
USENIX Association 18th USENIX Security Symposium 399

Crying Wolf: An Empirical Study of SSL Warning Effectiveness

Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith Cranor
Carnegie Mellon University

{sunshine, egelman, hazim}@cs.cmu.edu, natri@andrew.cmu.edu, lorrie@cs.cmu.edu

Abstract

Web users are shown an invalid certificate warning
when their browser cannot validate the identity of
the websites they are visiting. While these warn-
ings often appear in benign situations, they can also
signal a man-in-the-middle attack. We conducted a
survey of over 400 Internet users to examine their
reactions to and understanding of current SSL warn-
ings. We then designed two new warnings using warn-
ings science principles and lessons learned from the
survey. We evaluated warnings used in three pop-
ular web browsers and our two warnings in a 100-
participant, between-subjects laboratory study. Our
warnings performed significantly better than exist-
ing warnings, but far too many participants exhibited
dangerous behavior in all warning conditions. Our re-
sults suggest that, while warnings can be improved,
a better approach may be to minimize the use of SSL
warnings altogether by blocking users from making
unsafe connections and eliminating warnings in be-
nign situations.

1 Introduction

Browsers display Secure Socket Layer (SSL)1 warn-
ings to warn users about a variety of certificate prob-
lems, for example when the server’s certificate has
expired, mismatches the address of the server, or is

1The Secure Socket Layer (SSL) and Transport Layer Secu-
rity (TLS) protocols secure web communication by encrypting
data sent between browser and server and by validating the
identity of the server. For the remainder of the paper we will
use the common convention of using the term “SSL” to refer
to both protocols.

signed by an unrecognized authority. These warn-
ing messages sometimes indicate a man-in-the-middle
or DNS spoofing attack. However, much more fre-
quently users are actually connecting to a legitimate
website with an erroneous or self-signed certificate.
The warnings science literature suggests that warn-

ings should be used only as a last resort when it
is not possible to eliminate or guard against a haz-
ard. When warnings are used, it is important that
they communicate clearly about the risk and provide
straightforward instructions for avoiding the haz-
ard [19, 22]. In this paper we examine user reac-
tions to five different SSL warnings embodying three
strategies: make it difficult for users to override the
warning, clearly explain the potential danger facing
users, and ask a question users can answer. By mak-
ing it difficult for users to override the warning and
proceed to a potentially dangerous website, the warn-
ing may effectively act as a guard against the haz-
ard, similarly to the way a fence protects people from
falling into a hole. While some people may still climb
the fence, this requires extra effort. By clearly ex-
plaining the potential danger, warnings communicate
about risk. Finally, by asking users a question they
can answer, the system can tailor a warning to the
user’s situation and instruct users in the appropriate
steps necessary to avoid any hazard.
We conducted a survey of 409 Internet users’ re-

actions to current web browser SSL warnings and
found that risk perceptions were the leading factor
in respondents’ decisions of whether or not to visit a
website with an SSL error. However, those who un-
derstood the risks also perceived some common SSL
warnings as not very risky, and were more likely to
override those warnings.

1

400 18th USENIX Security Symposium USENIX Association

We followed up this survey with a between-subjects
laboratory experiment involving 100 participants
who encountered SSL warnings on an online bank-
ing website that requested their credentials and a li-
brary website that did not request any credentials.
We tested the Firefox 2 (FF2), Firefox 3 (FF3), and
Microsoft Internet Explorer 7 (IE7) SSL warnings.
We also tested two new warnings designed to take
advantage of the lessons we learned in the survey.
The first warning was designed with risk in mind:
it succinctly explained the risks and consequences of
proceeding to the website. The second warning was
context sensitive: it appeared to be more severe when
the participants visited websites that required them
to enter personal data. We found that most partic-
ipants ignored the FF2 and IE7 warnings on both
websites. Many participants who used FF3 were un-
able to override that warning and were thus prevented
from visiting both websites. Finally, we found that
participants who viewed our redesigned warnings bet-
ter understood the risks and made their decisions
based on the type of website they were visiting. How-
ever, despite the fact that the warnings we examined
embodied the best techniques available, none of the
warnings provided adequate protection against man-
in-the-middle attacks. Our results suggest that, while
warnings can be improved, a better approach may be
to minimize the use of SSL warnings altogether by
blocking users from making unsafe connections and
eliminating warnings in benign situations.
In the next section we provide an overview of other

studies that have been conducted on web browser se-
curity indicators. In Section 3 we present our online
SSL warning survey methodology and results. In Sec-
tion 4 we present our laboratory experiment method-
ology and results. Finally, we discuss our findings and
conclusions.

2 Background and Related
Work

Much previous research has indicated that users do
not understand SSL. A study in 2002 found that half
of the participants could not identify a secure browser

connection [8]. A 2005 study tracked eye movements
and found that participants paid no attention to web
browser security cues such as SSL icons. Only after
priming participants to be on the lookout for secu-
rity information, 69% of participants noticed the lock
icon [21]. Schechter et al. tested the usability of se-
curity indicators by removing SSL indicators from a
banking website and observed that all 63 participants
still provided their passwords [17].
The major web browsers now include support for

extended validation (EV) certificates. A regular
certificate only tells a user that the certificate was
granted by a particular issuing authority, whereas an
EV certificate also says that it belongs to a legally
recognized corporate entity [2]. FF3 and IE7 indi-
cate a website has an EV certificate by coloring the
address bar green and displaying the name of the
website owner. However, a study by Jackson et al.
found that EV certificates did not make users less
likely to fall for phishing attacks. Many users were
confused when the chrome of the web browser was
spoofed within the content window to depict a green
address bar. Additionally, after reading a help file,
users were less suspicious of fraudulent websites that
did not yield warning indicators [11]. Sobey et al.
performed an eye tracking study in 2008 to examine
whether participants would notice simulated versions
of the EV certificate indicators that are used by FF3.
They found that none of their 28 participants exam-
ined the address bar when making online shopping
decisions, and therefore none of them encountered the
secondary SSL dialogs containing information about
the website owners [18].
Usability problems with security indicators in web

browsers go beyond SSL. Wu et al. conducted a
study of security toolbars used to help users identify
phishing websites. The researchers examined three
different styles of passive indicators—indicators that
do not force user interactions—that appeared in the
browser chrome. They discovered that 25% of the
participants failed to notice the security indicators
because they were focused on the primary task. In
fact, many of those who did notice the indicators did
not trust them because they believed the tool was in
error since the website looked trustworthy [23]. The
factors that go into website trust have been exten-

USENIX Association 18th USENIX Security Symposium 401

sively studied by Fogg et al., who found that the
“look and feel” of a website is often most important
for gaining user trust [7]. Thus users might trust
a professional looking website despite the presence
of a passive security indicator. Dhamija et al. cor-
roborated these findings by performing a study on
why people fall for phishing websites. In their study,
users examined a set of websites and were asked to
identify which ones were phishing websites. They
found that 23% of their study participants did not
look at any of the web browser security indicators
when making their decisions, even though the par-
ticipants were primed for security. The researchers
concluded that passive security indicators are inef-
fective because they often go unnoticed [4].
Because of the problems with passive security in-

dicators, many web browsers now display “active”
warnings that require the user to take an action—
usually deciding whether or not to visit the destina-
tion website—in order to dismiss the warning. While
these warnings force the user to acknowledge them,
they still allow the user to ignore their advice and
proceed to the website despite the security error. In
2008, Egelman et al. performed a study on active web
browser warnings used to warn users about potential
phishing websites. They discovered that users who
claimed to have seen the warnings before were signif-
icantly more likely to ignore them in the laboratory.
They concluded that many of the participants had
become habituated to seeing similar-looking warn-
ings when browsing legitimate websites, and are now
likely to ignore all future similarly-designed warnings,
regardless of the danger they represent [6].
Jackson and Barth address the problem of users

ignoring SSL warnings with the ForceHTTPS sys-
tem [10]. Websites with CA signed certificates de-
ploy a special ForceHTTPs cookie to a user’s browser,
which from then on only accepts valid SSL connec-
tions to the website. This strategy is elegantly simple,
but it does not protect users when they encounter a
website for the first time.
Wendlandt et al. created the Perspectives sys-

tem to prevent habituation by only displaying warn-
ings when an attack is probable. Perspectives trans-
forms the CA model into a “trust-on-first-use” model,
similar to how SSH works. “Notaries” keep track

of all previously viewed SSL certificates and only
warn users when they encounter a certificate that has
changed over time. This eliminates many common
SSL errors, thereby only displaying warnings when
an attack is probable [20]. However, when users do
encounter certificates that have been altered, it is un-
clear how the warnings should be designed so as to
maximize their effectiveness.
Xia and Brustoloni implement a system to help

users better react to unverified certificates [24]. The
system requires websites interested in using private
CA signed certificates to distribute tokens to their
users by physical media. In 2007, Brustoloni and Vil-
lamaŕın-Salomón explored the idea of creating poly-
morphic dialogs to combat habituation. While their
preliminary results were promising for warning users
about malicious email attachments, it is unclear what
the long-term efficacy would be if such a system were
created for SSL warnings [1].
The pervasive nature of SSL errors raises ques-

tions about the efficacy of SSL warnings. A survey
of 297,574 SSL-enabled websites queried in January
2007 found 62% of the websites had certificates that
would trigger browser warnings [5]. A January 2009
study performed using a list of the top one million
websites found that at least 44% of the 382,860 SSL-
enabled websites had certificates that would trigger
warnings [13].2 Given this large sample, many of
the errors may appear on websites that are not fre-
quently visited. Our own analysis of the top 1,000
SSL-enabled websites yielded 194 SSL errors, which
is still an alarming number. Unfortunately, we do
not have data on the proportion of certificate errors
that appear on legitimate websites versus malicious
websites, making it unclear whether these particular
errors are indicative of an ongoing attack. However,
we believe it is likely that most certificate errors oc-
cur on non-malicious websites, and therefore many
users view the associated warnings as false positives.
This means that if a web browser displays a particular
warning each time it encounters any type of certifi-
cate error, users will quickly become habituated to
this warning regardless of the underlying error.

2This estimate is likely low as the 2009 study did not catalog
domain name mismatch errors.

402 18th USENIX Security Symposium USENIX Association

3 SSL Survey

In the summer of 2008 we conducted an online sur-
vey of Internet users from around the world to de-
termine how they perceived the current web browser
SSL warnings.

3.1 Methodology

We presented survey respondents with screenshots of
three different SSL warnings from the browser that
they were using at the time they took the survey3

and asked them several questions about each warn-
ing. These questions were followed by a series of ques-
tions to determine demographic information.
We showed participants warnings for expired cer-

tificates, certificates with an unknown issuer, and
certificates with mismatched domain names.4 Each
warning was shown on a separate page along with
its associated questions, and the order of the three
pages was randomized. We included a between-group
condition to see if context played a role in users’ re-
sponses: half the participants were shown a location
bar for craigslist.org—an anonymous forum unlikely
to collect personal information—and the other half
were shown a location bar for amazon.com—a large
online retailer likely to collect personal and finan-
cial information. We hypothesized that respondents
might be more apprehensive about ignoring the warn-
ing on a website that was likely to collect personal
information. Below each warning screenshot, partic-
ipants were asked a series of questions to determine
whether they understood what the warnings mean,
what they would do when confronted with each warn-
ing, and their beliefs about the consequences of ignor-
ing these warnings.
We were also interested in determining how com-

puter security experts would respond to our survey,
and if the experts’ answers would differ from ev-
eryone else’s answers. In order to qualify respon-
dents as experts, we asked them a series of five ques-

3We used screenshots of the warnings from FF2, FF3, and
IE7. Users of web browsers other than FF2, FF3, or IE7 were
only asked the demographic questions.

