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Abstract

Secure multiparty computation (MPC) allows joint

privacy-preserving computations on data of multiple par-

ties. Although MPC has been studied substantially,

building solutions that are practical in terms of compu-

tation and communication cost is still a major challenge.

In this paper, we investigate the practical usefulness of

MPC for multi-domain network security and monitor-

ing. We first optimize MPC comparison operations for

processing high volume data in near real-time. We then

design privacy-preserving protocols for event correlation

and aggregation of network traffic statistics, such as ad-

dition of volume metrics, computation of feature entropy,

and distinct item count. Optimizing performance of par-

allel invocations, we implement our protocols along with

a complete set of basic operations in a library called

SEPIA. We evaluate the running time and bandwidth re-

quirements of our protocols in realistic settings on a lo-

cal cluster as well as on PlanetLab and show that they

work in near real-time for up to 140 input providers and

9 computation nodes. Compared to implementations us-

ing existing general-purpose MPC frameworks, our pro-

tocols are significantly faster, requiring, for example, 3

minutes for a task that takes 2 days with general-purpose

frameworks. This improvement paves the way for new

applications of MPC in the area of networking. Finally,

we run SEPIA’s protocols on real traffic traces of 17 net-

works and show how they provide new possibilities for

distributed troubleshooting and early anomaly detection.

1 Introduction

A number of network security and monitoring prob-

lems can substantially benefit if a group of involved or-

ganizations aggregates private data to jointly perform a

computation. For example, IDS alert correlation, e.g.,

with DOMINO [49], requires the joint analysis of pri-

vate alerts. Similary, aggregation of private data is useful

for alert signature extraction [30], collaborative anomaly

detection [34], multi-domain traffic engineering [27], de-

tecting traffic discrimination [45], and collecting net-

work performance statistics [42]. All these approaches

use either a trusted third party, e.g., a university research

group, or peer-to-peer techniques for data aggregation

and face a delicate privacy versus utility tradeoff [32].

Some private data typically have to be revealed, which

impedes privacy and prohibits the acquisition of many

data providers, while data anonymization, used to re-

move sensitive information, complicates or even pro-

hibits developing good solutions. Moreover, the ability

of anonymization techniques to effectively protect pri-

vacy is questioned by recent studies [29]. One possible

solution to this privacy-utility tradeoff is MPC.

For almost thirty years, MPC [48] techniques have

been studied for solving the problem of jointly running

computations on data distributed among multiple orga-

nizations, while provably preserving data privacy with-

out relying on a trusted third party. In theory, any com-

putable function on a distributed dataset is also securely

computable using MPC techniques [20]. However, de-

signing solutions that are practical in terms of running

time and communication overhead is non-trivial. For this

reason, MPC techniques have mainly attracted theoreti-

cal interest in the last decades. Recently, optimized ba-

sic primitives, such as comparisons [14, 28], make pro-

gressively possible the use of MPC in real-world applica-

tions, e.g., an actual sugar-beet auction [7] was demon-

strated in 2009.

Adopting MPC techniques to network monitoring and

security problems introduces the important challenge of

dealing with voluminous input data that require online

processing. For example, anomaly detection techniques

typically require the online generation of traffic volume

and distributions over port numbers or IP address ranges.

Such input data impose stricter requirements on the per-

formance of MPC protocols than, for example, the in-

put bids of a distributed MPC auction [7]. In particular,

network monitoring protocols should process potentially
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Figure 1: Deployment scenario for SEPIA.

thousands of input values while meeting near real-time

guarantees1. This is not presently possible with existing

general-purpose MPC frameworks.

In this work, we design, implement, and evaluate

SEPIA (Security through Private Information Aggrega-

tion), a library for efficiently aggregating multi-domain

network data using MPC. The foundation of SEPIA is

a set of optimized MPC operations, implemented with

performance of parallel execution in mind. By not en-

forcing protocols to run in a constant number of rounds,

we are able to design MPC comparison operations that

require up to 80 times less distributed multiplications

and, amortized over many parallel invocations, run much

faster than constant-round alternatives. On top of these

comparison operations, we design and implement novel

MPC protocols tailored for network security and moni-

toring applications. The event correlation protocol iden-

tifies events, such as IDS or firewall alerts, that occur

frequently in multiple domains. The protocol is generic

having several applications, for example, in alert corre-

lation for early exploit detection or in identification of

multi-domain network traffic heavy-hitters. In addition,

we introduce SEPIA’s entropy and distinct count proto-

cols that compute the entropy of traffic feature distribu-

tions and find the count of distinct feature values, respec-

tively. These metrics are used frequently in traffic anal-

ysis applications. In particular, the entropy of feature

distributions is used commonly in anomaly detection,

whereas distinct count metrics are important for identify-

ing scanning attacks, in firewalls, and for anomaly detec-

tion. We implement these protocols along with a vector

addition protocol to support additive operations on time-

series and histograms.

A typical setup for SEPIA is depicted in Fig. 1 where

individual networks are represented by one input peer

each. The input peers distribute shares of secret input

data among a (usually smaller) set of privacy peers us-

ing Shamir’s secret sharing scheme [40]. The privacy

peers perform the actual computation and can be hosted

by a subset of the networks running input peers but also

by external parties. Finally, the aggregate computation

result is sent back to the networks. We adopt the semi-

honest adversary model, hence privacy of local input data

is guaranteed as long as the majority of privacy peers is

honest. A detailed description of our security assump-

tions and a discussion of their implications is presented

in Section 4.

Our evaluation of SEPIA’s performance shows that

SEPIA runs in near real-time even with 140 input and

9 privacy peers. Moreover, we run SEPIA on traffic data

of 17 networks collected during the global Skype out-

age in August 2007 and show how the networks can use

SEPIA to troubleshoot and timely detect such anomalies.

Finally, we discuss novel applications in network secu-

rity and monitoring that SEPIA enables. In summary,

this paper makes the following contributions:

1. We introduce efficient MPC comparison operations,

which outperform constant-round alternatives for

many parallel invocations.

2. We design novel MPC protocols for event correla-

tion, entropy and distinct count computation.

3. We introduce the SEPIA library, in which we im-

plement our protocols along with a complete set of

basic operations, optimized for parallel execution.

SEPIA is made publicly available [39].

4. We extensively evaluate the performance of SEPIA

on realistic settings using synthetic and real traces

and show that it meets near real-time guarantees

even with 140 input and 9 privacy peers.

5. We run SEPIA on traffic from 17 networks and

show how it can be used to troubleshoot and timely

detect anomalies, exemplified by the Skype outage.

The paper is organized as follows: We specify the

computation scheme in the next section and present our

optimized comparison operations in Section 3. In Sec-



tion 4, we specify our adversary model and security as-

sumptions, and build the protocols for event correlation,

vector addition, entropy, and distinct count computation.

We evaluate the protocols and discuss SEPIA’s design in

Sections 5 and 6, respectively. Then, in Section 7 we

outline SEPIA’s applications and conduct a case study

on real network data that demonstrates SEPIA’s benefits

in distributed troubleshooting and early anomaly detec-

tion. Finally, we discuss related work in Section 8 and

conclude our paper in Section 9.

2 Preliminaries

Our implementation is based on Shamir secret shar-

ing [40]. In order to share a secret value s among a set of

m players, the dealer generates a random polynomial f
of degree t = ⌊(m− 1)/2⌋ over a prime field Zp with

p > s, such that f(0) = s. Each player i = 1 . . .m then

receives an evaluation point si = f(i) of f . si is called

the share of player i. The secret s can be reconstructed

from any t + 1 shares using Lagrange interpolation but

is completely undefined for t or less shares. To actually

reconstruct a secret, each player sends his shares to all

other players. Each player then locally interpolates the

secret. For simplicity of presentation, we use [s] to de-

note the vector of shares (s1, . . . , sm) and call it a shar-

ing of s. In addition, we use [s]i to refer to si. Unless

stated otherwise, we choose p with 62 bits such that arith-

metic operations on secrets and shares can be performed

by CPU instructions directly, not requiring software al-

gorithms to handle big integers.

