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Abstract

A multi-user system usually involves a large amount of
information shared among its users. The security impli-
cations of such information can never be underestimated.
In this paper, we present a new attack that allows a ma-
licious user to eavesdrop on other users’ keystrokes us-
ing such information. Our attack takes advantage of the
stack information of a process disclosed by its virtual
file within procfs, the process file system supported by
Linux. We show that on a multi-core system, the ESP
of a process when it is making system calls can be ef-
fectively sampled by a “shadow” program that continu-
ously reads the public statistical information of the pro-
cess. Such a sampling is shown to be reliable even in the
presence of multiple users, when the system is under a
realistic workload. From the ESP content, a keystroke
event can be identified if they trigger system calls. As a
result, we can accurately determine inter-keystroke tim-
ings and launch a timing attack to infer the characters the
victim entered.

We developed techniques for automatically analyzing
an application’s binary executable to extract the ESP pat-
tern that fingerprints a keystroke event. The occurrences
of such a pattern are identified from an ESP trace the
shadow program records from the application’s runtime
to calculate timings. These timings are further analyzed
using a Hidden Markov Model and other public informa-
tion related to the victim on a multi-user system. Our
experimental study demonstrates that our attack greatly
facilitates password cracking and also works very well
on recognizing English words.

1 Introduction

Multi-user operating systems and application software
have been in use for decades and are still pervasive to-
day. Those systems allow concurrent access by multiple
users so as to facilitate effective sharing of computing

resources. Such an approach, however, is fraught with
security risks: without proper protection in place, one’s
sensitive information can be exposed to unintended par-
ties on the same system. This threat is often dealt with
by an access control mechanism that confines each user’s
activities to her compartment. As an example, programs
running in a user’s account are typically not allowed to
touch the data in another account without the permission
of the owner of that account. The problem is that dif-
ferent users do need to interact with each other, and they
usually expect this to happen in a convenient way. As
a result, most multi-user systems tend to trade security
and privacy for functionality, letting certain information
go across the boundaries between the compartments. For
example, the process status commandps displays the
information of currently-running processes; while this is
necessary for the purpose of system administration and
collaborative resource sharing, the command also en-
ables one to peek into others’ activities such as the pro-
grams they run.

In this paper, we show that such seemingly minor
information leaks can have more serious consequences
than the system designer thought. We present a new at-
tack in which a malicious user can eavesdrop on others’
keystrokes using nothing but her non-privileged account.
Our attack takes advantage of the information disclosed
by procfs [19], the process file system supported by most
Unix-like operating systems such as Linux, BSD, Solaris
and IBM AIX. Procfs contains a hierarchy of virtual files
that describe the current kernel state, including statistical
information about the memory of processes and some of
their register values. These files are used by the programs
like ps andtop to collect system information and can
also help software debugging. By default, many of the
files are readable for all users of a system, which nat-
urally gives rise to the concern whether their contents
could disclose sensitive user information. This concern
has been confirmed by our study.

The attack we describe in this paper leverages the



procfs information of a process to infer the keystroke in-
puts it receives. Such information includes the contents
of the extended stack pointer (ESP) and extended instruc-
tion pointer (EIP) of the process, which are present in the
file /proc/pid/stat on a Linux system, wherepid
is the ID of the process. In response to keystrokes, an
application could make system calls to act on these in-
puts, which is characterized by a sequence of ESP/EIP
values. Such a sequence can be identified through ana-
lyzing the binary executables of the application and used
as a pattern to fingerprint the program behavior related
to keystrokes. To detect the keystroke event at runtime,
we can match the pattern to the ESP/EIP values acquired
through continuously reading from thestat file of the
application’s process. As we found in our research, this
is completely realistic on a multi-core system, where the
program logging those register values can run side by
side with its target process. As such, we can figure out
when a user strokes a key and use inter-keystroke tim-
ings to infer the key sequences [26]. This attack can be
automated using the techniques for automatic program
analysis [20, 23].

Compared with existing side-channel attacks on
keystroke inputs [26, 3], our approach significantly low-
ers the bar for launching a successful attack on a multi-
user system. Specifically, attacks using keyboard acous-
tic emanations [3, 33, 2] require physically implanting a
recording device to record the sound when a user’s typ-
ing, whereas our attack just needs a normal user account
for running a non-privileged program. The timing attack
on SSH proposed in the prior work [26] estimates inter-
keystroke timings from the packets transmitting pass-
words. However, these packets cannot be deterministi-
cally identified from an encrypted connection [13]. In
contrast, our attack detects keystrokes from an applica-
tion’s execution, which is much more reliable, and also
works when the victim uses the system locally. Actually,
we can do more with an application’s semantic informa-
tion recovered from its executable and procfs. For exam-
ple, once we observe that the same user runs the com-
mandsu multiple times through SSH, we can assume
that the key sequences she entered in these interactions
actually belong to the same password, and thus accumu-
late their timing sequences to infer her password, which
is more effective than using only a single sequence as
the prior work [26] does. As another example, we can
even tell when a user is typing her username and when
she inputs her password if these two events have different
ESP/EIP patterns in an application.

This paper makes the following contributions:

• Novel techniques for determining inter-keystroke
timings. We propose a suite of new techniques that
accurately detects keystrokes and determines inter-
keystroke timings on Linux. Our approach includes

an automatic program analyzer that extracts from
the binary executable of an application the instruc-
tions related to keystroke events, which are used to
build a pattern that fingerprints the events. During
the execution of the application, we use a shadow
program to log a trace of its ESP/EIP values from
procfs. The trace is searched for the occurrences of
the pattern to identify inter-keystroke timing. Our
attack does not need to change the application un-
der surveillance, and works even in the presence of
address space layout randomization [29] and realis-
tic workloads. Our research also demonstrates that
though other UNIX-like systems (e.g., FreeBSD
and OpenSolaris) do not publish these register val-
ues, they are subject to similar attacks that utilize
other information disclosed by their procfs.

• Keystroke analysis. We augmented the existing
keystroke analysis technique [26] with semantic
information: once multiple timing sequences are
found to be associated with the same sequence of
keys, our approach can combine them together to
infer these keys, which turns out to be very effec-
tive. We also took advantage of the information re-
garding the victim’s writing style to learn the En-
glish words she types.

• Implementation and evaluations. We implemented
an automatic attack tool and evaluated it using real
applications, includingvim, SSH andGedit. Our
experimental study demonstrates that our attack is
realistic: inter-keystroke timings can be reliably
collected even when the system is under a realistic
workload. We also discuss how to defend against
this attack.

The attack we propose aims at keystroke eavesdrop-
ping. However, the privacy implication of disclosing the
ESP/EIP information of other users’ process can be much
more significant. With our techniques, such information
can be conveniently converted to a system-call sequence
that describes the behavior of the process, and some-
times, the data it works on and the activities of its users.
As a result, sensitive information within the process can
be inferred under some circumstances: for example, it is
possible to monitor a key-generation program to deduce
the secret key it creates for another user, because the key
is computed based on random activities within a system,
such as mouse moves, keystrokes and networking events,
which can be discovered using our techniques.

