
Acoustic Side-Channel Attacks on Printers

Michael Backes1,2, Markus D̈urmuth1, Sebastian Gerling1, Manfred Pinkal3, Caroline Sporleder3
1Saarland University, Computer Science Department, Saarbrücken, Germany

2Max Planck Institute for Software Systems (MPI-SWS)
3Saarland University, Computer Linguistics Department, Saarbrücken, Germany

Abstract
We examine the problem of acoustic emanations of print-
ers. We present a novel attack that recovers what a dot-
matrix printer processing English text is printing based
on a record of the sound it makes, if the microphone is
close enough to the printer. In our experiments, the at-
tack recovers up to72 % of printed words, and up to
95 % if we assume contextual knowledge about the text,
with a microphone at a distance of10cm from the printer.
After an upfront training phase, the attack is fully auto-
mated and uses a combination of machine learning, au-
dio processing, and speech recognition techniques, in-
cluding spectrum features, Hidden Markov Models and
linear classification; moreover, it allows for feedback-
based incremental learning. We evaluate the effective-
ness of countermeasures, and we describe how we suc-
cessfully mounted the attack in-field (with appropriate
privacy protections) in a doctor’s practice to recover the
content of medical prescriptions.

1 Introduction

Information leakage caused by emanations from elec-
tronic devices has been a topic of concern for a long
time. The first publicly known attack of this type, pub-
lished in 1985, reconstructed the monitor’s content from
its electromagnetic emanation [36]. The military had
prior knowledge of similar techniques [41, 20]. Related
techniques captured the monitor’s content from the ema-
nations of the cable connecting the monitor and the com-
puter [21], and acoustic emanations of keyboards were
exploited to reveal the pressed key [3, 42, 7]. In this work
we examine the problem of acoustic emanations of dot-
matrix printers.

Dot matrix printers? Didn’t these printers vanish in
the 80s already?Although indeed outdated for private
use, dot-matrix printers continue to play a surprisingly
prominent role in businesses where confidential informa-
tion is processed. We commissioned a representative sur-

vey from a professional survey institute [26] in Germany
on this topic, with the following major lessons learned
(Figure 1 contains additional information from this sur-
vey):

• About 60 % of all doctors in Germany use dot
matrix printers, for printing the patients’ health
records, medical prescriptions, etc. This corre-
sponds to about 190,000 doctors and an average
number of more than 2.4 million records and pre-
scriptions printed on average per day.

• About30 % of all banks in Germany use dot matrix
printers, for printing account statements, transcripts
of transactions, etc. This corresponds to 14,000
bank branches and more than 1.2 million such doc-
uments printed on average per day.

• Only about5 % of these doctors and about8 %
of these banks currently plan to replace dot matrix
printers. The reasons for the continued use of dot-
matrix printers are manifold: robustness, cheap de-
ployment, incompatibility of modern printers with
old hardware, and overall the lack of a compelling
business reason of IT laymen why working IT hard-
ware should be modernized.

• Several European countries (e.g., Germany,
Switzerland, Austria, etc.) require by law the use
of dot-matrix (carbon-copy) printers for printing
prescriptions of narcotic substances [8].

1.1 Our contributions

We show that printed English text can be successfully
reconstructed from a previously taken recording of the
sound emitted by the printer. The fundamental reason
why the reconstruction of the printed text works is that,
intuitively, the emitted sound becomes louder if more
needles strike the paper at a given time (see Figure 2 for
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DOCTORS(n=541ASKED)

Use dot-matrix printers 58.4 %
- for general prescriptions 79.4 %
- for other usages 84.5 %
Printer placed in proximity of patients 72.2 %
Replacement planned 4.7 %

BANKS (n=524ASKED)

Use dot-matrix printers 30.0 %
- for bank statement printers 29.9 %
- for other usages 83.4 %
Printer placed in proximity of customers83.4 %
Replacement planned 8.3 %

Figure 1: Main results of the survey on the usage of dot-matrix printers in doctor’s practices and banks [26]. Other
printer usages reported in the survey comprise: “certificate of incapacity for work, transferal to another doctor, hos-
pitalization, and receipts” for doctors, and “account book, PIN numbers for online banking, supporting documents,
ATMs” for banks.

Figure 2: Print-head of an Epson LQ-300+II dot-matrix
printer, showing the two rows of needles.

a typical setting of 24 needles at the printhead). We ver-
ified this intuition and we found that there is a correla-
tion between the number of needles and the intensity of
the acoustic emanation (see Figure 3). We first conduct a
training phase where words from a dictionary are printed,
and characteristic sound features of these words are ex-
tracted and stored in a database. We then use the trained
characteristic features to recognize the printed English
text. (Training and recognition on a letter basis, simi-
lar to [42], seems more appealing at first glance since it
naturally comprises the whole vocabulary. However, the
emitted sound is strongly blurred across adjacent letters,
rendering a letter-based approach much poorer than the
word-based approach, even if spell-checking is used, see
below).

This task is not trivial. Major challenges include:
(i) Identifying and extracting sound features that suit-
ably capture the acoustic emanation of dot-matrix print-
ers; (ii) Compensating for the blurred and overlapping
features that are induced by the substantial decay time of
the emanations; (iii) Identifying and eliminating wrongly
recognized words to increase the overall percentage of
correctly identified words (recognition rate).

Overview of the approach. Our work addresses these
challenges, using a combination of machine learning
techniques for audio processing and higher-level infor-
mation about document coherence. Similar techniques
are used in language technology applications, in particu-
lar in automatic speech recognition.

First, we develop a novel feature design that borrows
from commonly used techniques for feature extraction in
speech recognition and music processing. These tech-
niques are geared towards the human ear, which is lim-
ited to approx. 20 kHz and whose sensitivity is logarith-
mic in the frequency; for printers, our experiments show
that most interesting features occur above 20 kHz, and a
logarithmic scale cannot be assumed. Our feature design
reflects these observations by employing a sub-band de-
composition that places emphasis on the high frequen-
cies, and spreading filter frequencies linearly over the
frequency range. We further add suitable smoothing to
make the recognition robust against measurement varia-
tions and environmental noise.

