
Chipping Away at Censorship Firewalls with User-Generated Content

Sam Burnett, Nick Feamster, and Santosh Vempala
School of Computer Science, Georgia Tech
{sburnett, feamster, vempala}@cc.gatech.edu

Abstract

Oppressive regimes and even democratic governments
restrict Internet access. Existing anti-censorship systems
often require users to connect through proxies, but these
systems are relatively easy for a censor to discover and
block. This paper offers a possible next step in the cen-
sorship arms race: rather than relying on a single system
or set of proxies to circumvent censorship firewalls, we
explore whether the vast deployment of sites that host
user-generated content can breach these firewalls. To ex-
plore this possibility, we have developed Collage, which
allows users to exchange messages through hidden chan-
nels in sites that host user-generated content. Collage has
two components: a message vector layer for embedding
content in cover traffic; and a rendezvous mechanism
to allow parties to publish and retrieve messages in the
cover traffic. Collage uses user-generated content (e.g.,
photo-sharing sites) as “drop sites” for hidden messages.
To send a message, a user embeds it into cover traffic and
posts the content on some site, where receivers retrieve
this content using a sequence of tasks. Collage makes it
difficult for a censor to monitor or block these messages
by exploiting the sheer number of sites where users can
exchange messages and the variety of ways that a mes-
sage can be hidden. Our evaluation of Collage shows
that the performance overhead is acceptable for sending
small messages (e.g., Web articles, email). We show how
Collage can be used to build two applications: a direct
messaging application, and a Web content delivery sys-
tem.

1 Introduction

Network communication is subject to censorship and
surveillance in many countries. An increasing number
of countries and organizations are blocking access to
parts of the Internet. The Open Net Initiative reports
that 59 countries perform some degree of filtering [36].

For example, Pakistan recently blocked YouTube [47].
Content deemed offensive by the government has been
blocked in Turkey [48]. The Chinese government reg-
ularly blocks activist websites [37], even as China has
become the country with the most Internet users [19];
more recently, China has filtered popular content sites
such as Facebook and Twitter, and even require their
users to register to visit certain sites [43]. Even demo-
cratic countries such as the United Kingdom and Aus-
tralia have recently garnered attention with controversial
filtering practices [35, 54, 55]; South Korea’s president
recently considered monitoring Web traffic for political
opposition [31].

Although existing anti-censorship systems—notably,
onion routing systems such as Tor [18]—have allowed
citizens some access to censored information, these sys-
tems require users outside the censored regime to set up
infrastructure: typically, they must establish and main-
tain proxies of some kind. The requirement for running
fixed infrastructure outside the firewall imposes two lim-
itations: (1) a censor can discover and block the infras-
tructure; (2) benevolent users outside the firewall must
install and maintain it. As a result, these systems are
somewhat easy for censors to monitor and block. For ex-
ample, Tor has recently been blocked in China [45]. Al-
though these systems may continue to enjoy widespread
use, this recent turn of events does beg the question of
whether there are fundamentally new approaches to ad-
vancing this arms race: specifically, we explore whether
it is possible to circumvent censorship firewalls with in-
frastructure that is more pervasive, and that does not re-
quire individual users or organizations to maintain it.

We begin with a simple observation: countless sites al-
low users to upload content to sites that they do not main-
tain or own through a variety of media, ranging from
photos to blog comments to videos. Leveraging the large
number of sites that allow users to upload their own con-
tent potentially yields many small cracks in censorship
firewalls, because there are many different types of me-



dia that users can upload, and many different sites where
they can upload it. The sheer number of sites that users
could use to exchange messages, and the many differ-
ent ways they could hide content, makes it difficult for a
censor to successfully monitor and block all of them.

In this paper, we design a system to circumvent cen-
sorship firewalls using different types of user-generated
content as cover traffic. We present Collage, a method
for building message channels through censorship fire-
walls using user-generated content as the cover medium.
Collage uses existing sites to host user-generated con-
tent that serves as the cover for hidden messages (e.g.,
photo-sharing, microblogging, and video-sharing sites).
Hiding messages in photos, text, and video across a wide
range of host sites makes it more difficult for censors to
block all possible sources of censored content. Second,
because the messages are hidden in other seemingly in-
nocuous messages, Collage provides its users some level
of deniability that they do not have in using existing sys-
tems (e.g., accessing a Tor relay node immediately impli-
cates the user that contacted the relay). We can achieve
these goals with minimal out-of-band communication.

Collage is not the first system to suggest using covert
channels: much previous work has explored how to build
a covert channel that uses images, text, or some other
media as cover traffic, sometimes in combination with
mix networks or proxies [3, 8, 17, 18, 21, 38, 41]. Other
work has also explored how these schemes might be bro-
ken [27], and others hold the view that message hiding
or “steganography” can never be fully secure. Collage’s
new contribution, then, is to design covert channels based
on user-generated content and imperfect message-hiding
techniques in a way that circumvents censorship firewalls
that is robust enough to allow users to freely exchange
messages, even in the face of an adversary that may be
looking for such suspicious cover traffic.

The first challenge in designing Collage is to develop
an appropriate message vector for embedding messages
in user-generated content. Our goal for developing a
message vector is to find user-generated traffic (e.g., pho-
tos, blog comments) that can act as a cover medium, is
widespread enough to make it difficult for censors to
completely block and remove, yet is common enough
to provide users some level of deniability when they
download the cover traffic. In this paper, we build mes-
sage vectors using the user-generated photo-sharing site,
Flickr [24], and the microblogging service, Twitter [49],
although our system in no way depends on these partic-
ular services. We acknowledge that some or all of these
two specific sites may ultimately be blocked in certain
countries; indeed, we witnessed that parts of Flickr were
already blocked in China when accessed via a Chinese
proxy in January 2010. A main strength of Collage’s de-
sign is that blocking a specific site or set of sites will not

Censor

User-generated
Content Host
(Rendezvous

point)

Upload
Media with

Hidden Data

Sender's Machine

Application

Collage

Receiver's Machine

Download
Media with
Hidden Data

Send
Censored
Message

Application

Collage

Receive
Censored
Message

Figure 1: Collage’s interaction with the network. See
Figure 2 for more detail.

fully stem the flow of information through the firewall,
since users can use so many sites to post user-generated
content. We have chosen Flickr and Twitter as a proof of
concept, but Collage users can easily use domestic equiv-
alents of these sites to communicate using Collage.

Given that there are necessarily many places where
one user might hide a message for another, the second
challenge is to agree on rendezvous sites where a sender
can leave a message for a receiver to retrieve. We aim
to build this message layer in a way that the client’s traf-
fic looks innocuous, while still preventing the client from
having to retrieve an unreasonable amount of unwanted
content simply to recover the censored content. The ba-
sic idea behind rendezvous is to embed message seg-
ments in enough cover material so that it is difficult for
the censor to block all segments, even if it joins the sys-
tem as a user; and users can retrieve censored messages
without introducing significant deviations in their traffic
patterns. In Collage, senders and receivers agree on a
common set of network locations where any given con-
tent should be hidden; these agreements are established
and communicated as “tasks” that a user must perform
to retrieve the content (e.g., fetching a particular URL,
searching for content with a particular keyword). Fig-
ure 1 summarizes this process. Users send a message
with three steps: (1) divide a message into many erasure-
encoded “blocks” that correspond to a task, (2) embed
these blocks into user-generated content (e.g., images),
and (3) publish this content at user-generated content
sites, which serve as rendezvous points between senders
and receivers. Receivers then retrieve a subset of these
blocks to recover the original message by performing one
of these tasks.

This paper presents the following contributions.

• We present the design and implementation of Col-
lage, a censorship-resistant message channel built
using user-generated content as the cover medium.
An implementation of the Collage message channel
is publicly available [13].
• We evaluate the performance and security of Col-

lage. Collage does impose some overhead, but the
overhead is acceptable for small messages (e.g., ar-

2



ticles, emails, short messages), and Collage’s over-
head can also be reduced at the cost of making the
system less robust to blocking.

• We present Collage’s general message-layer ab-
straction and show how this layer can serve as the
foundation for two different applications: Web pub-
lishing and direct messaging (e.g., email). We de-
scribe and evaluate these two applications.

The rest of this paper proceeds as follows. Section 2
presents related work. In Section 3, we describe the de-
sign goals for Collage and the capabilities of the cen-
sor. Section 4 presents the design and implementation
of Collage. Section 5 evaluates the performance of Col-
lage’s messaging layer and applications. Section 6 de-
scribes the design and implementation of two applica-
tions that are built on top of this messaging layer. Sec-
tion 7 discusses some limitations of Collage’s design and
how Collage might be extended to cope with increasingly
sophisticated censors. Section 8 concludes.