Addition and Multiplication Given two sharings [a]
and [b], we can perform private addition and multiplica-

tion of the two values a and b. Because Shamir’s scheme

is linear, addition of two sharings, denoted by [a] + [b],
can be computed by having each player locally add his

shares of the two values: [a + b]i = [a]i + [b]i. Sim-

ilarly, local shares are subtracted to get a share of the

difference. To add a public constant c to a sharing [a],
denoted by [a] + c, each player just adds c to his share,

i.e., [a+c]i = [a]i+c. Similarly, for multiplying [a] by a

public constant c, denoted by c[a], each player multiplies

its share by c. Multiplication of two sharings requires an

extra round of communication to guarantee randomness

and to correct the degree of the new polynomial [4, 19].

In particular, to compute [a][b] = [ab], each player first

computes di = [a]i[b]i locally. He then shares di to get

[di]. Together, the players then perform a distributed La-

grange interpolation to compute [ab] =
∑

i λi[di] where

λi are the Lagrange coefficients. Thus, a distributed

multiplication requires a synchronization round with m2

messages, as each player i sends to each player j the

share [di]j . To specify protocols, composed of basic op-

erations, we use a shorthand notation. For instance, we

write foo([a], b) := ([a] + b)([a] + b), where foo is the

protocol name, followed by input parameters. Valid in-

put parameters are sharings and public constants. On the

right side, the function to be computed is given, a bino-

mial in that case. The output of foo is again a sharing

and can be used in subsequent computations. All opera-

tions in Zp are performed modulo p, therefore p must be

large enough to avoid modular reductions of intermedi-

ate results, e.g., if we compute [ab] = [a][b], then a, b,
and ab must be smaller than p.

Communication A set of independent multiplications,

e.g., [ab] and [cd], can be performed in parallel in a sin-

gle round. That is, intermediate results of all multipli-

cations are exchanged in a single synchronization step.

A round simply is a synchronization point where players

have to exchange intermediate results in order to con-

tinue computation. While the specification of the proto-

cols is synchronous, we do not assume the network to

be synchronous during runtime. In particular, the Inter-

net is better modeled as asynchronous, not guaranteeing

the delivery of a message before a certain time. Be-

cause we assume the semi-honest model, we only have

to protect against high delays of individual messages,

potentially leading to a reordering of message arrival.

In practice, we implement communication channels us-

ing SSL sockets over TCP/IP. TCP applies acknowledg-

ments, timeouts, and sequence numbers to preserve mes-

sage ordering and to retransmit lost messages, providing

FIFO channel semantics. We implement message syn-

chronization in parallel threads to minimize waiting time.

Each player proceeds to the next round immediately after

sending and receiving all intermediate values.

Security Properties All the protocols we devise are

compositions of the above introduced addition and mul-

tiplication primitives, which were proven correct and

information-theoretically secure by Ben-Or, Goldwasser,

and Wigderson [4]. In particular, they showed that in the

semi-honest model, where adversarial players follow the

protocol but try to learn as much as possible by sharing

the information they received, no set of t or less corrupt

players gets any additional information other than the fi-

nal function value. Also, these primitives are universally

composable, that is, the security properties remain in-

tact under stand-alone and concurrent composition [11].

Because the scheme is information-theoretically secure,

i.e., it is secure against computationally unbounded ad-

versaries, the confidentiality of secrets does not depend

on the field size p. For instance, regarding confidential-

ity, sharing a secret s in a field of size p > s is equivalent

to sharing each individual bit of s in a field of size p = 2.

Because we use SSL for implementing secure channels,

the overall system relies on PKI and is only computation-

ally secure.



3 Optimized Comparison Operations

Unlike addition and multiplication, comparison of two

shared secrets is a very expensive operation. There-

fore, we now devise optimized protocols for equality

check, less-than comparison and a short range check.

The complexity of an MPC protocol is typically assessed

counting the number of distributed multiplications and

rounds, because addition and multiplication with pub-

lic values only require local computation. Damgård

et al. introduced the bit-decomposition protocol [14]

that achieves comparison by decomposing shared se-

crets into a shared bit-wise representation. On shares

of individual bits, comparison is straight-forward. With

l = log
2
(p), the protocols in [14] achieve a comparison

with 205l + 188l log
2
l multiplications in 44 rounds and

equality test with 98l + 94l log
2
l multiplications in 39

rounds. Subsequently, Nishide and Ohta [28] have im-

proved these protocols by not decomposing the secrets

but using bitwise shared random numbers. They do com-

parison with 279l + 5 multiplications in 15 rounds and

equality test with 81l multiplications in 8 rounds. While

these are constant-round protocols as preferred in theo-

retical research, they still involve lots of multiplications.

For instance, an equality check of two shared IPv4 ad-

dresses (l = 32) with the protocols in [28] requires 2592
distributed multiplications, each triggering m2 messages

to be transmitted over the network.

Constant-round vs. number of multiplications Our

key observation for improving efficiency is the follow-

ing: For scenarios with many parallel protocol invoca-

tions it is possible to build much more practical protocols

by not enforcing the constant-round property. Constant-

round means that the number of rounds does not depend

on the input parameters. We design protocols that run

in O(l) rounds and are therefore not constant-round, al-

though, once the field size p is defined, the number of

rounds is also fixed, i.e., not varying at runtime. The

overall local running time of a protocol is determined by

i) the local CPU time spent on computations, ii) the time

to transfer intermediate values over the network, and iii)

delay experienced during synchronization. Designing

constant-round protocols aims at reducing the impact of

iii) by keeping the number of rounds fixed and usually

small. To achieve this, high multiplicative constants for

the number of multiplications are often accepted (e.g.,

279l). Yet, both i) and ii) directly depend on the num-

ber of multiplications. For applications with few parallel

operations, protocols with few rounds (usually constant-

round) are certainly faster. However, with many paral-

lel operations, as required by our scenarios, the impact

of network delay is amortized and the number of multi-

plications (the actual workload) becomes the dominating

factor. Our evaluation results in Section 5.1 and 5.4 con-

firm this and show that CPU time and network bandwidth

are the main constraining factors, calling for a reduction

of multiplications.

Equality Test In the field Zp with p prime, Fermat’s lit-

tle theorem states

cp−1 =

{

0 if c = 0

1 if c 6= 0
(1)

Using (1) we define a protocol for equality test as fol-

lows:

equal([a], [b]) := 1− ([a]− [b])p−1

The output of equal is [1] in case of equality and [0] oth-

erwise and can hence be used in subsequent computa-

tions. Using square-and-multiply for the exponentiation,

we implement equal with l + k − 2 multiplications in l
rounds, where k denotes the number of bits set to 1 in

p − 1. By using carefully picked prime numbers with

k ≤ 3, we reduce the number of multiplications to l+ 1.

In the above example for comparing IPv4 addresses, this

reduces the multiplication count by a factor of 76 from

2592 to 34.

Besides having few 1-bits, p must be bigger than the

range of shared secrets, i.e., if 32-bit integers are shared,

an appropriate p will have at least 33 bits. For any secret

size below 64 bits it is easy to find appropriate ps with

k ≤ 3 within 3 additional bits.

Less Than For less-than comparison, we base our im-

plementation on Nishide’s protocol [28]. However, we

apply modifications to again reduce the overall number

of required multiplications by more than a factor of 10.

Nishide’s protocol is quite comprehensive and built on a

stack of subprotocols for least-significant bit extraction

(LSB), operations on bitwise-shared secrets, and (bit-

wise) random number sharing. The protocol uses the ob-

servation that a < b is determined by the three predicates

a < p/2, b < p/2, and a − b < p/2. Each predicate is

computed by a call of the LSB protocol for 2a, 2b, and

2(a − b). If a < p/2, no wrap-around modulo p occurs

when computing 2a, hence LSB(2a) = 0. However, if

a > p/2, a wrap-around will occur and LSB(2a) = 1.

Knowing one of the predicates in advance, e.g., because

b is not secret but publicly known, saves one of the three

LSB calls and hence 1/3 of the multiplications.

Due to space restrictions we omit to reproduce the

entire protocol but focus on the modifications we ap-

ply. An important subprotocol in Nishide’s construc-

tion is PrefixOr. Given a sequence of shared bits

[a1], . . . , [al] with ai ∈ {0, 1}, PrefixOr computes the

sequence [b1], . . . , [bl] such that bi = ∨
i
j=1

aj . Nishide’s

PrefixOr requires only 7 rounds but 17l multiplica-

tions. We implement PrefixOr based on the fact that



bi = bi−1 ∨ ai and b1 = a1. The logical OR (∨) can

be computed using a single multiplication: [x] ∨ [y] =
[x] + [y] − [x][y]. Thus, our PrefixOr requires l − 1
rounds and only l − 1 multiplications.