Second, we deal with the decay time and the induced
blurring by resorting to a word-based approach instead of
decoding individual letters. A word-based approach re-
quires additional upfront effort such as an extended train-
ing phase (as a word-based dictionary is larger), and it
does not permit us to increase recognition rates by us-
ing, e.g., spell-checking. Recognition of words based on
training the sound of individual letters (or pairs/triplesof
letters), however, is infeasible because the sound emitted
by printers blurs too strongly over adjacent letters. (Even
words that differ considerably on the letter basis may
yield highly similar overall sound features, which com-
plicates the subsequent post-processing, see below.) This
complication was not present in earlier work on acous-
tic emanations of keyboards, since the time between two
consecutive keystrokes is always large enough that blur-
ring was not an issue [42].

Third, we employ speech recognition techniques to in-
crease the recognition rate: we use Hidden Markov Mod-
els (HMMs) that rely on the statistical frequency of se-
quences of words in English text in order to rule out in-
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Figure 3: Graph showing the correlation between the
number of needles striking the ribbon and the measured
acoustic intensity.

correct word combinations. The presence of strong blur-
ring, however, requires the use of at least3-grams on the
words of the dictionary to be effective, causing existing
implementations for this task to fail because of memory
exhaustion. To tame memory consumption, we imple-
mented a delayed computation of the transition matrix
that underlies HMMs, and in each step of the search
procedure, we adaptively removed the words with only
weakly matching features from the search space.

Experiments, underlying assumptions and limita-
tions. Before we describe our experiments, let us be
clear about the underlying assumptions that render our
approach possible. (i) The microphone (or bug) has
to be (surreptitiously) placed in close proximity (about
10cm) of the printer. (ii) Because our approach is word-
based for the reasons described above, it will only iden-
tify words that have been previously trained; feedback-
based incremental training of additional words is pos-
sible. While this is less a concern for, e.g., recovering
general English text and medical prescriptions, it renders
the attack currently infeasible against passwords or PIN
numbers. In the bank scenario, the approach can still be
used to identify, e.g., the sender, recipient, or subject ofa
transaction. (iii) Conducting the learning phase requires
access to a dot matrix printer of the same model. There is
no need to get hold of the actual printer at which the tar-
get text was printed. (iv) If HMM-based post-processing
is used, a corpus of (suitable) text documents is required
to build up the underlying language model. Such post-
processing is not always necessary, e.g., our in-field at-
tack in a doctor’s practice described below did not exploit
HMMs to recover medical prescriptions.

We have built a prototypical implementation that can
bootstrap the recognition routine from a database of
featured words that have been trained using supervised

learning. We applied this implementation to four differ-
ent English text documents, using a dictionary of about
1,400 words (including the 1,000 most frequently used
English words and the words that additionally occur in
these documents, see the second assumption above) and a
general-purpose corpus extracted from stable Wikipedia
articles that the HMM-based post-processing relies upon.
The prototype automatically recognizes these texts with
recognition rates of up to72 %. To investigate the
impact of HMM-based post-processing with a domain-
specific corpus instead of a general-purpose corpus on
the recognition rate, we considered two additional docu-
ments from a privacy-sensitive domain: living-will dec-
larations. We used publicly available living-will dec-
larations to extract a specialized corpus, thereby also
increasing the dictionary to 2,150 words. Our proto-
type automatically recognized the two target declarations
with recognition rates of about64 % using the general-
purpose corpus, and increased the recognition rates to
72 % and95 %, respectively, using the domain-specific
corpus. This shows that, somewhat expectedly, HMM-
based post-processing is particularly worthwhile if prior
knowledge about the domain of the target document can
be assumed.

We have identified and evaluated countermeasures that
prevent this kind of attack. We found that fairly simple
countermeasures such as acoustic shielding and ensur-
ing a greater distance between the microphone and the
printer suffice for most practical purposes.

Furthermore, we have successfully mounted the at-
tack in-field in a doctor’s practice to recover the con-
tent of medical prescriptions. (For privacy reasons, we
asked for permission upfront and let the secretary print
fresh prescriptions of an artificial client.) The attack was
observer-blind and conducted under realistic – and ar-
guably even pessimistic – circumstances: during rush
hour, with many people chatting in the waiting room.

1.2 Related work

Military organizations investigated compromising ema-
nations for many years. Some of the results have been de-
classified: the Germans spied on the French field phone
lines in World War I [6], the Japanese spied on Amer-
ican cipher machines using electromagnetic emanations
in 1962 [1], the British spied on acoustic emanation of
(mechanical) Hagelin encryption devices in the Egyptian
embassy in 1956 [39, p. 82], and the British spied on par-
asitic signals leaked by the French encryption machines
in the 1950s [39, p. 109f].

The first publicly known attack we are aware of was
published in 1985, and exploited electromagnetic radi-
ation of CRT monitors [36, 16]. Since then, various
forms of emanations have been exploited. Electromag-
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Figure 4: Overview of the attack.

netic emanations that constitute a security threat to com-
puter equipment result from poorly shielded RS-232 se-
rial lines [35], keyboards [2], as well as the digital cable
connecting modern LCD monitors [21]. We refer to [22]
for a discussion of the security limits for electromagnetic
emanation. The time-varying diffuse reflections of the
light emitted by a CRT monitor can be exploited to re-
cover the original monitor image [19]; compromising re-
flections were studied in [5, 4]. Information leaking from
status LEDs was studied in [25].

Acoustic emanations were shown to divulge text typed
on ordinary keyboards [3, 42, 7], as well as information
about the CPU state and the instructions that are exe-
cuted [33]. Acoustic emanations of printers were briefly
mentioned before [10]; it was solely demonstrated that
the letters “W” and “J” can be distinguished. This study
did not determine whether any other letters can be dis-
tinguished, let alone if a whole text can be reconstructed
by inspection of the recording, or even in an automated
manner.