4We examined these three warnings in particular because
we believed them to be the most common.

tions to determine whether they had a degree in an
IT-related field, computer security job experience or
course work, knowledge of a programming language,
and whether they had attended a computer security
conference in the past two years.
We recruited participants from Craigslist and sev-

eral contest-related bulletin boards, offering a gift
certificate drawing as an incentive to complete the
survey. We received 615 responses; however we used
data from only the 409 respondents who were using
one of the three web browsers under study.

3.2 Analysis

Our 409 survey respondents used the following
browsers: 96 (23%) used FF2, 117 (29%) used FF3,
and 196 (48%) used IE7. While age and gender
were not significant predictors of responses,5 it should
be noted that 66% of our respondents were female,
significantly more males used FF3 (χ22 = 34.01,
p < 0.0005), and that IE7 users were significantly
older (F2,405 = 19.694, p < 0.0005). For these rea-
sons and because respondents self-selected their web
browsers, we analyzed the responses for each of the
web browsers separately.
We found no significant differences in responses

based on the type of website being visited. We found
that respondents’ abilities to correctly explain each
warning was a predictor of behavior, though not in
the way we expected: respondents who understood
the domain mismatch warnings were less likely to
proceed whereas we observed the opposite effect for
the expired certificate warnings. This suggests that
participants who understood the warnings viewed the
expired certificate warnings as low risk. Finally, we
found that risk perceptions were a leading factor in
respondents’ decisions and that many respondents—
regardless of expertise—did not understand the cur-
rent warnings. In this section we provide a detailed
analysis of our results in terms of warning compre-
hension and risk perceptions, the role of context, and
the role of expertise.

5All statistics were evaluated with α=0.05. We used a
Fisher’s exact test for all statistics where we report a p-value
only.

USENIX Association 18th USENIX Security Symposium 403

No

Maybe

Yes

 0

 20

 40

 60

 80

 100

IE
7

F
F

3

F
F

2

IE
7

F
F

3

F
F

2

IE
7

F
F

3

F
F

2

P
er

ce
n
ta

g
e

o
f

R
es

p
o
n
d
en

ts

Expired Certificate Unknown CA Domain Mismatch

Figure 1: Participant responses to the question: If
you saw this message, would you attempt to continue
to the website?

3.2.1 Comprehension and Risk Perceptions

We were primarily interested in whether respondents
would continue to the destination website if they saw
a given warning. As shown in Figure 1, less than half
the participants claimed they would continue.
We expected to see differences in behavior for each

of the three types of warnings. In order for this to
be the case, participants needed to be able to distin-
guish each of the three warnings. We asked them to
explain what they thought each warning meant and
coded the answers in terms of whether or not they
were correct. As shown in Table 1, we discovered
that FF2 users were significantly more likely to un-
derstand the domain mismatch warnings, while FF3
users were significantly more likely to understand the
expired certificate warnings.
We explored warning comprehension further by ex-

amining whether those who understood the meaning
of the warnings were more likely to heed or ignore
them. In general, we found that users who under-
stood the warnings tended to behave differently than
those who did not. Across all three browsers, users
who understood the domain mismatch warning were
more likely to say they would heed that warning than
users who did not understand it. In addition, FF3
and IE7 users who understood the expired certifi-

cate warnings were more likely to indicate that they
would ignore these warnings and proceed to the des-
tination website. These results are detailed in Ta-
ble 1 and indicate that users likely perceive less risk
when encountering an expired certificate, and there-
fore are likely to proceed. However, when encounter-
ing a domain mismatch warning, knowledgeable users
perceive greater risk and are likely to discontinue.
The three warnings that we examined are displayed

when the authenticity of the destination website’s
SSL certificate cannot be guaranteed. While each
of these warnings represents a different underlying
error, they represent the same threat: the user may
not be communicating with the intended website or a
third party may be able to eavesdrop on her traffic. In
both cases, sensitive information may be at risk (e.g.
billing information when performing an online pur-
chase). In order to determine whether or not respon-
dents understood the threat model, we asked them
to list the possible consequences of ignoring each of
the warnings. Responses that specifically mentioned
fraud, identity theft, stolen credentials (or other per-
sonal information), phishing, or eavesdropping were
coded as being correct. We coded as correct 39% of
responses for FF2 warnings, 44% of responses for FF3
warnings, and 37% of responses for IE7 warnings.
Incorrect responses fell into two categories: respon-

dents who had no idea (or said there were no conse-
quences) and respondents who mentioned other se-
curity threats. Many of those in the latter category
mentioned viruses and worms. While it is possible
that a malicious website may exploit web browser
vulnerabilities or trick visitors into downloading mal-
ware, we considered these outside the scope of our
survey because they either impact only users of a spe-
cific browser version—in the case of a vulnerability—
or they rely on the user taking additional actions—
such as downloading and executing a file. Several re-
sponses mentioned malware but additionally claimed
that those using up-to-date security software are not
at risk. Others claimed they were not at risk due to
their operating systems:

“I use a Mac so nothing bad would happen.”
“Since I use FreeBSD, rather than Win-
dows, not much [risk].”

404 18th USENIX Security Symposium USENIX Association

B
ro
w
se
r

U
n
d
e
rs
to
o
d Expired Certificate Unknown CA Domain Mismatch

Ignored Ignored Ignored

FF2 Y 48 50% 71% 37 39% 43% 57 59% 19% χ2
2 = 9.40

N 48 50% 56% 59 61% 49% 39 41% 49% p < 0.009

FF3 Y 55 47% 64% χ2
2 = 21.05 35 30% 31% 46 39% 15% χ2

2 = 8.65
N 62 53% 34% p < 0.0005 82 70% 34% 71 61% 41% p < 0.013

IE7 Y 45 23% 53% χ2
2 = 11.81 44 22% 27% 62 32% 16% χ2

2 = 7.50
N 151 77% 32% p < 0.003 152 78% 32% 134 68% 35% p < 0.024

Table 1: Participants from each condition who could correctly identify each warning, and of those, how
many said they would continue to the website. Differences in comprehension within each browser condition
were statistically significant (FF2: Q2 = 10.945, p < 0.004; FF3: Q2 = 11.358, p < 0.003; IE7: Q2 = 9.903,
p < 0.007). For each browser condition, the first line depicts the respondents who could correctly define the
warnings, while the second depicts those who could not. There were no statistically significant differences
between correctly understanding the unknown CA warning and whether they chose to ignore it.

“On my Linux box, nothing significantly
bad would happen.”

Of course, operating systems or the use of secu-
rity software do not prevent a user from submitting
form data to a fraudulent website, nor do they pre-
vent eavesdropping. We further examined risk per-
ceptions by asking participants to specify the likeli-
hood of “something bad happening” when ignoring
each of the three warnings, using a 5-point Likert
scale ranging from “0% chance” to “100% chance.”
We found significant differences in responses to each
warning for all three web browsers: respondents con-
sistently ranked the expired certificate warning as be-
ing less risky than both of the other warnings. Table
2 depicts the perceived likelihood of risk for each of
the web browsers and each of the three SSL warnings.
To examine whether there were differences in risk

perception based on the underlying SSL error, we
asked respondents to quantify the severity of the con-
sequences of ignoring each of the SSL warnings using
a 5-point Likert scale that ranged from “none” to
“moderate” to “severe.” As shown in Table 3, we
found that respondents in every web browser condi-
tion were likely to assign significantly lesser conse-
quences to ignoring the expired certificate warning
than when ignoring either of the other two warnings.

3.2.2 The Role of Expertise

Finally, we wanted to examine whether respondents’
level of technical expertise influenced their decisions
to heed or ignore the warnings. As described in Sec-
tion 3.1, we asked respondents a series of five ques-
tions to gauge their technical qualifications. We as-
signed each respondent a “tech score” corresponding
to the number of questions they answered affirma-
tively. The first column of Table 4 lists the average
scores for each of the web browser conditions. We
classified those with tech scores greater than or equal
to two as “experts.” The expert group represented
the top 16.7% of FF2 users, the top 26.5% of FF3
users, and the top 12.2% of IE7 users. We com-
pared our “experts” to the rest of our sample (i.e.
respondents with scores of zero or one) and found
that responses did not significantly differ in most
cases. We found significant differences only among
FF3 users when viewing the unknown CA and do-
main mismatch warnings: experts were significantly
less likely to proceed to the websites (Table 4).

Finally, we examined whether the experts were bet-
ter able to identify the individual warnings than the
rest of the sample. We found that while the experts
were more likely to identify the warnings than non-

USENIX Association 18th USENIX Security Symposium 405

Expired Certificate Unknown CA Domain Mismatch

FF2 37% 45% 54% χ2
2 = 25.19 p < 0.0005

FF3 42% 52% 50% χ2
2 = 13.47 p < 0.001

IE7 47% 52% 53% χ2
2 = 12.79 p < 0.002

Table 2: Mean perceptions of the likelihood of “something bad happening” when ignoring each warning,
using a 5-point Likert scale ranging from 0 to 100% chance. A Friedman test yielded significant differences
for each browser.

Expired Certificate Unknown CA Domain Mismatch

FF2 1.70 2.10 2.29 χ2
2 = 20.49 p < 0.0005

FF3 1.96 2.36 2.32 χ2
2 = 9.00 p < 0.011

IE7 2.14 2.36 2.34 χ2
2 = 16.90 p < 0.0005

Table 3: Mean perceptions of the consequences of ignoring each of the three warnings, using a 5-point
Likert scale ranging from 0 to 4. A Friedman test shows that respondents in every web browser condition
were likely to assign significantly lesser consequences to ignoring the expired certificate warning than when
ignoring either of the other two warnings.

experts, even in the best case, the experts were only
able to correctly define the expired certificate warn-
ings an average of 52% of the time, the unknown CA
warnings 55% of the time, and the domain mismatch
warnings 56% of the time. This indicates that either
our metric for expertise needs to be improved, or that
regardless of technical skills, many people are unable
to distinguish between the various SSL warnings.

3.2.3 Conclusion

Our survey showed how risk perceptions are corre-
lated with decisions to obey or ignore security warn-
ings and demonstrated that those who understand
security warnings perceive different levels of risk as-
sociated with each warning. However, a limitation of
surveys is they collect participants’ self-reported data
about what they think they would do in a hypothet-
ical situation. Thus, it is useful to validate survey
findings with experimental data.

4 Laboratory Experiment

We conducted a laboratory study to determine the
effect of SSL warnings on user behavior during real
tasks.

4.1 Methodology

We designed our laboratory study as a between-
subjects experiment with five conditions: FF2 (Fig-
ure 2(a)), FF3 (Figure 3), IE7 (Figure 2(b)), a single-
page redesigned warning (Figure 4(b)), and a multi-
page redesigned warning (Figure 4). We asked partic-
ipants to find information using four different types
of information sources. Each task included a pri-
mary information source—a website—and an alter-
nate source that was either an alternative website or
a phone number. The primary information source
for two of the tasks, the Carnegie Mellon University
(CMU) online library catalog and an online banking
application, were secured by SSL. We removed the
certificate authorities verifying these websites from
the trusted authorities list in each browser used in the
study.6 Therefore, participants were shown an invalid
certificate warning when they navigated to the library
and bank websites. We noted how users reacted to
these warnings and whether they completed the task
by continuing to use the website or by switching to

6Ideally we would have performed a man-in-the-middle at-
tack, for example by using a web proxy to remove the web-
sites’ legitimate certificates before they reached the browser.
However, due to legal concerns, we instead simulated a man-
in-the-middle attack by removing the root certificates from the
web browser.