2 Background and Related Work

We survey other systems that provide anonymous, con-
fidential, or censorship-resistant communication. We
note that most of these systems require setting up a
dedicated infrastructure of some sort, typically based
on proxies. Collage departs significantly from this ap-
proach, since it leverages existing infrastructure. At the
end of this section, we discuss some of the challenges
in building covert communications channels using exist-
ing techniques, which have also been noted in previous
work [15].

Anonymization proxies. Conventional anti-censorship
systems have typically consisted of simple Web proxies.
For example, Anonymizer [3] is a proxy-based system
that allows users to connect to an anonymizing proxy
that sits outside a censoring firewall; user traffic to and
from the proxy is encrypted. These types of systems pro-
vide confidentiality, but typically do not satisfy any of
the other design goals: for example, the existence of any
encrypted traffic might be reason for suspicion (thus vi-
olating deniability), and a censor that controls a censor-
ing firewall can easily block or disrupt communication
once the proxy is discovered (thus violating resilience).
A censor might also be able to use techniques such as
SSL fingerprinting or timing attacks to link senders and
receivers, even if the underlying traffic is encrypted [29].
Infranet attempts to create deniability for clients by em-
bedding censored HTTP requests and content in HTTP
traffic that is statistically indistinguishable from “innocu-
ous” HTTP traffic [21]. Infranet improves deniability,
but it still depends on cooperating proxies outside the

firewall that might be discovered and blocked by cen-
sors. Collage improves availability by leveraging the
large number of user-generated content sites, as opposed
to a relatively smaller number of proxies.

One of the difficult problems with anti-censorship
proxies is that a censor could also discover these prox-
ies and block access to them. Feamster et al. pro-
posed a proxy-discovery method based on frequency
hopping [22]. Kaleidoscope is a peer-to-peer overlay
network to provide users robust, highly available access
to these proxies [42]. This system is complementary to
Collage, as it focuses more on achieving availability, at
the expense of deniability. Collage focuses more on pro-
viding users deniability and preventing the censor from
locating all hosts from where censored content might be
retrieved.

Anonymous publishing and messaging systems.
CovertFS [5] is a file system that hides data in photos
using steganography. Although the work briefly men-
tions challenges in deniability and availability, it is easily
defeated by many of the attacks discussed in Section 7.
Furthermore, CovertFS could in fact be implemented us-
ing Collage, thereby providing the design and security
benefits described in this paper.

Other existing systems allow publishers and clients
to exchange content using either peer-to-peer networks
(Freenet [12]) or using a storage system that makes
it difficult for an attacker to censor content without
also removing legitimate content from the system (Tan-
gler [53]). Freenet provides anonymity and unlinkabil-
ity, but does not provide deniability for users of the sys-
tem, nor does it provide any inherent mechanisms for re-
silience: an attacker can observe the messages being ex-
changed and disrupt them in transit. Tangler’s concept of
document entanglement could be applied to Collage to
prevent the censor from discovering which images con-
tain embedded information.

Anonymizing mix networks. Mix networks (e.g.,
Tor [18], Tarzan [25], Mixminion [17]) offer a network
of machines through which users can send traffic if they
wish to communicate anonymously with one another.
Danezis and Dias present a comprehensive survey of
these networks [16]. These systems also attempt to pro-
vide unlinkability; however, previous work has shown
that, depending on its location, a censor or observer
might be able to link sender and receiver [4, 6, 23, 33, 39,
40]. These systems also do not provide deniability for
users, and typically focus on anonymous point-to-point
communication. In contrast, Collage provides a deniable
means for asynchronous point-to-point communication.
Finally, mix networks like Tor traditionally use a pub-

3



lic relay list which is easily blocked, although work has
been done to try to rectify this [44, 45].

Message hiding and embedding techniques. Collage
relies on techniques that can embed content into cover
traffic. The current implementation of Collage uses an
image steganography tool called outguess [38] for
hiding content in images and a text steganography tool
called SNOW [41] for embedding content in text. We
recognize that steganography techniques offer no for-
mal security guarantees; in fact, these schemes can and
have been subject to various attacks (e.g., [27]). Danezis
has also noted the difficulty in building covert channels
with steganography alone [15]: not only can the algo-
rithms be broken, but also they do not hide the identi-
ties of the communicating parties. Thus, these functions
must be used as components in a larger system, not as
standalone “solutions”. Collage relies on the embedding
functions of these respective algorithms, but its security
properties do not hinge solely on the security properties
of any single information hiding technique; in fact, Col-
lage could have used watermarking techniques instead,
but we chose these particular embedding techniques for
our proof of concept because they had readily available,
working implementations. One of the challenges that
Collage’s design addresses is how to use imperfect mes-
sage hiding techniques to build a message channel that is
both available and offers some amount of deniability for
users.

3 Problem Overview

We now discuss our model for the censor’s capabilities
and our goals for circumventing a censor who has these
capabilities. It is difficult, if not impossible, to fully de-
termine the censor’s current or potential capabilities; as a
result, Collage cannot provide formal guarantees regard-
ing success or deniability. Instead, we present a model
for the censor that we believe is more advanced than cur-
rent capabilities and, hence, where Collage is likely to
succeed. Nevertheless, censorship is an arms race, so as
the censor’s capabilities evolve, attacks against censor-
ship firewalls will also need to evolve in response. In
Section 7, we discuss how Collage’s could be extended
to deal with these more advanced capabilities as the cen-
sor becomes more sophisticated.

We note that although we focus on censors, Collage
also depends on content hosts to store media containing
censored content. Content hosts currently do not appear
to be averse to this usage (e.g., to the best of our knowl-
edge, Collage does not violate the Terms of Service for
either Flickr or Twitter), although if Collage were to be-
come very popular this attitude would likely change. Al-
though we would prefer content hosts to willingly serve

Collage content (e.g., to help users in censored regimes),
Collage can use many content hosts to prevent any single
host from compromising the entire system.

3.1 The Censor
We assume that the censor wishes to allow some Internet
access to clients, but can monitor, analyze, block, and al-
ter subsets of this traffic. We believe this assumption is
reasonable: if the censor builds an entirely separate net-
work that is partitioned from the Internet, there is little
we can do. Beyond this basic assumption, there is a wide
range of capabilities we can assume. Perhaps the most
difficult aspect of modeling the censor is figuring out
how much effort it will devote to capturing, storing, and
analyzing network traffic. Our model assumes that the
censor can deploy monitors at multiple network egress
points and observe all traffic as it passes (including both
content and headers). We consider two types of capabil-
ities: targeting and disruption.

Targeting. A censor might target a particular user be-
hind the firewall by focusing on that user’s traffic pat-
terns; it might also target a particular suspected content
host site by monitoring changes in access patterns to that
site (or content on that site). In most networks, a cen-
sor can monitor all traffic that passes between its clients
and the Internet. Specifically, we assume the censor can
eavesdrop any network traffic between clients on its net-
work and the Internet. A censor’s motive in passively
monitoring traffic would most likely be either to deter-
mine that a client was using Collage or to identify sites
that are hosting content. To do so, the censor could moni-
tor traffic aggregates (i.e., traffic flow statistics, like Net-
Flow [34]) to determine changes in overall traffic pat-
terns (e.g., to determine if some website or content has
suddenly become more popular). The censor can also ob-
serve traffic streams from individual users to determine
if a particular user’s clickstream is suspicious, or other-
wise deviates from what a real user would do. These
capabilities lead to two important requirements for pre-
serving deniability: traffic patterns generated by Collage
should not skew overall distributions of traffic, and the
traffic patterns generated by an individual Collage user
must resemble the traffic generated by innocuous indi-
viduals.

To target users or sites, a censor might also use Col-
lage as a sender or receiver. This assumption makes some
design goals more challenging: a censor could, for exam-
ple, inject bogus content into the system in an attempt to
compromise message availability. It could also join Col-
lage as a client to discover the locations of censored con-
tent, so that it could either block content outright (thus
attacking availability) or monitor users who download
similar sets of content (thus attacking deniability). We

4



also assume that the censor could act as a content pub-
lisher. Finally, we assume that a censor might be able to
coerce a content host to shut down its site (an aggressive
variant of actively blocking requests to a site).

Disruption. A censor might attempt to disrupt commu-
nications by actively mangling traffic. We assume the
censor would not mangle uncensored content in any way
that a user would notice. A censor could, however, inject
additional traffic in an attempt to confuse Collage’s pro-
cess for encoding or decoding censored content. We as-
sume that it could also block traffic at granularities rang-
ing from an entire site to content on specific sites.