Several techniques from audio processing are adapted
for use in our system. A central technique is feature ex-
traction. We use features based on sub-band decompo-
sition [27]. Alternative feature designs are based on the
(Short-time) Fast Fourier Transform [34], or on the Cep-
strum transformation [11] which is the basis for Mel Fre-
quency Cepstral Coefficients (MFCC) [23, 15, 9, 24, 30].

1.3 Paper outline

Section 2 presents a high-level description of our new
attack, with full technical details given in Section 3. Sec-
tion 4 presents experimental results. Section 5 describes
the attack we conducted in-field. We conclude with some
final remarks in Section 6.

2 Attack Overview

In this section, we survey our attack without delving into
the technical details. We consider the scenario that En-
glish text containing potentially sensitive information is
printed on a dot-matrix printer, and the emitted sound is
recorded. We develop a methodology that on input the
recording automatically reproduces the printed text. Fig-
ure 4 presents a holistic overview of the attack.

The first phase (Figure 4(a)) constitutes thetraining
phase that can take place either before or after the attack.
In this phase, a sequence of words from a dictionary is
printed, and characteristic sound features of each word
are extracted and stored in a database. For obtaining the
best results, the setting should be close to the setting in
which the actual attack is mounted, e.g., similar envi-
ronmental noise and acoustics. Our experiments indicate
that creating sufficiently good settings for reconstruction
does not pose a problem, see Section 4.3.2. The main
steps of the training phase are as follows:

1. Feature extraction.We use a novel feature design
that borrows from commonly used techniques for
feature extraction in speech recognition and mu-
sic processing. In contrast to these areas, our ex-
periments show that most interesting features for
printed sounds occur above 20 kHz, and that a log-
arithmic scale cannot be assumed for them. We
hence split the recording into single words based on
the intensity of the frequency band between 20 kHz
and 48 kHz, and spread the filter frequencies lin-
early over the frequency range. We subsequently
use digital filter banks to perform sub-band decom-
position on each word [27]. As discussed in Sec-
tion 3.1, sub-band decomposition gives better re-
sults than simple FFT because of better time res-
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olution. The output of sub-band decomposition is
smoothed to make it more robust to measurement
variations and environmental noise. The extracted
features are stored in a database.

2. Computation of language models.To solve the
recognition task, we will complement acoustic in-
formation with information about the occurrence
likelihood of words in their linguistic context (e.g.,
the sequence “such as the” is much more likely than
“such of the”). More specifically, we estimate for
each word in our lexiconn-gram probabilities, i.e.,
the likelihood that the word occurs after a sequence
of n − 1 given words. These probabilities make
up a(statistical) language model. Probabilities are
computed based on frequency counts ofn-place se-
quences (n-grams) from a corpus of text documents.
We need to extract these frequencies from a suf-
ficiently large corpus, which makes up the second
step of the training phase. In our experiments, we
used3-gram frequencies extracted from a corpus of
10 million words of English text. For our domain-
specific experiments, we used a corpus of living-
will declarations consisting of 14,000 words of En-
glish text.

The second phase (Figure 4(b)), called therecognition
phase, uses the characteristic features of the trained
words to recognize new sound recordings of printed text,
complemented by suitable language-correction tech-
niques. The main steps are as follows:

1. Select candidate words.We start by extracting fea-
tures of the recording of the printed target text, as in
the first step of the training phase. Let us call the ob-
tained sequence of features target features whereas
the features from the training phase stored in the
database are henceforth referred to as trained fea-
tures. Now, we subsequently compare, on a word-
by-word basis, the obtained target features with
the trained features of the dictionary stored in the
database.

If the features extracted from different recordings of
the same word were always identical, one would ob-
tain a unique correspondence between trained fea-
tures and target features (under the assumption that
all text words are in the dictionary). However, mea-
surement variations, environmental noise, etc. show
that this is not the case. Multiple recordings of the
same word sometimes yield different features; for
example, printing the same word at different places
in the document results in differing acoustic em-
anations (Figure 10 illustrates how a single verti-
cal line already differs in the intensity); conversely,
recordings of words that differ significantly in their

spelling might yield almost identical sound features.
We hence let the selected, trained word be a random
variable conditioned on the printed word, i.e., every
trained word will be a candidate with a certain prob-
ability. Using sufficiently good feature extraction
and distance computations between two features,
the probabilities of one or a few such trained words
will dominate for each printed word. The output
of the first recognition step is a list of most likely
candidates, given the acoustic features of the target
word.

2. Language-based reordering to reduce word error
rate. We finally try to find the most likely se-
quence of printed words given a ranked list of candi-
date words for each printed word. Although always
naively picking the most likely word based on the
acoustic signal might already yield a suitable recog-
nition quality, we employ Hidden Markov Model
(HMM) technology, in particular language models
and the Viterbi algorithm (see Section 3.3.3 for de-
tails), which is regularly used in speech recognition,
to determine the most likely sequence of printed
words. Intuitively, this technology works well for us
because most errors that we encounter in the recog-
nition phase are due to incorrectly recognized words
that do not fit the context; by making use of linguis-
tic knowledge about likely and unlikely sequences
of words, we have a good chance of detecting and
correcting such errors. The use of HMM technology
yields accuracy rates of70 % on average for words
for the general-purpose corpus, and up to95 % for
the domain-specific corpus, see Section 3.3 for de-
tails.

We modified the Viterbi algorithm to meet our spe-
cific needs: first, the standard algorithm accepts as
input a sequence of outputs, while we get for each
position an ordered list of likely candidates, and we
want to profit from this extra knowledge; second,
we need to decrease memory usage, since a standard
implementation would consume more than 30 GB
of memory.

3 Technical Details

In this section we provide technical details about our at-
tack, including the background in audio processing and
Hidden-Markov Models.