406 18th USENIX Security Symposium USENIX Association

Tech score Expired Unknown CA Domain Mismatch

FF2 µ = 0.61 Experts 69% 44% 31%
σ = 1.14 Non-Experts 63% 48% 31%

FF3 µ = 0.99 Experts 52% 13% χ2
2 = 12.37 10% χ2

2 = 11.42
σ = 1.42 Non-Experts 47% 41% p < 0.002 31% p < 0.003

IE7 µ = 0.47 Experts 42% 33% 29%
σ = 1.02 Non-Experts 36% 31% 29%

Table 4: Percentage of experts and non-experts who said they would continue past the warnings. The first
column shows respondents’ average tech scores.

the alternative information source. Finally, we gave
users an exit survey to gauge their understanding of
and reaction to the warnings.

4.1.1 Recruitment

We recruited participants by posting our study on the
experiment list of the Center for Behavioral Research
at CMU. We also hung posters around the CMU cam-
pus. Participants were paid $10–20 for their partic-
ipation.7 All recruits were given an online screen-
ing survey, and only online banking customers of our
chosen bank were allowed to participate. The sur-
vey included a range of demographic questions and
questions about general Internet use.
In total, 261 users completed our screening survey

and 100 users qualified and showed up to participate
in our study. We randomly assigned 20 users to each
condition. Half the users in each condition were given
the bank task first and half were given the library task
first. Participants took 15–35 minutes to complete
the study including the exit survey.
We tried to ensure that participants were not

primed to think about security. The study was pre-
sented not as a security study, but as a “usability of
information sources study.” Our recruitment post-
ings solicited people who were “CMU faculty staff
or students” and had “used online banking in the
last year.” However, we also required that partic-
ipants have “purchased an item online in the last
year” and “used a search engine” to avoid focusing
potential participants on the banking tasks. Finally,
our screening survey asked a series of questions whose

7Initially participants were paid $10, but we raised the pay-
ment to $20 to reach our recruiting goals.

responses were not used to screen participants (e.g.
“How often do you use Amazon.com?”), to further
obfuscate the study purpose.

4.1.2 Conditions

The FF2 warning, displayed in Figure 2(a), is typi-
cal of invalid certificate warnings prior to 2006. This
warning has a number of design flaws. The text con-
tains jargon such as, “the website’s certificate is in-
complete due to a server misconfiguration.” The look
and feel of the warning, a grey dialog box with a set
of radio buttons, is similar to a lot of other trivial
dialogs that users typically ignore, such as “you are
sending information unencrypted over the internet.”
The default selection is to accept the certificate tem-
porarily. This is an unsafe default for many websites,
including the online banking application in our study.
A more subtle problem with the FF2 warning, and

those like it, is that it asks users a question that they
cannot answer. The warning asks the user to de-
termine if the certificate problem is the result of a
server/browser configuration problem or a legitimate
security concern. Since users are not capable of mak-
ing this determination, the dialog is, in the words of
Firefox project co-founder Blake Ross, “a dilemma
to users.” Ross calls on browser designers to do ev-
erything possible to make decisions for their users.
When designers have to ask questions of their users,
they should ask questions that users can answer [16].
The FF3 warning should be more noticeable to

users than its predecessor because it takes over the
entire page and forces users to make a decision. Ad-
ditionally, it takes four steps to navigate past the
warning to the page with the invalid certificate. First

USENIX Association 18th USENIX Security Symposium 407

(a) Firefox 2

(b) Internet Explorer 7

Figure 2: Screenshots of the FF2 and IE7 warnings.

the user has to click a link, mysteriously labeled “or
you can add an exception. . . ” (Figure 3), then click a
button that opens a dialog requiring two more button
clicks. The first version of the FF3 warning required
11 steps.8 This clearly represented a decision by Fire-
fox developers that all invalid certificates are unsafe.
They made the original version of the warning so dif-
ficult for users to override, that only an expert would
be likely to figure out how to do it. While FF3 was in
alpha and beta testing, many users erroneously be-
lieved the browser was in error when they could not
visit websites that they believed to be legitimate.9

The IE7 warning, shown in Figure 2(b), occupies
the middle ground between the FF2 and FF3 warn-
ings. It takes over the entire page and has no default
option, but differs from the FF3 warning because it

8https://bugzilla.mozilla.org/show bug.cgi?id=399275
9https://bugzilla.mozilla.org/show bug.cgi?id=398915

Figure 3: Screenshot of the initial FF3 warning.

can be overridden with a single click on a link labeled
“Continue to this website.” It has a slightly scarier
look and feel than the FF2 warning: the background
color has a red tint and a large X in a red shield
dominates the page. The warning also explicitly rec-
ommends against continuing. Finally, when viewing
this warning the background of the address bar is
red and continues to be red after one overrides the
warning.
We designed two warnings using techniques from

the warning literature and guided by results from
our survey. Our multi-page warning first asks the
user a question, displayed in Figure 4(a), and then,
depending on the response, delivers the user either
to the severe warning page shown in Figure 4(b) or
to the requested website. The second version of the
warning shows only the severe warning (Figure 4(b)).
Both versions were implemented in IE7. We used the
resourcemodify tool10 to replace the HTML file of the
native warning in an IE DLL with our HTML files.
The second version of our warning serves two pur-

poses. First, it attempts to see how users react to a
simple, clear, but scary warning. The warning bor-
rows its look and feel from the FF3 phishing warn-
ing. It is red and contains the most severe version of
Larry the Firefox “passport officer.”11 The title of
the page is clear and harsh: “High Risk of Security
Compromise.” The other context is similarly blunt
(e.g. “an attacker is attempting to steal information
that you are sending to domain name.”). Even the

10http://deletethis.net/dave/xml-source-view/httperror.
html

11http://news.cnet.com/8301-10789 3-9970606-57.html

408 18th USENIX Security Symposium USENIX Association

(a) Page 1

(b) Page 2

Figure 4: Screenshot of redesigned warning.

default button, labeled “Get me out of here!” signi-
fies danger. The only way for a user to continue is
to click the tiny link labeled “Ignore this warning” in
the bottom right corner. The second purpose of the
single page warning is to help us interpret the results
from our multi-page warning. We compare the multi-
page results to the single-page results to see how the
question affects user actions independent of the the
scary second page.
The original FF3 warning aimed to avoid asking

users questions, and instead decided on users’ behalf
that invalid certificates are unsafe. However, even
the Firefox designers eventually realized this could
not work in the real world because too many legit-
imate websites use invalid certificates. Instead, our
warning aims to ask the users a question that they
can answer and will allow us to assess the risk level.
Our question is, “What type of website are you trying
to reach?” Users were required to select from one of
four responses: “bank or other financial institution,”
“online store or other e-commerce website,” “other,”

and “I don’t know.” If users selected the first two op-
tions, they saw the severe warning that discouraged
them from continuing. We tested this question as
a prototype for leveraging user-provided information
to improve security warnings. It is not a complete
solution as our question neglects many other types of
websites that may collect sensitive information. We
decided to show the secondary warning on bank web-
sites and online stores because these are the most
frequently attacked websites [15].

4.1.3 Experimental Setup

All studies were conducted in our laboratory on the
same model of laptop. Participants interacted with
the laptop within a virtual machine (VM). We reset
the VM to a snapshot after each participant finished
the study to destroy any sensitive data entered by
the participant (e.g. bank password). This process
also ensured that all browser and operating system
settings were exactly the same for every participant.
Finally, experimenters read instructions to partici-
pants from a script and experimenters did not help
particiants complete the tasks.

4.1.4 Tasks

After participants signed IRB consent forms, the ex-
perimenter handed them an instruction sheet and
read this sheet aloud. Participants were reminded
that they would be “visiting real websites and call-
ing real organizations” and therefore should go about
“each task in the way you would if you were complet-
ing it with the computer you usually use.” Partici-
pants were also instructed to “think aloud and tell
us what you are thinking and doing as you complete
each task,” in order to give us qualitative reactions to
the warnings. The experimenter took notes through-
out the study. The study was recorded (audio only),
which allowed experimenters to retrieve details that
were missed during note taking.
After the instructions were read and digested, the

instruction sheets for each task were handed to the
participant and read aloud by the experimenter one
by one. The next task was not revealed until all pre-
vious tasks had been completed. The first task asked

USENIX Association 18th USENIX Security Symposium 409

participants to find the total area of Italy in square
kilometers using Google or Ask.com as an alternative.
The second task was to look up the last two digits of
the participant’s bank account balance using the on-
line banking application or using phone banking. The
third task was to locate the price of the hardcover
edition of the book Freakonomics using Amazon.com
or the Barnes and Noble website. Finally, the fourth
task was to use the CMU online library catalog or al-
ternatively the library phone number to retrieve the
call number of the book Richistan (i.e. no personal
information was transmitted).
The first and third tasks were “dummy tasks,”

since the bookstore and search engine revealed no
warnings. Instead, they reinforced to participants
that the goal of the study was information sources,
not security. Half the participants in each condi-
tion had the second and fourth tasks—the warning
tasks—swapped so that we could control for the or-
dering of the warnings.
Researchers have found that study participants are

highly motivated to complete assigned tasks. Partic-
ipants want to please the experimenter and do not
want to “fail” so they sometimes exert extreme effort
to complete the task [12]. A closely related study [17]
was criticized for not taking into account this “task
focus” phenomenon [14]. Critics worried that partici-
pants were ignoring the warnings in the study because
of task focus and not because this is what they would
do in a more natural environment.
Our study design mitigates participants’ task fo-

cus by presenting an alternate method for each task
so that participants could “pass the test” without ig-
noring the warnings. We instructed participants to
“try the suggested information source first,” to en-
sure that participants would only call the library or
bank as a reaction to the warning. As there were
no obstacles to completing the dummy tasks using
the suggested information source, none of the par-
ticipants used the alternate method to perform the
dummy tasks.

4.1.5 Exit Survey

After completing all four study tasks, participants
were directed to an online exit survey hosted by Sur-

veyMonkey. The exit survey asked 45 questions in
six categories. The first set of questions asked about
their understanding of and reaction to the bank warn-
ing in the study. The second question asked the same
questions about the library warning. The third set
asked questions to gauge their general understand-
ing of certificates and invalid certificate warnings.
The fourth set gauged participants’ prior exposure
to identity theft and other cyberthreats. The fifth
set, which were also asked in the online SSL survey,
asked them about their technical experience, includ-
ing their experience with computer security. Finally,
the sixth set asked general demographic questions like
age, gender and education level.

4.2 Results and Analysis

The primary goal of any SSL warning should be to
prevent users from transmitting sensitive informa-
tion to suspicious websites. A secondary—but still
important—goal is to allow users to continue in the
event of a false positive (i.e. when a certificate error
is unlikely to result in a security compromise). In our
study we examined these goals by observing whether
participants discontinued visiting the bank website
while continuing to the library website. These re-
sults from our laboratory experiment are displayed
in Table 5. Participants who saw our single-page
or multi-page warnings were more likely to heed the
warnings than participants who saw the FF2 or IE7
warnings, but not the FF3 warning. In contrast, par-
ticipants who saw our multi-page warning were more
likely to visit the library website than participants
who saw the FF3 warning. In the rest of this sec-
tion we discuss demographics, present more detailed
comparisons of the conditions and tasks, and present
interesting qualitative results from our exit survey.