The information-leak vulnerability exploited by our
attack is pervasive in Linux: we checked 8 popular dis-
tributions (Red Hat Enterprise, Debian, Ubuntu, Gentoo,
Slackware, openSUSE, Mandriva and Knoppix) that rep-
resent the mainstream of Linux market [9] and found
that all of them publish ESP and EIP. Some other Unix-



like systems, particularly FreeBSD, have different im-
plementations of procfs that do not disclose the con-
tents of those registers to unauthorized party. However,
given unrestricted access to procfs, similar attacks that
use other information can still happen: for example, we
found that/proc/pid/status on FreeBSD reveals
the accumulated kernel time consumed by the system
calls within a process; such data, though less informative
than ESP/EIP, could still be utilized to detect keystrokes
in some applications, as discussed in Section 6.2. Funda-
mentally, we believe that the privacy risks of procfs need
to be carefully evaluated on multi-core systems, as these
systems enable one process to gather information from
other processes in real time.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overview of our attack. Section 3 elab-
orates our techniques for detecting inter-keystroke tim-
ings. Section 4 describes a keystroke analysis using the
timings. Section 5 reports our experimental study. Sec-
tion 6 discusses the limitations of our attack, similar at-
tacks on other UNIX-like systems and potential defense.
Section 7 surveys the related prior research, and Sec-
tion 8 concludes the paper.

2 Overview

This section describes our attack at a high level.

Attack phases. Our attack has two phases: first, the
timing information between keystrokes is collected, and
then such information is analyzed to infer the related key
sequences. These phases and their individual compo-
nents are illustrated in Figure 1. In the first phase, our
approach analyzes the binary executable of an applica-
tion to extract the ESP/EIP pattern that characterizes its
response to a keystroke event, and samples thestat file
of the application at its runtime to log a trace of those
register values. Inter-keystroke timings are determined
by matching the pattern to the trace. In the second phase,
these timings are fed into an analysis mechanism that
uses the Hidden Markov Model (HMM) to infer the char-
acters being typed.

An example. We use the code fragment in Figure 2 as
an example to explain the design of the techniques be-
hind our attack. The code fragment is part of an edi-
tor program1 for processing a keystroke input. Upon re-
ceiving a key, the program first checks its value: if it is
‘MOV CURSOR’, a set of API calls are triggered to move
the cursor; otherwise, the program makes calls to insert
the input letter to the text buffer being edited and display
its content. These two program behaviors produce two
different system call sequences, as illustrated in the fig-
ure. This example is written inC for illustration purpose.
Our techniques actually work on binary executables.

Figure 2: An Example.

To prepare for an attack, our approach first performs
a dynamic analysis on the program’s executable to ex-
tract its ESP/EIP pattern that characterizes the pro-
gram’s response to a keystroke input. Examples of
such a response includes allocating a buffer to hold
the input (alloc buf()) and inserting it to the text
(insert char()). In our research, we found that such
a pattern needs to be built upon system calls because
sampling of a process’sstat file can hardly achieve
the frequency necessary for catching the ESP/EIP pairs
unrelated to system calls (Section 3.1). When a system
call happens, the EIP of the process always points to vir-
tual Dynamic Shared Object (vDSO)2 [22], a call entry
point set by the kernel, whereas its ESP value reflects
the dynamics of the process’s call stack. Therefore, our
approach uses the ESP sequence of system calls as the
pattern for keystroke recognition. Such a pattern is auto-
matically identified from the executable through a differ-
ential analysis or an instruction-level program analysis
(Section 3.1).

When the program is running on behalf of the victim,
our approach samples itsstat file to get its ESP/EIP
values, from which we remove those unrelated to sys-
tem calls according to their EIPs. The rest constitutes an
ESP trace of the program’s system calls. This trace is
searched for the ESP patterns of keystrokes. Note that
the trace may only contain part of the patterns: in the
example, inserting a character triggers 17 system calls,
whereas only 5 - 6 of them appear in the trace. Our
approach uses a threshold to determine a match (Sec-
tion 3.3). Inter-keystroke timings are measured between
two successive occurrences of a same pattern.

The timings are analyzed using ann-Viterbi algo-
rithm [26] to infer the characters being typed: our ap-
proach first constructs an HMM based upon a set of train-



Figure 1: Attack phases

ing data that reflect the timing distributions of different
key pairs the victim types, and then runs the algorithm to
computen most likely key sequences with regards to the
timing sequence acquired from the ESP trace. We extend
the algorithm to take advantage of multiple traces of the
same key sequence, which turns out to be particularly ef-
fective for password cracking. We also show that the
techniques are also effective in inferring English words a
user types.

Assumptions. We made the following assumptions in
our research:

• Capability to execute programs. To launch the at-
tack, the attacker should own or control an account
that allows her to execute her programs. This is
not a strong assumption, as most users of UNIX-
like systems do have such a privilege. The attacker
here could be a malicious insider or an intruder who
cracks a legitimate user’s account.

• Multi-core systems. To detect a keystroke, our
shadow process needs to access the ESP of the tar-
get process before it accomplishes key-related sys-
tem calls. However, due to process scheduling, this
is not very likely to happen on a single-core sys-
tem. On one hand, these system calls are typically
done within a single time slice. On the other hand,
the shadow process often lacks sufficient privileges
to preempt the target process when it is working
on keystroke inputs, as the latter is usually granted
with a high privilege during its interactions with the
user. As a result, our process can become com-
pletely oblivious to the keystroke events in the tar-
get process. This problem is effectively avoided
on a multi-core system, which allows us to reli-
ably detect keystroke events in the presence of re-
alistic workloads3, as observed in our experiment
(Section 5). Given the pervasiveness of multi-core
systems nowadays, we believe that the assumption
is reasonable.

• Access to the victim’s information. Our attack re-
quires a read access to the victim’s procfs files. This
assumption is realistic for Linux, on which most
part of procfs are readable for every user by default.
Though one can change her files’ permissions, this
can hardly eliminate the problem: all the procfs files
are dynamically created by the kernel when a new
process is forked and their default permissions are

also set by the kernel; as a result, one needs to re-
vise these permissions as soon as she triggers new
process, which is unreliable and also affects the use
of the tools such astop. The fundamental solu-
tion is to patch the kernel, which has not been done
yet. In addition, we assume that the attacker can
obtain some of the text the victim types as training
data. This is possible on a multi-user system. For
example, some commands typed by a user, such as
“su” and “ls”, causes new processes to be forked
and therefore can be observed by other users of the
system, which allows the observer to bind the tim-
ing sequence of the typing to the content of the text
the user entered. As another example, a malicious
insider can use the information shared with the vic-
tim, such as the emails they exchanged, to acquire
the latter’s text and the corresponding timings.

3 Inter-keystroke Timing Identification

In this section, we elaborate our techniques for obtaining
inter-keystroke timings from a process.