3.1 Feature extraction

We are faced with an audio file sampled at 96 kHz with
16bit.
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To split the recording into words, we use a threshold
on the intensity of the frequency band from 20 kHz to
48 kHz. For printers, our experiments have shown that
most interesting features occur above 20 kHz, making
this frequency range a reliable indicator despite its sim-
plicity; ignoring the lower frequencies moreover avoids
most noise added by the movement of the print-head etc.

From the split signal, wecompute the raw spectrum
featuresby sub-band decomposition, a common tech-
nique in different areas of audio processing. The signal is
filtered by a filter bank, a parallel arrangement of several
bandpass filters tuned in steps of 1 kHz over the range
from 1 kHz to 48 kHz.

For noise reduction the output of the filters is
smoothed, normalized, the amount of data is reduced (the
maximal value out of 5 is kept), and smoothed again. The
result is appropriately discretized over time and forms a
set of vectors, one vector for each filter.

The feature design has a major influence on the run-
ning time and storage requirements of the subsequent
audio processing. We have experimented with several
alternative feature designs, but obtained the best results
with the design described above. The (Short-time) Fast
Fourier Transform (SFFT) [34] seems a natural alterna-
tive to sub-band decomposition. There is, however, a
trade-off between the frequency and the time resolution,
and we obtain worse results in our setting when we used
SFFTs, similar to earlier observations [42].

3.2 Select candidate words

Deciding which database entry is the best match for a
recording is based on the following distance function de-
fined on features; the tool outputs the30 most similar
entries along with the calculated distance. Given the fea-
tures extracted from the recording(~x1, . . . , ~xt) and the
features of a single database entry(~y1, . . . , ~yt) we com-
pute the angle between each pair of vectors~xi, ~yi and
sum over all frequency bands:

∆((~x1, . . . , ~xt), (~y1, . . . , ~yt))

=
∑

i=1,...,t

arccos

(

~xi · ~yi

|~xi| · |~yi|

)

.

To increase robustness and decrease computational com-
plexity in practical scenarios, some problems need to be
addressed: First, our implementation of cutting the au-
dio file sometimes errs a bit, which leads to slightly non-
matching samples. Thus we consider minor shiftings of
each sample by tiny amounts (two steps in each direction,
or a total of 5 measurements) and take the minimum an-
gle (i.e., the maximum similarity). Second, for a similar
reason, we tolerate some deviation in the length of the

features. We punish too large deviations by multiplying
with a factor of1.2 if the length of the query and the
database entry differ by more than a defined threshold.
The factor and the threshold are derived from our exper-
iments. Third, we discard entries whose length deviates
from the target feature by more than15 % in order to
speed up the computation.

Using the angle to compare features is a common tech-
nique. Other approaches that are used in different sce-
narios include the following: Müller et al. present an
audio matching method for chroma based features that
handles tempo differences [28]. Logan and Salomon use
signatures based on clustered MFCCs as input for the
distance calculation in [24]. Furthermore, they use the
earth mover’s distance [32] for the signatures (minimum
amount of work to transform one signature into another)
and the Kullback Leibler (KL) distance for the clusters
inside the signature as distance measures.

3.3 Post-processing using HMM technol-
ogy

In this section we describe techniques based on language
models to further improve the quality of reconstruction.
These improve the word recognition rate from63 %
to 70 % on average, and up to72 % in some cases.
The domain-specific HMM-based post-processing even
achieves recognition rates of up to95 %.

3.3.1 Introduction to HMMs

Hidden Markov models (HMMs) are graphical models
for recovering a sequence of random variables which
cannot be observed directly from a sequence of (ob-
served) output variables. The random variables are mod-
eled as hidden states, the output variables as observed
states. HMMs have been employed for many tasks that
deal with natural language processing such as speech
recognition [31, 18, 17], handwriting recognition [29] or
part-of-speech tagging [12, 14].

Formally, an HMM of orderd is defined by a five-tuple
〈Q, O, A, B, I〉, whereQ = (q1, q2, ..., qN ) is the set of
(hidden) states,O = (o1, o2, ..., oM ) is the set of obser-
vations,A = Qd+1 is the matrix of state transition prob-
abilities (i.e., the probability to reach stateqd+1 when
being in stateqd with historyq1, . . . , qd−1), B = Q × O

are the emission probabilities (i.e., the probability of ob-
serving a specific outputoi when being in stateqj), and
I = Qd is the set of initial probabilities (i.e., the prob-
ability of starting in stateqi). Figure 5 shows a graph-
ical representation of an HMM, where unshaded circles
represent hidden states and shaded circles represent ob-
served states.
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.......
q1 q2 q3 qN

o1 o2 o3 oM

a12 a23 a34 aN−1,N

b11 b22 b33 eNM

Figure 5: Hidden Markov Model

In our setting the words that were printed are unknown
and correspond to the hidden states. The observed states
are the output of the first stage of reconstruction from
the acoustic signals emitted by the printer. What makes
HMMs particularly attractive for our task is that they al-
low us to combine two sources of information: first, the
acoustic information present in the observed signal, and
second, knowledge about likely and unlikely word com-
binations in a well-formed text. Both sources of infor-
mation are important for recovering the original text.

To utilize HMMs for our task, we need to solve two
problems: we need to estimate the model parameters of
the HMM (training phase), and we need to determine the
most likely sequence of hidden states for a sequence of
observations given the model (recognition phase). The
method described in Section 3.2 approximates the es-
timation of the emission probabilities by computing a
ranking of the candidate words given an observed acous-
tic signal. The initial probabilities, which model the
probability of starting in a given state, and the transi-
tion probabilities, which model the likelihood of differ-
ent words following each other in an English text, can
be obtained by building alanguage modelfrom a large
text corpus. To address the second problem, determin-
ing the most likely sequence of hidden states (i.e., the
most likely sequence of printed words in the target text),
we can use the Viterbi algorithm [37]. In the following
two sections, we describe in more detail how we com-
pute the language models and how the candidate words
are reordered by applying the Viterbi algorithm.

