components, as well as the security of any commit-
ment schemes or zero-knowledge proofs used.

3 Design
The design of our library and language arose from our

initial goal of providing a high-performance implemen-
tation of protocols for e-cash and fair exchange for use

in applications such as those described in the introduc-
tion. For these applications, the need to support many
repeated interactions of the same protocol efficiently is a
paramount concern for both the bank and the users. In the
bank’s case, it must conduct withdraw and deposit pro-
tocols with every user in the system, while in the user’s
case it is possible that a user would want to conduct many
transactions using the same system parameters.

Motivated by these performance requirements, we ini-
tially developed a more straightforward implementation
of our protocols using C++ and GMP [44], but found
that our ability to modify and optimize our implementa-
tion was hampered by the complexity of our protocols.
High-level changes to protocols required significant ef-
fort to re-implement; meanwhile, potentially useful per-
formance optimizations became difficult to implement,
and there was no way to easily extend the functionality
of the library.

VerifierProver

ZKPDL 
Program

Interpreter 
Prover

Interpreter 
Verifier

compile()

public values (security 
parameters, public keys, 
groups, generators, etc)

private values 
to be proved

ZKProof
Message

Proof verified? 
(true/false)

serialization

Figure 2: Usage of a ZKPDL program: the same program is
compiled separately by the prover and verifier, who may also
be provided with a set of fixed public parameters. This pro-
duces an Interpreter object, which can be used by the prover to
prove to a verifier that his private values satisfy a certain set of
relationships. Serialization and processing of proof messages
are provided by the library. Once compiled, an interpreter can
be re-used on different private inputs, using the same public
parameters that were originally provided.

These difficulties led to our current design, illustrated
in Figure 2. Our system allows a pseudocode-like de-
scription of a protocol to be developed using our descrip-
tion language, ZKPDL. This program is compiled by our
interpreter, and optionally provided a list of public pa-
rameters, which are “compiled in” to the program. At
compile time, a number of transformations and optimiza-
tions are performed on the abstract syntax tree produced
by our parser, which we developed using the ANTLR
parser generator [64]. Once compiled, these interpreter
objects can be used repeatedly by the prover to generate
zero-knowledge proofs about private values, or by the



verifier to verify these proofs.
Key to our approach is the simplicity of our language.

It is not Turing-complete and does not allow for branch-
ing or conditionals; it simply describes the variables,
equations, and relationships required by a protocol, leav-
ing the implementation details up to the interpreter and
language framework. This framework, described in the
following section, provides C++ classes that parse, ana-
lyze, optimize, and interpret ZKPDL programs, employ-
ing many common compiler techniques (e.g., constant
substitution and propagation, type-checking, providing
error messages when undefined variables are used, etc.)
in the process. We are able to understand and transform
mathematical expressions into forms that provide better
performance (e.g., through techniques for fixed-base ex-
ponentiation), and recognize relationships between val-
ues to be proved in zero-knowledge. All of these low-
level optimizations, as well as our high-level primitives,
should enable a programmer to quickly implement and
evaluate the efficiency of a protocol.

We also provide a number of C++ classes that wrap
ZKPDL programs into interfaces for generating and ver-
ifying proofs, as well as marshaling them between com-
puters. We build upon these wrappers to additionally
provide Cashlib, a collection of interfaces that allows a
programmer to assume the role of buyer, seller, bank,
or arbiter in a fair exchange system based on endorsed
e-cash [27], as seen in Figure 1 and described in Sec-
tion 5.3.

4 Implementation of ZKPDL
To enable implementation of the cryptographic prim-

itives discussed in Section 2, we have designed a pro-
gramming language for specifying zero-knowledge pro-
tocols, as well as an interpreter for this language. The
interpreter is implemented in C++ and consists of ap-
proximately 6000 lines of code. On the prover side, the
interpreter will output a zero-knowledge proof for the re-
lations specified in the program; on the verifier side, the
interpreter will be given a proof and verify whether or
not it is correct. Therefore, the output of the interpreter
depends on the role of the user, although the program
provided to the interpreter is the same for both.

4.1 Overview
Here we provide a brief overview of some fundamen-

tal language features to give an idea of how programs are
written; a full grammar for our language, containing all
of its features, can be found in our documentation avail-
able online, and further sample programs can be found
in Section 5. A program can be broken down into two
blocks: a computation block and a proof block. Each of
these blocks is optional: if a user just wants a calculator

for modular (or even just integer) arithmetic then he will
specify just the computation block; if, on the other hand,
he has all the input values pre-computed and justs wants a
zero-knowledge proof of relations between these values,
he will specify just the proof block. Here is a sample pro-
gram written in our language (indentations are included
for readability, and are not required syntax).

sample.zkp
1 computation: // compute values required for proof
2 given: // declarations
3 group: G = <g,h>
4 exponents in G: x[2:3]
5 compute: // declarations and assignments
6 random exponents in G: r[1:3]
7 x_1 := x_2 * x_3
8 for(i, 1:3, c_i := g^x_i * h^r_i)
9

10 proof:
11 given: // declarations of public values
12 group: G = <g,h>
13 elements in G: c[1:3]
14 for(i, 1:3, commitment to x_i: c_i = g^x_i * h^r_i)
15 prove knowledge of: // declarations of private values
16 exponents in G: x[1:3], r[1:3]
17 such that: // protocol specification; i.e. relations
18 x_1 = x_2 * x_3

In this example, we are proving that the value x1 con-
tained within the commitment c1 is the product of the
two values x2 and x3 contained in the commitments c2

and c3. The program can be broken down in terms of how
variables are declared and used, and the computation and
proof specifications. Note that some lines are repeated
across the computation and proof blocks, as both are op-
tional and hence considered independently.

4.1.1 Variable declaration
Two types of variables can be declared: group objects

and numerical objects. Names of groups must start with
a letter and cannot have any subscripts; sample group
declarations can be seen in lines 3 and 12 of the above
program. In these lines, we also declare the group gen-
erators, although this declaration is optional (as we will
see later on in Section 5, it is also optional to name the
group modulus).

Numerical objects can be declared in two ways. The
first is in a list of variables, where their type is specified
by the user. Valid types are element, exponent (which
refer respectively to elements within a finite-order group
and the corresponding exponents for that group), and
integer; it should be noted that for the first two of these
types a corresponding group must also be specified in the
type information (see lines 4 and 13 for an example). The
other way in which variables can be declared is in the
compute block, where they are declared as they are be-
ing assigned (meaning they appear on the left-hand side
of an equation), which we can see in lines 7 and 8. In this
case, the type is inferred by the values on the right-hand
side of the equation; a compile-time exception will be
thrown if the types do not match up (for example, if el-
ements from two different groups are being multiplied).



Numerical variables must start with a letter and are al-
lowed to have subscripts.

4.1.2 Computation
The computation block breaks down into two blocks

of its own: the given block and the compute block. The
given block specifies the parameters, as well as any val-
ues that have already been computed by the user and are
necessary for the computation (in the example, the group
G can be considered a system parameter and the values
x_2 and x_3 are just needed for the computation).