The costs of censorship. In accordance with Bellovin’s
recent observations [7], we assume that the censor’s ca-
pabilities, although technically limitless, will ultimately
be constrained by cost and effort. In particular, we as-
sume that the censor will not store traffic indefinitely,
and we assume that the censor’s will or capability to an-
alyze traffic prevents it from observing more complex
statistical distributions on traffic (e.g., we assume that it
cannot perform analysis based on joint distributions be-
tween arbitrary pairs or groups of users). We also assume
that the censor’s computational capabilities are limited:
for example, performing deep packet inspection on ev-
ery packet that traverses the network or running statisti-
cal analysis against all traffic may be difficult or infea-
sible, as would performing sophisticated timing attacks
(e.g., examining inter-packet or inter-request timing for
each client may be computationally infeasible or at least
prohibitively inconvenient). As the censorship arms race
continues, the censor may develop such capabilities.

3.2 Circumventing the Censor

Our goal is to allow users to send and receive mes-
sages across a censorship firewall that would otherwise
be blocked; we want to enable users to communicate
across the firewall by exchanging articles and short mes-
sages (e.g., email messages and other short messages). In
some cases, the sender may be behind the firewall (e.g.,
a user who wants to publish an article from within a cen-
sored regime). In other cases, the receiver might be be-
hind the firewall (e.g., a user who wants to browse a cen-
sored website).

We aim to understand Collage’s performance in real
applications and demonstrate that it is “good enough” to
be used in situations where users have no other means
for circumventing the firewall. We therefore accept that
our approach may impose substantial overhead, and we
do not aim for Collage’s performance to be comparable
to that of conventional networked communication. Ulti-
mately, we strive for a system that is effective and easy
to use for a variety of networked applications. To this

end, Collage offers a messaging library that can support
these applications; Section 6 describes two example ap-
plications.

Collage’s main performance requirement is that the
overhead should be small enough to allow content to be
stored on sites that host user-generated content and to al-
low users to retrieve the hidden content in a reasonable
amount of time (to ensure that the system is usable), and
with a modest amount of traffic overhead (since some
users may be on connections with limited bandwidth).
In Section 5, we evaluate Collage’s storage requirements
on content hosting sites, the traffic overhead of each mes-
sage (as well as the tradeoff between this overhead and
robustness and deniability), and the overall transfer time
for messages.

In addition to performance requirements, we want
Collage to be robust in the face of the censor that we
have outlined in Section 3.1. We can characterize this ro-
bustness in terms of two more general requirements. The
first requirement is availability, which says that clients
should be able to communicate in the face of a censor
that is willing to restrict access to various content and
services. Most existing censorship circumvention sys-
tems do not prevent a censor from blocking access to
the system altogether. Indeed, regimes such as China
have blocked or hijacked applications ranging from web-
sites [43] to peer-to-peer systems [46] to Tor itself [45].
We aim to satisfy availability in the face of the censor’s
targeting capabilities that we described in Section 3.1.

Second, Collage should offer users of the system some
level of deniability; although this design goal is hard to
quantify or formalize, informally, deniability says that
the censor cannot discover the users of the censorship
system. It is important for two reasons. First, if the
censor can identify the traffic associated with an anti-
censorship system, it can discover and either block or
hijack that traffic. As mentioned above, a censor observ-
ing encrypted traffic may still be able to detect and block
systems such as Tor [18]. Second, and perhaps more im-
portantly, if the censor can identify specific users of a
system, it can coerce those users in various ways. Past
events have suggested that censors are able and willing
to both discover and block traffic or sites associated with
these systems and to directly target and punish users who
attempt to defeat censorship. In particular, China re-
quires users to register with ISPs before purchasing Inter-
net access at either home or work, to help facilitate track-
ing individual users [10]. Freedom House reports that in
six of fifteen countries they assessed, a blogger or online
journalist was sentenced to prison for attempting to cir-
cumvent censorship laws—prosecutions have occurred
in Tunisia, Iran, Egypt, Malaysia, and India [26]—and
cites a recent event of a Chinese blogger who was re-
cently attacked [11]. As these regimes have indicated

5



Application
Layer

Message
Layer

Message Data

decode

Message Data

send

encode
Vector
Layer

Block Block Block

Vector

receive

Block Block Block

ApplicationSec. 7

Sec. 4.2

Sec. 4.1

Application

Figure 2: Collage’s layered design model. Operations
are in ovals; intermediate data forms are in rectangles.

their willingness and ability to monitor and coerce indi-
vidual users, we believe that attempting to achieve some
level of deniability is important for any anti-censorship
system.

By design, a user cannot disprove claims that he en-
gages in deniable communication, thus making it easier
for governments and organizations to implicate arbitrary
users. We accept this as a potential downside of deniable
communications, but point out that organizations can al-
ready implicate users with little evidence (e.g., [2]).

4 Collage Design and Implementation

Collage’s design has three layers and roughly mimics the
layered design of the network protocol stack itself. Fig-
ure 2 shows these three layers: the vector, message, and
application layers. The vector layer provides storage for
short data chunks (Section 4.1), and the message layer
specifies a protocol for using the vector layer to send
and receive messages (Section 4.2). A variety of appli-
cations can be constructed on top of the message layer.
We now describe the vector and message layers in de-
tail, deferring discussion of specific applications to Sec-
tion 6. After describing each of these layers, we discuss
rendezvous, the process by which senders and receivers
find each other to send messages using the message layer
(Section 4.3). Finally, we discuss our implementation
and initial deployment (Section 4.4).

4.1 Vector Layer

The vector layer provides a substrate for storing short
data chunks. Effectively, this layer defines the “cover
media” that should be used for embedding a message.
For example, if a small message is hidden in the high
frequency of a video then the vector would be, for ex-
ample, a YouTube video. This layer hides the details of
this choice from higher layers and exposes three oper-
ations: encode, decode, and isEncoded. These op-
erations encode data into a vector, decode data from an
encoded vector, and check for the presence of encoded
data given a secret key, respectively.

Collage imposes requirements on the choice of vec-
tor. First, each vector must have some capacity to hold
encoded data. Second, the population of vectors must
be large so that many vectors can carry many messages.
Third, to satisfy both availability and deniability, it must
be relatively easy for users to deniably send and receive
vectors containing encoded chunks. Fourth, to satisfy
availability, it must be expensive for the censor to disrupt
chunks encoded in a vector. Any vector layer with these
properties will work with Collage’s design, although the
deniability of a particular application will also depend
upon its choice of vector, as we discuss in Section 7.

The feasibility of the vector layer rests on a key obser-
vation: data hidden in user-generated content serves as a
good vector for many applications, since it is both popu-
lous and comes from a wide variety of sources (i.e., many
users). Examples of such content include images pub-
lished on Flickr [24] (as of June 2009, Flickr had about
3.6 billion images, with about 6 million new images per
day [28]), tweets on Twitter [49] (Twitter had about half
a million tweets per day [52], and Mashable projected
about 18 million Twitter users by the end of 2009 [50]),
and videos on YouTube [56], which had about 200, 000
new videos per day as of March 2008 [57].

For concreteness, we examine two classes of vector
encoding algorithms. The first option is steganography,
which attempts to hide data in a cover medium such that
only intended recipients of the data (e.g., those possess-
ing a key) can detect its presence. Steganographic tech-
niques can embed data in a variety of cover media, such
as images, video, music, and text. Steganography makes
it easy for legitimate Collage users to find vectors con-
taining data and difficult for a censor to identify (and
block) encoded vectors. Although the deniability that
steganography can offer is appealing, key distribution is
challenging, and almost all production steganography al-
gorithms have been broken. Therefore, we cannot simply
rely on the security properties of steganography.

Another option for embedding messages is digital wa-
termarking, which is similar to steganography, except
that instead of hiding data from the censor, watermarking
makes it difficult to remove the data without destroying
the cover material. Data embedded using watermarking
is perhaps a better choice for the vector layer: although
encoded messages are clearly visible, they are difficult to
remove without destroying or blocking a large amount of
legitimate content. If watermarked content is stored in a
lot of popular user-generated content, Collage users can
gain some level of deniability simply because all popular
content contains some message chunks.

We have implemented two example vector layers. The
first is image steganography applied to images hosted on
Flickr [24]. The second is text steganography applied to
user-generated text comments on websites such as blogs,

6



send(identifier, data)

1 Create a rateless erasure encoder for data.
2 for each suitable vector (e.g., image file)
3 do
4 Retrieve blocks from the erasure coder to

meet the vector’s encoding capacity.
5 Concatenate and encrypt these blocks using

the identifier as the encryption key.
6 encode the ciphertext into the vector.
7 Publish the vector on a user-generated

content host such that receivers
can find it. See Section 4.3.

receive(identifier)

1 Create a rateless erasure decoder.
2 while the decoder cannot decode the message
3 do
4 Find and fetch a vector from a

user-generated content host.
5 Check if the vector contains encoded

data for this identifier.
6 if the vector is encoded with message data
7 then
8 decode payload from the vector.
9 Decrypt the payload.