3.1 Pattern Extraction

The success of our attack hinges on accurate identifica-
tion of keystroke events from the victim’s process. We
fingerprint such an event with an ESP pattern of the sys-
tem calls related to a keystroke. The focus on system
calls here comes from the constraints on the informa-
tion obtainable from a process: on one hand, a signifi-
cant portion of the process’s execution time can be spent
on system calls, particularly when I/O operations are
involved; on the other hand, our approach collects the
process’s information through system calls and therefore
cannot achieve a very high sampling rate. As a result,
the shadow program that logs ESP/EIP traces is much
more likely to pick up system calls than other instruc-
tions. In our research, we found that more than 90% of
the ESP/EIP values collected from a process actually be-
long to system calls. Note that a process’s EIP when it is
making a system call always points to vDSO. It is used
in our research to locate the corresponding ESP whose
content is much more dynamic and thus more useful for
fingerprinting a keystroke event.



Our approach extracts the ESP pattern through an au-
tomatic analysis of binary executables. This analysis is
conducted offline and in an environment over which the
attacker has full control. Following we present two anal-
ysis techniques, one for the programs that execute in a
deterministic manner and the other for those whose exe-
cutions are affected by some random factors.

Differential analysis. Many text-based applications
such asvim are deterministic in the sense that two in-
dependent runs of these applications under the same
keystroke inputs yield identical system call traces and
ESP sequences. The ESP patterns of these applications
can be easily identified through a differential analysis
that compares the system call traces involving keystroke
events with those not. Specifically, our program analyzer
usesstrace [27] to intercept the system calls of an ap-
plication and record their ESP values when it is running.
An ESP sequence is recorded before a keystroke is typed,
and another sequence is generated after the keystroke oc-
curs4. The ESP pattern for a keystroke event is extracted
from the second sequence after removing all the system
calls that happen prior to the keystroke, as indicated by
the first sequence. To ensure that the pattern does not
contain any randomness, we can compare the ESP trace
of typing the same character twice with the one involving
only a single keystroke to check whether the ESPs asso-
ciated with the second keystroke are identical to those
of the first one. The same technique is also applied to
test different keys that may have discrepant patterns. In
the example described in Figure 2, the ESP sequence of
vim before Line 2 is dropped from the traces involving
keystrokes and as a result, the system calls triggered by
the instructions from Line 7 to 11 are picked out as the
fingerprint for ‘MOV CURSOR’ and those between Line
14 and 19 identified as the pattern for inserting a letter.

The ESP pattern identified above will go through a
false positive check to evaluate its accuracy for keystroke
detection. In other words, we want to know whether the
pattern or a significant portion of it can also be observed
when the user is not typing. This is achieved in our re-
search through searching for the pattern in an applica-
tion’s ESP trace unrelated to keystroke inputs. Specifi-
cally, our analyzer logs the execution time between the
first and the last system calls on the pattern, and uses this
time interval to define a duration window on the trace,
which we calltrace window. The trace window is slid on
the trace to determine a segment against which the pat-
tern is compared. For this purpose, every ESP value on
the trace is labeled with the time when its correspond-
ing system call is invoked. The trace window is first lo-
cated prior to the first ESP value on the trace. Then, it
is slid rightwards: each slide either moves an ESP into
the window or moves one outside the window. After
a slide, our analyzer attempts to find the longest com-

Figure 3: A false positive check. Spikes in the figure
represent ESP values.

mon sequence between the trace segment within the win-
dow and the pattern. This is the well-known LCS prob-
lem [4], which can be efficiently solved through dynamic
programming [15]. The size of such a sequence, which
we call anFP level, is recorded. As such, our approach
keeps on sliding the trace window to measure FP levels
until all the ESP values on the trace have left the window.

Figure 3 presents an example that shows how the al-
gorithm works. In the initial state, the trace window is
located before the first ESP value. Then the trace win-
dow starts to slide right to include the first ESP value,
which gives a FP level of one. After the window slides
again to include one more ESP value, our algorithm re-
turns a common sequence with two members. This pro-
cess continues, and finally, the window is moved to em-
brace all four trace members and we observe an FP level
of four. This algorithm identifies the portion of the pat-
tern that can show up in absence of keystrokes. The size
of the portion, as indicated by the FP level, is used to de-
termine a threshold for recognizing keystrokes from an
incomplete ESP trace sampled from a process, which is
elaborated in Section 3.3.

Instruction-level analysis. Applications with graphic
user interfaces (GUI) can work in a non-deterministic
manner: these applications are event-driven and can
change their system-call behaviors in response to the
events from operating systems (OS), which can be un-
predictable. For example,Gedit uses a timer to deter-
mine when to flash its cursor; the timer, however, can be
delayed when the process is switched out of the CPU,
which causes system call sequences to vary in different
runs of the application. To extract a pattern from these
applications, we adopted an instruction-level analysis as
described below.

Under Linux, many X-Window based applications are
developed using the GIMP Toolkit (aka. GTK+) [28].
GTK+ uses a standard procedure to handle the
keystroke event: a program uses a function such as
gtk main do event(event) to processevent;
when a key is pressed5, this function is invoked to trig-
ger a call-back function of the keystroke event. In our
research, we implemented a Pin [20] based analysis tool
that automatically analyzes a binary executable at the
instruction level to identify such a function. After a
key has been typed, our analyzer detects the keystroke



event from the function’s parameter and from that point
on, records all the system calls and their ESPs un-
til the executable is found to receive or dispatch a
new event, as indicated by the calls to the functions
like g main context acquire(). All these system
calls are thought to be part of the call-back function and
therefore related to the keystroke event6. The pattern for
keystroke recognition is built upon these calls. We also
check false positives of the pattern, as described before.

3.2 Trace Logging

Our attack eavesdrops on the victim’s keystrokes through
shadowing the process that receives her keystroke inputs.
Our shadow process stealthily monitors the target pro-
cess’s keystroke events by keeping track of its ESP/EIP
values disclosed by itsstat file. Since the attack hap-
pens in the userland, the attacker has to use system calls
to open and read the file. Moreover, a more efficient
approach, memory mapping throughmmap(), does not
work on the virtual file that exists only in memory. These
issues prevent the shadow process from achieving a high
sampling rate. For example, a program we implemented
for evaluating our approach updated ESP/EIP values ev-
ery 5 to 10 microseconds. As a result, we could end
up with an incomplete ESP/EIP trace of the target pro-
cess. This, however, is sufficient for determining inter-
keystroke timings, as we found in our research (Sec-
tion 3.3).

Trace logging with full steam can cost a lot of CPU
time. If the activity drags on, suspicions can be roused
and alarms can be triggered. To avoid being detected,
our attack takes advantage of the semantic information
recovered from procfs and the target application to con-
centrate the efforts of data collection on the time inter-
val when the victim is typing the information of interest
to the attacker. For example, the shadow process starts
monitoring the victim’sSSH process at a low rate, say
once per 100 milliseconds; once the process is observed
to fork a su process, our shadow process immediately
increases its sampling rate to acquire the timings for the
password key sequence. Another approach is using an
existing technique [32] to hide CPU usage: UNIX-like
systems keep track of a process’s use of CPU according
to the number of ticks it consumes at the end of each tick;
the trick proposed in [32] lets the attack process sleep just
before the end of each tick it uses and as a result, OS will
schedule a victim process to run and bill the whole tick
to that victim process instead of the attack process. We
implemented this technique and found that it was very
effective (Section 5).