The compute block carries out the specified compu-
tations. There are two types of computations: picking a
random value, and defining a value by setting it equal to
the right-hand side of an equation. We can see an ex-
ample of the former in line 6 of our sample program;
in this case, we are picking three random exponents in
a group (note r[1:3] is just syntactic sugar for writing
r_1, r_2, r_3). We also support picking a random in-
teger from a specified range, and picking a random prime
of a specified length (examples of these can be found
in Section 5). As already noted, lines 7 and 8 provide
examples of lines for computing equations. In line 8,
the for syntax is again just syntactic sugar; this time
to succintly specify the relations c_1 = g^x_1*h^r_1,
c_2 = g^x_2*h^r_2, and c_3 = g^x_3*h^r_3. We
have a similar for syntax for specifying products or
sums (much like

∏
or

∑
in conventional mathemati-

cal notation), but neither of these for macros should be
confused with a for loop in a conventional programming
language.

4.1.3 Proof specification
The proof block is comprised of three blocks: the

given block, the prove knowledge of block, and the
such that block. In the given block, the parame-
ters for the proof are specified, as well as the public
inputs known to both the prover and verifier for the
zero-knowledge protocol. In the prove knowledge of
block, the prover’s private inputs are specified. Finally,
the such that block specifies the desired relations be-
tween all the values; the zero-knowledge proof will be
a proof that these relations are satisfied. We currently
support four main types of relations:

• Proving knowledge of the opening of a commit-
ment [67]. We can prove openings of Pedersen [65]
or Fujisaki-Okamoto commitments [42, 37]. In both
cases we allow for commitments to multiple values.

• Proving equality of the openings of different com-
mitments. Given any number of commitments, we
can prove the equality of any subset of the values
contained within the commitments.

• Proving that a committed value is the product of two

other committed values [37, 18]. As seen in our
sample program, we can prove that a value x con-
tained within a commitment is the product of two
other values y, z contained within two other com-
mitments; i.e., x = y · z. As a special case, we can
also prove that x = y2.

• Proving that a committed value is contained within
a public range [18, 55]. We can prove that the
value x contained within a given commitment sat-
isfies lo ≤ x < hi , where lo and hi are both public
values.

There are a number of other zero-knowledge proof
types (e.g., proving a value is a Blum integer, proving
that committed values satisfy some polynomial relation-
ship, etc.), but we chose these four based on their wide
usage in applications, in particular in e-cash and anony-
mous credentials. We note, however, that adding other
proof types to the language should require little work (as
mentioned in Section 4.2), as we specifically designed
the language and interpreter with modularity in mind.

4.1.4 Sample usage
In addition to showing a sample program, we would

also like to demonstrate a sample usage of our interpreter
API. In order to use the sample ZKPDL program from
Section 4.1, one could use the following C++ code (as-
suming there are already numerical variables named x2
and x3, and a group named G):

group_map g;
variable_map v;
g["G"] = G;
v["x_2"] = x2;
v["x_3"] = x3;
InterpreterProver prover;
// compiles program with groups
prover.check("sample.zkp", g);
// computes intermediate values needed for proof
prover.compute(v);
// computes and outputs proof
ProofMessage proofMsg = (prover.getPublicVariables(),

prover.computeProof());

The method is the same for all programs: any nec-
essary groups and/or variables are inserted into the ap-
propriate maps, which are then passed to the interpreter.
Note that the group map in this case is passed to the in-
terpreter at “compile time” so that it may pre-compute
powers of group generators to be used for exponentia-
tion optimizations (described in the next section); how-
ever, both the group and variable maps may be provided
at “compute time.” Any syntactic errors will be caught at
compile time, but if the inputs provided at compute time
are not valid for the relations being proved, the proof will
be computed anyway and the error will be caught by the
verifier. The ProofMessage is a serializable container



for the zero-knowledge proof and any intermediate val-
ues (e.g., commitments and group bases) that the verifier
might need to verify the proof.

The method is almost identical for the verifier:

group_map g;
variable_map v;
g["G"] = G;
InterpreterVerifier verifier;
verifier.check("sample.zkp", g);
verifier.compute(v, proofMsg.publics);
bool verified = verifier.verify(proofMsg.proof);

As we can see, the main difference is that the verifier
uses both its own public inputs and the prover’s public
values at compute time (with its own inputs always tak-
ing precedence over the ProofMessage inputs), but still
takes in the proof to be checked afterwards so that the
actions of the prover and verifier remain symmetric.

4.2 Optimizations
In our interpreter, we have incorporated a number of

optimizations that make using our language not only
more convenient but also more efficient. Here we de-
scribe the most significant optimizations, which include
removing any redundancy when multiple proofs are com-
bined and performing multi-exponentiations on cached
bases when the same bases are used frequently. Other
improvements specific to existing protocols can be found
in Section 5.

4.2.1 Translation
To eliminate redundancy between different proofs, we

first translate each proof described in Section 4.1.3 into
a “fundamental discrete logarithm form.” In this form,
each proof can be represented by a collection of equa-
tions of the form A = Bx · Cy . For example, if the
prover would like to prove that the value x contained
within Cx = gxhrx is equal to the product of the values
y and z contained within Cy = gyhry and Cz = gzhrz

respectively, this is equivalent to a proof of knowledge
of the discrete logarithm equalities Cy = gyhry and
Cx = Cz

yhrx−zry .
Our sample program in the previous section is first

translated into this discrete logarithm form. During run-
time, the values provided to the prover are then used to
generate the zero-knowledge proof. In addition to elim-
inating redundancy between proofs of different relations
in the program, this technique also allows our language
to easily add new types of proofs as they become avail-
able. To add any proof that can be broken down into this
discrete logarithm form, we need to add only a transla-
tion function and a rule in the grammar for how we would
like to specify this proof in a program, and the rest of the
work will be handled by our existing framework.

4.2.2 Multi-exponentiation
The computational performance of many crypto-

graphic protocols, especially those used by our library,
is often dominated by the need to perform many modular
exponentiation operations on large integers. These op-
erations typically involve the use of systems parameters
as bases, with exponents chosen at random or provided
as private inputs (e.g., Pedersen commitments, which re-
quire computation of gx · hr, where g and h are publicly
known). Algorithms for simultaneous multiple expo-
nentiation allow the result of multi-base exponentiations
such as these to be computed without performing each
intermediate exponentiation individually; an overview of
these protocols can be found in Section 14.6 of Menezes
et al. [59].

Our interpreter leverages the descriptions of mathe-
matical expressions in ZKPDL programs to recognize
when fixed-base exponentiation operations occur, allow-
ing it to precompute lookup tables at compile time that
can speed up these computations dramatically. In addi-
tion to single-table multi-exponentiation techniques (i.e.,
the 2w-ary method [59]), we offer programmers who
expect to run the same protocol many times the abil-
ity to take advantage of time/space tradeoffs by gener-
ating large lookup tables of precomputed powers. This
allows a programmer to choose parameters that balance
the memory requirements of the interpreter against the
need for fast exponentiation.

For single-base exponentiation, we employ window-
based precomputation techniques similar to those used
by PBC [57] to cache powers of fixed bases. For multi-
base exponentiation of k exponents, we currently extend
the 2w-ary method to store 2kw-sized lookup tables for
each w-bit window of the expected exponent length, so
that multi-exponentiations on exponents of length n re-
quire only n/w multiplications of stored values. While
we are also evaluating other algorithms offering similar
time-space tradeoffs, we demonstrate the performance
gains afforded by these techniques later in Table 1.