Without compromising security properties, we re-

place the PrefixOr in Nishide’s protocol by our opti-

mized version and call the resulting comparison proto-

col lessThan. A call of lessThan([a], [b]) outputs [1]
if a < b and [0] otherwise. The overall complexity of

lessThan is 24l+5 multiplications in 2l+10 rounds as

compared to Nishide’s version with 279l+ 5 multiplica-

tions in 15 rounds.

Short Range Check To further reduce multiplications

for comparing small numbers, we devise a check for

short ranges, based on our equal operation. Consider

one wanted to compute [a] < T , where T is a small

public constant, e.g., T = 10. Instead of invoking

lessThan([a], T ) one can simply compute the polyno-

mial [φ] = [a]([a]−1)([a]−2) . . . ([a]− (T −1)). If the

value of a is between 0 and T − 1, exactly one term of

[φ] will be zero and hence [φ] will evaluate to [0]. Oth-

erwise, [φ] will be non-zero. Based on this, we define a

protocol for checking short public ranges that returns [1]
if x ≤ [a] ≤ y and [0] otherwise:

shortRange([a], x, y) := equal
(

0,

y
∏

i=x

([a]− i)
)

The complexity of shortRange is (y − x) + l + k − 2
multiplications in l + log

2
(y − x) rounds. Computing

lessThan([a], y) requires 16l+5 multiplications (1/3 is

saved because y is public). Hence, regarding the number

of multiplications, computing shortRange([a], 0, y−1)
instead of lessThan([a], y) is beneficial roughly as long

as y ≤ 15l.

4 SEPIA Protocols

In this section, we compose the basic operations de-

fined above into full-blown protocols for network event

correlation and statistics aggregation. Each protocol is

designed to run on continuous streams of input traffic

data partitioned into time windows of a few minutes. For

sake of simplicity, the protocols are specified for a single

time window. We first define the basic setting of SEPIA

protocols as illustrated in Fig. 1 and then introduce the

protocols successively.

Our system has a set of n users called input peers. The

input peers want to jointly compute the value of a pub-

lic function f(x1, . . . , xn) on their private data xi with-

out disclosing anything about xi. In addition, we have

m players called privacy peers that perform the compu-

tation of f() by simulating a trusted third party (TTP).

Each entity can take both roles, acting only as an input

peer, privacy peer (PP) or both.

Adversary Model and Security Assumptions We use

the semi-honest (a.k.a. honest-but-curious) adversary

model for privacy peers. That is, honest privacy peers

follow the protocol and do not combine their informa-

tion. Semi-honest privacy peers do follow the proto-

col but try to infer as much as possible from the val-

ues (shares) they learn, also by combining their informa-

tion. The privacy and correctness guarantees provided

by our protocols are determined by Shamir’s secret shar-

ing scheme. In particular, the protocols are secure for

t < m/2 semi-honest privacy peers, i.e., as long as the

majority of privacy peers is honest. Even if some of the

input peers do not trust each other, we think it is realistic

to assume that they will agree on a set of most-trusted

participants (or external entities) for hosting the privacy

peers. Also, we think it is realistic to assume that the

privacy peers indeed follow the protocol. If they are op-

erated by input peers, they are likely interested in the

correct outcome of the computation themselves and will

therefore comply. External privacy peers are selected due

to their good reputation or are being payed for a service.

In both cases, they will do their best not to offend their

customers by tricking the protocol.

The function f() is specified as if a TTP was avail-

able. MPC guarantees that no information is leaked from

the computation process. However, just learning the re-

sulting value f() could allow to infer sensitive informa-

tion. For example, if the input bit of all input peers must

remain secret, computing the logical AND of all input

bits is insecure in itself: if the final result was 1, all in-

put bits must be 1 as well and are thus no longer secret.

It is the responsibility of the input peers to verify that

learning f() is acceptable, in the same way as they have

to verify this when using a real TTP. For example, we

assume input peers are not willing to reconstruct item

distributions but consider it safe to compute the overall

item count or entropy. To reduce the potential for de-

ducing information from f(), protocols can enforce the

submission of “valid” input data conforming to certain

rules. For instance, in our event correlation protocol, the

privacy peers verify that each input peer submits no du-

plicate events. More formally, the work on differential

privacy [17] systematically randomizes the output f() of

database queries to prevent inference of sensitive input

data.

Prior to running the protocols, the m privacy peers set

up a secure, i.e., confidential and authentic, channel to

each other. In addition, each input peer creates a secure

channel to each privacy peer. We assume that the re-

quired public keys and/or certificates have been securely

distributed beforehand.



Privacy-Performance Tradeoff Although the number

of privacy peers m has a quadratic impact on the total

communication and computation costs, there are also m
privacy peers sharing the load. That is, if the network ca-

pacity is sufficient, the overall running time of the proto-

cols will scale linearly with m rather than quadratically.

On the other hand, the number of tolerated colluding pri-

vacy peers also scales linearly with m. Hence, the choice

of m involves a privacy-performance tradeoff. The sep-

aration of roles into input and privacy peers allows to

tune this tradeoff independently of the number of input

providers.

4.1 Event Correlation

The first protocol we present enables the input peers to

privately aggregate arbitrary network events. An event e
is defined by a key-weight pair e = (k, w). This no-

tion is generic in the sense that keys can be defined to

represent arbitrary types of network events, which are

uniquely identifiable. The key k could for instance be

the source IP address of packets triggering IDS alerts,

or the source address concatenated with a specific alert

type or port number. It could also be the hash value of

extracted malicious payload or represent a uniquely iden-

tifiable object, such as popular URLs, of which the in-

put peers want to compute the total number of hits. The

weight w reflects the impact (count) of this event (ob-

ject), e.g., the frequency of the event in the current time

window or a classification on a severity scale.

Each input peer shares at most s local events per time

window. The goal of the protocol is to reconstruct an

event if and only if a minimum number of input peers

Tc report the same event and the aggregated weight is at

least Tw. The rationale behind this definition is that an

input peer does not want to reconstruct local events that

are unique in the set of all input peers, exposing sensitive

information asymmetrically. But if the input peer knew

that, for example, three other input peers report the same

event, e.g., a specific intrusion alert, he would be willing

to contribute his information and collaborate. Likewise,

an input peer might only be interested in reconstructing

events of a certain impact, having a non-negligible ag-

gregated weight.

More formally, let [eij ] = ([kij ], [wij ]) be the shared

event j of input peer i with j ≤ s and i ≤ n. Then

we compute the aggregated count Cij and weight Wij

according to (2) and (3) and reconstruct eij iff (4) holds.

[Cij ] :=
∑

i′ 6=i,j′

equal([kij ], [ki′j′ ]) (2)

[Wij ] :=
∑

i′ 6=i,j′

[wi′j′ ] · equal([kij ], [ki′j′ ]) (3)

([Cij ] ≥ Tc) ∧ ([Wij ] ≥ Tw) (4)

Reconstruction of an event eij includes the reconstruc-

tion of kij , Cij , Wij , and the list of input peers reporting

it, but the wij remain secret. The detailed algorithm is

given in Fig. 2.

Input Verification In addition to merely implementing

the correlation logic, we devise two optional input ver-

ification steps. In particular, the PPs check that shared

weights are below a maximum weight wmax and that

each input peer shares distinct events. These verifica-

tions are not needed to secure the computation process,

but they serve two purposes. First, they protect from mis-

configured input peers and flawed input data. Secondly,

they protect against input peers that try to deduce infor-

mation from the final computation result. For instance,

an input peer could add an event Tc−1 times (with a total

weight of at least Tw) to find out whether any other in-

put peers report the same event. These input verifications

mitigate such attacks.

Probe Response Attacks If aggregated security events

are made publicly available, this enables probe response

attacks against the system [5]. The goal of probe re-

sponse attacks is not to learn private input data but

to identify the sensors of a distributed monitoring sys-

tem. To remain undiscovered, attackers then exclude

the known sensors from future attacks against the sys-

tem. While defending against this in general is an in-

tractable problem, [41] identified that the suppression of

low-density attacks provides some protection against ba-

sic probe response attacks. Filtering out low-density at-

tacks in our system can be achieved by setting the thresh-

olds Tc and Tw sufficiently high.