3.3 Timing Detection

We determine inter-keystroke timings from the time in-
tervals between the occurrences of a pattern on an ESP
trace sampled from an application’s system calls. Two
issues here, however, complicate the task. First, some
Linux versions may run the mechanisms for address
space layout randomization (ASLR) [29] that can cause
the ESP values on the pattern to differ from those on the
trace. Second, the trace can be incomplete, containing
only part of the system calls on the pattern, which makes
recognition of the pattern nontrivial. Following we show
how these issues were handled in our research.

ASLR performed by the tools such asPax [30]
involves randomly arranging the locations of an exe-
cutable’s memory objects such as stack, executable im-
age, library images and heap. It is aimed at thwarting
the attacks like control-flow hijacking that heavily rely
on an accurate prediction of target memory addresses.
Though the defense works on the attacks launched re-
motely, it is much less effective on our attack, which is
commenced locally. Specifically, the address for the bot-
tom of a process’s stack can be found in itsstat and
/proc/PID/maps7. This allows us to “normalize” the
ESP values on both the trace and the pattern with the dif-
ferences between the tops of the stack, as pointed by the
ESPs, and their individual bottoms. Neither does ASLR
prevent us from correlating an ESP/EIP pair on a trace
to a system call, though the knowledge about the vDSO
address may not be publically available on some Linux
versions: we can filter out the pairs unrelated to system
calls according to the observation that the vast majority
of the members on the trace actually belong to system
calls and therefore have the same EIP values.

To recognize an ESP pattern from an incomplete ESP
trace of system calls, we use a thresholdτ : a segment of
the trace, as determined by the trace window, is deemed
matching the pattern if it contains at leastτ ESP values of
system calls and the sequence of these values also appear
on the pattern. The threshold here can be determined us-
ing the results of the false positive test described in Sec-
tion 3.1. Leth be the highest FP level found in the test,
ands be the number of the system calls that our shadow
process can find from a process when a keystroke occurs.
We let τ = h + 1 if s > h. Intuitively, this means that
a trace segment is considered matching the pattern if it
does not contain any ESP sequences not on the pattern
and no segments unrelated to keystrokes can match as
many ESP values on the pattern as that segment does8.
If s ≤ h, we have to setτ = s because we cannot get
more thans ESP samples for every keystroke when mon-
itoring a process. Several measures can be taken to miti-
gate the false positives that threshold could bring in. One
approach is to leverage the observation that people typ-



Figure 4: Using time framed to remove possible false
positive matches

Figure 5: Pattern matching on an ESP trace and the
timing interval

ically type more than one key within a short period of
time. Therefore, we can require that a segment matching
a pattern according toτ be preceded or followed by an-
other pattern-matching segment within a predetermined
time framed, before both of them can be deemed to be
indicative of keystroke events. Figure 4 presents an ex-
ample in which the segment within the Window 2 is not
treated as a match to the pattern because there is no other
matches happening within the time framed either before
or after the window. In another approach, we use the ex-
ecution time of a process to estimate the time point when
it starts receiving keystrokes, which helps avoid search-
ing the trace unlinked to keystrokes.

After normalizing ESP values and determining the
thresholdτ , our approach starts searching the trace sam-
pled from the victim’s process for the occurrences of the
pattern. The searching algorithm we adopted slides the
trace window in the same way as the false positive check
does (Section 3.1). For each slide, an LCS problem is
solved to find the longest common sequence between the
trace segment in the window and the pattern. If the length
of the sequence is no less thanτ and every member on
the segment is also on the sequence, the segment is la-
beled as a match. Once a match is found, we slide the
window rightwards to pass all trace members within a
short time interval that describes the minimal delay be-
tween two consecutive keystrokes, and then start the next
round of searching. This process continues until all trace
members pass the window. Then, our approach deter-
mines timings from the segments labeled as matches: the
time interval between two such segments is identified as
an inter-keystroke timing if there is no other labeled seg-
ments in-between and the duration of the interval is be-
low a predetermined threshold that serves to rule out the

long latencies caused by intermittent typing. An example
for illustrating the algorithm is presented in Figure 5, in
which the trace window locates four matches withτ = 3,
and the durations between these matches are picked out
as inter-keystroke timings.

4 Keystroke Analysis

In this section, we describe how to use inter-keystroke
timings to infer the victim’s key sequence. Our approach
is built upon the technique used in the existing timing
attack [26]. However, we demonstrate that the technique
can become much more effective with the information
available on a multi-user system.

4.1 HMM-based Inference of Key Se-
quences

A Hidden Markov Model [24] describes a finite stochas-
tic process whose individual states cannot be directly ob-
served. Instead, the outputs of these states are visible
and therefore can be used to infer the existence of these
states. An HMM, like a regular Markov model, assumes
that the next states a system can move into only depend
on the current state. In addition, it has a property that
the outputs of a state are completely determined by that
state. These two properties allow a hidden sequence to
be easily computed and therefore make the model a per-
vasive tool for the purposes such as speech recognition
and text modeling.

Prior research [26] models the problem of key infer-
ence using an HMM. Specifically, letK0, . . . , KT be
the key sequence typed by the victim, andqt ∈ Q

(1 ≤ t ≤ T ) be a sequence of states representing the
key pair(Kt−1, Kt), whereQ is the set of all possible
states. In each stateqt, an inter-keystroke latencyyt with
a Gaussian-like distribution can be observed. Our ob-
jective is to find out the hidden states(q1, . . . , qT ) from
the timings(y1, . . . , yT ). This modeling is simple and
was shown to work well in practice [26], and is further
confirmed by our research, though it has oversimplified
the relations between the characters being typed: particu-
larly, the chance for a letter to appear at a certain position
in an English word may actually relate to all other letters
before it, which invalidates the HMM assumption that a
transition fromqt to qt+1 depends only onqt.

The HMM for key inference can be solved us-
ing the Viterbi algorithm [24], a dynamic program-
ming algorithm that computes the most likely state se-
quence(q1, . . . , qT ) from the observed timing sequence
(y1, . . . , yT ). Let V (qt) be the probability of the se-
quence that most likely ends inqt at timet. The algo-
rithm computesV (qt) through two steps. In the first
step, we assign a set of initial probabilitiesV (q1) =



Pr[q1|y1]. The second step inductively computesV (qt)
for every1 < t ≤ T and everyqt ∈ Q asV (qt) =
maxqt−1

Pr[yt|qt]Pr[qt|qt−1]V (qt−1), wherePr[yt|qt]
can be estimated from a set of training data (the third
assumption in Section 2) andPr[qt|qt−1], the transition
probability, comes from a uniform distribution over the
states reachable fromqt−1. This step also keeps track
of all the prior states on the sequence with the probabil-
ity V (qt). The most likely sequence is identified from
the stateqT that maximizesV (qT ). A direct application
of this approach, however, does not work well in prac-
tice, because even the most likely sequence usually has
a very small probability to match the real keystroke in-
puts. This problem is mitigated in the prior work [26]
that extends the algorithm to then-Viterbi algorithm so
as to return the topn most likely sequences given a tim-
ing sequence. The difference here is that then-Viterbi
algorithm changes the inductive step (the second step)
to identify the sequences with then largest probabilities.
The details of the algorithm can be found in [26].