4.2.3 Interpreter caching
We also cache the parsed, compiled environments of

ZKPDL programs when they are first run. Because we
accept system parameters at compile time, we are able to
evaluate and propagate any subexpressions made up of
fixed constants and perform exponentiation precomputa-
tions before these expressions are fully evaluated at run-
time. Even without the use of large tables for fixed-based
exponentiation, this optimization proves useful when re-
peated executions of the same program must be per-
formed; e.g., for a bank dealing with e-coin deposits. In
this case, a bank must invoke the interpreter for each coin
deposited; looking ahead to Table 1 we see that, on aver-
age, this operation takes the bank 83ms. If our program



were re-parsed each time, it would take an extra 10ms,
as opposed to the fraction of a millisecond required to
load a cached interpreter environment, saving the bank
approximately 10% of computation time per transaction
by avoiding parsing overhead.

5 Sample Programs and Performance
Using our language, we have written programs for a

wide variety of cryptographic primitives, including blind
signatures [25], verifiable encryption [28], and endorsed
e-cash [27]. In the following sections, we provide our
programs for these three primitives; in addition, perfor-
mance benchmarks for all of them can be found at the
end of the section.

5.1 CL signatures
Using our language, we have implemented the

blind signature scheme due to Camenisch and Lysyan-
skaya [25]; as we will see in Section 5.3, CL signatures
are integral to endorsed e-cash. Briefly, a blind signa-
ture, as introduced by Chaum [29], enables a signature
issuer to sign a message without learning the contents of
the message. A CL signature works in two main phases:
an issuing phase, in which a user actually obtains the sig-
nature, and a proving phase, in which the user is able to
prove (in zero-knowledge) to other users that he does in
fact possess a valid CL signature.

The issuing phase is a one-round interaction between
the recipient and the issuer, at the end of which the recip-
ient obtains the blind signature on her message(s). Be-
cause the protocol is interactive, we present one program
for each stage of the protocol. At the end of this first
stage, the signature issuer will return a partial signature
to the recipient, who will then use this signature to com-
pute the full signature on the hidden message.

cl-recipient-proof.zkp
1 computation:
2 given:
3 group: pkGroup = <fprime, gprime[1:L+k], hprime>
4 exponents in pkGroup: x[1:L]
5 integers: stat, modSize
6 compute:
7 random integer in [0,2^(modSize+stat)): vprime
8 C := hprime^vprime * for(i, 1:L, *, gprime_i^x_i)
9

10 proof:
11 given:
12 group: pkGroup = <fprime, gprime[1:L+k], hprime>
13 group: comGroup = <f, g, h, h1, h2>
14 element in pkGroup: C
15 elements in comGroup: c[1:L]
16 for(i, 1:L, commitment to x_i: c_i=g^x_i*h^r_i)
17 integer: l_x
18 prove knowledge of:
19 integers: x[1:L]
20 exponents in comGroup: r[1:L]
21 exponent in pkGroup: vprime
22 such that:
23 for(i, 1:l, range: (-(2^l_x-1)) <= x_i < 2^l_x)
24 C = hprime^vprime * for(i, 1:L, gprime_i^x_i)
25 for(i, 1:L, c_i = g^x_i * h^r_i)

Next, the issuer must prove the partial signature is
computed correctly, as in the following program.

cl-issuer-proof.zkp
1 computation:
2 given:
3 group: pkGroup = <f, g[1:L+k], h>
4 element in pkGroup: C
5 exponents in pkGroup: x[1:k+L]
6 integers: stat, modSize, lx
7 compute:
8 random integer in [0,2^(modSize+lx+stat)): vpp
9 random prime of length lx+2: e

10 einverse := 1/e
11 A := (f*C*h^vpp * for(i,L+1:k+L,*,g_i^x_i))^einverse
12

13 proof:
14 given:
15 group: pkGroup = <f, g[1:L+k], h>
16 elements in pkGroup: A, C
17 exponents in pkGroup: e, vpp, x[L+1:k]
18 prove knowledge of:
19 exponents in pkGroup: einverse
20 such that:
21 A = (f*C*h^vpp * for(i,L+1:k+L,*,g_i^x_i))^einverse

Once the recipient obtains the partial signature, she
can unblind it to obtain a full signature; this step com-
pletes the issuing phase.

Now, the owner of a CL signature needs a way to prove
that she has a signature, without revealing either the sig-
nature or the values. To accomplish this, the prover first
randomizes the CL signature and then attaches a zero-
knowledge proof of knowledge that the randomized sig-
nature corresponds to the original signature on the com-
mitted message.

cl-possession-proof.zkp
1 computation:
2 given:
3 group: pkGroup = <fprime, gprime[1:L+k], hprime>
4 element in pkGroup: A
5 exponents in pkGroup: e, v, x[1:L]
6 integers: modSize, stat
7 compute:
8 random integers in [0,2^(modSize+stat)): r, r_C
9 vprime := v + r*e

10 Aprime := A * hprime^r
11 C := h^r_C * for(i, 1:L, *, gprime_i^x_i)
12 D := for(i, L+1:L+k, *, gprime_i^x_i)
13 fCD := f * C * D
14

15 proof:
16 given:
17 group: pkGroup = <fprime, gprime[1:L+k], hprime>
18 group: comGroup = <f, g, h, h1, h2>
19 elements in pkGroup: C, D, Aprime, fCD
20 elements in comGroup: c[1:L]
21 for(i, 1:L, commitment to x_i: c_i=g^x_i*h^r_i)
22 exponents in pkGroup: x[L+1:L+k]
23 integer: l_x
24 prove knowledge of:
25 integers: x[1:L]
26 exponents in comGroup: r[1:L]
27 exponents in pkGroup: e, vprime, r_C
28 such that:
29 for(i, 1:L, range: (-(2^l_x - 1)) <= x_i < 2^l_x)
30 C = hprime^r_C * for(i, 1:l, *, gprime_i^x_i)
31 for(i, 1:L, c_i = g^x_i * h^r_i)
32 fCD = (Aprime^e) * hprime^(r_C - vprime)



5.2 Verifiable encryption
Briefly, verifiable encryption consists of a ciphertext

under the public key of some trusted third party (in our
case, the arbiter) and a zero-knowledge proof that the val-
ues inside the ciphertext satisfy some relation; this pair is
often referred to as a verifiable escrow. Our implementa-
tion of verifiable encryption is based on the construction
of Camenisch and Shoup [28]. The main use of verifi-
able encryption in e-cash is to allow a user to verifiably
encrypt the opening of a commitment under the public
key of the arbiter. A recipient of such a verifiable escrow
can then verify that the encrypted values correspond to
the opening of the commitment.

verifiable-encryption.zkp
1 computation:
2 given:
3 group: secondGroup = <g[1:m], h>
4 group: RSAGroup
5 modulus: N
6 group: G
7 group: cashGroup = <f_3, gprime, hprime, f_1, f_2>
8 exponents in G: x[1:m]
9 elements in G: u[1:m], v, w