Complexity The overall complexity, including verifica-

tion steps, is summarized below in terms of operation

invocations and rounds:

equal: O
(

(n− Tc)ns
2
)

lessThan: (2n− Tc)s
shortRange: (n− Tc)s
multiplications: (n− Tc) · (ns

2 + s)
rounds: 7l + log

2
(n− Tc) + 26

The protocol is clearly dominated by the number of

equal operations required for the aggregation step. It

scales quadratically with s, however, depending on Tc,

it scales linearly or quadratically with n. For instance,

if Tc has a constant offset to n (e.g., Tc = n − 4), only

O(ns2) equals are required. However, if Tc = n/2,

O(n2s2) equals are necessary.

Optimizations To avoid the quadratic dependency on s,

we are working on an MPC-version of a binary search

algorithm that finds a secret [a] in a sorted list of se-

crets {[b1], . . . , [bs]} with log
2
s comparisons by com-



1. Share Generation: Each input peer i shares s distinct events eij with wij < wmax among the privacy peers (PPs).

2. Weight Verification: Optionally, the PPs compute and reconstruct lessThan([wij ], wmax) for all weights to verify that

they are smaller than wmax. Misbehaving input peers are disqualified.

3. Key Verification: Optionally, the PPs verify that each input peer i reports distinct events, i.e., for each event index a and b
with a < b they compute and reconstruct equal([kia], [kib]). Misbehaving input peers are disqualified.

4. Aggregation: The PPs compute [Cij ] and [Wij ] according to (2) and (3) for i ≤ î with î = min(n − Tc + 1, n). 2 All

required equal operations can be performed in parallel.

5. Reconstruction: For each event [eij ], with i ≤ î, condition (4) has to be checked. Therefore, the PPs compute

[t1] = shortRange([Cij ], Tc, n), [t2] = lessThan(Tw − 1, [Wij ])

Then, the event is reconstructed iff [t1] · [t2] returns 1. The set of input peers with i > î reporting a reconstructed event

r = (k, w) is computed by reusing all the equal operations performed on r in the aggregation step. That is, input peer i′

reports r iff
∑

j
equal([k], [ki′j ]) equals 1. This can be computed using local addition for each remaining input peer and

each reconstructed event. Finally, all reconstructed events are sent to all input peers.

Figure 2: Algorithm for event correlation protocol.

1. Share Generation: Each input peer i shares its in-

put vector di = (x1, x2, . . . , xr) among the PPs.

That is, the PPs obtain n vectors of sharings [di] =
([x1], [x2], . . . , [xr]).

2. Summation: The PPs compute the sum [D] =∑n

i=1
[di].

3. Reconstruction: The PPs reconstruct all elements of

D and send them to all input peers.

Figure 3: Algorithm for vector addition protocol.

paring [a] to the element in the middle of the list, here

called [b∗]. We then construct a new list, being the

first or second half of the original list, depending on

lessThan([a], [b∗]). The procedure is repeated recur-

sively until the list has size 1. This allows us to compare

all events of two input peers with only O(s log
2
s) in-

stead of O(s2) comparisons. To further reduce the num-

ber of equal operations, the protocol can be adapted to

receive incremental updates from input peers. That is, in-

put peers submit a list of events in each time window and

inform the PPs, which event entries have a different key

from the previous window. Then, only comparisons of

updated keys have to be performed and overall complex-

ity is reduced to O(u(n − Tc)s), where u is the number

of changed keys in that window. This requires, of course,

that information on input set dynamics is not considered

private.

4.2 Network Traffic Statistics

In this section, we present protocols for the compu-

tation of multi-domain traffic statistics including the ag-

gregation of additive traffic metrics, the computation of

feature entropy, and the computation of distinct item

count. These statistics find various applications in net-

work monitoring and management.

1. Share Generation: Each input peer holds an r-

dimensional private input vector si ∈ Z
r
p representing

the local item histogram, where r is the number of items

and sik is the count for item k. The input peers share all

elements of their si among the PPs.

2. Summation: The PPs compute the item counts [sk] =∑n

i=1
[sik]. Also, the total count [S] =

∑r

k=1
[sk] is

computed and reconstructed.

3. Exponentiation: The PPs compute [(sk)
q] using

square-and-multiply.

4. Entropy Computation: The PPs compute the sum

σ =
∑

k
[(sk)

q] and reconstruct σ. Finally, at least

one PP uses σ to (locally) compute the Tsallis entropy

Hq(Y ) = 1

q−1
(1− σ/Sq).

Figure 4: Algorithm for entropy protocol.

4.2.1 Vector Addition

To support basic additive functionality on timeseries and

histograms, we implement a vector addition protocol.

Each input peer i holds a private r-dimensional input

vector di ∈ Z
r
p. Then, the vector addition protocol com-

putes the sum D =
∑n

i=1
di. We describe the corre-

sponding SEPIA protocol shortly in Fig. 3. This proto-

col requires no distributed multiplications and only one

round.

4.2.2 Entropy Computation

The computation of the entropy of feature distributions

has been successfully applied in network anomaly detec-

tion, e.g. [23, 9, 25, 50]. Commonly used feature distri-

butions are, for example, those of IP addresses, port num-

bers, flow sizes or host degrees. The Shannon entropy of

a feature distribution Y is H(Y ) = −
∑

k pk · log2(pk),
where pk denotes the probability of an item k. If Y is

a distribution of port numbers, pk is the probability of



port k to appear in the traffic data. The number of flows

(or packets) containing item k is divided by the overall

flow (packet) count to calculate pk. Tsallis entropy is

a generalization of Shannon entropy that also finds ap-

plications in anomaly detection [50, 46]. It has been

substantially studied with a rich bibliography available

in [47]. The 1-parametric Tsallis entropy is defined as:

Hq(Y ) =
1

q − 1

(

1−
∑

k

(pk)
q
)

. (5)

and has a direct interpretation in terms of moments of

order q of the distribution. In particular, the Tsallis en-

tropy is a generalized, non-extensive entropy that, up to

a multiplicative constant, equals the Shannon entropy for

q → 1. For generality, we select to design an MPC pro-

tocol for the Tsallis entropy.

Entropy Protocol A straight-forward approach to com-

pute entropy is to first find the overall feature distribu-

tion Y and then to compute the entropy of the distribu-

tion. In particular, let pk be the overall probability of

item k in the union of the private data and sik the local

count of item k at input peer i. If S is the total count of

the items, then pk = 1

S

∑n

i=1
sik. Thus, to compute the

entropy, the input peers could simply use the addition

protocol to add all the sik’s and find the probabilities pk.

Each input peer could then compute H(Y ) locally. How-

ever, the distribution Y can still be very sensitive as it

contains information for each item, e.g., per address pre-

fix. For this reason, we aim at computing H(Y ) with-

out reconstructing any of the values sik or pk. Because

the rational numbers pk can not be shared directly over

a prime field, we perform the computation separately on

private numerators (sik) and the public overall item count

S. The entropy protocol achieves this goal as described

in Fig. 4. It is assured that sensitive intermediate results

are not leaked and that input and privacy peers only learn

the final entropy value Hq(Y ) and the total count S. S
is not considered sensitive as it only represents the total

flow (or packet) count of all input peers together. This

can be easily computed by applying the addition protocol

to volume-based metrics. The complexity of this proto-

col is r log
2
q multiplications in log

2
q rounds.

4.2.3 Distinct Count

In this section, we devise a simple distinct count protocol

leaking no intermediate information. Let sik ∈ {0, 1} be

a boolean variable equal to 1 if input peer i sees item k
and 0 otherwise. We first compute the logical OR of the

boolean variables to find if an item was seen by any in-

put peer or not. Then, simply summing the number of

variables equal to 1 gives the distinct count of the items.

According to De Morgan’s Theorem, a∨b = ¬(¬a∧¬b).

1. Share Generation: Each input peer i shares its negated

local counts cik = ¬sik among the PPs.

2. Aggregation: For each item k, the PPs compute [ck] =
[c1k]∧ [c

2

k]∧ . . . [c
n
k ]. This can be done in log

2
n rounds.

If an item k is reported by any input peer, then ck is 0.

3. Counting: Finally, the PPs build the sum [σ] =
∑

[ck]
over all items and reconstruct σ. The distinct count is

then given by K − σ, where K is the size of the item

domain.

Figure 5: Algorithm for distinct count protocol.