4.2 Password Cracking

The effectiveness of then-Viterbi algorithm can be sig-
nificantly improved with the information available on a
multi-user system. Particularly, the name of a process
and its owner can be directly found from procfs or indi-
rectly from running commands such asps ortop. Once
the same user is observed to run the same application
multiple times and if such interactions happen within a
no-so-long period of time and all involve typing pass-
words, a reasonable assumption we can make is that all
these passwords are actually the same. Therefore, we can
combine together the timing sequences recorded from in-
dividual interactions to infer a key sequence. Following
we describe two ways to do that.

Our first approach is simply averaging all the tim-
ings for every key pair to create a new sequence and
run then-Viterbi algorithm over it. Formally, givenm
timing sequences(y1

1 , . . . , y
1
T ), . . . , (ym

1 , . . . , ym
T ), we

can compute a new sequence(y1, . . . , yT ), whereyt =
1

m

∑
1≤i≤m yi

t and1 ≤ t ≤ T . The rationale here is
that the distribution of the timingyi

t of a key pairqt is
a Gaussian-like unimodal distribution and therefore the
probability Pr[yt|qt] in the inductive step of the algo-
rithm is maximized whenyt becomes the mean of the
distribution, which is approximated by averaging allyi

t.
This approach works particularly well when the means
of two key pairs are not extremely close.

The other approach, which we call them-n-Viterbi
algorithm, utilizes multiple observations to perform
the inductive step of the original algorithm. Specifi-
cally, our approach replacesPr[yt|qt] in that step with
Pr[y1

t , . . . , ym
t |qt] = Pr[y1

t |qt] . . . P r[ym
t |qt] given

these observations (y1
t , . . . , y

m
t ) are independent from

each other. This treatment works even in the presence of
the key pairs with very close timing distributions. How-
ever, it needs a large number of timing sequences to get
a good outcome.

Our research shows that both approaches can signifi-
cantly shrink the space for searching a password. Actu-
ally, in our experiment (Section 5.2), we found that using
50 timing sequences, our techniques sped up the pass-
word searching by factors ranging from 250 to 2000.

4.3 English Text

Recovery of English text from a timing sequence is
no less challenging than password cracking. A pass-
word can be figured out through testing many candidates
against the target application or a hashed password list.
However, the same trick cannot be played on English
words because no application and password list can tell
you whether you made a right guess. All that we can do
is to check all the combinations of the possible words to
see whether a meaningful sentence comes out, which be-
comes a daunting task if the list of such words is long.
Moreover, it can be more difficult to find multiple tim-
ing sequences associated with the same text, and there-
fore the aforementioned approaches become less appli-
cable. On the bright side, English words are much less
random than passwords: the letters they include and the
combinations of those letters have distributions with low
entropies. Such a property can be leveraged to adjust
the transition probabilities of an HMM to improve the
outcomes of key sequence inference. Here we elaborate
such techniques used in our research.

A prominent property of English text is use of the
SPACE character to separate words. People tend to type
the letters in a word faster than SPACE, a signal for a
transition between words. This gives the character an
identifiable timing feature: typically the key pair involv-
ing SPACE incurs longer inter-keystroke latency than
other pairs, as illustrated in Figure 6. In our research,
we detected SPACE by checking if the timing interval is
larger than a predetermined threshold. This threshold
can be determined from the training data collected from
the victim’s typing. Knowledge about the SPACE key
helps us to divide a long timing sequence into a collec-
tion of small sequences, with each of them representing
a word, and then learn these words one by one.

Another important property of English text is its dis-
tinct distribution of letters. It is well known that some
letters such as ‘e’ occur more frequently than others, and
some bigrams like ‘th’ and trigrams like ‘ion’ are also
pervasive in a meaningful text. This fact has been lever-
aged by frequency analysis to crack classic ciphers [1].
The same game can also be played to make key se-
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quence inference more effective: we can adjust the tran-
sition probabilities of an HMM to ensure that the transi-
tion between certain states such as (‘i’,‘o’) to (‘o’, ‘n’)
is more likely to happen than others. These probabil-
ities can be conveniently obtained from various public
sources [18, 10] that provide the statistics of common
English text. Such statistics can be further tuned to the
victim’s writing style according to public writing sam-
ples such as her web pages and publications. Moreover,
it comes with no surprise that users on the same system
are often related: for example, they could all belong to
one organization. This allows the attacker to get familiar
with the victim’s writing from the information they ex-
changed, for example, the emails between them. In addi-
tion, since the timing sequence corresponding to such in-
formation can also be identified using our technique, the
attacker can actually use the information as the training
data for estimating the timing distributions of different
key pairs the victim typed.

5 Evaluation

In this section, we describe an experimental study of the
attack techniques we propose. Our objective is to under-
stand whether these techniques present a realistic threat.
To this end, we evaluated them using 3 common Linux
applications:vim, SSH andGedit. In our experiments,
we first ran our approach to automatically extract timing
sequences when a user was typing, evaluated the accu-
racy of these timings and the effectiveness of the attack
under different workloads. Then, we analyzed them us-
ing our techniques to study how much keystroke infor-
mation could be deduced. Our experiments were mainly
carried out on a computer with a 2.40GHz Core 2 Duo
processor and 3GB memory, on which we conducted
our study under three Linux versions: RedHat Enterprise
Linux 4.0, Debian 4.0 and Ubuntu 8.04. We found that
our techniques worked effectively even in the presence
of realistic workloads on the server. This suggests that

Table 1:Normalized ESP pattern values (include system calls)
vim ssh gedit

SysCall ESP SysCall ESP SysCall ESP
read 1628 rt sigprocmask 4932 gettimeofday 3624
select 1604 rt sigprocmask 4932
select 1876 read 20908
select 2244 select 4548
select 1540 rt sigprocmask 4932
select 1908 rt sigprocmask 4932
select 1556 write 37436
select 1924 ioctl 37500
select 1604 select 4548
write 1548 rt sigprocmask 4932
select 1972 rt sigprocmask 4932
llseek 1876 read 37436

write 1836 select 4548
select 2180 rt sigprocmask 4932
fsync 1752 rt sigprocmask 4932
select 2148 write 4620
select 1972 select 4548

the information leaks caused by procfs can be a real se-
curity problem.

5.1 Inter-keystroke Timings

As the first step of our evaluation, we applied our tech-
nique to identify the timings fromvim, SSH andGedit
on a multi-core system.

vim. vim is an extremely common text editor, which
is supported by almost all Linux versions. It fits well
with the notion of deterministic programs as discussed
in Section 3.1, because independent runs of the appli-
cation with the same inputs always produce the same
system call sequence and related ESP sequence. This
property enabled us to identify its ESP pattern for a
keystroke event using the differential analysis. The pat-
tern we discovered for inserting a letter includes 17 calls.
These calls and their normalized ESP values are pre-
sented in Table 1. We further ran the application from
a user account to enter words, and in the meantime,
launched a shadow process from another account to col-
lect the ESP trace of the application. From the trace, our
approach automatically identified all the keystrokes we
typed. Table 2 shows a trace segment corresponding to
two keystrokes, which involves 5 system calls for each
keystroke.