10 compute:
11 random integer in [0,N/4): s
12 random exponents in secondGroup: r[1:m]
13 for(i, 1:m, c_i := g_1^x_i * g_2^r_i)
14 Xprime := for(i, 1:m, *, g_i^x_i) * h^s
15 vsquared := v^2
16 wsquared := w^2
17 for(i, 1:m, usquared_i := u_i^2)
18

19 proof:
20 given:
21 group: secondGroup = <g[1:m], h>
22 group: G
23 group: RSAGroup
24 modulus: N
25 group: cashGroup = <f_3, gprime, hprime, f_1, f_2>
26 element in cashGroup: X
27 elements in secondGroup: Xprime, c[1:m]
28 for(i,1:m,commitment to x_i: c_i=g_1^x_i*g_2^r_i)
29 elements in G: a[1:m], b, d, e, f, usquared[1:m],
30 vsquared, wsquared
31 prove knowledge of:
32 integers: x[1;M], r
33 exponent in G: hash
34 exponents in secondGroup: r[1:m], s
35 such that:
36 for(i, 1:m, range: -N/2 + 1 <= x_i < N/2)
37 vsquared = f^(2*r)
38 wsquared = (d * e^hash)^(2*r)
39 for(i, 1:m, usquared_i = b^(2*x_i) * a_i^(2*r))
40 X = for(i, 1:m, *, f_i^x_i)
41 Xprime = for(i, 1:m, *, g_i^x_i) * h^s

5.3 E-cash
Electronic cash, or e-cash for short, was first intro-

duced by Chaum [29] and can be thought of as the
electronic equivalent of cash; i.e., an electronic cur-
rency that preserves users’ anonymity, as opposed to
electronic checks [31] or credit cards. We implement
endorsed e-cash, due to Camenisch, Lysyanskaya, and
Meyerovich [27] (which is an extension of compact e-
cash [22]), for two main reasons. Our first reason is
that an endorsed e-coin can be split up into two parts, its
endorsement and an unendorsed component; only with

both of these parts can the coin be considered complete.
As we will see in Section 6.2.1, this property enables
efficient fair exchange. The second reason for choos-
ing endorsed e-cash is that it is offline, which means
the bank does not need to be active in every transac-
tion; this significantly reduces the burden placed on the
bank. Although the bank does not check the coin in
every interaction, endorsed e-cash has the property that
double-spenders (i.e., users who try to spend the same
coin twice) can be caught by the bank at the time of de-
posit and punished accordingly. Because e-cash is meant
to preserve privacy, however, a user is also guaranteed
that unless she double spends a coin, her identity will be
kept secret.

During the withdrawal phase of endorsed e-cash, a
user contacts the bank. Before withdrawing, the user will
have registered with the bank by storing a commitment.
In order to prove her identity, then, the user will provide
a proof that she knows the opening of the registered com-
mitment. This can be accomplished using the following
simple program:

user-id-proof.zkp
1 proof:
2 given:
3 group: cashGroup = <f,g,h,h1,h2>
4 elements in cashGroup: A, pk_u
5 commitment to sk_u: A = g^sk_u * h^r_u
6 prove knowledge of:
7 exponents in cashGroup: sk_u, r_u
8 such that:
9 pk_u = g^sk_u

10 A = g^sk_u * h^r_u

Once the bank has verified this proof, the user and the
bank will run a protocol to obtain a CL signature (us-
ing the programs we saw in Section 5.1) on the user’s
identity and two pseudo-random function seeds. These
private values and the signature on them define a wallet
that contains W coins (where W is a system-wide public
parameter).

When a user wishes to spend one of her coins, she
splits it up into its unendorsed part and the endorsement.
She then sends the unendorsed component to a merchant
and proves it is valid. If the merchant then sends her what
she wanted to buy, she will follow up with the endorse-
ment to complete the coin and the transaction is com-
plete. The following program is used for proving the va-
lidity of a coin.

coin-proof.zkp
1 computation:
2 given:
3 group: cashGroup = <f, g, h, h1, h2>
4 exponents in cashGroup: s, t, sk_u
5 integer: J
6 compute:
7 random exponents in cashGroup: r_B, r_C, r_D, x1,
8 x2, r_y, R
9 alpha := 1 / (s + J)

10 beta := 1 / (t + J)
11 C := g^s * h^r_C



12 D := g^t * h^r_D
13 y := h1^x1 * h2^x2 * f^r_y
14 B := g^sk_u * h^r_B
15 S := g^alpha * g^x1
16 T := g^sk_u * (g^R)^beta * g^x2
17

18 proof:
19 given:
20 group: cashGroup = <f, g, h, h1, h2>
21 elements in cashGroup: y, S, T, B, C, D
22 commitment to sk_u: B = g^sk_u * h^r_B
23 commitment to s: C = g^s * h^r_C
24 commitment to t: D = g^t * h^r_D
25 integer: J
26 prove knowledge of:
27 exponents in cashGroup: x1, x2, r_y, sk_u, alpha,
28 beta, s, t, r_B, r_C, r_D, R
29 such that:
30 y = h1^x1 * h2^x2 * f^r_y
31 S = g^alpha * g^x1
32 T = g^sk_u * (g^R)^beta * g^x2
33 g = (g^J * C)^alpha * h^(-r_C / (s+J))
34 g = (g^J * D)^beta * h^(-r_D / (t+J))

5.4 Performance
Here we measure the communication and computa-

tional resources used by our system when running each
of the programs above. The benchmarks presented in Ta-
ble 1 were collected on a MacBook Pro with a 2.53GHz
Intel Core 2 Duo processor and 4GB of RAM running
OS X 10.6; we therefore expect that these results will
reflect those of a typical home user with no special cryp-
tographic hardware support.

As for speed, caching exponents of fixed bases re-
sults in a significant performance increase, making it
an important optimization for applications that require
repeated protocol executions. The only caveat is that
the exponent cache required for complex protocols can
grow to hundreds of megabytes (using faster-performing
parameters), and so our library allows users to choose
whether to use caching, and if so how much of the cache
should be used by this optimization.

The time taken for the higher-level protocols provides
a clear view of the complexity of each protocol. For ex-
ample, the marked difference between the time required
to generate a CL issuer proof and a CL possession proof
can be attributed to the fact that a CL issuer proof re-
quires proving only one discrete log relation, while a CL
possession proof on three private values requires three
range proofs and five more discrete log relations.

Table 1 also shows that verifiable encryption is by
far the biggest bottleneck, requiring almost three times
as much time to compute as any other step. As seen
in the program in Section 5.2, there is one range proof
performed for each value contained in the verifiable es-
crow. In order to perform a range proof, the value con-
tained in the range must be decomposed as a sum of four
squares [66]. Because the values used in our verifiable
encryption program are much larger than the ones used
in CL signatures (about 1024 vs. 160 bits, to get 80-bit
security for both), this decomposition often takes con-

siderably more time for verifiable encryption than it does
for CL signatures. Furthermore, since the values being
verifiably encrypted are different each time, caching the
decomposition of the values wouldn’t be of any use.