This means the logical OR can be realized by performing

a logical AND on the negated variables. This is conve-

nient, as the logical AND is simply the product of two

variables. Using this observation, we construct the pro-

tocol described in Fig. 5. This protocol guarantees that

only the distinct count is learned from the computation;

the set of items is not reconstructed. However, if the in-

put peers agree that the item set is not sensitive it can

easily be reconstructed after step 2. The complexity of

this protocol is (n−1)r multiplications in log
2
n rounds.

5 Performance Evaluation

In this Section we evaluate the event correlation proto-

col and the protocols for network statistics. After that we

explore the impact of running selected protocols on Plan-

etLab where hardware, network delay, and bandwidth

are very heterogeneous. This section is concluded with

a performance comparison between SEPIA and existing

general-purpose MPC frameworks.

We assessed the CPU and network bandwidth require-

ments of our protocols, by running different aggregation

tasks with real and simulated network data. For each

protocol, we ran several experiments varying the most

important parameters. We varied the number of input

peers n between 5 and 25 and the number of privacy

peers m between 3 and 9, with m < n. The experiments

were conducted on a shared cluster comprised of sev-

eral public workstations; each workstation was equipped

with a 2x Pentium 4 CPU (3.2 GHz), 2 GB memory, and

100 Mb/s network. Each input and privacy peer was run

on a separate host. In our plots, each data point reflects

the average over 10 time windows. Background load due

to user activity could not be totally avoided. Section 5.3

discusses the impact of single slow hosts on the overall

running time.

5.1 Event Correlation

For the evaluation of the event correlation protocol,

we generated artificial event data. It is important to note

that our performance metrics do not depend on the actual
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Figure 6: Round statistics for event correlation with Tc = n/2. s is the number of events per input peer.

values used in the computation, hence artificial data is

just as good as real data for these purposes.

Running Time Fig. 6 shows evaluation results for event

correlation with s = 30 events per input peer, each with

24-bit keys for Tc = n/2. We ran the protocol in-

cluding weight and key verification. Fig. 6a shows that

the average running time per time window always stays

below 3.5 min and scales quadratically with n, as ex-

pected. Investigation of CPU statistics shows that with

increasing n also the average CPU load per privacy peer

grows. Thus, as long as CPUs are not used to capacity,

local parallelization manages to compensate parts of the

quadratical increase. With Tc = n − const, the running

time as well as the number of operations scale linearly

with n. Although the total communication cost grows

quadratically with m, the running time dependence on

m is rather linear, as long as the network is not satu-

rated. The dependence on the number of events per input

peer s is quadratic as expected without optimizations (see

Fig. 6c).

To study whether privacy peers spend most of their

time waiting due to synchronization, we measured the

user and system time of their hosts. All the privacy peers

were constantly busy with average CPU loads between

120% and 200% for the various operations.3 Communi-

cation and computation between PPs is implemented us-

ing separate threads to minimize the impact of synchro-

nization on the overall running time. Thus, SEPIA profits

from multi-core machines. Average load decreases with

increasing need for synchronization from multiplications

to equal, over lessThan to event correlation. Never-

theless, even with event correlation, processors are very

busy and not stalled by the network layer.

Bandwidth requirements Besides running time, the

communication overhead imposed on the network is an

important performance measure. Since data volume is

dominated by privacy peer messages, we show the av-

erage bytes sent per privacy peer in one time window

in Fig. 6b. Similar to running time, data volume scales

roughly quadratically with n and linearly with m. In

addition to the transmitted data, each privacy peer re-

ceives about the same amount of data from the other in-

put and private peers. If we assume a 5-minute clocking

of the event correlation protocol, an average bandwidth

between 0.4 Mbps (for n = 5, m = 3) and 13 Mbps

(for n = 25, m = 9) is needed per privacy peer. Assum-

ing a 5-minute interval and sufficient CPU/bandwidth re-

sources, the maximum number of supported input peers

before the system stops working in real-time ranges from

around 30 up to roughly 100, depending on protocol pa-

rameters.

5.2 Network statistics

For evaluating the network statistics protocols, we

used unsampled NetFlow data captured from the five

border routers of the Swiss academic and research net-

work (SWITCH), a medium-sized backbone operator,

connecting approximately 40 governmental institutions,

universities, and research labs to the Internet. We first

extracted traffic flows belonging to different customers

of SWITCH and assigned an independent input peer to

each organization’s trace. For each organization, we then

generated SEPIA input files, where each input field con-

tained either the values of volume metrics to be added or

the local histogram of feature distributions for collabora-

tive entropy (distinct count) calculation. In this section

we focus on the running time and bandwidth require-

ments only. We performed the following tasks over ten

5-minute windows:

1. Volume Metrics: Adding 21 volume metrics con-

taining flow, packet, and byte counts, both total and

separately filtered by protocol (TCP, UDP, ICMP)

and direction (incoming, outgoing). For example,

Fig. 10 in Section 7.2 plots the total and local num-

ber of incoming UDP flows of six organizations for

an 11-day period.
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(a) Addition of port histogram.
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(b) Entropy of port distribution.
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(c) Distinct AS count.

Figure 7: Network statistics: avg. running time per time window versus n and m, measured on a department-wide

cluster. All tasks were run with an input set size of 65k items.

2. Port Histogram: Adding the full destination port

histogram for incoming UDP flows. SEPIA input

files contained 65,535 fields, each indicating the

number of flows observed to the corresponding port.

These local histograms were aggregated using the

addition protocol.

3. Port Entropy: Computing the Tsallis entropy of

destination ports for incoming UDP flows. The lo-

cal SEPIA input files contained the same informa-

tion as for histogram aggregation. The Tsallis expo-

nent q was set to 2.

4. Distinct count of AS numbers: Aggregating the

count of distinct source AS numbers in incom-

ing UDP traffic. The input files contained 65,535

columns, each denoting if the corresponding source

AS number was observed. For this setting, we re-

duced the field size p to 31 bits because the expected

size of intermediate values is much smaller than for

the other tasks.

Running Time For task 1, the average running time was

below 1.6 s per time window for all configurations, even

with 25 input and 9 privacy peers. This confirms that

addition-only is very efficient for low volume input data.

Fig. 7 summarizes the running time for tasks 2 to 4. The

plots show on the y-axes the average running time per

time window versus the number of input peers on the x-

axes. In all cases, the running time for processing one

time window was below 1.5 minutes. The running time

clearly scales linearly with n. Assuming a 5-minute in-

terval, we can estimate by extrapolation the maximum

number of supported input peers before the system stops

working in real-time. For the conservative case with 9

privacy peers, the supported number of input peers is ap-

proximately 140 for histogram addition, 110 for entropy

computation, and 75 for distinct count computation. We

observe, that for single round protocols (addition and en-

tropy), the number of privacy peers has only little impact

on the running time. For the distinct count protocol, the

running time increases linearly with both n and m. Note

that the shortest running time for distinct count is even

lower than for histogram addition. This is due to the

reduced field size (p with 31 bits instead of 62), which

reduces both CPU and network load.

Bandwidth Requirements For all tasks, the data vol-

ume sent per privacy peer scales perfectly linear with n
and m. Therefore, we only report the maximum volume

with 25 input and 9 privacy peers. For addition of vol-

ume metrics, the data volume is 141 KB and increases to

4.7 MB for histogram addition. Entropy computation re-

quires 8.5 MB and finally the multi-round distinct count

requires 50.5 MB. For distinct count, to transfer the total

of 2 ·50.5 = 101MB within 5 minutes, an average band-

width of roughly 2.7 Mbps is needed per privacy peer.

5.3 Internet-wide Experiments

In our evaluation setting hosts have homogeneous

CPUs, network bandwidth and low round trip times

(RTT). In practice, however, SEPIA’s goal is to aggregate

traffic from remote network domains, possibly resulting

in a much more heterogeneous setting. For instance, high

delay and low bandwidth directly affect the waiting time

for messages. Once data has arrived, the CPU model and

clock rate determine how fast the data is processed and

can be distributed for the next round.