10 Split the plaintext into blocks.
11 Provide each decrypted block to

the erasure decoder.
12 return decoded message from erasure decoder

Figure 3: The message layer’s send and receive opera-
tions.

YouTube [56], Facebook [20], and Twitter [49]. De-
spite possible and known limitations to these approaches
(e.g., [27]), both of these techniques have working imple-
mentations with running code [38, 41]. As watermark-
ing and other data-hiding techniques continue to become
more robust to attack, and as new techniques and im-
plementations emerge, Collage’s layered model can in-
corporate those mechanisms. The goal of this paper is
not to design better data-hiding techniques, but rather to
build a censorship-resistant message channel that lever-
ages these techniques.

4.2 Message Layer
The message layer specifies a protocol for using the vec-
tor layer to send and receive arbitrarily long messages
(i.e., exceeding the capacity of a single vector). Observ-
able behavior generated by the message layer should be
deniable with respect to the normal behavior of the user
or users at large.

Figure 3 shows the send and receive operations.
send encodes message data in vectors and publishes

them on content hosts, while receive finds encoded vec-
tors on content hosts and decodes them to recover the
original message. The sender associates a message iden-
tifier with each message, which should be unique for an
application (e.g., the hash of the message). Receivers
use this identifier to locate the message. For encoding
schemes that require a key (e.g., [38]), we choose the
key to be the message identifier.

To distribute message data among several vectors,
the protocol uses rateless erasure coding [9, 32], which
generates a near-infinite supply of short chunks from a
source message such that any appropriately-sized sub-
set of those chunks can reassemble the original mes-
sage. For example, a rateless erasure coder could take a
80 KB message and generate 1 KB chunks such that any
100-subset of those chunks recovers the original mes-
sage. Step 1 of send initializes a rateless erasure encoder
for generating chunks of the message; step 4 retrieves
chunks from the encoder. Likewise, step 1 of receive
creates a rateless erasure decoder, step 11 provides re-
trieved chunks to the decoder, and step 12 recovers the
message.

Most of the remaining send operations are straightfor-
ward, involving encryption and concatenation (step 5),
and operation of the vector layer’s encode function
(step 6). Likewise, receive operates the vector layer’s
decode function (step 8), decrypts and splits the pay-
load (steps 9 and 10). The only more complex operations
are step 7 of send and step 4 of receive, which publish
and retrieve content from user-generated content hosts.
These steps must ensure (1) that senders and receivers
agree on locations of vectors and (2) that publishing and
retrieving vectors is done in a deniable manner. We now
describe how to meet these two requirements.

4.3 Rendezvous: Matching Senders to
Receivers

Vectors containing message data are stored to and re-
trieved from user-generated content hosts; to exchange
messages, senders and receivers must first rendezvous.
To do so, senders and receivers perform sequences of
tasks, which are time-dependent sequences of actions.
An example of a sender task is the sequence of HTTP
requests (i.e., actions) and fetch times corresponding to
“Upload photos tagged with ‘flowers’ to Flickr”; a cor-
responding receiver task is “Search Flickr for photos
tagged with ‘flowers’ and download the first 50 images.”
This scheme poses many challenges: (1) to achieve deni-
ability, all tasks must resemble observable actions com-
pleted by innocuous entities not using Collage (e.g.,
browsing the Web), (2) senders must identify vectors
suitable for each task, and (3) senders and receivers must

7



agree on which tasks to use for each message. This sec-
tion addresses these challenges.

Identifying suitable vectors. Task deniability depends
on properly selecting vectors for each task. For exam-
ple, for the receiver task “search for photos with key-
word flowers,” the corresponding sender task (“publish
a photo with keyword flowers”) must be used with pho-
tos of flowers; otherwise, the censor could easily identify
vectors containing Collage content as those vectors that
do not match their keywords. To achieve this, the sender
picks vectors with attributes (e.g., associated keywords)
that match the expected content of the vector.

Agreeing on tasks for a message. Each user maintains
a list of deniable tasks for common behaviors involv-
ing vectors (Section 4.1) and uses this list to construct
a task database. The database is simply a table of pairs
(Ts, Tr), where Ts is a sender task and Tr is a receiver
task. Senders and receivers construct pairs such that Ts
publishes vectors in locations visited by Tr. For exam-
ple, if Tr performs an image search for photos with key-
word “flowers” then Ts would publish only photos with
that keyword (and actually depicting flowers). Given
this database, the sender and receiver map each message
identifier to one or more task pairs and execute Ts and
Tr, respectively.

The sender and receiver must agree on the mapping
of identifiers to database entries; otherwise, the receiver
will be unable to find vectors published by the sender. If
the sender’s and receiver’s databases are identical, then
the sender and receiver simply use the message identi-
fier as an index into the task database. Unfortunately,
the database may change over time, for a variety of rea-
sons: tasks become obsolete (e.g., Flickr changes its page
structure) and new tasks are added (e.g., it may be ad-
vantageous to add a task for a new search keyword dur-
ing a current event, such as an election). Each time the
database changes, other users need to be made aware of
these changes. To this end, Collage provides two oper-
ations on the task database: add and remove. When a
user receives an advertisement for a new task or a with-
drawal of an existing task he uses these operations to up-
date his copy of the task database.

Learning task advertisements and withdrawals is ap-
plication specific. For some applications, a central
authority sends updates using Collage’s own message
layer, while in others updates are sent offline (i.e., sep-
arate from Collage). We discuss these options in Sec-
tion 6. One feature is common to all applications: de-
lays in propagation of database updates will cause dif-
ferent users to have slightly different versions of the task
database, necessitating a mapping for identifiers to tasks
that is robust to slight changes to the database.

1 2 3 4 5 6 7 8 9 10
Tasks mapped to each identifier

0

1

2

3

4

5

6

7

8

9

E
x
p
e
ct

e
d
 t

a
sk

s 
sh

a
re

d
 b

y
 b

o
th

 d
a
ta

b
a
se

s

90% agreement

75% agreement

50% agreement

Figure 4: The expected number of common tasks when
mapping the same message identifier to a task subset, be-
tween two task databases that agree on varying percent-
ages of tasks.

To reconcile database disagreements, our algorithm
for mapping message identifiers to task pairs uses con-
sistent hash functions [30], which guarantee that small
changes to the space of output values have minimal im-
pact on the function mapping. We initialize the task
database by choosing a pseudorandom hash function h
(e.g., SHA-1) and precomputing h(t) for each task t. The
algorithm for mapping an identifier M to a m-subset of
the database is simple: compute h(M) and take the m
entries from the task database with precomputed hash
values closest to h(M); these task pairs are the mapping
for M .

Using consistent hashing to map identifiers to task
pairs provides an important property: updating the
database results in only small changes to the mappings
for existing identifiers. Figure 4 shows the expected
number of tasks reachable after removing a percentage
of the task database and replacing it with new tasks.
As expected, increasing the number of tasks mapped for
each identifier decreases churn. Additionally, even if half
of the database is replaced, the sender and receiver can
agree on at least one task when three or more tasks are
mapped to each identifier. In practice, we expect the dif-
ference between two task databases to be around 10%, so
three tasks to each identifier is sufficient. Thus, two par-
ties with slightly different versions of the task database
can still communicate messages: although some tasks
performed by the receiver (i.e., mapped using his copy
of the database) will not yield content, most tasks will.

Choosing deniable tasks. Tasks should mimic the nor-
mal behavior of users, so that a user who is perform-
ing these tasks is unlikely to be pinpointed as a Collage

8



user (which, in and of itself, could be incriminating). We
design task sequences to “match” those of normal visi-
tors to user-generated content sites. Tasks for different
content hosts have different deniability criteria. For ex-
ample, the task of looking at photos corresponding to a
popular tag or tag pair offers some level of deniability,
because an innocuous user might be looking at popular
images anyway. The challenge, of course, is finding sets
of tasks that are deniable, yet focused enough to allow a
user to retrieve content in a reasonable amount of time.
We discuss the issue of deniability further in Section 7.

4.4 Implementation
Collage requires minimal modification to existing infras-
tructure, so it is small and self-contained, yet modu-
lar enough to support many possible applications; this
should facilitate adoption. We have released a version of
Collage [13].

We have implemented Collage as a 650-line Python
library, which handles the logic of the message layer, in-
cluding the task database, vector encoding and decod-
ing, and the erasure coding algorithm. To execute tasks,
the library uses Selenium [1], a popular web browser au-
tomation tool; Selenium visits web pages, fills out forms,
clicks buttons and downloads vectors. Executing tasks
using a real web browser frees us from implementing an
HTTP client that produces realistic Web traffic (e.g., by
loading external images and scripts, storing cookies, and
executing asynchronous JavaScript requests).