3.3.2 Building the language models

A language model of sizen assigns a probability to each
sequence ofn words. The probability distribution can be
estimated by computing the frequencies of alln-grams
from a large text corpus. Note that language models are
to some extent domain and genre dependent, i.e., a lan-
guage model built from a corpus of financial texts will
not be a very good model for predicting likely word se-

quences in biomedical texts. To cover a large range of
domains and thus make our model robust in the face of
arbitrary input texts, we train the language model on a
diverse selection of stable Wikipedia articles. The cor-
pus has a size of 63 MB and contains approximately10
million words. For our domain-specific experiments, we
used a corpus of living-will declarations consisting of
14,000 words of English text. From the corpus, we ex-
tracted all3-grams and computed their frequencies.1 We
took into consideration all3-grams that appeared at least
3 times. Asn-grams with probability0 will never be
selected by the Viterbi algorithm, we smooth the proba-
bilities by assigning a small probability to each unseen
n-gram.

The length of ann-gram determines how many words
of context (i.e., how many previous hidden states in the
HMM) are taken into account by the language model.
Higher values forn can lead to better models but also
require exponentially larger corpora for an accurate esti-
mation of then-gram probabilities. The higher the value
of n, the larger the likelihood that somen-grams never
appear in the corpus, even though they are valid word
sequences and thus may still appear in the printed text.

3.3.3 Reordering of candidate words based on lan-
guage models

Having built the language model, we can reorder the
candidate words using the model to select the most
likely word sequence (i.e., the most likely sequence
of hidden states). This task is addressed by the
Viterbi algorithm [37], which takes as input an HMM
〈Q, O, A, B, I〉 of orderd and a sequence of observa-
tionsa1, . . . , aT ∈ OT . Its state consists ofΨ = T×Qd.
First, thed-th step is initialized (the earlier are unused)
according to the initial distribution, weighted with the

1All 3-grams were converted to lower case and punctuation charac-
ters were stripped off.
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observations:

Ψd,i1,...,id
= Ii1,...,id

∏

k=1,...,d

Bik,ak
∀ 1 ≤ i, j ≤ N.

In the recursion, for increasing indicess, the maximum
of all previous values is taken:

Ψs,i1,...,id
= Bid,as

max
i0∈Q

(

Ai0,i1,...,id
Ψs−1,i0,...,id−1

)

∀ s > d, 1 ≤ i, j ≤ N.

Finally, the sequence of hidden states can be obtained
by backtracking the indices that contributed to the maxi-
mum in the recursion step.

The memory required to store the stateΨ is O(T ·Nd),
and the running time isO(T · Nd+1), as we are opti-
mizing over allN hidden states for each cell, so mem-
ory requirements are a major challenge in implementing
the Viterbi algorithm. For example, using a dictionary
of 1, 000 words, the memory requirements of our imple-
mentation for3-grams are slightly above 2 GB, and is
growing quadratically inN .

We use two techniques to overcome these problems:

1. First, instead of storing the complete transition ma-
trix A we compute the values on-the-fly (keeping
only the list of3-grams in memory).

2. Second, we do not optimize over all possible words,
but only over theM = 30 best rated words from
the previous stage. This brings down memory re-
quirements toO(T · Md) and execution time to
O(T ·Md+1). The size ofΨ in this case is 130 MB
for 3-grams.

Further improvements are conceivable, e.g., by using
parallel scalability [40].

4 Experiments and Statistical Evaluation

In this section we describe our experiments for evaluat-
ing the attack. In addition to describing the set-up and the
experimental results on the recognition rate for sample
articles, we present our experiments for evaluating the
influence of using different microphones, printers, fonts,
etc. on the recognition rate; moreover, we identify and
evaluate countermeasures.

4.1 Setup

We use an Epson LQ-300+II (24 needles) without printer
cover and the in-built mono-spaced font for printing
texts. The sound is recorded from a short distance us-
ing a Sennheiser MKH-8040 microphone with nominal
frequency range from 30 Hz to 50 kHz. If nothing addi-
tional is mentioned the experiments were conducted in a

normal office with the door closed and no people talking
inside the room. There was no special shielding against
noise from the outside (e.g., traffic noise). In the training
phase we used a dictionary containing 1,400 words; the
dictionary consists of a list of the 1,000 most frequent
words from our corpus augmented with the words that
appeared in our example texts.2 Inflected forms, capital-
ization, as well as words with leading punctuation marks
need to be counted as different words, as their sound fea-
tures might significantly differ (blurring propagates from
left to right within a word).

We work with the sound recordings of four different
articles from Wikipedia on different topics: two articles
on computer science (on source-code and printers), one
article on politics (on Barack Obama), and one article
on art (on architecture) with a total of 1,181 words to
evaluate the attack.

The training and matching phase have been imple-
mented in MATLAB using the Signal Processing Tool-
box – a MATLAB extension which allows to conve-
niently process audio signals. The HMM-based post-
processing is implemented in C. The tool is fully auto-
mated, with the only exceptions being threshold values
that need manual adaption for a given attack scenario. In
the scenario with the microphone placed 10cm in front
of the printer obtaining the threshold values is straight-
forward, as they can be determined directly from the
intensity plots. In case of a more blurred signal (e.g.,
due to a larger distance), we iteratively determined suit-
able values, essentially by trial-and-error. The training
phase takes a one-time effort of several hours for build-
ing up the sound feature database for the words in the
dictionary. The recognition phase takes approximately
2 hours for matching one page of text, including full
HMM-based post-processing. Memory usage of the pro-
cedure is substantial, because the feature database and
the HMM-related information are kept in main memory
to speed up computation. Trade-offs with less memory
consumption but larger execution times can easily be re-
alized.