Recall from Section 4 that each operation and pro-

tocol in SEPIA is designed in rounds. Communication

and computation during each round run in parallel. But

before the next round can start, the privacy peers have

to synchronize intermediate results and therefore wait

for the slowest privacy peer to finish. The overall run-

ning time of SEPIA protocols is thus affected by the

slowest CPU, the highest delay, and the lowest band-

width rather than by the average performance of hosts

and links. Therefore we were interested to see whether

the performance of our protocols breaks down if we take

it out of the homogeneous LAN setting. Hence, we ran



LAN PlanetLab A PlanetLab B

Max. RTT 1 ms 320 ms 320 ms

Bandwidth 100 Mb/s ≥ 100Kb/s ≥ 100Kb/s

Slowest CPU 2 cores 2 cores 1 core

3.2 GHz 2.4 GHz 1.8 GHz

Running time 25.0 s 36.8 s 110.4 s

Table 1: Comparison of LAN and PlanetLab settings.

Framework SEPIA VIFF FairplayMP

Technique Shamir sh. Shamir sh. Bool. circuits

Platform Java Python Java

Multipl./s 82,730 326 1.6

Equals/s 2,070 2.4 2.3

LessThans/s 86 2.4 2.3

Table 2: Comparison of frameworks performance in oper-

ations per second with m = 5.

SEPIA on PlanetLab [31] and repeated task 4 (distinct

AS count) with 10 input and 5 privacy peers on globally

distributed PlanetLab nodes. Table 1 compares the LAN

setup with two PlanetLab setups A and B.

RTT was much higher and average bandwidth much

lower on PlanetLab. The only difference between Plan-

etLab A and B was the choice of some nodes with slower

CPUs. Despite the very heterogeneous and globally dis-

tributed setting, the distinct count protocol performed

well, at least in PlanetLab A. Most important, it still met

our near real-time requirements. From PlanetLab A to B,

running time went up by a factor of 3. However, this can

largely be explained by the slower CPUs. The distinct

count protocol consists of parallel multiplications, which

make efficient use of the CPU and local addition, which

is solely CPU-bound. Let us assume, for simplicity, that

clock rates translate directly into MIPS. Then, computa-

tional power in PlanetLab B is roughly 2.7 times lower

than in PlanetLab A. Of course, the more rounds a pro-

tocol has, the bigger is the impact of RTT. But in each

round, the network delay is only a constant offset and

can be amortized over the number of parallel operations

performed per round. For many operations, CPU and

bandwidth are the real bottlenecks.

While aggregation in a heterogeneous environment

is possible, SEPIA privacy peers should ideally be de-

ployed on dedicated hardware, to reduce background

load, and with similar CPU equipment, so that no single

host slows down the entire process.

5.4 Comparison with General-Purpose

Frameworks

In this section we compare the performance of ba-

sic SEPIA operations to those of general-purpose frame-

works such as FairplayMP [3] and VIFF v0.7.1 [15]. Be-

sides performance, one aspect to consider is, of course,

usability. Whereas the SEPIA library currently only pro-

vides an API to developers, FairplayMP allows to write

protocols in a high-level language called SFDL and VIFF

integrates nicely into the Python language. Furthermore,

VIFF implements asynchronous protocols and provides

additional functionality, such as security against mali-

cious adversaries and support of MPC based on homo-

morphic cryptosystems.

Tests were run on 2x Dual Core AMD Opteron 275

machines with 1Gb/s LAN connections. To guarantee a

fair comparison, we used the same settings for all frame-

works. In particular, the semi-honest model, 5 computa-

tion nodes, and 32 bit secrets were used. Unlike VIFF

and SEPIA, which use an information-theoretically se-

cure scheme, FairplayMP requires the choice of an ade-

quate security parameter k. We set k = 80, as suggested

by the authors in [3].

Table 2 shows the average number of parallel oper-

ations per second for each framework. SEPIA clearly

outperforms VIFF and FairplayMP for all operations and

is thus much better suited when performance of parallel

operations is of main importance. As an example, a run

of event correlation taking 3 minutes with SEPIA would

take roughly 2 days with VIFF. This extends the range

of practically runnable MPC protocols significantly. No-

tably, SEPIA’s equal operation is 24 times faster than

its lessThan, which requires 24 times more multipli-

cations, but at the same time also twice the number of

rounds. This confirms that with many parallel opera-

tions, the number of multiplications becomes the dom-

inating factor. Approximately 3/4 of the time spent

for lessThan is used for generating sharings of random

numbers used in the protocol. These random sharings

are independent from input data and could be generated

prior to the actual computation, allowing to perform 380

lessThans per second in the same setting.

Even for multiplications, SEPIA is faster than VIFF,

although both rely on the same scheme. We assume this

can largely be attributed to the completely asynchronous

protocols implemented in VIFF. Whereas asynchronous

protocols are very efficient for dealing with malicious

adversaries, they make it impossible to reduce network

overhead by exchanging intermediate results of all paral-

lel operations at once in a single big message. Also, there

seems to be a bottleneck in parallelizing large numbers

of operations. In fact, when benchmarking VIFF, we no-

ticed that after some point, adding more parallel opera-

tions significantly slowed down the average running time

per operation.

Sharemind [6] is another interesting MPC framework

using additive secret sharing to implement multiplica-

tions and greater-or-equal (GTE) comparison. The au-

thors implement it in C++ to maximize performance.

However, the use of additive secret sharing makes the im-



plementations of basic operations dependent on the num-

ber of computation nodes used. For this reason, Share-

mind is currently restricted to 3 computation nodes only.

Regarding performance, however, Sharemind is compa-

rable to SEPIA. According to [6], Sharemind performs

up to 160,000 multiplications and around 330 GTE op-

erations per second, with 3 computation nodes. With

3 PPs, SEPIA performs around 145,000 multiplications

and 145 lessThans per second (615 with pre-generated

randomness). Sharemind does not directly implement

equal, but it could be implemented using 2 invocations

of GTE, leading to ≈ 115 operations/s. SEPIA’s equal
is clearly faster with up to 3, 400 invocations/s. SEPIA

demonstrates that operations based on Shamir shares are

not necessarily slower than operations in the additive

sharing scheme. The key to performance is rather an im-

plementation, which is optimized for a large number of

parallel operations. Thus, SEPIA combines speed with

the flexibility of Shamir shares, which support any num-

ber of computation nodes and are to a certain degree ro-

bust against node failures.

6 Design and Implementation

The foundation of the SEPIA library is an implemen-

tation of the basic operations, such as multiplications

and optimized comparisons (see Section 3), along with

a communication layer for establishing SSL connections

between input and privacy peers. In order to limit the

impact of varying communication latencies and response

times, each connection, along with the corresponding

computation and communication tasks, is handled by a

separate thread. This also implies that SEPIA proto-

cols benefit from multi-core systems for computation-

intensive tasks. In order to reduce synchronization over-

head, intermediate results of parallel operations sent to

the same destination are collected and transfered in a sin-

gle big message instead of many small messages. On top

of the basic layers, the protocols from Section 4 are im-

plemented as standalone command-line (CLI) tools. The

CLI tools expect a local configuration file containing pri-

vacy peer addresses, paths to a folder with input data and

a Java keystore, as well as protocol-dependent parame-

ters. The tools write a log of the ongoing computation

and output files with aggregate results for each time win-

dow. The keystore holds certificates of trusted input and

privacy peers to establish SSL connections. It is possible

to delay the start of a computation until a minimum num-

ber of input and privacy peers are online. This gives the

input peers the ability to define an acceptable level of pri-

vacy by only participating in the computation if a certain

number of other input/privacy peers also participate.

SEPIA is written in Java to provide platform indepen-

dence. The source code of the basic library and the four

ShamirSharing sharing = new ShamirSharing();

sharing.setFieldPrime(1401085391); // 31 bit

sharing.setNrOfPrivacyPeers(nrOfPrivacyPeers);

sharing.init();

// Secret1: only a single value

long[] secrets = new long[]{1234567};

long[][] shares = sharing.generateShares(secrets);

// Send shares to each privacy peer

for(int i=0; i<nrOfPrivacyPeers; i++) {

connection[i].sendMessage(shares[i]);

}

Figure 8: Example code for an input peer that shares a

secret, e.g., a millionaire sharing his amount of wealth.