In order to evaluate the accuracy of the timing se-
quence our shadow process found, an instrumented ver-
sion ofvim was used in our experiment, which recorded
the time when it received a key fromvgetc(). Such
information was used to compute a real timing sequence.
We compared these two sequences and found that the de-



Table 2: Examples of ESP traces (values that appear in the
pattern are in bold font).

vim ssh gedit
1604 4548 520
2244 4932 2988
1908 20908 3052
1924 4548 696
1972 37500 3624
1604 4548 3068
2244 37436 2988
1908 4932 696
1924 4620 520
1972 4548 2988

viations between corresponding timings were at most 1
millisecond, below 3% of the average standard deviation
of the timings of different key pairs, as illustrated in Ta-
ble 3. This demonstrates that the timings extracted from
the process were accurate.

SSH. The Secure Shell (SSH) has long been known to
have a weakness in its interactive mode, where every
keystroke is transmitted through a separate packet and
immediately after the key is pressed. This weakness can
be exploited to determine inter-keystroke timings for in-
ferring the sensitive information a user types, such as the
password forsu. Prior work [26] proposes an attack that
eavesdrops on an SSH channel to identify such timings.
A problem of the attack, as pointed out by SSH Commu-
nications Security, is that determination of where a pass-
word starts in an encrypted connection can be hard [25].
This problem, however, does not present a hurdle to our
attack, because we can easily find out from procfs when
su is spawned from anSSH process, and start collecting
information fromSSH from then on. This is exactly what
we did in our experiment.

Using the differential analysis, our approach automat-
ically discovered an ESP pattern fromSSH when a key
was typed for entering a password forsu. We further
ran a shadow process to monitor another user’sSSH pro-
cess: as soon as it forked ansu process, our shadow
process started collecting ESP values from theSSH pro-
cess’sstat file. The trace collected thereby was com-
pared with the pattern to pinpoint keystroke events and
gather the timings between them. The pattern that we
found in our experiment included 17 system calls, of
which 7 to 10 appeared in every occurrence of the pat-
tern on the trace. The detailed experimental results are in
Table 1 and Table 2.

Verification of the correctness of those timings turned
out to be more difficult than we expected.su does not
read password characters one by one from the input. In-
stead, it takes all of them after a RETURN key has been
stroked. Therefore, instrumentation of its source code

Table 3: Examples of the timings measured from ESP traces
(Measured) and the real timings (Real) in milliseconds.

Timings
vim ssh Gedit

measured real measured real measured real
1 80 81 135 135 301 303
2 139 139 124 123 285 285
3 88 88 103 103 259 259
4 101 101 110 109 236 236
5 334 335 134 134 181 182
6 86 87 111 110 265 265
7 124 124 132 132 174 174

will not give us the real timing sequence. We solved
this problem by replacingsu with another program that
recorded the time when it received a key fromSSH, and
used such information to generate a timing sequence.
This sequence was found to be very close to the one we
got from the trace collected by our shadow process, as
described in Table 3. We further employed the timings
obtained fromsu to infer the passwords being typed,
which we found to be very effective (Section 5.2).

Gedit. Gedit is a text editor designed for the X
Window system. Like many other applications based
upon theGTK+, it is non-deterministic in the sense that
two independent runs of the application under the same
inputs often produce different system call sequences.
In our experiment, we performed an instruction-level
analysis of its binary executables using the Pin-based
tool we developed. This analysis revealed the call-
back function of the key-press event, from which we
extracted the system call sequence and related ESP
sequence. An interesting observation is thatGedit
actually does not immediately display a character a
user types: instead, it put the character to a buffer
through aGTK+ functiongtk text buffer insert
interactive at cursor(), which does not in-

volve any system calls, and the content of the buffer is
displayed when it becomes full or a timer expires. As a
result, we could not count on the system calls involved in
such a display process for fingerprinting keystrokes. Ac-
tually, only one system call was found to be present every
time when a key was received:gettimeofday(), a
call thatGedit uses to determine when to auto-save the
document the user is editing. This call seems too gen-
eral. However, its ESP value turned out to be specific
enough for a pattern: in our false positive check, we did
not find any other system calls within the application that
also had the same ESP. Moreover, our shadow process
always caught that ESP whenever we typed. Therefore,
this ESP value was adopted as the pattern in our experi-
ment. We further instrumentedGedit to dump the time
when this call was invoked for calculating the real timing
sequence. Table 1 shows that this sequence is very close
to the one collected by our shadow process.
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72 hours

Impacts of server workloads. A multi-user system of-
ten concurrently serves many users. These users’ activi-
ties could interfere with the collection of inter-keystroke
timings. This problem was studied in our research
through evaluating the effectiveness of our attack under
different workloads. Specifically, we ran our attacks on
vim, SSH andGedit under different CPU usages to
measure the percentage of the keystrokes still detectable
to our shadow process. The experimental results are
elaborated in Figure 7. Here, we sketch our findings.

We found that the impacts of workloads varied among
applications. The attacks onvim andSSH appear to be
quite resilient to the interferences from other processes:
our shadow process picked up 100% keystrokes for both
applications when CPU usage was no more than 10% and
still detected 94% fromvim when the usage went above
20%. In contrast, the attack onGedit was less robust:
we started missing keystrokes when more than 2% of
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Figure 9: Variations of user numbers on the three servers
during 72 hours

CPU time was consumed by other processes. This dis-
crepancy comes from applications’ ESP patterns: those
involving more system calls are easier to detect.

On the other hand, the workloads on a real-world sys-
tem are reasonable enough to be handled by our attack.
Figure 8 and 9 reports the CPU usages and user numbers
we measured from three real-world systems, including a
Linux workstation in a public machine room (Server 1), a
server for students’ course projects (Server 3) and a web
server of Indiana University that allowsSSH connections
from its users (Server 2). The number of users on these
systems range from 1 to 24. Our 72-hour monitoring re-
veals that for 90 percent of time, the CPU usages of these
servers were below 3.2%.

We also implemented the technique proposed in [32]
to hide the CPU usage of our shadow process. As a re-
sult, the process appeared to consume 0% of CPU, as
observed fromtop. The cost, however, was that it only
reliably identified about 50% of keystrokes we entered.
Nevertheless, this still helped inference of keys, partic-
ularly when the same input from a user (e.g., password)
was sampled repeatedly, as discussed in Section 4.2.

5.2 Key Sequence Inference

We further studied how to use the timings to infer key
sequences. Experiments were conducted in our research
to evaluate our techniques using both passwords and En-
glish words. Here we report the results.

Password. To study the effectiveness of our approach
on passwords, we first implemented then-Viterbi algo-
rithm [26] and used it to compute a baseline result, and
then compared the baseline with what can be achieved
by the analysis using multiple timing sequences, as de-
scribed in Section 4.2. Our experiment was carefully



Table 4: The percentage of the search space the attacker
has to search before the right password is found.

Method
Test Cases

password 1 password 2 password 3
Baseline(n-Viterbi) 7.8% 6.6% 6.8%

Timing Averaging 0.38% 0.34% 0.05%

m-n-Viterbi 0.39% 0.34% 0.05%

designed to make it comparable with that of the prior
work [26]: we chose 15 keys for training and testing an
HMM, which include 13 letters and 2 numbers9. From
these keys, we identified 225 key pairs and measured
45 inter-keystroke timings for each of these pair from
a user. We found that the timing for each pair indeed
had Gaussian-like distributions. These distributions were
used to parameterize two HMMs: one for the first 4 bytes
of an 8-byte password and the other for the second half.