We represent tasks as Python functions that perform
the requisite task. Table 1 shows four examples. Each
application supplies definitions of operations used by the
tasks (e.g., FindPhotosOfFlickrUser). The task
database is a list of tasks, sorted by their MD5 hash;
to map an identifier to a set of tasks, the database finds
the tasks with hashes closest to the hash of the message
identifier. After mapping, receivers simply execute these
tasks and decode the resulting vectors. Senders face a
more difficult task: they must supply the task with a vec-
tor suitable for that task. For instance, the task “publish
a photo tagged with ‘flowers”’ must be supplied with a
photo of flowers. We delegate the task of finding vectors
meeting specific requirements to a vector provider. The
exact details differ between applications; one of our ap-
plications searches a directory of annotated photos, while
another prompts the user to type a phrase containing cer-
tain words (e.g., “Olympics”).

5 Performance Evaluation

This section evaluates Collage according to the three per-
formance metrics introduced in Section 3: storage over-
head on content hosts, network traffic, and transfer time.

We characterize Collage’s performance by measuring its
behavior in response to a variety of parameters. Recall
that Collage (1) processes a message through an erasure
coder, (2) encodes blocks inside vectors, (3) executes
tasks to distribute the message vectors to content hosts,
(4) retrieves some of these vectors from content hosts,
and (5) decodes the message on the receiving side. Each
stage can affect performance. In this section, we evalu-
ate how each of these factors affects the performance of
the message layer; Section 6 presents additional perfor-
mance results for Collage applications using real content
hosts.

• Erasure coding can recover an n-block message
from (1+ ε

2 )n of its coded message blocks. Collage
uses ε = 0.01, as recommended by [32], yielding an
expected 0.5% increase in storage, traffic, and trans-
fer time of a message.

• Vector encoding stores erasure coded blocks inside
vectors. Production steganography tools achieve
encoding rates of between 0.01 and 0.05, translating
to between 20 and 100 factor increases in storage,
traffic, and transfer time [38]. Watermarking algo-
rithms are less efficient; we hope that innovations in
information hiding can reduce this overhead.

• Sender and receiver tasks publish and retrieve
vectors from content hosts. Tasks do not affect the
storage requirement on content hosts, but each task
can impose additional traffic and time. For exam-
ple, a task that downloads images by searching for
them on Flickr can incur hundreds of kilobytes of
traffic before finding encoded vectors. Depending
on network connectivity, this step could take any-
where from a few seconds to a few minutes and can
represent an overhead of several hundred percent,
depending on the size of each vector.

• The number of executed tasks differs between
senders and receivers. The receiver performs as
many tasks as necessary until it is able to decode
the message; this number depends on the size of
the message, the number of vectors published by
the sender, disagreements between sender and re-
ceiver task databases, the dynamics of the content
host (e.g., a surge of Flickr uploads could “bury”
Collage encoded vectors), and the number of tasks
and vectors blocked by the censor. While testing
Collage, we found that we needed to execute only
one task for the majority of cases.

The sender must perform as many tasks as neces-
sary so that, given the many ways the receiver can
fail to obtain vectors, the receiver will still be able
to retrieve enough vectors to decode the message.
In practice, this number is difficult to estimate and

9



Content host Sender task Receiver task
Flickr PublishAsUser(‘User’, Photo, MsgData) FindPhotosOfFlickrUser(‘User’)
Twitter PostTweet(‘Watching the Olympics’, MsgData) SearchTwitter(‘Olympics’)

Table 1: Examples of sender and receiver task snippets.

vectors are scarce, so the sender simply uploads as
many vectors as possible.

We implemented a Collage application that publishes
vectors on a simulated content host, allowing us to ob-
serve the effects of these parameters. Figure 5 shows the
results of running several experiments across Collage’s
parameter space. The simulation sends and receives a
23 KB one-day news summary. The message is erasure
coded with a block size of 8 bytes and encoded into sev-
eral vectors randomly drawn from a pool for vectors with
average size 200 KB. Changing the message size scales
the metrics linearly, while increasing the block size only
decreases erasure coding efficiency.

Figure 5a demonstrates the effect of vector encoding
efficiency on required storage on content hosts. We used
a fixed-size identifier-to-task mapping of ten tasks. We
chose four send rates, which are multiples of the mini-
mum number of tasks required to decode the message:
the sender may elect to send more vectors if he believes
some vectors may be unreachable by the receiver. For
example, with a send rate of 10x, the receiver can still
retrieve the message even if 90% of vectors are unavail-
able. Increasing the task mapping size may be necessary
for large send rates, because sending more vectors re-
quires executing more tasks. These results give us hope
for the future of information hiding technology: current
vector encoding schemes are around 5% efficient; ac-
cording to Figure 5a, this a region where a significant
reduction in storage is possible with only incremental
improvements in encoding techniques (i.e., the slope is
steep).

Figure 5b predicts total sender and receiver traffic
from task overhead traffic, assuming 1 MB of vector stor-
age on the content host. As expected, blocking more vec-
tors increases traffic, as the receiver must execute more
tasks to receive the same message content. Increasing
storage beyond 1 MB decreases receiver traffic, because
more message vectors are available for the same block-
ing rate. An application executed on a real content host
transfers around 1 MB of overhead traffic for a 23 KB
message.

Finally, Figure 5c shows the overall transfer time for
senders and receivers, given varying time overheads.
These overheads are optional for both senders and re-
ceivers and impose delays between requests to evade
timing analysis by the censor. For example, Collage
could build a distribution of inter-request timings from

the user’s normal (i.e., non-Collage) traffic and impose
this timing distribution on Collage tasks. We simulated
the total transfer time using three network connection
speeds. The first (768 Kbps download and 384 Kbps
upload) is a typical entry-level broadband package and
would be experienced if both senders and receivers are
typical users within the censored domain. The second
(768/10000 Kbps) would be expected if the sender has a
high-speed connection, perhaps operating as a dedicated
publisher outside the censored domain; one of the ap-
plications in Section 6 follows this model. Finally, the
6000/1000 Kbps connection represents expected next-
generation network connectivity in countries experienc-
ing censorship. In all cases, reasonable delays are im-
posed upon transfers, given the expected use cases of
Collage (e.g., fetching daily news article). We confirmed
this result: a 23 KB message stored on a real content host
took under 5 minutes to receive over an unreliable broad-
band wireless link; sender time was less than 1 minute.

6 Building Applications with Collage

Developers can build a variety of applications using the
Collage message channel. In this section, we outline re-
quirements for using Collage and present two example
applications.

6.1 Application Requirements

Even though application developers use Collage as a se-
cure, deniable messaging primitive, they must still re-
main conscious of overall application security when us-
ing these primitives. Additionally, the entire vector layer
and several parts of the message layer presented in Sec-
tion 4 must be provided by the application. These com-
ponents can each affect correctness, performance, and
security of the entire application. In this section, we dis-
cuss each of these components. Table 2 summarizes the
component choices.

Vectors, tasks, and task databases. Applications spec-
ify a class of vectors and a matching vector encoding al-
gorithm (e.g., Flickr photos with image steganography)
based on their security and performance characteristics.
For example, an application requiring strong content de-
niability for large messages could use a strong steganog-
raphy algorithm to encode content inside of videos.

10



0.0 0.2 0.4 0.6 0.8 1.0
Vector encoding efficiency

101

102

103

104

105

S
to

ra
g
e
 r

e
q
u
ir

e
d
 o

n
 c

o
n
te

n
t 

h
o
st

 (
K

B
)

10.0x send rate

2.0x send rate

1.5x send rate

1.1x send rate

(a) Storage, for various sender redundancies

0 500 1000 1500 2000
Per-Task Traffic Overhead (KB)

0

5

10

15

20

25

30

T
o
ta

l 
T
ra

ff
ic

 (
M

B
)

80.0% blocked

60.0% blocked

40.0% blocked

20.0% blocked

(b) Traffic, for various vector block rates

0 50 100 150 200 250 300
Per-Task Time Overhead (seconds)

0

50

100

150

200

250

300

350

400

T
o
ta

l 
T
ra

n
sf

e
r 

T
im

e
 (

se
co

n
d
s)

768/384 Kbps

6000/1000 Kbps

768/10000 Kbps

(c) Transfer time, for various network connectivity
rates (download/upload)

Figure 5: Collage’s performance metrics, as measured using a simulated content host.