A final observation on computational performance is
that proving possession of a CL signature completely
dominates the time required to prove the validity of a
coin, since the timings for the two proofs are within mil-
liseconds. This suggests that the only way to signifi-
cantly improve the performance of e-coins and verifiable
encryption would be to develop more efficient techniques
for range proofs (which has in fact been the subject of
some recent cryptographic research [49, 19, 68]).

In terms of proof size, range proofs are much larger
than proofs for discrete logarithms or multiplication.
This is to be expected, as translating a range proof into
discrete logarithm form (as described in Section 4.2) re-
quires eleven equations, whereas a single DLR proof re-
quires only one, and a multiplication proof requires two.

6 Implementation of Cashlib
Using the primitives described in the previous section,

we wrote a cryptographic library designed for optimistic
fair exchange protocols. Fair exchange [32] involves a
situation in which a buyer wants to make sure that she
doesn’t pay a merchant unless she gets what she is buy-
ing, while the merchant doesn’t want to give away his
goods unless he is guaranteed to be paid. It is known
that fair exchange cannot be done without a trusted third
party [63], but optimistic fair exchange [3, 4] describes
the cases in which the trusted third party has to get in-
volved only in the case of a dispute.

The library was written in C++ and consists of approx-
imately 11000 lines of code in addition to the interpreter.
A previous version of the library in which all the pro-
tocols and proofs were hand-coded (i.e., the interpreter
was not used) consisted of approximately 20000 lines
of code, meaning that the use of roughly 400 lines of
ZKPDL was able to replace 9000 lines of our original
C++ code (and, as we will see, make our operations more
efficient as well).

6.1 Endorsed e-cash
A description of endorsed e-cash can be found in Sec-

tion 5.3; the version used in our library, however, con-
tains a number of optimizations. Just as with real cash,
we now allow for different coin denominations. Each
coin denomination corresponds to a different bank pub-
lic key, so once the user requests a certain denomination,
the wallet is then signed using the corresponding public
key. A coin generated from such a wallet will verify only
when the same public key of the bank is used, and thus
the merchant can check for himself the denomination of



Program type Prover (ms) Verifier (ms) Proof size
(bytes)

Cache size
(Mbytes)

Multi-exps
With cache Without With cache Without Prover Verifier

DLR proof 3.07 3.08 1.26 1.25 511 0 2 1
Multiplication proof 2.03 4.07 1.66 2.32 848 33.5 8 2

Range proof 36.36 74.52 21.63 31.54 5455 33.5 31 11
CL recipient proof 119.92 248.31 70.76 112.13 19189 134.2 104 39

CL issuer proof 7.29 7.38 1.73 1.73 1097 0 2 1
CL possession proof 125.89 253.17 78.19 117.67 19979 134.2 109 40
Verifiable encryption 416.09 617.61 121.87 162.77 24501 190.2 113 42

Coin 134.37 271.34 83.01 121.83 22526 223.7 122 45

Table 1: Time (in milliseconds) and size (in bytes) required for each of our proofs, averaged over twenty runs. Timings are
considered from both the prover and verifier sides, as are the number of multi-exponentiations, and are considered both with and
without caching for fixed-based exponentiations; the size of the cache is also measured (in megabytes). As we can see, using
caching results on average in a 48% speed improvement for the prover, and a 31% improvement for the verifier.

the coin.
The program in Section 5.3 also reflects our decision

to randomize the user’s spending order rather than hav-
ing them perform a range proof that the coin index was
contained within the proper range. As the random spend-
ing order does not reveal how many coins are left in the
wallet, the user’s privacy is still protected even though
the index is publicly available. Furthermore, because
range proofs are slow and require a fair amount of space
(see Table 1 for a reminder), this optimization resulted in
coins that were 20% smaller and 21% faster to generate
and verify.

Finally, endorsed e-cash requires a random value con-
tributed by both the merchant and the user. Since e-coin
transactions should be done over a secure channel, in
practice we expect that SSL connections will be used be-
tween the user and the merchant. One useful feature of
an SSL connection is that it already provides both parties
with shared randomness, and thus this randomness can
be used in our library to eliminate the need for a redun-
dant message.

6.2 Buying and Bartering
Our library implements two efficient optimistic fair

exchange protocols for use with e-cash. Belenkiy et
al. [10] provide a buy protocol for exchanging a coin
with a file, while Küpçü and Lysyanksaya [52] provide
a barter protocol for exchanging two files or blocks. The
two protocols serve different purposes (buy vs. barter)
and so we have implemented both.

Two of the main usage scenarios of fair exchange pro-
tocols are e-commerce and peer-to-peer file sharing [10].
In e-commerce, one needs to employ a buy protocol to
ensure that both the user and the merchant are protected;
the user receives her item while the merchant receives
his payment. In a peer-to-peer file sharing scenario, peers
exchange files or blocks of files. In this setting, it is more
beneficial to barter for the blocks than to buy them one at
a time; for an exchange of n blocks, buying all the blocks

requires O(n) verifiable escrow operations (which, as
discussed in Section 5.4, are quite costly), whereas bar-
tering for the blocks requires only one such operation,
regardless of the number of blocks exchanged.

Although the solution might seem to be to barter all
the time and never buy, Belenkiy et al. suggest that both
protocols are useful in a peer-to-peer file sharing sce-
nario. Peers who have nothing to offer but would still like
to download can offer to buy the files, while peers who
would like only to upload and have no interest in down-
loading can act as the merchant and earn e-cash. Due to
the resource considerations mentioned above, however,
bartering should always be used if possible.

Because peers do not always know beforehand if they
want to buy or barter for a file, we have modified the buy
protocol to match up with the barter protocol in the first
two messages. This modification, as well as outlines of
both the protocols, can be seen in Figure 3. We further
modified both protocols to let them exchange multiple
blocks at once, so that one block of the fair exchange
protocol might correspond to multiple blocks of the un-
derlying file.

We give an overview of each protocol below, with the
optimizations we have added. We have also implemented
the trusted third parties (the bank and the arbiter) neces-
sary for e-cash and fair exchange. Although we do not
describe in detail the resolution and bank interaction pro-
tocols, these can be found in the original papers [10, 52]
and we provide performance benchmarks for the bank in
Table 2.

6.2.1 Buying
The modified buy protocol is depicted on the left in

Figure 3, although we also allow for the users to partici-
pate in the original buy protocol (in which the messages
appear in a slightly different order). To initiate the mod-
ified buy protocol, the buyer sends a “setup” message,
which consists of an unendorsed coin and a verifiable es-
crow on its corresponding endorsement. Upon receiving



Figure 3: This figure provides outlines of both our buy and
barter protocols [10, 52]. Until the decision to buy or barter,
the two protocols are identical; the main difference is that in
a buy protocol, the setup message must be sent for each file
exchange, which results in a linear efficiency loss as compared
to bartering.

this message, the seller will use the programs in Section 5
to check the validity of the coin and the escrow. If these
proofs verify, the seller will proceed by sending back an
encrypted version of his file (or file block). Upon receiv-
ing this ciphertext, the buyer will store it (and a Merkle
hash of it, for use with the arbiter in case the protocol
goes wrong later on) and send back a contract, which
consists of a hash of the seller’s file and some session
information. The seller will check this contract and, if
satisfied with the details of the agreement, send back its
decryption key. The buyer can then use this key to de-
crypt the ciphertext it received in the second message of
the protocol. If the decryption is successful, the buyer
will send back his endorsement on the coin. If in these
last steps either party is unsatisfied (for example, the file
does not decrypt or the endorsement isn’t valid for the
coin from the setup message), they can proceed to con-
tact the arbiter and run resolution protocols [10].