We randomly selected 3 passwords from the space of
all possible 8-byte sequences formed by the 15 charac-
ters. For each password, we ran then-Viterbi algorithm
on 50 timing sequences. Each of these sequences caused
the algorithm to produce a ranking list of candidate pass-
words. The position of the real password on the list de-
scribes the search space an attacker has to explore: for
example, we only need to check 1012 candidates if the
password is the 1012th member on the list, which re-
duces the search space for a 4-byte password by 50 times.
To avoid the intensive computation, our implementation
only output the top 4500 members from an HMM. We
found that for about 75% of the sequences tested in our
experiment, their corresponding passwords were among
these members. In Table 4, we present the averaged per-
centage of the search space for finding a password.

We tested the timing averaging approach andm-n-
Viterbi algorithm described in Section 4.2 with 50 timing
sequences for each password, and present the results in
Table 4. As the table shows, both approaches achieved
significant improvements over then-Viterbi algorithm:
they shrank the search space by factors ranging from 250
to 2000. In contrast, the speed-up factor introduced by
then-Viterbi algorithm was much smaller10.

We also found that the speed-up factors achieved by
our approach, like the prior work [26], depended on the
letter pairs the victim chose for her password: if the tim-
ing distribution of one pair (Figure 6) is not very close
to those of other pairs, it can be more reliably deter-
mined, which contributes to a more significant reduc-
tion of searching spaces. For example, in Figure 6, a
password built on the pairs whose means are around 300
milliseconds is much easier to be inferred than the one
composed of the pairs around 100 milliseconds, as the
latter pairs are more difficult to distinguish from others
with very similar distributions. It is important to note that
those distributions actually reflect an individual’s typing

Figure 10: The success rates of the attack on English
words

practice, and therefore, the same password entered by
one can become easier to crack than by another.

English words. We also studied how the timing infor-
mation can help infer English words. To prepare for the
experiment, a program was used to randomly generate
character sequences with lengths of 3, 4 and 5 letters11,
and from them, we selected 2103 words that also ap-
peared in a dictionary. These words were classified into
three categories according to their lengths. For the words
within each category, we computed a distribution using
their frequencies reported by [18] . These distributions
were used to determine the transition probabilities of the
HMMs for individual categories, which we applied to in-
fer the words with different lengths.

In the experiment, we randomly draw words from each
category in accordance with their distribution, and typed
them to collect timing sequences. The timing segments
that represented individual words were identified from
the sequences using the feature of the SPACE key. For
each segment, we picked up an HMM according to the
length of the word and solved it using then-Viterbi algo-
rithm, which gave us a ranking list of candidates. From
the list, our approach further removed the candidates that
did not pass a spelling check. We tested 14 3-letter
words, 11 4-letter words and 14 5-letter words. The out-
comes are described in Figure 10. From the table, we can
see that the real words were highly ranked in most cases:
almost 40% of them appeared in top 10 and 86% among
top 50.

6 Discussion

6.1 Further Study of the Attack

Our current implementation only tracks the call-back
function for the key press event. We believe that the
pattern for keystroke recognition can be more specific
and easier to detect by adding the ESP sequences of the
system calls related to the key release event. Moreover,
we evaluated our approach using three applications. It is
interesting to know whether other common applications



are also subject to our attack. What we learnt from our
study is that our attack no longer works when system
calls are not immediately triggered by keystrokes. This
could happen when the victim’s process postpones the
necessary actions such as access to the standard I/O until
multiple keystrokes are received. For example,su does
not read a password character by character, and instead,
imports the string as a whole; as a result, it cannot be
attacked when it is not used under the interactive mode
of SSH. As another example,GTK+ applications tend to
display keys only when the buffer holding them becomes
full or a timer is triggered. Further study to identify the
type of applications vulnerable to our attack is left as our
future research. In addition, it is conceivable that the
same techniques can be applied beyond identification of
inter-keystroke timing. For example, we can track the
ESP dynamics caused by other events such as moving
mouse to peek into a user’s activities.

Our current research focuses more on extracting inter-
keystroke timings from an application than on analyz-
ing these timings. Certainly more can be done to im-
prove our timing analysis techniques. Specifically, pass-
word cracking can be greatly facilitated with the knowl-
edge about the types of individual password characters
such as letter or number. Acquisition of such knowl-
edge can be achieved using our enhanced versions of
the n-Viterbi algorithm that accept multiple timing se-
quences. This “classification” attack can be more effec-
tive than the timing attack proposed in [26], as it does
not need to deal with a large key-pair space. Moreover,
the approach we used to infer English words is still pre-
liminary. We did not evaluate it using long words, be-
cause solving the HMMs for these words can be time
consuming. A straightforward solution is to split a long
word into small segments and model each of them with
an HMM, as we did for password cracking. This treat-
ment, however, could miss the inherent relations between
the segments of a word, which is important because let-
ters in a word are often correlated. Fundamentally, the
first-order HMM we adopted is limited in its capability
of modeling such relations: it cannot describe the depen-
dency relation beyond that between two key pairs. Ap-
plication of other language models such as the high-order
HMM [12] can certainly improve our techniques.

Actually, ESP/EIP is by no means the only infor-
mation within procfs that can be used for acquiring
inter-keystroke timings. Other information that can
lead to a similar attack includes interrupt statistics
file /proc/interrupts, and network status data
/proc/net. The latter enables an attacker to track
the activities of the TCP connections related to the in-
puts from a remote client. Moreover, the procfs of most
UNIX-like systems expose thesystem time of a process,
i.e., the amount of time the kernel spends serving the sys-

tem calls from the process. Disclosure of such informa-
tion actually enables keystroke eavesdropping, which is
elaborated in Section 6.2.

6.2 Information Leaks in the Procfs of
Other UNIX-like Systems

Besides Linux, most other UNIX-like systems also im-
plement procfs. These implementations vary from case
to case, and as a result, their susceptibilities to side-
channel attacks also differ. Here we discuss such privacy
risks on two systems, FreeBSD and OpenSolaris.

FreeBSD manages its process files more cautiously
than Linux12: it puts all register values into the file
/proc/pid/regs that can only be read by the owner
of a process, which blocks the information used by
our attack. However, we found that other informa-
tion released by the procfs can lead to similar attacks.
A prominent example is the system time reported by
/proc/pid/status, a file open to every user. Fig-
ure 11 shows the correlations between the time con-
sumed byvim and the keystrokes it received, as ob-
served in our research. This demonstrates that keystroke
events within the process can be identified from the
change of its system time, which makes keystroke eaves-
dropping possible. A problem here is that we may not
be able to detect special keys a user enters, for example,
“MOV CURSOR”, which is determined from ESP/EIP in-
formation on Linux. A possible solution is using the dis-
crepancies of system-time increments triggered by dif-
ferent keys being entered to fingerprint these individual
keys. Further study of this technique is left to our future
research.