Web Content Proxy (Sec. 6.2) Covert Email (Sec. 6.3) Other options
Vectors Photos Text Videos, music
Vector encoding Image steganography Text steganography Video steganography, digital watermarking
Vector sources Users of content hosts Covert Email users Automatic generation, crawl the Web
Tasks Upload/download Flickr photos Post/receive Tweets Other user-generated content host(s)
Database distribution Send by publisher via proxy Agreement by users Prearranged algorithm, “sneakernet”
Identifier security Distributed by publisher, groups Group key Existing key distribution infrastructure

Table 2: Summary of application components.

Tasks are application-specific: uploading photos to
Flickr is different from posting tweets on Twitter. Appli-
cations insert tasks into the task database, and the mes-
sage layer executes these tasks when sending and receiv-
ing messages. The applications specify how many tasks
are mapped to each identifier for database lookups. In
Section 4.3, we showed that mapping each identifier to
three tasks ensures that, on average, users can still com-
municate even with slightly out-of-date databases; appli-
cations can further boost availability by mapping more
tasks to each identifier.

Finally, applications must distribute the task database.
In some instances, a central authority can send the
database to application users via Collage itself. In other
cases, the database is communicated offline. The appli-
cation’s task database should be large enough to ensure
diversity of tasks for messages published at any given
time; if n messages are published every day, then the
database should have cn tasks, where c is at least the
size of the task mapping. Often, tasks can be generated
programmatically, to reduce network overhead. For ex-
ample, our Web proxy (discussed next) generates tasks
from a list of popular Flickr tags.

Sources of vectors. Applications must acquire vectors
used to encode messages, either by requiring end-users
to provide their own vectors (e.g., from a personal photo
collection), automatically generating them, or obtaining

them from an external source (e.g., a photo donation sys-
tem).

Identifier security. Senders and receivers of a message
must agree on a message identifier for that message. This
process is analogous to key distribution. There is a gen-
eral tradeoff between ease of message identifier distri-
bution and security of the identifier: if users can easily
learn identifiers, then more users will use the system, but
it will also be easier for the censor to obtain the identi-
fier; the inverse is also true. Developers must choose a
distribution scheme that meets the intended use of their
application. We discuss two approaches in the next two
sections, although there are certainly other possibilities.

Application distribution and bootstrapping. Users ul-
timately need a secure one-time mechanism for obtain-
ing the application, without using Collage. A variety of
distribution mechanisms are possible: clients could re-
ceive software using spam or malware as a propagation
vector, or via postal mail or person-to-person exchange.
There will ultimately be many ways to distribute appli-
cations without the knowledge of the censor. Other sys-
tems face the same problem [21]. This requirement does
not obviate Collage, since once the user has received the
software, he or she can use it to exchange an arbitrary
number of messages.

To explore these design parameters in practice, we built
two applications using Collage’s message layer. The first

11



Figure 6: Proxied Web content passes through multiple
parties before publication on content hosts. Each group
downloads a different subset of images when fetching the
same URL.

is a Web content proxy whose goal is to distribute content
to many users; the second is a covert email system.

6.2 Web Content Proxy

We have built an asynchronous Web proxy using Col-
lage’s message layer, with which a publisher in an un-
censored region makes content available to clients inside
censored regimes. Unlike traditional proxies, our proxy
shields both the identities of its users and the content
hosted from the censor.

The proxy serves small Web documents, such as arti-
cles and blog posts, by steganographically encoding con-
tent into images hosted on photo-sharing websites like
Flickr and Picasa. A standard steganography tool [38]
can encode a few kilobytes in a typical image, mean-
ing most hosted documents will fit within a few images.
To host many documents simultaneously, however, the
publisher needs a large supply of images; to meet this
demand, the publisher operates a service allowing gen-
erous users of online image hosts to donate their im-
ages. The service takes the images, encodes them with
message data, and returns the encoded images to their
owners, who then upload them to the appropriate image
hosts. Proxy users download these photos and decode
their contents. Figure 6 summarizes this process. Notice
that the publisher is outside the censored domain, which
frees us from worrying about sender deniability.

To use a proxy, users must discover a publisher, reg-
ister with that publisher, and be notified of an encryp-
tion key. Publishers are identified by their public key
so discovering publishers is reduced to a key distribution
exercise, albeit that these keys must be distributed with-
out the suspicion of the censor. Several techniques are
feasible: the key could be delivered alongside the client
software, derived from a standard SSL key pair, or dis-

tributed offline. Like any key-based security system, our
proxy must deal with this inherent bootstrapping prob-
lem.

Once the client knows the publisher’s public key, it
sends a message requesting registration. The message
identifier is the publisher’s public key and the message
payload contains the public key of the client encrypted
using the publisher’s public key. This encryption ensures
that only the publisher knows the client’s public key. The
publisher receives and decrypts the client’s registration
request using his own private key.

The client is now registered but doesn’t know where
content is located. Therefore, the publisher sends the
client a message containing a group key, encrypted using
the client’s public key. The group key is shared between a
small number of proxy users and is used to discover iden-
tifiers of content. For security, different groups of users
fetch content from different locations; this prevents any
one user from learning about (and attacking) all content
available through the proxy.

After registration is complete, clients can retrieve con-
tent. To look up a URL u, a client hashes u with a keyed
hash function using the group key. It uses the hash as the
message identifier for receive.

Unlike traditional Web proxies, only a limited amount
of content is available though our proxy. Therefore,
to accommodate clients’ needs for unavailable content,
clients can suggest content to be published. To suggest a
URL, a client sends the publisher a message containing
the requested URL. If the publisher follows the sugges-
tion, then it publishes the URL for users of that client’s
group key.

Along with distributing content, the publisher pro-
vides updates to the task database via the proxy itself
(at the URL proxy://updates). The clients oc-
casionally fetch content from this URL to keep syn-
chronized with the publisher’s task database. The con-
sistent hashing algorithm introduced in Section 4.3 al-
lows updates to be relatively infrequent; by default, the
proxy client updates its database when 20% of tasks have
been remapped due to churn (i.e., there is a 20% reduc-
tion in the number of successful task executions). Fig-
ure 4 shows that there may be many changes to the task
database before this occurs.

Implementation and Evaluation. We have imple-
mented a simple version of the proxy and can use it
to publish and retrieve documents on Flickr. The task
database is a set of tasks that search for combinations
(e.g., “vacation” and “beach”) of the 130 most popular
tags. A 23 KB one-day news summary requires nine
JPEG photos (≈ 3 KB data per photo, plus encoding
overhead) and takes approximately 1 minute to retrieve
over a fast network connection; rendering web pages and
large photos takes a significant fraction of this time. Note

12



that the document is retrieved immediately after publi-
cation; performance decays slightly over time because
search results are displayed in reverse chronological or-
der. We have also implemented a photo donation service,
which accepts Flickr photos from users, encodes them
with censored content, and uploads them on the user’s
behalf. This donation service is available for down-
load [13].

6.3 Covert Email

Although our Web proxy provides censored content to
many users, it is susceptible to attack from the censor
for precisely this reason: because no access control is
performed, the censor could learn the locations of pub-
lished URLs using the proxy itself and potentially mount
denial-of-service attacks. To provide greater security and
availability, we present Covert Email, a point-to-point
messaging system built on Collage’s message layer that
excludes the censor from sending or receiving messages,
or observing its users. This design sacrifices scalability:
to meet these security requirements, all key distribution
is done out of band, similar to PGP key signing.

Messages sent with Covert Email will be smaller and
potentially more frequent than for the proxy, so Covert
Email uses text vectors instead of image vectors. Us-
ing text also improves deniability, because receivers are
inside the censored domain, and publishing a lot of
text (e.g., comments, tweets) is considered more deni-
able than many photos. Blogs, Twitter, and comment
posts can all be used to store message chunks. Because
Covert Email is used between a closed group of users
with a smaller volume of messages, the task database is
smaller and updated less often without compromising de-
niability. Additionally, users can supply the text vectors
needed to encode content (i.e., write or generate them),
eliminating the need for an outside vector source. This
simplifies the design.

Suppose a group of mutually trusted users wishes to
communicate using Covert Email. Before doing so, it
must establish a shared secret key, for deriving message
identifiers for sending and receiving messages. This one-
time exchange is done out-of-band; any exchange mech-
anism works as long as the censor is unaware that a key
exchange takes place. Along with exchanging keys, the
group establishes a task database. At present, a database
is distributed with the application; the group can aug-
ment its task database and notify members of changes
using Covert Email itself.

Once the group has established a shared key and a task
database, its members can communicate. To send email
to Bob, Alice generates a message identifier by encrypt-
ing a tuple of his email address and the current date, us-
ing the shared secret key. The date serves as a salt and

ensures variation in message locations over time. Al-
ice then sends her message to Bob using that identifier.
Here, Bob’s email address is used only to uniquely iden-
tify him within the group; in particular, the domain por-
tion of the address serves no purpose for communication
within the group.