4.2.1 Participant Characteristics

We did not find any statistically significant demo-
graphic imbalances between participants in our ran-
domly assigned conditions. The factors we tested
were gender, nationality, age, technical sophistica-
tion, and a metric we call “cyberthreat exposure”
designed to measure participants’ prior experiences

410 18th USENIX Security Symposium USENIX Association

FF2 FF3 IE7 Single-Page Multi-Page

Bank 18 (90%) 11 (55%) 18 (90%) 9 (45%) 12 (60%)

Library 19 (95%) 12 (60%) 20 (100%) 16 (80%) 19 (95%)

Table 5: Number (and percentage) of participants in each condition who ignored the warning and used the
website to complete the library and bank tasks.

with information theft and fraud. Most demographic
factors were determined by a single exit survey ques-
tion (e.g. gender, nationality). Technical sophistica-
tion was measured by a composite score of five ques-
tion, the same as in the online survey. Similarly, cy-
berthreat exposure was measured by asking partici-
pants if they have ever had any account information
stolen, found fraudulent transactions on bank state-
ments, had a social security number stolen, or if they
had ever been notified that personal information had
been stolen or compromised.
Our participants were technically sophisticated,

mostly male, and mostly foreign students. We had 68
male and only 32 female participants. All of our par-
ticipants were between the ages of 18–30, and all but
two were students. Sixty-nine participants were born
in India, 17 in the United States, and the remaining
were from Asia (10) and Europe (4). The average
tech score was 1.90, which is significantly larger than
the 0.66 average among the survey respondents.
We do not have a large enough sample size to de-

termine whether age, profession, or nationality influ-
enced participant behavior. In addition, our partici-
pants had so little cyberthreat exposure—83 partici-
pants answered affirmatively to 0 out of 4 questions—
that we could not determine if exposure correlated
with our results. On the other hand, while our sam-
ple was large enough to observe behavioral differences
based on gender and technical sophistication if large
differences existed, we observed no statistical differ-
ences in participant behavior based on those factors.
Finally, we found no statistical difference in behavior
based on task order in any of the conditions.

4.2.2 Effect of Warning Design on Behavior

Our study focused on evaluating whether SSL warn-
ings effectively prevent users from transmitting sen-
sitive information to suspicious websites, while allow-

ing them to continue in the event of a false positive.
We hypothesized that participants visiting the

bank website who see our redesigned warnings would
be significantly more likely to discontinue than par-
ticipants who see the other warnings. We used a one-
tailed Fisher’s exact test to analyze our results. We
found that significantly more participants obeyed our
single page warning than obeyed the FF2 and IE7
warnings (p < 0.0029 for both comparisons). Simi-
larly, our multi-page warning performed better than
the FF2 and IE7 warnings (p < 0.0324). However,
FF3 was equivalently preventative, and it was also
significantly better than the FF2 and IE7 warnings
(p < 0.0155).
We also hypothesized that participants visiting the

library website who see our redesigned warning will
be significantly more likely to continue than partic-
ipants who see the other warnings. In this case our
hypothesis turned out to be mostly false. Partici-
pants who viewed our multi-page warning were sig-
nificantly more likely to use the library website than
participants who saw the FF3 warning (p < 0.0098).
However, users of our multi-page warning visited the
library website at an equal rate to users of the FF2
and IE7 warnings. Our single page warning was not
significantly different than any of the other warn-
ings. The FF3 warning caused significantly more
participants to call the library than the FF2 warn-
ing (p < 0.0098) or the IE7 warning (p < 0.0016).
Two participants in the FF3 condition and one in

our multi-page warning condition thought the library
and bank servers were down or that we had blocked
their websites. One wrote in the exit survey “the
graphics made me feel the server was down” and an-
other wrote “I just saw the title and assumed that it
is just not working on this computer.” We suspect
that users confuse the warnings with a 404 or server
not found error, like the one shown in Figure 5. The

USENIX Association 18th USENIX Security Symposium 411

Figure 5: Screenshot of server not found error in FF3.

warnings have very similar layouts and coloring. The
yellow Larry icon in the FF3 warning (Figure 3) and
the first page of our multi-page (Figure 4(a)) warning
is similar to the yellow triangle in Figure 5.
We took careful note of how participants in the

multi-page warning condition answered the question
“What type of website are you trying to visit?” pre-
sented to them on the first page of the warning. Fif-
teen participants answered exactly as expected – they
selected “other” for the library and “bank or other
financial institution” for the bank. The remaining
five participants exhibited noteworthy behaviors: one
participant did not answer the question for either
task, while three participants performed the library
task first and appropriately answered “other,” but
also inaccurately answered “other” when visiting the
bank website. This is stark evidence of the ill-effects
of warning habituation – these participants learned
how to ignore the warning in the library task and im-
mediately reapplied their knowledge to the bank task.
Finally, one participant first performed the bank task
and correctly answered “bank or other financial insti-
tution.” However, when she saw the second page of
the warning she clicked the back button and changed
her answer to “other.”

4.2.3 Risk Perception in Context

We hypothesized that participants who viewed our
multi-page warning would be more likely to obey
the warnings when they were visiting the bank web-
site than when they were visiting the library web-

site. Because this warning took context into account
in determining severity, it appeared to be more se-
vere on the bank website. All 14 participants in our
study who heeded the library warning also heeded
the warning at the bank. An additional 18 partici-
pants heeded the bank warning and proceeded past
the library warning. Participants who viewed our
multi-page warning (p < 0.0098) and our single-page
warning (p < 0.0242) were significantly more likely
to heed the warning at the bank than at the library.
We believe the behavior exhibited by users of our

single page warning can be explained both by its suc-
cess in raising awareness of risk and its clear com-
munication of what users should do in response to
the risk. When the 11 participants who heeded the
single-page bank warning were asked in the exit sur-
vey “Why did you choose to heed or ignore the warn-
ing?” 9 out of 11 specifically mentioned the security
of their information as the reason. In contrast only 2
participants in each of the FF2, FF3, and IE7 condi-
tions mentioned risk in response to the same question.
In addition, 10 of the 20 participants in our single-
page warning condition when asked, “What action(s)
did you think the warning at the bank wanted you to
take?” responded that it wanted them not to pro-
ceed. Only 3 FF2, 2 FF3, and 4 IE7 participants
answered the same way.

4.2.4 Impact of Reading and Understanding

In each of the first two sections of the exit sur-
vey we asked participants if they “read the text
of the warning at the bank/library website.” At
the bank website, significantly more people read our
multi-page warning than the FF2 (p < 0.0128), FF3
(p < 0.0018), or IE7 (p < 0.0052) warnings (Table 6).
There were no other significant differences in reported
readership across conditions or tasks. We used a chi-
square test to see if there was a difference in how
reading affected behavior. Among the participants
who did not read the warnings, FF2 and IE7 users
were significantly more likely to log in to the bank
website (χ2

4 = 13.56, p < 0.009), whereas FF3 users
were significantly less likely to log in to the library
website (χ2

4 = 18.38, p < 0.001).
The exit survey asked participants “what did

412 18th USENIX Security Symposium USENIX Association

Condition Read Didn’t Read Understood Didn’t Understand

Logged In Called Logged In Called Logged In Called Logged In Called

FF2 4 2 14 0 7 2 11 0
FF3 2 2 9 7 4 2 7 7
IE7 4 1 14 1 8 2 10 0
Single-Page 4 6 5 5 4 7 5 4
Multi-Page 8 6 4 2 7 6 5 2

Table 6: Behavior in the bank task by reading, understanding, and condition.

you believe the warning at the bank/library website
meant?” Answers were entered into a free response
text box and we categorized the responses according
to whether or not they demonstrated understanding
of the warning, as we had done in the survey (Ta-
ble 6). In particular, participants who wrote that
their connection may be compromised or that the
identity of the destination website could not be ver-
ified were deemed to understand the warning. All
other responses were coded as not understanding the
meaning. There were no significant differences in the
number of participants who understood the warnings
based on condition in either task. However, partici-
pants in the FF3 condition who did not understand
the warning were significantly more likely to call than
users in the FF2 (p < 0.0078) and IE7 (p < 0.0188)
conditions. Seven of the 14 participants who did not
understand the FF3 warning called the bank. This
is evidence that the FF3 users may have been pre-
vented from visiting the websites because they did
not know how to override warnings, and not because
they understood the risks of proceeding.
One expects that participants who claimed to have

read the warnings would be more likely to understand
their meaning. When we combined the data from
just our two warnings, single-page and multi-page,
we found a statistically significant correlation (p <
0.020). However, we do not have enough data to
determine whether there is a correlation for the three
native warnings (FF2, FF3, and IE7).

4.2.5 Other Observations

One worry for browser designers trying to design ef-
fective warnings is that they will cause users to switch
browsers, in favor of a browser that shows a less se-

Response FF2 FF3 IE7 Single Multi

Yes 8 7 10 4 1
No 8 11 5 16 16
Unknown 4 2 5 0 3

Table 7: Number of participants in each condition
who claimed to have seen the warning before at the
bank.

vere warning. In fact, during our study a few partic-
ipants who viewed our warnings or the FF3 warnings
asked or attempted to perform one of the tasks in
a different browser. We directed them to continue
using the browser they had been using. No partici-
pants in the FF2 and IE7 conditions tried to switch
browsers. This indicates that complex warning de-
signs may cause a small number of users to switch
browsers. Therefore, for the sake of these users’ se-
curity, it may be best if all browsers converged on a
single warning design.
Among our strangest results were the answers to

the questions: “Before this study, had you ever seen
the warning you saw at the bank/library web site?”
(Table 7). A total of 30 participants said they had
seen the warning before at the bank website com-
pared to only 16 at the library website. In addition,
5 participants in the bank task thought they had seen
our warnings before. We do not think 30% of our par-
ticipants have been scammed by man-in-the-middle
attacks at their bank and we know for sure that the
5 participants had never seen our redesigned warn-
ings before. This is dramatic evidence of memory
problems, warning confusion, and general confusion
with regard to certificate errors. At the same time,
it is possible that the novelty of our new warnings

USENIX Association 18th USENIX Security Symposium 413

contributed to more participants reading them (and
consequently better understanding the risks of ignor-
ing them). None of the participants who viewed our
new warnings could have seen them before, while our
randomized condition assignments resulted in the two
Firefox conditions being assigned 27 participants who
were pre-existing Firefox users (68% of 40) and the
IE condition being assigned 6 participants who were
existing IE users (30% of 20). Thus, it is likely that
these 33 participants had already been exposed to
the warnings prior to our study, but among our sam-
ple population we observed no significant differences
in behavior among them and the participants in the
IE and FF conditions who were accustomed to using
different browsers.
In the exit survey we asked participants to use a

7-point Likert scale to report the influence of several
factors on their decision to heed or ignore the warn-
ings. The factors we included were: the text of the
warning, the colors of the warning, the choices that
the warning presented, the destination URL, and the
look and feel of the destination website. We expected
significantly more participants to grade the color and
text of the website highly for our warnings. How-
ever, there was no statistically significant difference
in participants’ responses based on condition.

5 Discussion

Our warnings somewhat improved user behavior, but
all warning strategies, including ours, leave too many
users vulnerable to man-in-the-middle attacks. The
five warnings we evaluated embodied three different
strategies: explain the potential danger facing users,
make it difficult for users to ignore, and ask a ques-
tion users can answer. The strategies have differences
that we will discuss later in this section. However, re-
gardless of how compelling or difficult to ignore, users
think SSL warnings are of little consequence because
they see them at legitimate websites. Many users
have a completely backward understanding of the risk
of man-in-the-middle attacks and assume that they
are less likely to occur at trusted websites like those
belonging to banks. If they do become fraud victims,
they are unlikely to pinpoint it to their decision to

ignore a warning. Thus users’ attitudes and beliefs
about SSL warnings are likely to undermine their ef-
fectiveness [3]. Therefore, the best avenue we have for
keeping users safe may be to avoid SSL warnings alto-
gether and really make decisions for users—blocking
them from unsafe situations and remaining silent in
safe situations.