CLI tools is available under the LGPL license on the

SEPIA project web page [39]. The web page also pro-

vides pre-configured examples for the CLI tools and a

user manual. The user manual describes usage and con-

figuration of the CLI tools and includes a step-by-step

tutorial on how to use the library API to develop new

protocols. In the library API, all operations and sub-

protocols implement a common interface IOperation

and are easily composable. The class Protocol-

Primitives allows to schedule operations and takes

care of performing them in parallel, keeping track of

operation states. A base class for privacy peers imple-

ments the doOperations() method, which runs all

the necessary computation rounds and synchronizes data

between privacy peers in each round. Fig. 8 shows exam-

ple code for input peers that want to privately compare

their secrets. First, each input peer generates shares of

its secret. The shares are then sent to the PPs, for which

example code is shown in Fig. 9. The PPs first schedule

and execute lessThan comparisons for all combinations

of input secrets. In a second step, they run the recon-

struction operations and output the results.

Future Work Note that with Shamir shares, reconstruc-

tion of results is assured as long as t + 1 PPs are on-

line and responsive. This can be used directly to extend

SEPIA protocols with robustness against node failures.

Also, weak nodes slowing down the entire computation

could be excluded from the computation. We leave this

as a future extension.

The protocols support any number of input and pri-

vacy peers. Also, the item set sizes/events per input peer

are configurable and thus only limited by the available

CPU/bandwidth resources. However, running the net-

work statistics protocols (e.g., distinct count) on very

large distributions, such as the global IP address range,

requires to use sketches as proposed in [37] or binning

(e.g., use address prefixes instead of addresses). As an

example, we have recently used sketches in combination

with SEPIA to efficiently compute top-k reports for dis-



... // receive all the shares from input peers

ProtocolPrimitives primitives = new ProtocolPrimitives(fieldPrime, ...);

// Schedule comparisons of all the input peer’s secrets

int id1=1, id2=2, id3=3; // consecutive operation IDs

primitives.lessThan(id1, new long[]{shareOfSecret1, shareOfSecret2});

primitives.lessThan(id2, new long[]{shareOfSecret2, shareOfSecret3});

primitives.lessThan(id3, new long[]{shareOfSecret1, shareOfSecret3});

doOperations(); // Process operations and sychronize intermediate results

// Get shares of the comparison results

long shareOfLessThan12 = primitives.getResult(id1);

long shareOfLessThan23 = primitives.getResult(id2);

long shareOfLessThan13 = primitives.getResult(id3);

// Schedule and perform reconstruction of comparisons

primitives.reconstruct(id1, new long[]{shareOfLessThan12});

primitives.reconstruct(id2, new long[]{shareOfLessThan23});

primitives.reconstruct(id3, new long[]{shareOfLessThan13});

doOperations();

boolean secret1_lessThan_secret2 = (primitives.getResult(id1)==1);

boolean secret2_lessThan_secret3 = (primitives.getResult(id2)==1);

boolean secret1_lessThan_secret3 = (primitives.getResult(id3)==1);

Figure 9: Example code for a PP receiving shares of secrets from 3 input peers. It then compares the secrets privately,

e.g., to find which of the millionaires is the richest.

tributed IP address distributions with up to 180,000 dis-

tinct addresses [10].

As part of future work, we also plan to investigate

the applicability of polynomial set representation to our

statistics protocols, to reduce the linear dependency on

the input set domain. Polynomial set representation, in-

troduced by Freedman et al. [18] and extended by Kiss-

ner et al. [22], represents set elements as roots of a poly-

nomial and enables set operations that scale only loga-

rithmically with input domain size. However, these solu-

tions use homomorphic public-key cryptosystems, which

come with significant overhead for basic operations. Fur-

thermore, they do not trivially allow to separate roles

into input and privacy peers, as each input provider is re-

quired to perform certain non-delegable processing steps

on its own data.

7 Applications

We envision four distinct aggregation scenarios us-

ing SEPIA. The first scenario is aggregating informa-

tion coming from multiple domains of one large (inter-

national) organization. This aggregation is presently not

always possible due to privacy concerns and heteroge-

neous jurisdiction. The second scenario is analyzing pri-

vate data owned by independent organizations with a mu-

tual benefit in collaborating. Local ISPs, for example,

might collaborate to detect common attacks. A third sce-

nario provides access to researchers for evaluating and

validating traffic analysis or event correlation prototypes

over multi-domain network data. For example, national

research, educational, and university networks could pro-

vide SEPIA input and/or privacy peers that allow analyz-

ing local data according to submitted MPC scripts. Fi-

nally, one last scenario is the privacy-preserving analy-

sis of end-user data, i.e., end-user workstations can use

SEPIA to collaboratively analyze and cross-correlate lo-

cal data.

7.1 Application Taxonomy

Based on these scenarios, we see three different

classes of possible SEPIA applications.

Network Security Over the last years, considerable re-

search efforts have focused on distributed data aggrega-

tion and correlation systems for the identification and

mitigation of coordinated wide-scale attacks. In par-

ticular, aggregation enables the (early) detection and

characterization of attacks spanning multiple domains

using data from IDSes, firewalls, and other possible

sources [2, 16, 26, 49]. Recent studies [21] show that

coordinated wide-scale attacks are prevalent: 20% of the

studied malicious addresses and 40% of the IDS alerts

accounted for coordinated wide-scale attacks. Further-

more, strongly correlated groups profiting most from col-

laboration have less than 10 members and are stable over

time, which is well-suited for SEPIA protocols.

In order to counter such attacks, Yegneswaran et

al. [49] presented DOMINO, a distributed IDS that en-

ables collaboration among nodes. They evaluated the

performance of DOMINO with a large set of IDS logs

from over 1600 providers. Their analysis demonstrates

the significant benefit that is obtained by correlating the

data from several distributed intrusion data sources. The

major issue faced by such correlation systems is the lack



of data privacy. In their work, Porras et al. survey exist-

ing defense mechanisms and propose several remaining

research challenges [32]. Specifically, they point out the

need for efficient privacy-preserving data mining algo-

rithms that enable traffic classification, signature extrac-

tion, and propagation analysis.

Profiling and Performance Analysis A second cate-

gory of applications relates to traffic profiling and perfor-

mance measurements. A global profile of traffic trends

helps organizations to cross-correlate local traffic trends

and identify changes. In [38] the authors estimate that

50 of the top-degree ASes together cover approximately

90% of global AS-paths. Hence, if large ASes col-

laborate, the computation of global Internet statistics is

within reach. One possible statistic is the total traffic vol-

ume across a large number of networks. This statistic, for

example, could have helped [37] in the dot-com bubble

in the late nineties, since the traffic growth rate was over-

estimated by a factor of 10, easing the flow of venture

capital to Internet start-ups. In addition, performance-

related applications can benefit from an “on average”

view across multiple domains. Data from multiple do-

mains can also help to locate a remote outage with higher

confidence, and to trigger proper detour mechanisms. A

number of additional MPC applications related to perfor-

mance monitoring are discussed in [36].

Research Validation Many studies are obliged to avoid

rigorous validation or have to re-use a small number of

old traffic traces [13, 43]. This situation clearly under-

mines the reliability of the derived results. In this con-

text, SEPIA can be used to establish a privacy-preserving

infrastructure for research validation purposes. For ex-

ample, researchers could provide MPC scripts to SEPIA

nodes running at universities and research institutes.

7.2 Case Study: The Skype Outage

The Skype outage in August 2007 started from a

Windows update triggering a large number of system

restarts. In response, Skype nodes scanned cached host-

lists to find supernodes causing a huge distributed scan-

ning event lasting two days [35]. We used NetFlow traces

of the actual up- and downstream traffic of the 17 biggest

customers of the SWITCH network. The traces span 11

days from the 11th to 22nd and include the Skype outage

(on the 16th/17th) along with other smaller anomalies.

We ran SEPIA’s total count, distinct count, and entropy

protocols on these traces and investigated how the orga-

nizations can benefit by correlating their local view with

the aggregate view.

We first computed per-organization and aggregate

timeseries of the UDP flow count metric and applied a

simple detector to identify anomalies. For each time-
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Figure 10: Flow count in 5’ windows with anomalies

for the biggest organizations and aggregate view (ALL).
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Figure 11: Correlation of local and global anomalies for

organizations ordered by size (1=biggest).

series, we used the first 4 days to learn its mean µ and

standard deviation σ, defined the normal region to be

within µ±3σ, and detected anomalous time intervals. In

Fig. 10 we illustrate the local timeseries for the six largest

organizations and the aggregate timeseries. We rank or-

ganizations based on their decreasing average number of

daily flows and use their rank to identify them. In the

figure, we also mark the detected anomalous intervals.