To receive new mail, Bob attempts to receive mes-
sages with identifiers that are the encryption of his email
address and some date. To check for new messages, he
checks each date since the last time he checked mail.
For example, if Bob last checked his mail yesterday, he
checks two dates: yesterday and today.

If one group member is outside the censored domain,
then Covert Email can interface with traditional email.
This user runs an email server and acts as a proxy for
the other members of the group. To send mail, group
members send a message to the proxy, requesting that
it be forwarded to a traditional email address. Like-
wise, when the proxy receives a traditional email mes-
sage, it forwards it to the requisite Covert Email user.
This imposes one obvious requirement on group mem-
bers sending mail using the proxy: they must use email
addresses where the domain portion matches the domain
of the proxy email server. Because the domain serves no
other purpose in Covert Email addresses, implementing
this requirement is easy.

Implementation and Evaluation. We have imple-
mented a prototype application for sending and retriev-
ing Covert Email. Currently, the task database is a set
of tasks that search posts of other Twitter users. We
have also written tasks that search for popular keywords
(e.g., “World Cup”). To demonstrate the general ap-
proach, we have implemented an (insecure) proof-of-
concept steganography algorithm that stores data by al-
tering the capitalization of words. Sending a short 194-
byte message required three tweets and took five sec-
onds. We have shown that Covert E-mail has the po-
tential to work in practice, although this application ob-
viously needs many enhancements before general use,
most notably a secure text vector encoding algorithm and
more deniable task database.

7 Threats to Collage

This section discusses limitations of Collage in terms of
the security threats it is likely to face from censors; we
also discuss possible defenses. Recall from Section 3.2
that we are concerned with two security metrics: avail-
ability and deniability. Given the unknown power of the
censor and lack of formal information hiding primitives
in this context, both goals are necessarily best effort.

13



7.1 Availability

A censor may try to prevent clients from sending and re-
ceiving messages. Our strongest argument for Collage’s
availability depends on a censor’s unwillingness to block
large quantities of legitimate content. This section dis-
cusses additional factors that contribute to Collage’s cur-
rent and future availability.

The censor could block message vectors, but a cen-
sor that wishes to allow access to legitimate content may
have trouble doing so since censored messages are en-
coded inside otherwise legitimate content, and message
vectors are, by design, difficult to remove without de-
stroying the cover content. Furthermore, some encod-
ing schemes (e.g., steganography) are resilient against
more determined censors, because they hide the presence
of Collage data; blocking encoded vectors then also re-
quires blocking many legitimate vectors.

The censor might instead block traffic patterns resem-
bling Collage’s tasks. From the censor’s perspective, do-
ing so may allow legitimate users access to content as
long as they do not use one of the many tasks in the task
database to retrieve the content. Because tasks in the
database are “popular” among innocuous users by de-
sign, blocking a task may also disrupt the activities of
legitimate users. Furthermore, if applications prevent the
censor from knowing the task database, mounting this
attack becomes quite difficult.

The censor could block access to content hosts,
thereby blocking access to vectors published on those
hosts. Censors have mounted this attack in practice; for
example, China is currently blocking Flickr and Twitter,
at least in part [43]. Although Collage cannot prevent
these sites from being blocked, applications can reduce
the impact of this action by publishing vectors across
many user-generated content sites, so even if the cen-
sor blocks a few popular sites there will still be plenty of
sites that host message vectors. One of the strengths of
Collage’s design is that it does not depend on any spe-
cific user-generated content service: any site that can
host content for users can act as a Collage drop site.

The censor could also try to prevent senders from pub-
lishing content. This action is irrelevant for applications
that perform all publication outside a censored domain.
For others, it is impractical for the same reasons that
blocking receivers is impractical. Many content hosts
(e.g., Flickr, Twitter) have third-party publication tools
that act as proxies to the publication mechanism [51].
Blocking all such tools is difficult, as evidenced by Iran’s
failed attempts to block Twitter [14].

Instead of blocking access to publication or retrieval
of user-generated content, the censor could coerce con-
tent hosts to remove vectors or disrupt the content inside
them. For certain vector encodings (e.g., steganography)

the content host may be unable to identify vectors con-
taining Collage content; in other cases (e.g., digital wa-
termarking), removing encoded content is difficult with-
out destroying the outward appearance of the vector (e.g.,
removing the watermark could induce artifacts in a pho-
tograph).

7.2 Deniability

As mentioned in Section 3.1, the censor may try to
compromise the deniability of Collage users. Intuitively,
a Collage user’s actions are deniable if the censor can-
not distinguish the use of Collage from “normal” Internet
activity. Deniability is difficult to quantify; others have
developed metrics for anonymity [39], and we are work-
ing on quantitative metrics for deniability in our ongoing
work. Instead, we explore deniability somewhat more in-
formally and aim to understand how a censor can attack
a Collage user’s deniability and how future extensions to
Collage might mitigate these threats. The censor may at-
tempt to compromise the deniability of either the sender
or the receiver of a message. We explore various ways
the censor might mount these attacks, and possible ex-
tensions to Collage to defend against them.

The censor may attempt to identify senders. Appli-
cations can use several techniques to improve deniabil-
ity. First, they can choose deniable content hosts; if a
user has never visited a particular content host, it would
be unwise to upload lots of content there. Second, vec-
tors must match tasks; if a task requires vectors with cer-
tain properties (e.g., tagged with “vacation”), vectors not
meeting those requirements are not deniable. The vec-
tor provider for each application is responsible for ensur-
ing this. Finally, publication frequency must be indistin-
guishable from a user’s normal behavior and the publi-
cation frequency of innocuous users.

The censor may also attempt to identify receivers, by
observing their task sequences. Several application pa-
rameters affect receiver deniability. As the size of the
task database grows, clients have more variety (and thus
deniability), but must crawl through more data to find
message chunks. Increasing the number of tasks mapped
to each identifier gives senders more choice of publica-
tion locations, but forces receivers to sift through more
content when retrieving messages. Increasing variety of
tasks increases deniability, but requires a human author
to specify each type of task. The receiver must decide
an ordering of tasks to visit; ideally, receivers only visit
tasks that are popular among innocuous users.

Ultimately, the censor may develop more sophisticated
techniques to defeat user deniability. For example, a cen-
sor may try to target individual users by mounting timing
attacks (as have been mounted against other systems like
Tor [4, 33]), or may look at how browsing patters change

14



across groups of users or content sites. In these cases,
we believe it is possible to extend Collage so that its re-
quest patterns more closely resemble those of innocuous
users. To do so, Collage could monitor a user’s normal
Web traffic and allow Collage traffic to only perturb ob-
servable distributions (e.g., inter-request timings, traffic
per day, etc.) by small amounts. Doing so could obvi-
ously have massive a impact on Collage’s performance.
Preliminary analysis shows that over time this technique
could yield sufficient bandwidth for productive commu-
nication, but we leave its implementation to future work.

8 Conclusion

Internet users in many countries need safe, robust mech-
anisms to publish content and the ability to send or pub-
lish messages in the face of censorship. Existing mecha-
nisms for bypassing censorship firewalls typically rely on
establishing and maintaining infrastructure outside the
censored regime, typically in the form of proxies; un-
fortunately, when a censor blocks these proxies, the sys-
tems are no longer usable. This paper presented Collage,
which bypasses censorship firewalls by piggybacking
messages on the vast amount and types of user-generated
content on the Internet today. Collage focuses on provid-
ing both availability and some level of deniability to its
users, in addition to more conventional security proper-
ties.

Collage is a further step in the ongoing arms race to
circumvent censorship. As we discussed, it is likely that,
upon seeing Collage, censors will take the next steps to-
wards disrupting communications channels through the
firewall—perhaps by mangling content, analyzing joint
distributions of access patterns, or analyzing request
timing distributions. However, as Bellovin points out:
“There’s no doubt that China—or any government so-
minded—can censor virtually everything; it’s just that
the cost—cutting most communications lines, and de-
ploying enough agents to vet the rest—is prohibitive.
The more interesting question is whether or not ‘enough’
censorship is affordable.” [7] Although Collage itself
may ultimately be disrupted or blocked, it represents an-
other step in making censorship more costly to the cen-
sors; we believe that its underpinnings—the use of user-
generated content to pass messages through censorship
firewalls—will survive, even as censorship techniques
grow increasingly more sophisticated.

Acknowledgments

This work was funded by NSF CAREER Award CNS-
0643974, an IBM Faculty Award, and a Sloan Fellow-
ship. We thank our shepherd, Micah Sherr, and the
anonymous reviewers for their valuable guidance and
feedback. We also thank Hari Balakrishnan, Mike Freed-
man, Shuang Hao, Robert Lychev, Murtaza Motiwala,
Anirudh Ramachandran, Srikanth Sundaresan, Valas
Valancius, and Ellen Zegura for feedback.