5.1 Limitations

We did not attempt to measure any long term affects
of habituation to warnings. Many participants were
likely to have previously seen the FF2 and IE7 warn-
ings, while few users were likely to have seen FF3
warnings as that browser was released just before the
study began. Our two warnings were new to all par-
ticipants. We expect users were more likely to ignore
the IE7 and FF2 warnings because of habituation,
but this is not supported by our data.
Several artifacts of the study design may have

caused participants to behave less securely than they
normally would. Our study participants knew in ad-
vance that they would be using their bank credentials
during the study and therefore the most security con-
scious potential participants may have decided not
to perform the study. In addition, the study was
performed at and sanctioned by Carnegie Mellon,
and therefore participants may have trusted that the
study would not put their credentials at risk.
In our study, users were much less likely to heed

certificate warnings than in a previous study by
Schechter et al. that also examined user responses
to the IE7 certificate warning [17]. In our study 90%
of participants ignored the IE7 warning while in the
Schechter et al. study only 36% of participants who
used their own accounts ignored the IE7 warning. We
believe the differences may be due to the fact that in
the previous study participants were told the study
was about online banking, they performed four bank-
ing tasks prior to observing the warning, and they
were given two other clues that the website might be
insecure prior to the display of the warnings. The au-
thors state, “responses to these clues may have been
influenced by the presence of prior clues.” Further-
more, the previous study was conducted while IE7
was still in beta and thus users were less likely to

414 18th USENIX Security Symposium USENIX Association

have seen the certificate warning before. In addition,
our study participants were more technically sophis-
ticated than the previous study’s participants.

5.2 Explain the Danger

The FF2, IE7, and our single page warnings take the
standard tactic of explaining the potential danger to
users. The FF2 warning, which is an unalarming
popup box with obscure language, prevented very few
users from visiting the bank or library. The IE7 warn-
ing, which has clearer language and a more frighten-
ing overall look, does not perform any better. On the
other hand, our single page warning, with its black
and red colors, was the most effective of the five warn-
ings at preventing users from visiting the bank web-
site. In addition, only four users called the library,
indicating that our single-page warning would be only
a minor nuisance for legitimate websites. That said,
we suspect our single page warning would become less
effective as users are habituated to it when visiting
legitimate websites.

5.3 Make it Difficult

The FF3 warning, as discussed at length in Section
4.2.2, prevents user from visiting websites with in-
valid certificates by confusing users and making it
difficult for them to ignore the warning. This im-
proves user behavior in risky situations like the bank
task, but it presents a significant nuisance in safer
situations like the library task. Many legitimate web-
sites that use self-signed certificates have posted on-
line tutorials teaching users how to override the FF3
warning.12 We suspect that users who learn to use
the warning from these tutorials, by simple trial and
error, help from a friend, etc., will ignore subsequent
warnings and will be left both annoyed and unpro-
tected.

12See for example: 1) http://hasylab.desy.de/
infrastructure/experiment control/links and tutorials/
ff3 and ssl/index eng.html, 2) http://www.engr.colostate.
edu/webmail/, and 3) http://knowledgehub.zeus.com/faqs/
2008/02/05/configuring zxtm with firefox 3

5.4 Ask a Question

Our multi-page warning, introduced in Section 4.1.2,
asks the user a question in order to collect contextual
information to allow the browser to better assess the
risk of letting the user proceed to the website. This
warning suffers from two usability problems: users
may answer incorrectly because they are confused
and users may knowingly answer incorrectly to get
around the warning. In addition, it leaves users sus-
ceptible to active attacks such as the finer-grained
origins attacks [9]. These problems, plus the fact that
the single-page warning was more successful in pre-
venting users from visiting the bank website, lead us
to recommend against our multi-page warning as it
is currently implemented.
The multi-page warning depends on users correctly

answering our question, but only fifteen of the 20 par-
ticipants answered correctly at the bank website. As
discussed in Section 4.2.2, we believe that five par-
ticipants either knowingly gave the wrong answer in
order to reach the destination website without inter-
ruption, or they confused the warning with a server
unavailable error. However, many users still made
mistakes even when answering our question correctly.
They behaved no more securely than users of our
single-page warning.
Users who answered our question correctly and fol-

lowed its advice would still be susceptible to finer-
grained origins attacks. As brought to our attention
by an anonymous reviewer, an attacker with con-
trol over the network or DNS may circumvent the
multi-page warning by forcing the browser to connect
to a website other than the one the user intended.
For example, let’s say Alice goes to a webmail site
(www.mail.com), but an attacker controls the network
and wants to steal the password to her online bank
(www.bank.com).
When Alice visits mail.com, the attacker sends a

response to the Alice that forwards the browser to
https://www.bank.com/action.js. Then, the attacker
intercepts the connection to the bank with a self-
signed certificate, which triggers the warning shown
in Figure 4(a). The warning asks her what type of
website she is trying to reach and she answers “other”
because she believes she is visiting her webmail. Since

USENIX Association 18th USENIX Security Symposium 415

Alice answered “other” she is immediately forwarded
to action.js. If Alice has an open session with the
bank, the attacker steals her bank.com secure cookies
with the script.
Even if Alice does not have an open session with

the bank, the browser’s cache will store the attack
script. Let’s say in its normal operation the bank
site loads its version of action.js after a user logs-in.
(If the site loads a different script, then the attacker
simply poisons that script instead.) If Alice logs-into
www.bank.com in the next year, then the attacker’s
version of action.js will load instead of the bank’s ver-
sion. As in the attack in the previous paragraph, the
script steals her secure cookies. There are many other
variations on this attack, but they all rely on Alice
answering “what type of website are you trying to
visit” based on the site she believes she is visiting
instead of the site the attacker sends to her.
Designing an interface to collect contextual infor-

mation from users without making them susceptible
to active attacks such as those outlined above poses
a challenge. While we can ask users simple ques-
tions about their intentions that they are capable of
answering, we must be sure that attackers cannot in-
tervene to mislead users. We may be able to improve
the multi-page warning we proposed by asking users
another question in certain circumstances. In par-
ticular, if the URL of the connecting website is sub-
stantially different than the URL the user typed (or
clicked on, in the case of a link), then we would show
the URL of the connecting website and ask the user if
they intended to visit that URL. Unfortunately this
is not a complete solution for websites with mixed
content, like those using a third-party shopping cart
provider. In addition, the usability of such a solution
remains untested.
It remains an open research challenge to determine

how to leverage contextual information—including
user-provided information—in order to assess risks.
In particular, an approach is needed that is not vul-
nerable to confused users, users trying to get around
the system, or active attackers. It remains to be seen
whether it is feasible to design a robust approach
that uses user-provided information. Alternative ap-
proaches may leverage contextual information pro-
vided by sources other than the user.

5.5 Avoid Warnings

The ideal solution to SSL warning problems is to
block access when users are in true danger and al-
low users to proceed when they are not. This ideal is
probably unattainable, but two systems recently pre-
sented by the research community, ForceHTTPS [10]
and Perspectives [20] (and discussed in Section 2),
are steps in the right direction. Both systems iden-
tify websites likely to be unsafe and use warnings to
stop users from proceeding. It would be better to
block these unsafe websites entirely. We expect both
systems to have extremely low false positive rates,
but further evaluation is required to know for sure.
Another possible way of identifying unsafe websites
is to maintain a list of websites that are verified by
a root certificate authority and block websites on the
list when the browser receives a self-signed certificate
instead.

6 Acknowledgements

Thanks to Dhruv Mohindra, Amit Bhan, and Stu-
art Schechter for their help in the early stages of this
project. This work was supported in part by Mi-
crosoft Research and by the National Science Foun-
dation under Grants No. 0524189 and 0831428. The
first author is supported by a National Defense Sci-
ence and Engineering Graduate Fellowship.

References
[1] J. C. Brustoloni and R. Villamaŕın-Salomón. Improving

security decisions with polymorphic and audited dialogs.
In Proceedings of the 3rd symposium on Usable privacy
and security, pages 76–85, New York, NY, USA, 2007.
ACM Press.

[2] Certification Authority/Browser Forum. Extended vali-
dation SSL certificates, Accessed: July 27, 2007. http:
//cabforum.org/.

[3] L. F. Cranor. A framework for reasoning about the hu-
man in the loop. In Proceedings of the 1st Conference on
Usability, Psychology, and Security, pages 1–15, Berkeley,
CA, USA, 2008. USENIX Association.

[4] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing
works. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 581–590, New
York, NY, USA, 2006. ACM.

416 18th USENIX Security Symposium USENIX Association

[5] I. E-Soft. SSL server survey, February 1, 2007.
http://www.securityspace.com/s survey/sdata/200701/
certca.html.

[6] S. Egelman, L. F. Cranor, and J. Hong. You’ve been
warned: an empirical study of the effectiveness of web
browser phishing warnings. In Proceeding of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 1065–1074, New York, NY, USA, 2008. ACM.

[7] B. Fogg, J. Marshall, O. Laraki, A. Osipovich, C. Varma,
N. Fang, J. Paul, A. Rangekar, J. Shon, P. Swani, and
M. Treinen. What makes web sites credible? a report
on a large quantitative study. In Proceedings of the
SIGCHI Conference on in Computing Systems, Seattle,
WA, March 31 - April 4, 2001. ACM.

[8] B. Friedman, D. Hurley, D. C. Howe, E. Felten, and
H. Nissenbaum. Users’ conceptions of web security: a
comparative study. In Extended Abstracts on Human Fac-
tors in Computing Systems, pages 746–747, New York,
NY, USA, 2002. ACM.

[9] C. Jackson and A. Barth. Beware of finer-grained ori-
gins. In Proceedings of the Web 2.0 Security and Privacy
Workshop, 2008.

[10] C. Jackson and A. Barth. ForceHTTPS: protecting high-
security web sites from network attacks. In Proceeding
of the 17th International World Wide Web Conference,
pages 525–534, New York, NY, USA, 2008. ACM.

[11] C. Jackson, D. R. Simon, D. S. Tan, and A. Barth. An
evaluation of extended validation and picture-in-picture
phishing attacks. In Proceeding of the 1st International
Workshop on Usable Security, pages 281–293, Berlin /
Heidelberg, Germany, February 2007. Springer.

[12] S. Milgram. Obedience to Authority: An Experimental
View. Harpercollins, 1974.

[13] J. Nightingale. SSL information wants to be free,
January 2009. http://blog.johnath.com/2009/01/21/
ssl-information-wants-to-be-free/.

[14] A. Patrick. Commentary on research on new security
indicators. Self-published Online Essay, Accessed: Jan-
uary 15, 2009. http://www.andrewpatrick.ca/essays/
commentary-on-research-on-new-security-indicators/.

[15] R. Rasmussen and G. Aaron. Global phish-
ing survey: Domain name use and trends 1h2008.
Anti-Phishing Working Group Advisory, November
2008. http://www.antiphishing.org/reports/APWG
GlobalPhishingSurvey1H2008.pdf.

[16] B. Ross. Firefox and the worry free web. In L. F. Cranor
and S. Garfinkel, editors, Security and Usability: Design-
ing Secure Systems that People Can Use, pages 577–588.
O’Reilly Media, Inc., Sebastopol, CA, USA, August 2005.

[17] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer.
The emperor’s new security indicators. In Proceedings
of the 2007 IEEE Symposium on Security and Privacy,
pages 51–65, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[18] J. Sobey, R. Biddle, P. C. van Oorschot, and A. S. Patrick.
Exploring user reactions to new browser cues for extended
validation certificates. In Proceedings of the 13th Eu-
ropean Symposium on Research in Computer Security,
pages 411–427, 2008.

[19] D. W. Stewart and I. M. Martin. Intended and unin-
tended consequences of warning messages: A review and
synthesis of empirical research. Journal of Public Policy
& Marketing, 13(1):1–1, 1994.