OpenSolaris kernel makes the/proc directory of a
process only readable to its owner, which prevents other
users from entering that directory. Interestingly, some
files under the directory are actually permitted to be read
by others, for supporting the applications such asps
andtop. Like FreeBSD, the registers of the process
are kept off-limits. However, other information, includ-
ing system time, is still open for grabs. Figure 11 il-
lustrates the changes of the system time versus a series
of keystrokes we entered on OpenSolaris, which demon-
strates that identification of inter-keystroke timings is
completely feasible on the system.

6.3 Defense

An immediate defense against our attack is to prevent
one from reading thestat file of another user’s process
once it is forked, which can be done by manually chang-
ing the permissions of the file. However, this approach is
not reliable because human are error-prone and whenever
the step for altering permissions is inadvertently missed,
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Figure 11: System time (solid line) vs. keystroke events
(dashed line) invim under FreeBSD (Release 7.1) and
OpenSolaris (Release 2008.11). In the experiments, we
found that the system time ofvim changed only in re-
sponse to keystrokes, which were recorded by shadow
programs.

the door to our attack becomes wide open. The approach
also affects the normal operations of common tools such
asps andtop, which all depend onstat to acquire
process information. A complete solution is to patch
Linux kernels to remove the ESP and EIP information
from a process’s virtual file or move them into a separate
file which can only be read by the owner. The problem
is that there is no guarantee that other information dis-
closed by procfs will not lead to a similar attack (Sec-
tion 6.1 and Section 6.2). Detection of our attack can
also be hard, because our shadow process behaves ex-
actly like the legitimate tools such astop, which also
continuously read from virtual files. The shadow pro-
gram can also hide its CPU usage by leveraging existing
techniques [32]. Fundamentally, with the pervasiveness
of multi-core systems that enable one process to effec-
tively monitor another process’s execution, we feel it is
necessary to rethink the security implications of the pub-
lic information available on current multi-user systems.

7 Related Work

It has long been known that individual users can be char-
acterized by their unique and stable keystroke dynamics,
the timing information that can be observed when one is
typing [16]. Such information has been intensively stud-
ied for biometric authentication [21]. In comparison, lit-
tle has been done to explore its potential for inferring the
characters a user typed [6]. The first paper on this sub-
ject13 proposes to measure inter-keystroke timings from
the latencies betweenSSH packets [7] and use them to
crack passwords. Our attack takes a different path to ac-

quire timings: we take advantage of the information of a
process exposed by procfs to find out when a key is re-
ceived by the process, which has been made possible by
the rapid development of multi-core techniques. Com-
pared with the prior approach, our attack can happen to
the clients who use a multi-user system locally as well as
those who connect to the system remotely. Moreover, our
timing analysis is much more accurate than the prior ap-
proach, through effective use of the information available
from procfs. On the downside, we need a user account to
launch our attack, which is not required by the prior ap-
proach. Another prior proposal measures CPU timings
to acquire the information about the password a user en-
ters [31]. This approach only gets the information such
as password length and some special characters, and is
subject to the interference of the activities such as pro-
cessing mouse events, whereas our approach can accu-
rately identify the events related to keystrokes and infer
the characters being entered. Timing analysis has also
been applied to attack cryptosystems [5, 34, 17, 8].

Keyboard acoustic emanations [34] also leak out infor-
mation regarding a user’s keystrokes. Such information
has been leveraged by several prior approaches [2, 33, 3]
to identify the keys being entered. Similar to our attack,
some of these approaches also apply language models
(including the high-order HMM) to infer English words.
They all report very high success rates. Acoustic ema-
nations are associated to individual keys, whereas tim-
ings are measured between a pair of keys. This makes
character inference based on timings more challenging.
On the other hand, acquisition of acoustic emanations
requires physically implanting a recording device close
to the victim, whereas our attack only needs a normal
user account. Moreover, these attacks can only be used
against a local user. In contrast, our approach works on
both local and remote users.

8 Conclusion

In this paper, we present a new attack that allows a ma-
licious user to eavesdrop on other users’ keystrokes us-
ing procfs, a virtual file system that shares statistic infor-
mation regarding individual users’ processes. Our attack
utilizes the stack information of a process present in its
stat file on a Linux system to fingerprint its behavior
when a keystroke is received. Such behavior is modeled
as an ESP pattern of its system calls, which can be ex-
tracted from an application through automatic program
analysis. During the runtime of the application, our ap-
proach shadows its process with another process to col-
lect an ESP trace from itsstat file. Our research shows
that on a multi-core system, the shadow process can ac-
quire a trace with a sufficient granularity for identifying
keystroke events. This allows us to determine the tim-



ings between keystrokes and analyze them to infer the
key sequence the victim entered. We also show that other
information available from procfs can be of great help
to character inference: knowing that the same user en-
ters her password to the same application, we can com-
bine multiple timing sequences related to the password to
significantly reduce the space for searching it. We also
propose to utilize the victim’s writing style to infer the
English words she enters. Both approaches are very ef-
fective, according to our experimental study.

Our attack can be further improved through adopt-
ing more advanced analysis techniques such as the high-
order HMM and other language model. The same idea
can also be applied to infer other user activities such
as moving and clicking mouse, and even deduce others’
secret keys. More generally, other information within
procfs, such as system time, can be used for a similar at-
tack, which threatens other UNIX-like systems such as
FreeBSD and OpenSolaris. Research in these directions
is left as our future work.
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Notes
1The program is actually a simplified version ofvim.
2Some old Linux distributions such as RedHat Enterprise 4 do

not use vDSO, and instead then entry of their system calls points to
dl sysinfo int80 in library /lib/ld-linux.so or /lib/ld.so.

3We designed our attack in a way that a keystroke event can be re-
liably identified even in the presence of some missing ESP/EIP values,
which could happen when the shadow process is preempted by other
processes (Section 3).

4After the application enter the state that keystroke inputsare ex-
pected, our approach waits for a time period before exporting the first
sequence. This allows for the accomplishment of all the system calls
prior to keystrokes. Similarly, the second sequence is not exported un-
til the keystroke happens for a while so as to ensure that all the system
calls related to the stroke are completed.

5There are actually two events associated with a keystroke: key
press and key release. We use the first event here for the simplicity
of explanation. Our technique can actually be applied to both events.

6We did not use the instructions such as ‘ret’ to identify the end of
a call-back function because compiler optimization could remove such
instructions from a binary executable.

7Some Linux versions such as RedHat [14] turn off the permissions
onmaps butstat is always open.

8Theoretically, this approach may not eliminate false positives
when it comes to non-deterministic applications, because these applica-
tions may contain ESP sequences we did not observe during theoffline
analysis.

9The prior work used 10 letters and 5 numbers. We increased the
number of letter keys to get a larger set of legitimate words for our
experiment on English text.

10The factor is actually below what was reported in the prior
work [26]. A possibility is that we adopted 225 key pairs rather than
142 used in the prior work.

11We did not choose longer words in our experiment to avoid inten-
sive computation. However, such a word can also be learnt through
splitting it into shorter segments and analyzing them usingdifferent
HMMs.

12It is reported that FreeBSD moves to phase out procfs [11].
13The possibility of timing attack onSSH has also been briefly dis-

cussed in [26].