4.2 Results

The recognition rates for the four articles in our exper-
iments are depicted in Figure 6. The first row shows
the recognition rates if no HMM-based post-processing
is used, i.e., these numbers correspond to the output of
the matching phase. For illustration, we wrote in brack-
ets the rate that the correct word was within the three

2In a real attack, ensuring that (almost) all words of the textoc-
cur in the dictionary can be achieved using several techniques: Using
contextual knowledge to reduce the number of words that are likely to
appear in the text, training a larger dictionary, or using feedback-based
learning to subsequently add missing words to the dictionary.
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Text 1 Text 2 Text 3 Text 4 Overall

Basic Top 1 (Top 3) 60.5 % (75 .1 %) 66.5 % (79 .2 %) 62.8 % (78 .7 %) 61.5 % (77.9 %) 62.9 % (78 .0 %)
HMM 3-gram 66.7 % 71.8 % 71.2 % 69.0 % 69.9 %

Figure 6: Recognition rates of our four sample articles. Thefirst row shows the recognition rates if no HMM-based
post-processing is used; the second row depicts the recognition rates after applying post-processing with HMMs based
on3-grams using a general-purpose corpus.

Declaration 1 Declaration 2

Basic Top 1 (Top 3) 59.5 % (77 .8 %) 57.5 % (72 .6 %)
HMM 3-gram (using general-purpose corpus) 68.3 % 60.8 %

HMM 3-gram (using domain-specific corpus) 95.2 % 72.5 %

Figure 7: Recognition rates of our two additional documentsusing domain-specific HMM-based post-processing.
The first row shows the recognition rates without HMM-based post-processing; the second and third rows depict the
recognition rates after applying post-processing with HMMs based on3-grams using a general-purpose corpus and a
domain-specific corpus, respectively.

highest-ranked words in the matching phase. The sec-
ond row depicts the recognition rates after applying post-
processing with HMMs based on3-grams. We thus
achieve recognition rates between67 % and 72 % for
the four articles.

While the aforementioned results employ HMM-
based post-processing using a general-purpose corpus,
our experiments indicate that domain-specific corpora
yield even better results. Recall that we considered two
additional documents containing living-will declarations
that we intended to analyze using a domain-specific cor-
pus. The recognition rates for the two living-will decla-
rations are depicted in Figure 7. The first / second row
again depict the results without / with general-purpose
HMM-based post-processing; the third row shows the re-
sults for HMM-based post-processing using the domain-
specific corpus. We achieve recognition rates of95.2 %
and72.5 % for the two documents, respectively. Text
examples for the reconstruction using a general-purpose
corpus and a domain-specific corpus are provided in Ap-
pendix A and Appendix B, respectively.

We also experimented with4-gram and5-gram lan-
guage models. In addition to encountering even more
severe problems of memory consumptions, our experi-
ments indicated that the recognition rates do not improve
over3-grams. While this behavior might be surprising at
a first glance, it can be explained by the sparseness of the
training data: The number of5-grams that we can extract
from our corpus is approx.107, but the transition matrix
of an HMM based on5-grams on a dictionary of 1,000
words has1015 entries; thus the number of5-grams is
too small compared to the number of entries. For similar
reasons4-grams and5-grams are rarely used in natural
language processing.

4.3 Discussion and Supplemental Experi-
ments

We have evaluated the influence on the recognition rate
of using different microphones, different printers, pro-
portional fonts, etc., and we investigated why the recon-
struction works from a conceptual perspective. In a nut-
shell, the results can be summarized as follows (details
are given below): Several parameters of modified set-ups
did not affect the recognition rate and gave comparable
results, e.g., using cheaper microphones or using differ-
ent printers (of the same model) for the training phase
and the recognition phase. Using proportional instead
of mono-spaced fonts or using different printer models
only slightly decreased the recognition rate. Some con-
siderably stronger modifications, however, did not work
out at all, and they can be seen as conceptual limitations
of our attack. This comprises using completely differ-
ent printer technologies such as ink-jet or laser printers
(because of the absence of suitable sound emissions that
can be used to mount the attack). We provide statistical
results on these modifications below. Furthermore, we
evaluate countermeasures.

4.3.1 Using different microphones

Our experiments have indicated that information that is
relevant for us is carried in the frequency range above
approximately 20 kHz, see Section 3. Microphones with
nominal frequency range higher than 20 kHz are rather
expensive, e.g., the Sennheiser microphone referred to
in Section 4.1 has a frequency range up to 50 kHz and
costs approximately 1,300 dollars. However, our experi-
ments have shown that some microphones with a nomi-
nal frequency range of 20 kHz are sensitive to higher fre-
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Top 1 (Top 3)

Sennheiser MKH-8040 microphone and Epson
LQ-300+II printer

62 % (78 %)

Behringer B-5 microphone 59 % (85 %)
Sennheiser ME 2 clip-on microphone 57 % (72 %)

OKI Microline 1190 printer 41 % (51 %)
Another Epson LQ-300+II 54 % (72 %)

Proportional font 57 % (71 %)

Figure 8: Results of the reconstruction with different microphone models and different printer models. (These control
experiments were conducted on shorter texts and corpora than the previous experiments and no HMM-based post-
processing was applied.)

quencies as well (possibly with less accurate frequency
response, but this had no noticeable influence on the
recognition rate as long as we use the same microphone
for recording both the training data and the attack data).
Figure 8 shows in the second row the recognition rates
of one sample article if a Behringer B-5 microphone is
used, which has a nominal frequency range up to 20 kHz
and costs approximately 80 dollars. The results obtained
with the Behringer microphone are only slightly worse
than the results using the Sennheiser microphone.

We also conducted an experiment using a small clip-
on microphone – a Sennheiser ME 2 with nominal fre-
quency range up to 18 kHz, which costs approximately
130 dollars. The recognition rates of one sample ar-
ticle are shown in the third row of Figure 8; they are
again only slightly worse than the rates with the larger
Sennheiser microphone.

4.3.2 Using different dot-matrix printers

We also evaluated if the printer model influences the
recognition rate. The fourth row of Figure 8 shows the
recognition rates of one article printed with an OKI Mi-
croline 1190 printer. The recognition rate is not as good
as for the Epson printer, but it is still good.