[20] D. Wendlandt, D. G. Andersen, and A. Perrig. Per-
spectives: Improving SSH-style host authentication with
multi-path probing. In Proceedings of the 2008 USENIX
Annual Technical Conference, Berkeley, CA, USA, June
2008. USENIX Association.

[21] T. Whalen and K. M. Inkpen. Gathering Evidence: Use
of Visual Security Cues in Web Browsers. In Proceedings
of the 2005 Conference on Graphics Interface, pages 137–
144, Victoria, British Columbia, 2005.

[22] M. Wogalter. Purpose and scope of warnings. In
M. Wogalter, editor, Handbook of Warnings, pages 3–9.
Lawrence Erlbaum Associates, Mahway, NJ, USA, 2006.

[23] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security tool-
bars actually prevent phishing attacks? In Proceedings of
the SIGCHI Conference on Human Factors in Comput-
ing Systems, pages 601–610, New York, NY, USA, 2006.
ACM.

[24] H. Xia and J. C. Brustoloni. Hardening web browsers
against man-in-the-middle and eavesdropping attacks. In
Proceedings of the 14th International World Wide Web
Conference, pages 489–498, New York, NY, USA, 2005.
ACM.

USENIX Association 18th USENIX Security Symposium 417

The Multi-Principal OS Construction of the Gazelle Web Browser

Helen J. Wang∗, Chris Grier†, Alexander Moshchuk‡, Samuel T. King†, Piali Choudhury∗, Herman Venter∗
∗Microsoft Research †University of Illinois at Urbana-Champaign ‡University of Washington

{helenw,pialic,hermanv}@microsoft.com, {grier,kingst}@uiuc.edu, anm@cs.washington.edu

Abstract
Original web browsers were applications designed to

view static web content. As web sites evolved into dy-
namic web applications that compose content from mul-
tiple web sites, browsers have become multi-principal
operating environments with resources shared among
mutually distrusting web site principals. Nevertheless,
no existing browsers, including new architectures like IE
8, Google Chrome, and OP, have a multi-principal oper-
ating system construction that gives a browser-based OS
the exclusive control to manage the protection of all sys-
tem resources among web site principals.

In this paper, we introduce Gazelle, a secure web
browser constructed as a multi-principal OS. Gazelle’s
browser kernel is an operating system that exclusively
manages resource protection and sharing across web site
principals. This construction exposes intricate design is-
sues that no previous work has identified, such as cross-
protection-domain display and events protection. We
elaborate on these issues and provide comprehensive so-
lutions.

Our prototype implementation and evaluation expe-
rience indicates that it is realistic to turn an existing
browser into a multi-principal OS that yields signifi-
cantly stronger security and robustness with acceptable
performance.

1 Introduction

Web browsers have evolved into a multi-principal oper-
ating environment where a principal is a web site [43].
Similar to a multi-principal OS, recent proposals [12,
13, 23, 43, 46] and browsers like IE 8 [34] and Fire-
fox 3 [16] advocate and support programmer abstrac-
tions for protection (e.g., <sandbox> in addition to
<iframe> [43]) and cross-principal communication
(e.g., PostMessage [24, 43]). Nevertheless, no exist-
ing browsers, including new architectures like IE 8 [25],
Google Chrome [37], and OP [21], have a multi-principal
OS construction that gives a browser-based OS, typically
called the browser kernel, the exclusive control to man-
age the protection and fair sharing of all system resources
among browser principals.

In this paper, we present a multi-principal OS con-
struction of a secure web browser, called Gazelle.
Gazelle’s browser kernel exclusively provides cross-
principal protection and fair sharing of all system re-

sources. In this paper, we focus only on resource pro-
tection in Gazelle.

In Gazelle, the browser kernel runs in a separate pro-
tection domain (an OS process in our implementation),
interacts with the underlying OS directly, and exposes a
set of system calls for web site principals. We use the
same web site principal as defined in the same-origin
policy (SOP), which is labeled by a web site’s origin,
the triple of <protocol, domain name, port>. In
this paper, we use “principal” and “origin” interchange-
ably. Unlike previous browsers, Gazelle puts web site
principals into separate protection domains, completely
segregating their access to all resources. Principals can
communicate with one another only through the browser
kernel using inter-process communication. Unlike all ex-
isting browsers except OP, our browser kernel offers the
same protection to plugin content as to standard web con-
tent.

Such a multi-principal OS construction for a browser
brings significant security and reliability benefits to the
overall browser system: the compromise or failure of a
principal affects that principal alone, leaving other prin-
cipals and the browser kernel unaffected.

Although our architecture may seem to be a straight-
forward application of multi-principal OS construction to
the browser setting, it exposes intricate problems that did
not surface in previous work, including display protec-
tion and resource allocation in the face of cross-principal
web service composition common on today’s web. We
will detail our solutions to the former and leave the latter
as future work.

We have built an Internet-Explorer-based prototype
that demonstrates Gazelle’s multi-principal OS archi-
tecture and at the same time uses all the backward-
compatible parsing, DOM management, and JavaScript
interpretation that already exist in IE. Our prototype ex-
perience indicates that it is feasible to turn an existing
browser into a multi-principal OS while leveraging its
existing capabilities.

With our prototype, we successfully browsed 19 out
of the top 20 Alexa-reported popular sites [5] that we
tested. The performance of our prototype is acceptable,
and a significant portion of the overhead comes from IE
instrumentation, which can be eliminated in a production
implementation.

We expect that the Gazelle architecture can be made
fully backward compatible with today’s web. Neverthe-

418 18th USENIX Security Symposium USENIX Association

less, it is interesting to investigate the compatibility cost
of eliminating the insecure policies in today’s browsers.
We give such a discussion based on a preliminary analy-
sis in Section 9.

For the rest of the paper, we first give an in-depth
comparison with related browser architectures in Sec-
tion 2. We then describe Gazelle’s security model 3. In
Section 4, we present our architecture, its design ratio-
nale, and how we treat the subtle issue of legacy pro-
tection for cross-origin script source. In Section 5, we
elaborate on the problem statement and design for cross-
principal, cross-process display protection. We give a
security analysis including a vulnerability study in Sec-
tion 6. We describe our implementation in Section 7. We
measure the performance of our prototype in Section 8.
We discuss the tradeoffs of compatibility vs. security for
a few browser policies in Section 9. Finally, we conclude
and address future work in Section 10.

2 Related Work

In this section, we discuss related browser architectures
and compare them with Gazelle.

2.1 Google Chrome and IE 8

In concurrent work, Reis et al. detailed the various pro-
cess models supported by Google Chrome [37]: mono-
lithic process, process-per-browsing-instance, process-
per-site-instance, and process-per-site. A browsing in-
stance contains all interconnected (or inter-referenced)
windows including tabs, frames and subframes regard-
less of their origin. A site instance is a group of same-
site pages within a browsing instance. A site is defined
as a set of SOP origins that share a registry-controlled
domain name: for example, attackerAd.socialnet.com,
alice.profiles.socialnet.com, and socialnet.com share the
same registry-controlled domain name socialnet.com,
and are considered to be the same site or principal
by Chrome. Chrome uses the process-per-site-instance
model by default. Furthermore, Reis et al. [37] gave
the caveats that Chrome’s current implementation does
not support strict site isolation in the process-per-site-
instance and process-per-site models: embedded princi-
pals, such as a nested iframe sourced at a different ori-
gin from the parent page, are placed in the same process
as the parent page.

The monolithic and process-per-browsing-instance
models in Chrome do not provide memory or other re-
source protection across multiple principals in a mono-
lithic process or browser instance. The process-per-
site model does not provide failure containment across
site instances [37]. Chrome’s process-per-site-instance

model is the closest to Gazelle’s two processes-per-
principal-instance model, but with several crucial differ-
ences: (1) Chrome’s principal is site (see above) while
Gazelle’s principal is the same as the SOP principal. (2)
A web site principal and its embedded principals co-exist
in the same process in Chrome, whereas Gazelle places
them into separate protection domains. Pursuing this de-
sign led us to new research challenges including cross-
principal display protection (Section 5). (3) Plugin con-
tent from different principals or sites share a plugin pro-
cess in Chrome, but are placed into separate protection
domains in Gazelle. (4) Chrome relies on its render-
ing processes to enforce the same-origin policy among
the principals that co-exist in the same process. These
differences indicate that in Chrome, cross-principal (or -
site) protection takes place in its rendering processes and
its plugin process, in addition to its browser kernel. In
contrast, Gazelle’s browser kernel functions as an OS,
managing cross-principal protection on all resources, in-
cluding display.

IE 8 [25] uses OS processes to isolate tabs from one
another. This granularity is insufficient since a user may
browse multiple mutually distrusting sites in a single tab,
and a web page may contain an iframe with content from
an untrusted site (e.g., ads).

Fundamentally, Chrome and IE 8 have different goals
from that of Gazelle. Their use of multiple processes is
for failure containment across the user’s browsing ses-
sions rather than for security. Their security goal is to
protect the host machine from the browser and the web;
this is achieved by process sandboxing [9]. Chrome and
IE 8 achieved a good milestone in the evolution of the
browser architecture design. Looking forward, as the
world creates and migrates more data and functionality
into the web and establishes the browser as a dominant
application platform, it is critical for browser designers
to think of browsers as operating systems and protect
web site principals from one another in addition to the
host machine. This is Gazelle’s goal.

2.2 Experimental browsers

The OP web browser [21] uses processes to isolate
browser components (i.e., HTML engine, JavaScript in-
terpreter, rendering engine) as well as pages of the same
origin. In OP, intimate interactions between browser
components, such as JavaScript interpreter and HTML
engine, must use IPC and go through its browser ker-
nel. The additional IPC cost does not add much bene-
fits: isolating browser components within an instance of
a web page provides no additional security protection.
Furthermore, besides plugins, basic browser components
are fate-shared in web page rendering: the failure of any
one browser component results in most web pages not

USENIX Association 18th USENIX Security Symposium 419

functioning properly. Therefore, process isolation across
these components does not provide any failure contain-
ment benefits either. Lastly, OP’s browser kernel does
not provide all the cross-principal protection needed as
an OS because it delegates display protection to its pro-
cesses.

Tahoma [11] uses virtual machines to completely iso-
late (its own definition of) web applications, disallowing
any communications between the VMs. A web appli-
cation is specified in a manifest file provided to the vir-
tual machine manager and typically contains a suite of
web sites of possibly different domains. Consequently,
Tahoma doesn’t provide protection to existing browser
principals. In contrast, Gazelle’s browser kernel protects
browser principals first hand.

The Building a Secure Web Browser project [27, 28]
uses SubOS processes to isolate content downloading,
display, and browser instances. SubOS processes are
similar to Unix processes except that instead of a user
ID, each process has a SubOS ID with OS support for
isolation between objects with different SubOS IDs. Su-
bOS instantiates a browser instance with a different Su-
bOS process ID for each URL. This means that the prin-
cipal in SubOS is labelled with the URL of a page (pro-
tocol, host name plus path) rather than the SOP origin
as in Gazelle. Nevertheless, SubOS does not handle em-
bedded principals, unlike Gazelle. Therefore, they also
do not encounter the cross-principal display-sharing is-
sue which we tackle in depth. SubOS’s principal model
would also require all cross-page interactions that are
common within a SOP origin to go through IPC, incur-
ring significant performance cost for many web sites.

3 Security model

3.1 Background: security model in existing
browsers

Today’s browsers have inconsistent access and protec-
tion model for various resources. These inconsistencies
present significant hurdles for web programmers to build
robust web services. In this section, we give a brief
background on the relevant security policies in existing
browsers. Michal Zalewski gives an excellent and per-
haps the most complete description of existing browsers’
security model to date [48].