Observe that in addition to the Skype outage, some orga-

nizations detect other smaller anomalies that took place

during the 11-day period.

Anomaly Correlation Using the aggregate view, an or-

ganization can find if a local anomaly is the result of

a global event that may affect multiple organizations.

Knowing the global or local nature of an anomaly is im-

portant for steering further troubleshooting steps. There-

fore, we first investigate how the local and global anoma-

lous intervals correlate. For each organization, we com-

pared the local and aggregate anomalous intervals and

measured the total time an anomaly was present: 1) only



in the local view, 2) only in the aggregate view, and 3)

both in the local and aggregate views, i.e., the matching

anomalous intervals. Fig. 11 illustrates the correspond-

ing time fractions. We observe a rather small fraction,

i.e., on average 14.1%, of local-only anomalies. Such

anomalies lead administrators to search for local targeted

attacks, misconfigured or compromised internal systems,

misbehaving users, etc. In addition, we observe an aver-

age of 20.3% matching anomalous windows. Knowing

an anomaly is both local and global steers an affected

organization to search for possible problems in popular

services, in widely-used software, like Skype in this case,

or in the upstream providers. A large fraction (65.6%) of

anomalous windows is only visible in the global view.

In addition, we observe significant variability in the pat-

terns of different organizations. In general, larger organi-

zations tend to have a larger fraction of matching anoma-

lies, as they contribute more to the aggregate view. While

some organizations are highly correlated with the global

view, e.g., organization 3 that notably contributes only

7.4% of the total traffic; other organizations are barely

correlated, e.g., organizations 9 and 12; and organization

2 has no local anomalies at all.

Anomaly Troubleshooting We define relative anomaly

size to be the ratio of the detection metric value during an

anomalous interval over the detection threshold. Organi-

zations 3 and 4 had relative anomaly sizes 11.7 and 18.8,

which is significantly higher than the average of 2.6. Us-

ing the average statistic, organizations can compare the

relative impact of an attack. Organization 2, for instance,

had anomaly size 0 and concludes that there was a large

anomaly taking place but they were not affected. Most

of the organizations conclude that they were indeed af-

fected, but less than average. Organizations 3 and 4,

however, have to spend thoughts on why the anomaly

was so disproportionately strong in their networks.

An investigation of the full port distribution and its

entropy (plots omitted due to space limitations) shows

that affected organizations see a sudden increase in scan-

ning activity on specific high port numbers. Connections

originate mainly from ports 80 and 443, i.e., the fall-

back ports of Skype, and a series of high port numbers

indicating an anomaly related to Skype. For organiza-

tions 3 and 4, some of the scanned high ports are ex-

tremely prevalent, i.e., a single destination port accounts

for 93% of all flows at the peak rate. Moreover, most of

the anomalous flows within organizations 3 and 4 are tar-

geted at a single IP address and originate from thousands

of distinct source addresses connecting repeatedly up to

13 times per minute. These patterns indicate that the two

organizations host popular supernodes, attracting a lot of

traffic to specific ports. Other organizations mainly host

client nodes and see uniform scanning, while organiza-

Org # 3 5 6 7 13 17

lag [hours] 1.2 2.7 23.4 15.5 4.8 3.6

Table 3: Organizations profiting from an early anomaly

warning by aggregation.

tion 2 has banned Skype completely. Based on this anal-

ysis, organizations can take appropriate measures to mit-

igate the impact of the 2-day outage, like notifying users

or blocking specific port numbers.

Early-warning Finally, we investigate whether the ag-

gregate view can be useful for building an early-warning

system for global or large-scale anomalies. The Skype

anomaly did not start concurrently in all locations, since

the Windows update policy and reboot times were differ-

ent across organizations. We measured the lag between

the time the Skype anomaly was first observed in the ag-

gregate and local view of each organization. In Table 3

we list the organizations that had considerable lag, i.e.,

above an hour. Notably, one of the most affected orga-

nizations (6) could have learned the anomaly almost one

day ahead. However, as shown in Fig. 11, for organiza-

tion 2 this would have been a false positive alarm. To

profit most from such an early warning system in prac-

tice, the aggregate view should be annotated with addi-

tional information, such as the number of organizations

or the type of services affected from the same anomaly.

In this context, our event correlation protocol is useful to

decide whether similar anomaly signatures are observed

in the participating networks. Anomaly signatures can be

extracted automatically using actively researched tech-

niques [8, 33].

8 Related Work

Most related to our work, Roughan and Zhan [37] first

proposed the use of MPC techniques for a number of

applications relating to traffic measurements, including

the estimation of global traffic volume and performance

measurements [36]. In addition, the authors identified

that MPC techniques can be combined with commonly-

used traffic analysis methods and tools, such as time-

series algorithms and sketch data structures. Our work is

similar in spirit, yet it extends their work by introducing

new MPC protocols for event correlation, entropy, and

distinct count computation and by implementing these

protocols in a ready-to-use library.

Data correlation systems that provide strong privacy

guarantees for the participants achieve data privacy by

means of (partial) data sanitization based on bloom fil-

ters [44] or cryptographic functions [26, 24]. However,

data sanitization is in general not a lossless process and



therefore imposes an unavoidable tradeoff between data

privacy and data utility.

The work presented by Chow et al. [12] and Apple-

baum et al. [1] avoid this tradeoff by means of cryp-

tographic data obfuscation. Chow et al. proposed a

two-party query computation model to perform privacy-

preserving querying of distributed databases. In addi-

tion to the databases, their solution comprises three en-

tities: the randomizer, the computing engine, and the

query frontend. Local answers to queries are random-

ized by each database and the aggregate results are de-

randomized at the frontend. Applebaum et al. present

a semi-centralized solution for the collaboration among

a large number of participants in which responsibility is

divided between a proxy and a central database. In a

first step the proxy obliviously blinds the clients’ input,

consisting of a set of keyword/value pairs, and stores the

blinded keywords along with the non-blinded values in

the central database. On request, the database identifies

the (blinded) keywords that have values satisfying some

evaluation function and forwards the matching rows to

the proxy, which then unblinds the respective keywords.

Finally, the database publishes its non-blinded data for

these keywords. As opposed to these approaches, SEPIA

does not depend on two central entities but in general

supports an arbitrary number of distributed privacy peers,

is provably secure, and more flexible with respect to the

functions that can be executed on the input data. The

similarities and differences between our work and exist-

ing general-purpose MPC frameworks are discussed in

Sec. 5.4.

9 Conclusion

The aggregation of network security and monitoring

data is crucial for a wide variety of tasks, including col-

laborative network defense and cross-sectional Internet

monitoring. Unfortunately, concerns regarding privacy

prevent such collaboration from materializing. In this

paper, we investigated the practical usefulness of solu-

tions based on secure multiparty computation (MPC).

For this purpose, we designed optimized MPC operations

that run efficiently on voluminous input data. We im-

plemented these operations in the SEPIA library along

with a set of novel protocols for event correlation and

for computing multi-domain network statistics, i.e., en-

tropy and distinct count. Our evaluation results clearly

demonstrate the efficiency and scalability of SEPIA in

realistic settings. With COTS hardware, near real-time

operation is practical even with 140 input providers and

9 computation nodes. Furthermore, the basic operations

of the SEPIA library are significantly faster than those

of existing MPC frameworks and can be used as build-

ing blocks for arbitrary protocols. We believe that our

work provides useful insights into the practical utility of

MPC and paves the way for new collaboration initiatives.

Our future work includes improving SEPIA’s robustness

against host failures, dealing with malicious adversaries,

and further improving performance, using, for example,

polynomial set representations. Furthermore, in collab-

oration with a major systems management vendor, we

have started a project that aims at incorporating MPC

primitives into a mainstream traffic profiling product.
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Notes
1We define near real-time as the requirement of fully processing

an x-minute interval of traffic data in no longer than x minutes, where
x is typically a small constant. For our evaluation, we use 5-minute
windows.

2For instance, if n = 10 and Tc = 7, each event that needs to be
reconstructed according to (4) must be reported by at least one of the
first 4 input peers. Hence, it is sufficient to compute the Cij and Wij

for the first n− Tc + 1 = 4 input peers.
3When run on a 32-bit platform, up to twice the CPU load was ob-

served, with similar overall running time. This difference is due to
shares being stored in long variables, which are more efficiently pro-
cessed on 64-bit CPUs.