6.2.2 Bartering
This protocol is depicted on the right in Figure 3; be-

cause the first two messages of the barter protocol (the
setup message and the encrypted data) are identical to
those in the buy protocol described in the previous sec-
tion, we do not describe them again here and instead
jump directly to the third message. Because bartering
involves an exchange of data, the initiator will respond
to the receipt of the ciphertext with a ciphertext of her
own, corresponding to an encryption of her file. She will
also send a contract, which is similar to the buy contract

but also contains hash information for her file. The re-
sponder will then check this contract as the seller did in
the buy protocol, and if satisfied with the agreement will
send back his decryption key. If the ciphertext decrypts
correctly (i.e., decrypts to the file described in the con-
tract) then the initiator can respond in turn with her own
decryption key. If this decryption key is also valid, both
parties have successfully obtained the desired files and
the barter protocol can be considered complete. If nei-
ther party had to contact the arbiter (for similar reasons
as in the buy protocol; i.e., a file did not decrypt cor-
rectly) then they are free to engage in future barter proto-
cols without the overhead of an additional setup message.
Otherwise, they need to resolve with the arbiter [52].

6.3 Library performance
In Table 2, we can see the computation time and size

complexity for the steps described above, as well as com-
putation and communication overhead for the withdraw
and deposit protocols involving the bank. The numbers
in the table were computed on the same computer as
those in Section 5.4.

The numbers in Table 2 clearly demonstrate our earlier
observation that bartering is considerably more efficient
than buying, both in terms of computation and commu-
nication overhead. The setup message for both buying
and bartering takes about 600ms to generate and approx-
imately 46kB of space. In contrast, the rest of the barter
protocol takes very little time; on the order of millisec-
onds for both parties (and about 1.5kB of total overhead).

In addition, we consider the same protocols run us-
ing a previous “naïve” version of our library, which pro-
vided the same e-cash API and employed some multi-
exponentation optimizations, but did not use ZKPDL.
Using the optimizations available to the interpreter is
considerably faster over our previous approach, mean-
ing that our interpreter has not only made developing our
protocols more convenient, but has also helped to im-
prove efficiency.

7 Related work
Similar to our approach, FairPlayMP [14] (and its pre-

decessor, FairPlay [58]) provides a language-based sys-
tem for secure multi-party computation, allowing multi-
ple parties to jointly compute a function on private inputs
while revealing nothing but the resulting value. At the
heart of FairPlayMP is a programming language, SFDL
2.0 (short for Secure Function Definition Language), that
allows programmers to specify a multi-party computa-
tion. The authors provide a compiler that transforms
SFDL programs into boolean circuits, and an engine that
securely evaluates these circuits and distributes the re-
sulting values among the involved parties. Although this



Operation Time (ms) “Naïve” time (ms) Size (B)
Withdraw (user) 126.35 290.79 20093
Withdraw (bank) 83.36 140.02 1167
Deposit (bank) 82.11 128.36 22526

Buying a block (buyer) 628.49 901.04 47286
Buying a block (seller) 211.89 275.94 203
Barter setup message 608.29 881.32 46934

Checking setup message 210.61 276.98 n/a
Barter after setup (initiator) 18.02 18.28 1280

Barter after setup (responder) 1.11 1.18 204

Table 2: Average time required and network overhead, in milliseconds and bytes respectively, for each stage in our e-cash imple-
mentation. The timings were averaged over twenty runs, and caching and compression optimizations were used. For the naïve
timings, an older version of the library was used, which uses some multi-exponentation optimization techniques but not the inter-
preter; we can see a clear improvement when using ZKPDL. Parameters were used to provide a security level of 80 bits (160-bit
SHA-1 hashing, 128-bit AES encryption, 1024-bit RSA moduli, and 1024-bit DSA signatures).

is a very useful tool, it uses generic circuit techniques,
and thus from an efficiency standpoint it is often more
desirable to develop a multi-party computation scheme
specific to the intended application.

IBM’s Idemix project [20, 15] has independently de-
veloped a library for zero-knowledge proofs and anony-
mous credentials using Java; their library provides a sys-
tem for obtaining, proving, and verifying anonymous
credentials for use in a privacy-preserving identity sys-
tems. While Idemix and our work both provide im-
plementations of anonymous credentials and CL signa-
tures, our focus on efficient, repeated executions of e-
cash transactions has led us to pursue our language-
based strategy and develop a performance-optimized in-
terpreter, unlike the Idemix implementation. The CACE
project, independent of our efforts, has also designed a
high-level language for zero-knowledge protocols; their
work has focused on a compiler that can output imple-
mentation and LATEX code from these descriptions [6, 5],
and automatically check the soundness of compiled pro-
tocols using theorem proving techniques [1].

There are also compilers available [16, 7] for the gen-
eration of proofs of security and correctness for crypto-
graphic protocols. While this is an interesting and impor-
tant area of research, these tools largely focus on static
analysis of protocols rather than performance. Perhaps
more similar to our work, the languages Cryptol [54]
and Stupid [53] provide a simple interface for develop-
ing low-level implementations of cryptographic primi-
tives (such as hash functions) which can then be analyzed
and translated into native code on different platforms.

8 Conclusions and Future Work
In this paper we have introduced a language for gener-

ating (and verifying) widely-used zero-knowledge proofs
of knowledge. Through sample programs, we have

demonstrated how our language is used to express ad-
vanced cryptographic primitives such as blind signatures,
verifiable encryption, and endorsed e-cash. We presented
optimizations provided by our language’s interpreter and
have shown they provide significant benefit.

Atop our language framework, we built a library that
provides optimistic fair exchange protocols based on
electronic cash. We have further presented optimizations
for the protocols provided by Cashlib and argued for their
practicality in network-based applications.

Much future work is possible for the ZKPDL lan-
guage and interpreter. There are many other cryp-
tographic primitives which could be incorporated into
the language (e.g., encryption, signatures, hash func-
tions), and other zero-knowledge protocols that could be
added as relations (e.g., alternate and “fuzzy” schemes
for range proofs). Incorporating these primitives, per-
haps by allowing for subroutines and the composabil-
ity of ZKPDL programs, would allow our library to be
more easily extended and potentially have applicability
to a broader range of secure systems. The analysis of
ZKPDL programs—e.g., to automatically verify proto-
cols and identify security errors through type analysis or
formal verification techniques—provides another inter-
esting area of study.

For increased performance on multicore architectures,
we are working on analyzing dependencies among the
expressions evaluated by our interpreter. The simplic-
ity of our language, e.g., in compute blocks, allows a
coarse-grained approach, as the only dependencies that
arise between lines of ZKPDL are from variables which
have been declared and assigned in previous lines.

Finally, in terms of extending Cashlib, to improve a
bank’s efficiency it might also be possible to speed up
coin verification time by supporting batch verification
techniques [23, 40] for CL signatures; we leave this as
one of many interesting open problems.