Script. The same-origin policy (SOP) [39] is the
central security policy on today’s browsers. SOP gov-
erns how scripts access the HTML document tree and
remote store. SOP defines the origin as the triple of
<protocol, domain-name, port>. SOP mandates
that two documents from different origins cannot access
each other’s HTML documents using the Document Ob-
ject Model (DOM), which is the platform- and language-

neutral interface that allows scripts to dynamically ac-
cess and update the content, structure and style of a doc-
ument [14]. A script can access its document origin’s
remote data store using the XMLHttpRequest object,
which issues an asynchronous HTTP request to the re-
mote server [45]. (XMLHttpRequest is the cornerstone
of AJAX programming.) SOP allows a script to issue
an XMLHttpRequest only to its enclosing page’s origin.
A script executes as the principal of its enclosing page
though its source code is not readable in a cross-origin
fashion.

For example, an <iframe> with source http://a.com
cannot access any HTML DOM elements from another
<iframe> with source http://b.com and vice versa.
http://a.com’s scripts (regardless of where the scripts
are hosted) can issue XMLHttpRequests to only a.com.
Furthermore, http://a.com and https://a.com are different
origins because of the protocol difference.

Cookies. For cookie access, by default, the principal
is the host name and path, but without the protocol [19,
32]. For example, if the page a.com/dir/1.html creates a
cookie, then that cookie is accessible to a.com/dir/2.html
and other pages from that directory and its subdirec-
tories, but is not accessible to a.com/ . Furthermore,
https://a.com/ and http://a.com/ share the cookie store
unless a cookie is marked with a “secure” flag. Non-
HTTPS sites may still set secure cookies in some im-
plementations, just not read them back [48]. A web pro-
grammer can make cookie access less restrictive by set-
ting a cookie’s domain attribute to a postfix domain or
the path name to be a prefix path. The browser ensures
that a site can only set its own cookie and that a cookie
is attached only to HTTP requests to that site.

The path-based security policy for cookies does not
play well with SOP for scripts: scripts can gain access
to all cookies belonging to a domain despite path restric-
tions.

Plugins. Current major browsers do not enforce any
security on plugins and grant plugins access to the local
operating system directly. The plugin content is subject
to the security policies implemented in the plugin soft-
ware rather than the browser.

3.2 Gazelle’s security model

Gazelle’s architecture is centered around protecting prin-
cipals from one another by separating their respective re-
sources into OS-enforced protection domains. Any shar-
ing between two different principals must be explicit us-
ing cross-principal communication (or IPC) mediated by
the browser kernel.

We use the same principal as the SOP, namely, the
triple of <protocol, domain-name, port>. While
it is tempting to have a more fine-grained principal,

420 18th USENIX Security Symposium USENIX Association

we need to be concerned with co-existing with current
browsers [29, 43]: the protection boundary of a more
fine-grained principal, such as a path-based principal,
would break down in existing browsers. It is unlikely that
web programmers would write very different versions of
the same service to accommodate different browsers; in-
stead, they would forego the more fine-grained principal
and have a single code base.

The resources that need to be protected across princi-
pals [43] are memory such as the DOM objects and script
objects, persistent state such as cookies, display, and net-
work communications.

We extend the same principal model to all content
types except scripts and style sheets (Section 4): the el-
ements created by <object>, <embed>, , and
certain types of <input>1 are treated the same as an
<iframe>: the origin of the included content labels
the principal of the content. This means that we en-
force SOP on plugin content2. This is consistent with the
existing movement in popular plugins like Adobe Flash
Player [20]. Starting with Flash 7, Adobe Flash Player
uses the exact domain match (as in SOP) rather than
the earlier “superdomain” match (where www.adobe.com
and store.adobe.com have the same origin) [2]; and
starting with Flash 9, the default ActionScript behavior
only allows access to same-origin HTML content unlike
the earlier default that allows full cross-origin interac-
tions [1].

Gazelle’s architecture naturally yields a security pol-
icy that partitions all system resources across the SOP
principal boundaries. Such a policy offers consistency
across various resources. This is unlike current browsers
where the security policies vary for different resources.
For example, cookies use a different principal than that
of scripts (see the above section); descendant navigation
policy [7, 8] also implicitly crosses the SOP principal
boundary (more in Section 5.1).

It is feasible for Gazelle to enable the same security
policies as the existing browsers and achieve backward
compatibility through cross-principal communications.
Nevertheless, it is interesting to investigate the tradeoffs
between supporting backward compatibility and elimi-
nating insecure policies in today’s browsers. We gave a
preliminary discussion on this in Section 9.

4 Architecture

4.1 Basic Architecture
Figure 1 shows our basic architecture. A principal is the
unit of protection. Principals need to be completely iso-
lated in resource access and usage. Any sharing must

1<input> can be used to include an image using a “src” attribute.
2OP [21] calls this plugin policy the provider domain policy.

be made explicit. Just as in desktop applications, where
instances of an application are run in separate processes
for failure containment and independent resource alloca-
tion, a principal instance is the unit of failure contain-
ment and the unit of resource allocation. For example,
navigating to the same URL in different tabs corresponds
to two instances of the same principal; when a.com em-
beds two b.com iframes, the b.com iframes correspond to
two instances of b.com. However, the frames that share
the same origin as the host page are in the same principal
instance as the host page by default, though we allow the
host page to designate an embedded same-origin frame
or object as a separate principal instance for independent
resource allocation and failure containment. Principal in-
stances are isolated for all runtime resources, but princi-
pal instances of the same principal share persistent state
such as cookies and other local storage. Protection unit,
resource allocation unit, and failure containment unit can
each use a different mechanism depending on the sys-
tem implementation. Because the implementation of our
principal instances contains native code, we use OS pro-
cesses for all three purposes.

Our principal instance is similar to Google Chrome’s
site instance [37], but with two crucial differences: 1)
Google Chrome considers the sites that share the same
registrar-controlled domain name to be from the same
site, so ad.datacenter.com, user.datacenter.com, and dat-
acenter.com are considered to be the same site and be-
long to the same principal. In contrast, we consider them
as separate principals. 2) When a site, say a.com, em-
beds another principal’s content, say an <iframe> with
source b.com, Google Chrome puts them into the same
site instance. In contrast, we put them into separate prin-
cipal instances.

The browser kernel runs in a separate protection do-
main and interposes between browser principals and the
traditional OS. The browser kernel mediates the princi-
pals’ access to system resources and enforces security
policies of the browser. Essentially, the browser ker-
nel functions as an operating system to browser princi-
pals and manages the protection and sharing of system
resources for them. The browser kernel also manages
the browser chrome, such as the address bar and menus.
The browser kernel receives all events generated by the
underlying operating system including user events like
mouse clicks or keyboard entries; these events are then
dispatched to the appropriate principal instance. When
the user navigates a window by clicking on a hyperlink
that points to an URL at a different origin, the browser
kernel creates the protection domain for the URL’s prin-
cipal instance (if one doesn’t exist already) to render the
target page, destroys the protection domain of the hy-
perlink’s host page, and re-allocates and re-initializes the
window to the URL’s principal instance. The browser

USENIX Association 18th USENIX Security Symposium 421

Figure 1: The Gazelle architecture Figure 2: Supporting legacy protection

kernel is agnostic of DOM and content semantics and
has a relatively simple logic.

The runtime of a principal instance performs con-
tent processing and is essentially an instance of today’s
browser components including HTML and style sheet
parser, JavaScript engine, layout renderer, and browser
plugins. The only way for a principal instance to inter-
act with system resources, such as networking, persis-
tent state, and display, is to use browser kernel’s system
calls. Principals can communicate with one another us-
ing message passing through the browser kernel, in the
same fashion as inter-process communications (IPC).

It is necessary that the protection domain of a princi-
pal instance is a restricted or sandboxed OS process. The
use of process guarantees the isolation of principals even
in the face of attacks that exploit memory vulnerabilities.
The process must be further restricted so that any interac-
tion with system resources is limited to the browser ker-
nel system calls. Native Client [47] and Xax [15] have
established the feasibility of such process sandboxing.

This architecture can be efficient. By putting all
browser components including plugins into one process,
they can interact with one another through DOM inti-
mately and efficiently as they do in existing browsers.
This is unlike the OP browser’s approach [21] in which
all browser components are separated into processes;
chatty DOM interactions must be layered over IPCs
through the OP browser kernel, incurring unnecessary
overhead without added security.

Unlike all existing browsers except OP, this architec-
ture can enforce browser security policies on plugins,
namely, plugin content from different origins are segre-
gated into different processes. Any plugin installed is un-
able to interact with the operating system and is only pro-
vided access to system resources subject to the browser
kernel allowing that access. In this architecture, the pay-
load that exploits plugin vulnerabilities will only com-

promise the principal with the same origin as the ma-
licious plugin content, but not any other principals nor
browser kernel.

The browser kernel supports the following system
calls related to content fetching in this architecture (a
more complete system call table is shown in Table 3):

• getSameOriginContent (URL): Fetch the content at
URL that has the same origin as the issuing princi-
pal regardless of the content type.

• getCrossOriginContent (URL): Fetch the script or
style sheet content from URL; URL may be from
different origin than the issuing principal. The
content type is determined by the content-type

header of the HTTP response.

• delegate (URL, windowSpec): Delegate a display
area to a different principal of URL and fetch the
content for that principal.

The semantics of these system calls is that the browser
kernel can return cross-origin script or style content to a
principal based on the content-type header of the HTTP
response, but returns other content if and only if the con-
tent has the same origin as the issuing principal, abid-
ing the same-origin policy. All the security decisions are
made and enforced by the browser kernel alone.

4.2 Supporting Legacy Protection
The system call semantics in the basic architecture has
one subtle issue: cross-origin script or style sheet sources
are readable by the issuing principal, which does not con-
form with the existing SOP. The SOP dictates that a script
can be executed in a cross-origin fashion, but the access
to its source code is restricted to same origin only.

A key question to answer is that whether a script
should be processed in the protection domain of its

422 18th USENIX Security Symposium USENIX Association

provider (indicated in “src”), in the same way as frames,
or in the protection domain of the host page that embeds
the script. To answer this question, we must examine the
primary intent of the script element abstraction. Script
is primarily a library abstraction (which is a necessary
and useful abstraction) for web programmers to include
in their sites and runs with the privilege of the includer
sites [43]. This is in contrast with the frame abstractions:
Programmers put content into cross-origin frames so that
the content runs as the principal of its own provider and
be protected from other principals. Therefore, a script
should be handled by the protection domain of its in-
cluder.

In fact, it is a flaw of the existing SOP to offer protec-
tion for cross-origin script source. Evidence has shown
that it is extremely dangerous to hide sensitive data inside
a script [22]. Numerous browser vulnerabilities exist for
failing to provide the protection.

Unfortunately, web sites that rely on cross-origin
script source protection, exist today. For example,
GMail’s contact list is stored in a script file, at the time
of writing. Furthermore, it is increasingly common for
web programmers to adopt JavaScript Object Notation
(JSON) [31] as the preferred data-interchange format.
Web sites often demand such data to be same-origin ac-
cess only. To prevent such data from being accidentally
accessed through <script> (by a different origin), web
programmers sometimes put “while (1);” prior to the
data definition or put comments around the data so that
accidental script inclusion would result in infinite loop
execution or a no-op.

In light of the existing use, new browser architecture
design must also offer the cross-origin script source pro-
tection. One way to do this is to strip all authentication-
containing information, such as cookies and HTTP au-
thentication headers, from the HTTP requests that re-
trieve cross-origin scripts so that the web servers will not
supply authenticated data. The key problem with this ap-
proach is that it is not always clear what in an HTTP re-
quest may contain authentication information. For exam-
ple, some cookies are used for authentication purposes
and some are not. Stripping all cookies may impair func-
tionality when the purpose of some cookies are not for
authentication purposes. In another example, a network
may use IP addresses for authentication, which are im-
possible to strip out.