So far we always considered the set-up that training
data and the attacked text are printed on the same printer.
In a realistic attack scenario, however, it is unlikely
that the attacker can print the training data on the same
printer, but instead arranges access to another printer of
the same printer model that he places in an acoustically
similar environment. Our in-field attack described in de-
tail in Section 5 is of this kind.

We demonstrate that the recognition rate only de-
creases slightly when using a different printer in the
training phase. For this experiment we used the feature
database that we previously recorded in the experiment
described in Section 4.2, and printed one article on an-
other Epson LQ-300+II printer that we bought from a
different vendor. The recognition rate is shown in Fig-

Figure 9: Ink-jet printer, disassembled for analysis.

ure 8, indicating a decrease of recognition rate of about
8 % compared with the results from Section 4.2.

This shows that it is practical to train a large dictionary
offline. In the in-field attack described in Section 5 we
use this result and train a dictionary on a separate printer.

4.3.3 Using proportional fonts

Monospaced fonts are commonly used in many appli-
cations of dot-matrix printers; in particular, the in-built
fonts are monospaced, and most applications seem to use
these in-built fonts. Using proportional fonts instead in-
tuitively relies on a more compact depiction of words that
amplifies the effect of blurring. However, our experi-
ments demonstrate that the recognition still works well,
at a slightly lower rate (see Figure 8).

4.3.4 On attacking other printer technologies

While dot-matrix printers are still deployed in some
security-critical applications (see Figure 1), they have
been replaced by other printer technologies such as ink-
jet printers (see Figure 9) and laser printers in other ap-
plications. Ink-jet printers might be susceptible to simi-
lar attacks, as they construct the printout from individ-
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Figure 10: Each graph shows the intensity measured when printing a single vertical line, demonstrating the variations
that can occur.

ual dots, as dot-matrix printers do. On the one hand,
the bubbles of ink might produce shock-waves in the air
that potentially can be captured by a microphone; on the
other hand, the piezo-electric elements used in some ink-
jet printers might produce noise that can be measured.
However, we were not able to capture these emanations.
One reason might be that these faint sounds, if they ex-
ist, are dominated by the noise emitted by the mechani-
cal parts of a printer. For laser printers, one expects that
no information about the printed text is leaked, and our
experiments support this view. Thus, to the best of our
knowledge, these printer technologies seem to be unaf-
fected by this kind of attack.

4.4 Countermeasures

The (obvious) idea that underlies all countermeasures is
to suppress the acoustic emanations so far that recon-
struction becomes hard in practical scenarios.

Acoustic shielding foam:The specific printer model that
we used in most experiments has an optional printer
cover with embedded acoustic shielding foam. Closing
this cover absorbs a substantial amount of the acoustic

Top 1 (Top 3)

Short distance, no cover 62 % (78 %)

With cover 24 % (35 %)
With foam box 51 % (63 %)
From 2 meters 4 % (6 %)
Closed door 0 % (0 %)

Figure 11: More results of the reconstruction evaluating
the effectiveness of different countermeasures. (These
control experiments were conducted on a shorter text
than the previous experiments, no HMM-based post-
processing was applied.)

emanation (see Figure 11). To further evaluate this idea,
we built a box out of ordinary acoustic foam and placed
the printer inside (shown in Figure 12). In contrast to the
results with the cover, the recognition rate for the foam
box was surprisingly good;51 % of the words were re-
constructed successfully. We believe that the shielding
characteristics of the two types of foam suppress differ-
ent ranges of the acoustic spectrum and thus have differ-
ent effects on the reconstruction rate.
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Figure 12: Printer in foam box for shielding evaluation.

Distance: Our experiments indicate that the recogni-
tion rate drops substantially if the distance between the
printer and the microphone is increased. From a distance
of 2 meters, the recognition rate drops to approximately
4 % (see Figure 11). From this distance our algorithm for
splitting the signal into words requires manual interven-
tion, as the audio signal contains more noise. However,
we stress that this limitation can be circumvented in an
in-field attack by placing a miniaturized wireless bug in
close proximity to (or even in) the printer.

Closed door:We also tested the reconstruction from out-
side the printer’s room with the door closed; the over-
all distance between the printer and the microphone was
4 meters. As expected, we found that in this setup no
reconstruction was possible at all.

Our results indicate that ensuring the absence of mi-
crophones in the printer’s room is sufficient to protect
privacy. Unfortunately, this evaluation is not guaran-
teed to be complete; we merely state that our attack does
not work under these circumstances. However, we be-
lieve that the potential for improvement is limited; thus
the above discussion still provides reasonable estimates.
As future work, we furthermore plan to investigate addi-
tional countermeasures such as introducing randomness
into the printer’s sound through software changes, e.g.,
by letting the printer print individual letters in a (some-
what) randomized order instead of always proceeding
left-to-right.

5 In-field Attack

We have successfully mounted the attack in-field in a
doctor’s practice to recover the content of medical pre-
scriptions (the setup of the attack is shown in Figure 13).
For privacy reasons, we asked for permission upfront and
let the secretary print fresh prescriptions of an artificial
client. The attack was conducted under realistic – and

Figure 13: The setup of the in-field attack.

arguably even pessimistic – circumstances: during rush
hour, with many people chatting in the waiting room.

We recorded the emitted sounds of printing seven dif-
ferent prescriptions. We handed over all sound record-
ings, the printouts of six prescriptions, and a printer of
the same type (an Epson LQ-570) that we bought at Ebay
to one of the authors of this paper. The printouts were
only used to determine which parts of the sound record-
ing correspond to which parts of the prescription. The
attack was carried out blindly, i.e, this author obtained
no information about the seventh prescription except for
its recorded sound.

The author carrying out the attack took the following
steps:

1. From the available printouts, he first identified the
position of the prescribed medication, the direction
of printing, and the used font.