Acknowledgments
We gratefully acknowledge George Danezis, our shep-

herd, and our anonymous reviewers for their valuable
feedback on earlier versions of this paper. We also
would like to thank Gabriel Bender and Alex Hutter
for their work developing earlier versions of Cashlib, as
well as Carleton Coffrin for his assistance with ANTLR.
This work is supported in part by NSF CyberTrust grant
0627553.

References
[1] ALMEIDA, J. B., BANGERTER, E., BARBOSA, M., KRENN,

S., SADEGHI, A.-R., AND SCHNEIDER, T. A certifying com-
piler for zero-knowledge proofs of knowledge based on sigma-
protocols. In ESORICS ’10 (2010).

[2] ANDROULAKI, E., RAYKOVA, M., SRIVATSAN, S., STAVROU,
A., AND BELLOVIN, S. PAR: payment for anonymous routing.
In Privacy Enhancing Technologies Symposium (PETS) (2008),
vol. 5134 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 219–236.

[3] ASOKAN, N., SHOUP, V., AND WAIDNER, M. Optimistic fair
exchange of digital signatures. In Proc. Eurocrypt ’98 (1998),
vol. 1403 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 591–606.

[4] AVOINE, G., AND VAUDENAY, S. Optimistic fair exchange
based on publicly verifiable secret sharing. In ACISP (2004),
vol. 3108 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 74–85.

[5] BANGERTER, E., BARZAN, S., KRENN, S., SADEGHI, A.-R.,
SCHNEIDER, T., AND TSAY, J.-K. Bringing zero-knowledge
proofs of knowledge to practice. In 17th International Workshop
on Security Protocols (2009).

[6] BANGERTER, E., CAMENISCH, J., KRENN, S., SADEGHI,
A.-R., AND SCHNEIDER, T. Automatic generation of sound
zero-knowledge protocols. Cryptology ePrint Archive, Report
2008/471, 2008. http://eprint.iacr.org/2008/471.

[7] BARBOSA, M., NOAD, R., PAGE, D., AND SMART, N. First
steps toward a cryptography-aware language and compiler. Cryp-
tology ePrint Archive, Report 2005/160, 2005. http://eprint.
iacr.org/2005/160.

[8] BELENKIY, M., CAMENISCH, J., CHASE, M., KOHLWEISS,
M., LYSYANSKAYA, A., AND SHACHAM, H. Delegatable
anonymous credentials. In Proc. Crypto ’09 (2009), vol. 5677
of Lecture Notes in Computer Science, Springer-Verlag, pp. 108–
125.

[9] BELENKIY, M., CHASE, M., ERWAY, C., JANNOTTI, J.,
KÜPÇÜ, A., AND LYSYANSKAYA, A. Incentivizing outsourced
computation. In NetEcon (2008), pp. 85–90.

[10] BELENKIY, M., CHASE, M., ERWAY, C., JANNOTTI, J.,
KÜPÇÜ, A., LYSYANSKAYA, A., AND RACHLIN, E. Making
P2P accountable without losing privacy. In WPES (2007), ACM,
pp. 31–40.

[11] BELENKIY, M., CHASE, M., KOHLWEISS, M., AND LYSYAN-
SKAYA, A. Non-interactive anonymous credentials. In Proc. 5th
Theory of Cryptography Conference (TCC) (2008), pp. 356–374.

[12] BELLARE, M., AND GOLDREICH, O. On defining proofs of
knowledge. In Proc. Crypto ’92 (1992), vol. 740 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 390–420.

[13] BELLARE, M., AND ROGAWAY, P. Random oracles are practical:
a paradigm for designing efficient protocols. In ACM Conference

on Computer and Communications Security (CCS) ’93 (1993),
pp. 62–73.

[14] BEN-DAVID, A., NISAN, N., AND PINKAS, B. FairplayMP: a
system for secure multi-party computation. In ACM Conference
on Computer and Communications Security (CCS) ’08 (2008),
pp. 257–266.

[15] BICHSEL, P., BINDING, C., CAMENISCH, J., GROSS, T.,
HEYDT-BENJAMIN, T., SOMMER, D., AND ZAVERUCHA, G.
Cryptographic protocols of the identity mixer library, v. 1.0. IBM
Research Report RZ3730, 2009.

[16] BLANCHET, B., AND POINTCHEVAL, D. Automated security
proofs with sequences of games. In Proc. Crypto ’06 (2006),
vol. 4117 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 537–554.

[17] BLUM, M., DE SANTIS, A., MICALI, S., AND PERSIANO, G.
Non-interactive zero-knowledge. SIAM Journal of Computing 20,
6 (1991), 1084–1118.

[18] BOUDOT, F. Efficient proofs that a committed number lies in
an interval. In Proc. Eurocrypt ’00 (2000), vol. 1807 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 431–444.

[19] CAMENISCH, J., CHAABOUNI, R., AND ABHI SHELAT. Effi-
cient protocols for set membership and range proofs. In Proc.
Asiacrypt ’08 (2008), pp. 234–252.

[20] CAMENISCH, J., AND HERREWEGHEN, E. V. Design and im-
plementation of the idemix anonymous credential system. In
ACM Conference on Computer and Communications Security
(CCS) ’02 (2002), ACM, pp. 21–30.

[21] CAMENISCH, J., HOHENBERGER, S., KOHLWEISS, M.,
LYSYANSKAYA, A., AND MEYEROVICH, M. How to win the
clonewars: efficient periodic n-times anonymous authentication.
In ACM Conference on Computer and Communications Security
(CCS) ’06 (2006), pp. 201–210.

[22] CAMENISCH, J., HOHENBERGER, S., AND LYSYANSKAYA, A.
Compact e-cash. In Proc. Eurocrypt ’05 (2005), vol. 3494 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 302–
321.

[23] CAMENISCH, J., HOHENBERGER, S., AND PEDERSEN, M. Ø.
Batch verification of short signatures. In Proc. Eurocrypt
’07 (2007), vol. 4515 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 246–263.

[24] CAMENISCH, J., AND LYSYANSKAYA, A. An efficient sys-
tem for non-transferable anonymous credentials with optional
anonymity revocation. In Proc. Eurocrypt ’01 (2001), vol. 2045
of Lecture Notes in Computer Science, Springer-Verlag, pp. 93–
118.

[25] CAMENISCH, J., AND LYSYANSKAYA, A. A signature scheme
with efficient protocols. In Proc. SCN ’02 (2002), vol. 2576 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 268–
289.

[26] CAMENISCH, J., AND LYSYANSKAYA, A. Signature schemes
and anonymous credentials from bilinear maps. In Proc. Crypto
’04 (2004), vol. 3152 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 56–72.

[27] CAMENISCH, J., LYSYANSKAYA, A., AND MEYEROVICH, M.
Endorsed e-cash. In IEEE Symposium on Security and Privacy
(2007), pp. 101–115.

[28] CAMENISCH, J., AND SHOUP, V. Practical verifiable encryp-
tion and decryption of discrete logarithms. In Proc. Crypto
’03 (2003), vol. 2729 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 126–144.