References

[1] Selenium Web application testing system. http://www.
seleniumhq.org.

[2] Riaa sues computer-less family, 234 others, for file shar-
ing. http://arstechnica.com/old/content/2006/
04/6662.ars, apr 2006.

[3] Anonymizer. http://www.anonymizer.com/.
[4] A. Back, U. Möller, and A. Stiglic. Traffic analysis attacks and

trade-offs in anonymity providing systems. In I. S. Moskowitz,
editor, Proceedings of Information Hiding Workshop (IH 2001),
pages 245–257. Springer-Verlag, LNCS 2137, April 2001.

[5] A. Baliga, J. Kilian, and L. Iftode. A web based covert file sys-
tem. In HOTOS’07: Proceedings of the 11th USENIX workshop
on Hot topics in operating systems, pages 1–6, Berkeley, CA,
USA, 2007. USENIX Association.

[6] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker.
Low-resource routing attacks against tor. In Proceedings of the
Workshop on Privacy in the Electronic Society (WPES 2007),
Washington, DC, USA, Oct. 2007.

[7] S. M. Bellovin. A Matter of Cost. New York Times
Room for Debate Blog. Can Google Beat China?
http://roomfordebate.blogs.nytimes.com/
2010/01/15/can-google-beat-china/#steven,
Jan. 2010.

[8] P. Boucher, A. Shostack, and I. Goldberg. Freedom systems 2.0
architecture. White paper, Zero Knowledge Systems, Inc., De-
cember 2000.

[9] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. In Proc.
ACM SIGCOMM, pages 56–67, Vancouver, British Columbia,
Canada, Sept. 1998.

[10] China Web Sites Seeking Users’ Names. http:
//www.nytimes.com/2009/09/06/world/asia/
06chinanet.html, Sept. 2009.

[11] Chinese blogger Xu Lai stabbed in Beijing bookshop.
http://www.guardian.co.uk/world/2009/feb/
15/china-blogger-xu-lai-stabbed, Feb. 2009.

[12] I. Clarke. A distributed decentralised information storage and
retrieval system. Master’s thesis, University of Edinburgh, 1999.

[13] Collage. http://www.gtnoise.net/collage/.
[14] Could Iran Shut Down Twitter? http:

//futureoftheinternet.org/
could-iran-shut-down-twitter, June 2009.

[15] G. Danezis. Covert communications despite traffic data retention.
[16] G. Danezis and C. Diaz. A survey of anonymous communica-

tion channels. Technical Report MSR-TR-2008-35, Microsoft
Research, January 2008.

[17] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: De-
sign of a Type III Anonymous Remailer Protocol. In Proceedings
of the 2003 IEEE Symposium on Security and Privacy, pages 2–
15, May 2003.

15



[18] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proc. 13th USENIX Security Sympo-
sium, San Diego, CA, Aug. 2004.

[19] China is number one. The Economist, Jan. 2009. http:
//www.economist.com/daily/chartgallery/
displaystory.cfm?story_id=13007996.

[20] Facebook. http://www.facebook.com/.
[21] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and

D. Karger. Infranet: Circumventing Web censorship and surveil-
lance. In Proc. 11th USENIX Security Symposium, San Francisco,
CA, Aug. 2002.

[22] N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan, and
D. Karger. Thwarting Web censorship with untrusted messenger
discovery. In 3rd Workshop on Privacy Enhancing Technologies,
Dresden, Germany, Mar. 2003.

[23] N. Feamster and R. Dingledine. Location diversity in anonymity
networks. In ACM Workshop on Privacy in the Electronic Society,
Washington, DC, Oct. 2004.

[24] Flickr. http://www.flickr.com/.
[25] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymiz-

ing network layer. In Proc. 9th ACM Conference on Computer
and Communications Security, Washington, D.C., Nov. 2002.

[26] Freedom on the Net. Technical report, Freedom House,
Mar. 2009. http://www.freedomhouse.org/
uploads/specialreports/NetFreedom2009/
FreedomOnTheNet_FullReport.pdf.

[27] J. Fridrich, M. Goljan, and D. Hogea. Attacking the outguess. In
Proceedings of the ACM Workshop on Multimedia and Security,
2002.

[28] Future of Open Source: Collaborative Culture. http:
//www.wired.com/dualperspectives/article/
news/2009/06/dp_opensource_wired0616, June
2009.

[29] A. Hintz. Fingerprinting websites using traffic analysis. In Work-
shop on Privacy Enhancing Technologies, San Francisco, CA,
Apr. 2002.

[30] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the world wide web.
In STOC ’97: Proceedings of the twenty-ninth annual ACM sym-
posium on Theory of computing, pages 654–663, New York, NY,
USA, 1997. ACM.

[31] South Korea mulls Web watch , June 2008.
http://www.theinquirer.net/inquirer/news/091/1042091/south-
korea-mulls-web-watch.

[32] P. Maymounkov. Online codes. Technical Report TR2002-833,
New York University, Nov. 2002.

[33] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of Tor.
In Proceedings of the 2005 IEEE Symposium on Security and Pri-
vacy. IEEE CS, May 2005.

[34] Cisco netflow. http://www.cisco.com/en/US/
products/ps6601/products_ios_protocol_
group_home.html.

[35] Uproar in Australia Over Plan to Block Web
Sites, Dec. 2008. http://www.nytimes.
com/aponline/2008/12/26/technology/
AP-TEC-Australia-Internet-Filter.html?_r=1.

[36] OpenNet Initiative. http://www.opennet.net/.
[37] Report on china’s filtering practices, 2008. Open Net Initiative.

http://opennet.net/sites/opennet.net/files/
china.pdf.

[38] Outguess. http://www.outguess.org/.
[39] A. Serjantov and G. Danezis. Towards an information theoretic

metric for anonymity. In R. Dingledine and P. Syverson, editors,
Proceedings of Privacy Enhancing Technologies Workshop (PET
2002). Springer-Verlag, LNCS 2482, April 2002.

[40] A. Serjantov and P. Sewell. Passive attack analysis for
connection-based anonymity systems. In Proceedings of ES-

ORICS 2003, Oct. 2003.
[41] The SNOW Home Page. http://www.darkside.com.

au/snow/.
[42] Y. Sovran, J. Li, and L. Subramanian. Pass it on: Social networks

stymie censors. In Proceedings of the 7th International Workshop
on Peer-to-Peer Systems, Feb. 2008.

[43] TechCrunch. China Blocks Access To Twitter, Facebook After
Riots. http://www.techcrunch.com/2009/07/07/
china-blocks-access-to-twitter-facebook-after-riots/.

[44] Tor: Bridges. http://www.torproject.org/bridges.
[45] Tor partially blocked in China, Sept. 2009.

https://blog.torproject.org/blog/
tor-partially-blocked-china.

[46] TorrentFreak. China Hijacks Popular BitTor-
rent Sites. http://torrentfreak.com/
china-hijacks-popular-bittorrent-sites-081108/,
May 2008.

[47] Pakistan move knocked out YouTube, Jan. 2008.
http://www.cnn.com/2008/WORLD/asiapcf/02/
25/pakistan.youtube/index.html.

[48] Turkey blocks YouTube access, Jan. 2008. http:
//www.cnn.com/2008/WORLD/europe/03/13/
turkey.youtube.ap/index.html.

[49] Twitter. http://www.twitter.com.
[50] 18 Million Twitter Users by End of 2009.

http://mashable.com/2009/09/14/
twitter-2009-stats/, Sept. 2009.

[51] Ultimate List of Twitter Applications.
http://techie-buzz.com/twitter/
ultimate-list-of-twitter-applications-and-websites.
html, 2009.

[52] State of the Twittersphere. http://bit.ly/sotwitter,
2009.

[53] M. Waldman and D. Mazières. Tangler: A censorship-resistant
publishing system based on document entanglements. In Proc.
8th ACM Conference on Computer and Communications Secu-
rity, Philadelphia, PA, Nov. 2001.

[54] The Accidental Censor: UK ISP Blocks Wayback Machine, Jan.
2009. Ars Technica. http://tinyurl.com/dk7mhl.

[55] Wikipedia, Cleanfeed & Filtering, Dec. 2008.
http://www.nartv.org/2008/12/08/
wikipedia-cleanfeed-filtering.

[56] Youtube - broadcast yourself. http://www.youtube.com/.
[57] YouTube Statistics. http://ksudigg.wetpaint.com/

page/YouTube+Statistics, Mar. 2008.

16