2. Using a suitable threshold, he subsequently deter-
mined the correct length and the white-space posi-
tions.

3. From a publicly available medication directory with
about 14,000 different medications, he then de-
termined possible candidates that matched these
lengths. Here, abbreviations of words were also
taken into account. The list of remaining candidates
consisted of29 entries.

4. The selection of candidate words (without HMM-
based post-processing) then already revealed the
correct medication out of the remaining29 candi-
dates.

The correct medication was “Müller’sche Tablet-
ten bei Halsschmerzen”, a medication against sore
throat. The printing was even abbreviated on the
prescription as

M̈uller’sche Tabletten bei
Halsschm.
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The attack was actually easier to conduct in this practi-
cal scenario compared to the experiments in Section 4,
because we were able to substantially narrow down the
list of candidates by taking into account length informa-
tion of the medication. Admittedly, the secretary herself
unintentionally simplified this task by selecting a long
medication name consisting of several words.

6 Conclusion

We have presented a novel attack that takes as input a
sound recording of a dot-matrix printer processing En-
glish text, and recovers up to72 % of printed words.
If we assume contextual knowledge about the text, the
attack achieves recognition rates up to95 %. After an
upfront training phase, the attack is fully automated and
uses a combination of machine learning, audio process-
ing and speech recognition techniques, including spec-
trum features, Hidden Markov Models and linear clas-
sification; moreover, it allows for feedback-based incre-
mental learning. We have identified and evaluated coun-
termeasures that are suitable to prevent this kind of at-
tack. We have successfully mounted the attack in-field in
a doctor’s practice to recover the content of medical pre-
scriptions under realistic conditions. Moreover, we have
shown the relevance of this attack by commissioning a
representative survey that showed that dot-matrix print-
ers are still deployed in a variety of sensitive areas, in
particular by banks and doctors.
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A Example Text Recognition with
General-purpose HMM Post-processing

In the following we give an excerpt of the text on print-
ers [38], see Section 4.2, to demonstrate the reconstruc-
tion.

A.1 The original text

First, we give the original text.

In computing, a printer is a
peripheral which produces a hard
copy (permanent human-readable
text and/or graphics) of documents
stored in electronic form, usually
on physical print media such as
paper or transparencies. Many
printers are primarily used
as local peripherals, and are
attached by a printer cable
or, in most newer printers, a
USB cable to a computer which
serves as a document source.
Some printers, commonly known
as network printers, have built-in
network interfaces (typically
wireless or Ethernet), and can
serve as a hardcopy device for any
user on the network. Individual
printers are often designed to
support both local and network
connected users at the same time.

A.2 Output of the reconstruction without
HMM-based post-processing

Next, we give the reconstructed output without HMM-
based post-processing. Recognition rate:69 %.

In computing, a printer in 5
peripheral which produces 3 hard
body (permanent human-readable
text and/or graphics) of documents
status in electronic form.
usually 20 physical print media
Such 30 pages or transparencies.
Many Printers are primarily used
go local peripherals, end are
attached go A printer could
or, in most newer printers; =
USB cable go A computer which

served de = document source.
name printers, commonly known
go network printers; have built-in
network interfaces (typically
wireless As Ethernet), god way
serve As = hardcopy device for out
year we who network. Individual
Printers use often designed 30
support born local god network
connected users go too name time.

A.3 Output of the reconstruction with
general-purpose HMM-based post-
processing

Finally, we give the reconstructed output after apply-
ing the HMM-based post-processing using a general-
purpose corpus. Recognition rate:74 %.

in computing a printer in a
peripheral which produces a hard
body permanent human-readable
text and/or graphics of documents
source in electronic form usually
as physical print media such as
pages or transparencies many
printers are primarily used go
local peripherals end are attached
go a printer could or in most
newer printers a usb cable go
a computer which served de =
document source some printers
commonly known go network printers
have built-in network interfaces
typically wireless as ethernet god
way serve as a hardcopy device for
out year we who network individual
printers use often designed so
support born local god network
connected users as too some tree

B Example Text Recognition with Domain-
specific HMM Post-processing

In the following we illustrate the recognition of an ex-
cerpt of a living-will declaration [13], see Section 4.2, to
illustrate the domain-specific post-processing.

B.1 The original text

First, we give the original text.

ADVANCE HEALTH CARE DIRECTIVE

INSTRUCTIONS: This form lets you
give specific instructions about
any aspect of your health care.
Choices are provided for you to
express your wishes regarding
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the provision, withholding,
or withdrawal of treatment to
keep you alive, as well as the
provision of pain relief. Space
is provided for you to add to
the choices you have made or for
you to write out any additional
wishes. This form also lets you
express an intention to donate
your bodily organs and tissues
following your death. Lastly,
this form lets you designate
a physician to have primary
responsibility for your health
care.

B.2 Output of the reconstruction with
general-purpose HMM-based post-
processing

Next, we give the reconstructed output of the general-
purpose HMM-based post-processing. Recognition rate:
68 %.

advance health care directive

instructions only form into you
with consists observations peace
who appear on your health care
choices act provided for due to
century many witness according
one government declaration of
witnesses be competent to been
one alive as well as the provision
of pain primary power to provided
far one of out of now against
the once made of way and we allow
our own experience witness open
form with lets can average as
connected to donate year states
canada and tissues including heat
energy lastly this poor and you
designing b according to food
witness administration has been
health care

B.3 Output of the reconstruction with
domain-specific HMM-based post-
processing

Finally, we give the reconstructed output after applying
the HMM-based post-processing using a domain-specific
corpus. Recognition rate:95 %.

advance health care directive

instructions move form lets you
give consists instructions about
any aspect of your health care
choices are provided for you to

express your wishes regarding
the provision withholding or
withdrawal of treatment to keep
you alive as well as the provision
of pain relief space is provided
for you to add to the choices
you have made or for you to david
out any additional wishes move
form also lets you express an
intention to donate your bodily
organs and tissues following your
death lastly this form lets you
designate a physician to have
primary responsibility for your
health care
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