[29] CHAUM, D. Blind signatures for untraceable payments. In Proc.
Crypto ’82 (1982), Lecture Notes in Computer Science, Springer-
Verlag, pp. 199–203.



[30] CHAUM, D. Security without identification: transaction systems
to make big brother obsolete. Communications of the ACM 28,
10 (1985), 1030–1044.

[31] CHAUM, D., DEN BOER, B., VAN HEYST, E., MJØLSNES,
S. F., AND STEENBEEK, A. Efficient offline electronic checks
(extended abstract). In Proc. Eurocrypt ’89 (1989), pp. 294–301.

[32] COX, B., TYGAR, J., AND SIRBU, M. Netbill security and
transaction protocol. In Proc. 1st Usenix Workshop on Electronic
Commerce (1995), pp. 77–88.

[33] DAEMEN, J., AND RIJMEN, V. Rijndael: AES – The Advanced
Encryption Standard. Springer-Verlag, 2002.

[34] DAMGÅRD, I. On sigma protocols. http://www.daimi.au.
dk/ivan/Sigma.pdf.

[35] DAMGÅRD, I. Payment systems and credential mechanism with
provable security against abuse by individuals. In Proc. Crypto
’88 (1988), vol. 403 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 328–335.

[36] DAMGÅRD, I., DUPONT, K., AND PEDERSEN, M. Ø. Un-
clonable group identification. In Proc. Eurocrypt ’06 (2006),
vol. 4004 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 555–572.

[37] DAMGÅRD, I., AND FUJISAKI, E. A statistically-hiding integer
commitment scheme based on groups with hidden order. In Proc.
Asiacrypt ’02 (2002), vol. 2501 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 125–142.

[38] DAMGÅRD, I., GROTH, J., AND SALOMONSEN, G. The the-
ory and implementation of an electronic voting system. In Proc.
Secure Electronic Voting (SEC) (2003), pp. 77–100.

[39] FEIGE, U., LAPIDOT, D., AND SHAMIR, A. Multiple non-
interactive zero-knowledge proofs based on a single random
string. In Proc. 31st Symposium on Theory of Computing (STOC)
(1990), pp. 308–317.

[40] FERRARA, A. L., GREEN, M., HOHENBERGER, S., AND PED-
ERSEN, M. Ø. Practical short signature batch verification. In
Proc. CT-RSA (2009), pp. 309–324.

[41] FIAT, A., AND SHAMIR, A. How to prove yourself: practi-
cal solutions to identification and signature problems. In Proc.
Crypto ’86 (1986), vol. 263 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 186–194.

[42] FUJISAKI, E., AND OKAMOTO, T. Statistical zero knowledge
protocols to prove modular polynomial relations. In Proc. Crypto
’97 (1997), vol. 1294 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 16–30.

[43] GENNARO, R., GENTRY, C., AND PARNO, B. Non-interactive
verifiable computing: outsourcing computation to untrusted
workers. Cryptology ePrint Archive, Report 2009/547, 2009.
http://eprint.iacr.org/2009/547.

[44] GMP. The GNU MP Bignum library. http://gmplib.org.

[45] GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to
construct random functions (extended abstract). In Proc. 25th
Symposium on the Foundations of Computer Science (FOCS)
(1984), pp. 464–479.

[46] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. Proofs
that yield nothing but their validity or all languages in NP have
zero-knowledge proof systems. J. ACM 38, 3 (1991), 691–729.

[47] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowl-
edge complexity of interactive proof systems. In Proc. 17th Sym-
posium on the Theory of Computing (STOC) (1985), pp. 186–208.

[48] GOLDWASSER, S., MICALI, S., AND RIVEST, R. A digital sig-
nature scheme secure against adaptive chosen-message attacks.
SIAM Journal of Computing 17, 2 (1988), 281–308.

[49] GROTH, J. Non-interactive zero-knowledge arguments for vot-
ing. In ACNS (2005), vol. 3531 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 467–482.

[50] HEYDT-BENJAMIN, T., CHAE, H.-J., DEFEND, B., AND FU,
K. Privacy for public transportation. In Privacy Enhancing Tech-
nologies Symposium (PETS) (2006), pp. 1–19.

[51] ISHIDA, N., MATSUO, S., AND OGATA, W. Divisible voting
scheme. In Proc. ISC ’03 (2003), vol. 2851 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 137–150.

[52] KÜPÇÜ, A., AND LYSYANSKAYA, A. Usable optimistic fair ex-
change. In Proc. CT-RSA ’10 (2010), vol. 5985 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 252–267.

[53] LAURIE, B., AND CLIFFORD, B. Stupid: a meta-
language for cryptography, 2010. http://code.google.com/
p/stupid-crypto.

[54] LEWIS, J., AND MARTIN, B. Cryptol: high assurance, retar-
getable crypto development, and validation. In Proc. Military
Communications Conference ’03 (2003), pp. 820–825.

[55] LIPMAA, H. On Diophantine complexity and statistical zero-
knowledge arguments. In Proc. Asiacrypt ’03 (2003), vol. 2894
of Lecture Notes in Computer Science, Springer-Verlag, pp. 398–
415.

[56] LIPMAA, H., ASOKAN, N., AND NIEMI, V. Secure vickrey
auctions without threshold trust. In Proc. Financial Cryptogra-
phy ’02 (2002), vol. 2357 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 87–101.

[57] LYNN, B. PBC (pairing-based cryptography) library. http://
crypto.stanford.edu/pbc.

[58] MALKHI, D., NISAN, N., PINKAS, B., AND SELLA, Y. Fairplay
- a secure two-party computation system. In USENIX Security
Symposium (2004), pp. 287–302.

[59] MENEZES, A. J., VAN OORSCHOT, P., AND VANSTONE, S.
Handbook of Applied Cryptography. CRC Press, 1997.

[60] MERKLE, R. A digital signature based on a conventional encryp-
tion function. In Proc. Crypto ’88 (1987), vol. 293 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 369–378.

[61] NAOR, M., AND YUNG, M. Universal one-way hash functions
and their cryptographic applications. In Proc. 21st Symposium on
Theory of Computing (STOC) (1989), pp. 33–43.

[62] NGUYEN, L., AND SAFAVI-NAINI, R. Dynamic k-times anony-
mous authentication. In ACNS (2005), vol. 3531 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 318–333.

[63] PAGNIA, H., AND GÄRTNER, F. On the impossibility of fair ex-
change without a trusted third party. Darmstadt University Tech-
nical Report TUD-BS-1999-02, 1999.

[64] PARR, T. ANTLR parser generator. http://www.antlr.org.

[65] PEDERSEN, T. P. Non-interactive and information-theoretic
secure verifiable secret sharing. In Proc. Crypto ’91 (1992),
vol. 576 of Lecture Notes in Computer Science, Springer-Verlag.

[66] RABIN, M., AND SHALLIT, J. Randomized algorithms in num-
ber theory. Communications on Pure and Applied Mathematics
39, 1 (1986), 239–256.

[67] SCHNORR, C.-P. Efficient signature generation by smart cards.
Journal of Cryptology 4, 3 (1991), 161–174.

[68] SCHOENMAKERS, B. Interval proofs revisited. In International
Workshop on Frontiers in Electronic Elections (2005).