We address the cross-origin script source protection
problem by modifying our architecture slightly, as shown
in Figure 2. The modification is based on the following
observation. Third-party plugin software vulnerabilities
have surged recently [36]. Symantec reports that in 2007
alone there are 467 plugin vulnerabilities [42], which is
about one magnitude higher than that of browser soft-
ware. Clearly, plugin software should be trusted much

less than browser software. Therefore, for protecting
cross-origin script or style sheet source, we place more
trust in the browser code and let the browser code retrieve
and protect cross-origin script or style sheet sources: for
each principal, we run browser code and plugin code
in two separate processes. The plugin instance process
cannot issue the getCrossOriginContent() and it can
only interact with cross-origin scripts and style sheets
through the browser instance process.

In this architecture, the quality of protecting cross-
origin script and style-sheet source relies on the browser
code quality. While this protection is not perfect with na-
tive browser code implementation, the architecture offers
the same protection as OP, and stronger protection than
the rest of existing browsers. The separation of browser
code and plugin code into separate processes also im-
proves reliability by containing plugin failures.

In recent work, Native Client [47] and Xax [15] have
presented a plugin model that uses sandboxed processes
to contain each browser principal’s plugin content. Their
plugin model works perfectly in our browser architec-
ture. We do not provide further discussions on plugins in
our paper.

5 Cross-Principal, Cross-Process Display
and Events Protection

Cross-principal service composition is a salient nature
of the web and is commonly used in web applications.
When building a browser as a multi-principal OS, this
composition raises new challenges in display sharing and
event dispatching: when a web site embeds a cross-origin
frame (or objects, images), the involved principal in-
stances share the display at the same time. Therefore, it is
important that the browser kernel 1) discerns display and
events ownership, 2) enforces that a principal instance
can only draw in its own display areas, 3) dispatches
UI events to only the principal instance with which the
user is interacting. An additional challenge is that the
browser kernel must accomplish these without access to
any DOM semantics.

From a high level, in Gazelle principal instances are
responsible for rendering content into bitmap objects,
and our browser kernel manages these bitmap objects
and chooses when and where to display them. Our ar-
chitecture provides a clean separation between the act of
rendering web content and the policies of how to display
this content. This is a stark contrast to today’s browsers
that intermingle these two functions, which has led to
numerous security vulnerabilities [18, 44].

Our display management fundamentally differs from
that of the traditional multi-user OSes, such as Unix and
Windows. Traditional OSes offer no cross-principal dis-

USENIX Association 18th USENIX Security Symposium 423

play protection. In X, all the users who are authorized
(through .Xauthority) to access the display can access
one another’s display and events. Experimental OSes
like EROS [41] have dealt with cross-principal display
protection. However, the browser context presents new
challenges that are absent in EROS, such as dual owner-
ship of display and cross-principal transparent overlays.

5.1 Display Ownership and Access Control
We define window to be a unit of display allocation and
delegation. Each window is allocated by a landlord prin-
cipal instance or the browser kernel; and each window
is delegated to (or rented to) a tenant principal instance.
For example, when the web site a.com embeds a frame
sourced at b.com, a.com allocates a window from its own
display area and delegates the window to b.com; a.com is
the landlord of the newly-created window, while b.com is
the tenant of that window. The same kind of delegation
happens when cross-origin object and image elements
are embedded. The browser kernel allocates top-level
windows (or tabs). When the user launches a site through
address-bar entry, the browser kernel delegates the top-
level window to the site, making the site a tenant. We
decided against using “parent” and “child” terminologies
because they only convey the window hierarchy, but not
the principal instances involved. In contrast, “landlord”
and “tenant” convey both semantics.

Window creation and delegation result in a
delegate(URL, position, dimensions) system
call. For each window, the browser kernel maintains
the following state: its landlord, tenant, position,
dimensions, pixels in the window, and the URL location
of the window content. The browser kernel manages a
three-dimensional display space where the position of a
window also contains a stacking order value (toward the
browsing user). A landlord provides the stacking order
of all its delegated windows to the browser kernel. The
stacking order is calculated based on the DOM hierarchy
and the CSS z-index values of the windows.

Because a window is created by a landlord and occu-
pied by a tenant, the browser kernel must allow reason-
able window interactions from both principal instances
without losing protection. When a landlord and its tenant
are from different principals, the browser kernel provides
access control as follows:

• Position and dimensions: When a landlord embeds
a tenant’s content, the landlord should be able to re-
tain control on what gets displayed on the landlord’s
display and a tenant should not be able to reposition
or resize the window to interfere with the landlord’s
display. Therefore, the browser kernel enforces that
only the landlord of a window can change the posi-
tion and the dimensions of a window.

Landlord Tenant
position (x,y,z) RW
dimensions (height, width) RW R
pixels RW
URL location W RW

Table 1: Access control policy for a window’s landlord
and tenant

• Drawing isolation: Pixels inside the window reflect
the tenant’s private content and should not be acces-
sible to the landlord. Therefore, the browser kernel
enforces that only the tenant can draw within the
window. (Nevertheless, a landlord can create over-
lapping windows delegated to different principal in-
stances.)

• Navigation: Setting the URL location of a window
navigates the window to a new site. Navigation
is a fundamental element of any web application.
Therefore, both the landlord and the tenant are al-
lowed to set the URL location of the window. How-
ever, the landlord should not obtain the tenant’s nav-
igation history that is private to the tenant. There-
fore, the browser kernel prevents the landlord from
reading the URL location. The tenant can read the
URL location as long as it remains being the ten-
ant. (When the window is navigated to a different
principal, the old tenant will no longer be associated
with the window and will not be able to access the
window’s state.)

Table 1 summarizes the access control policies in the
browser kernel. In existing browsers, these manipulation
policies also vaguely exist. However, their logic is inter-
mingled with the DOM logic and is implemented at the
object property and method level of a number of DOM
objects which all reside in the same protection domain
despite their origins. This had led to numerous vulnera-
bilities [18, 44]. In Gazelle, by separating these security
policies from the DOM semantics and implementation,
and concentrating them inside the browser kernel we
achieve more clarity in our policies and much stronger
robustness of our system construction.

The browser kernel ensures that principal instances
other than the landlord and the tenant cannot manipu-
late any of the window states. This includes manipulat-
ing the URL location for navigation. Here, we depart
from the existing descendant navigation policy in most
of today’s browsers [7, 8]. Descendant navigation pol-
icy allows a landlord to navigate a window created by
its tenant even if the landlord and the tenant are different
principals. This is flawed in that a tenant-created window
is a resource that belongs to the tenant and should not be
controllable by a different principal.

424 18th USENIX Security Symposium USENIX Association

Existing literature [7, 8] supports the descendant navi-
gation policy with the following argument: since exist-
ing browsers allow the landlord to draw over the ten-
ant, a landlord can simulate the descendant navigation by
overdrawing. Though overdrawing can visually simulate
navigation, navigation is much more powerful than over-
drawing because a landlord with such descendant nav-
igation capability can interfere with the tenant’s opera-
tions. For example, a tenant may have a script interact-
ing with one of its windows and then effecting changes
to the tenant’s backend; navigating the tenant’s window
requires just one line of JavaScript and could effect un-
desirable changes in the tenant’s backend. With over-
drawing, a landlord can imitate a tenant’s content, but the
landlord cannot send messages to the tenant’s backend in
the name of the tenant.

5.2 Cross-Principal Events Protection

The browser kernel captures all events in the system
and must accurately dispatch them to the right princi-
pal instance to achieve cross-principal event protection.
Networking and persistent-state events are easy to dis-
patch. However, user interface events pose interesting
challenges to the browser kernel in discerning event own-
ership, especially when dealing with overlapping, poten-
tially transparent cross-origin windows: major browsers
allow web pages to mix content from different origins
along the z-axis where content can be occluded, either
partially or completely, by cross-origin content. In addi-
tion, current standards allow web pages to make a frame
or portions of their windows transparent, further blur-
ring the lines between principals. Although these flexible
mechanisms have a slew of legitimate uses, they can be
used to fool users into thinking they are interacting with
content from one origin, but are in fact interacting with
content from a different origin. Zalewski [48] gave a tax-
onomy on “UI redressing” or clickjacking attacks which
illustrated some of the difficulties with current standards
and how attackers can abuse these mechanisms.

To achieve cross-principal events protection, the
browser kernel needs to determine the event owner, the
principal instance to which the event is dispatched. There
are two types of events for the currently active tab: state-
less and stateful. The owner of a stateless event like a
mouse event is the tenant of the window (or display area)
on which the event takes place. The owner of a state-
ful event such as a key-press event is the tenant of the
current in-focus window. The browser kernel interprets
mouse clicks as focus-setting events and keeps track of
the current in-focus window and its principal instance.

The key problem to solve then is to determine the win-
dow on which a stateless or focus-setting event takes
place. We consider a determination to have high fidelity

if the determined event owner corresponds to the user in-
tent. Different window layout policies directly affect the
fidelity of this determination. We elaborate on our explo-
rations of three layout policies and their implications on
fidelity.

Existing browsers’ policy. The layout policy in exist-
ing browsers is to draw windows according to the DOM
hierarchy and the z-index values of the windows. Exist-
ing browsers then associate a stateless or focus-setting
event to the window that has the highest stacking order.
Today, most browsers permit page authors to set trans-
parency on cross-origin windows [48]. This ability can
result in poor fidelity in determining the event owner in
the face of cross-principal transparent overlays. When
there are transparent, cross-origin windows overlapping
with one another, it is impossible for the browser ker-
nel to interpret the user’s intent: the user is guided by
what she sees on the screen; when two windows present
a mixed view, some user interfaces visible to the user be-
long to one window, and yet some belong to another. The
ability to overlay transparent cross-origin content can
be extremely dangerous: a malicious site can make an
iframe sourced at a legitimate site transparent and over-
laid on top of the malicious site [48], fooling the users to
interact with the legitimate site unintentionally.

2-D display delegation policy. This is a new layout
policy that we have explored. In this policy, the display
is managed as two-dimensional space for the purpose of
delegation. Once a landlord delegates a rectangular area
to a tenant, the landlord cannot overdraw the area. Thus,
no cross-principal content can be overlaid. Such a lay-
out constraint will enable perfect fidelity in determining
an event ownership that corresponds to the user intent. It
also yields better security as it can prevent all UI redress-
ing attacks except clickjacking [48]. Even clickjacking
would be extremely difficult to launch with this policy
on our system since our cross-principal memory protec-
tion makes reading and writing the scrolling state of a
window an exclusive right of the tenant of the window.

However, this policy can have a significant impact on
backward compatibility. For example, a menu from a
host page cannot be drawn over a nested cross-origin
frame or object; many sites would have significant con-
straints with their own DOM-based pop-up windows cre-
ated with divs and such (rather than using window.open
or alert), which could overlay on cross-origin frames or
objects with existing browsers’ policy; and a cross-origin
image cannot be used as a site’s background.

Opaque overlay policy. This policy retains exist-
ing browsers’ display management and layout policies
as much as possible for backward compatibility (and
additionally provides cross-principal events protection),
but lets the browser kernel enforce the following layout
invariant or constraint: for any two dynamic content-

USENIX Association 18th USENIX Security Symposium 425

containing windows (e.g., frames, objects) win1 and
win2, win1 can overlay on win2 iff (Tenantwin1 ==
Tenantwin2) || (Tenantwin1 = Tenantwin2 && win1
is opaque). This policy effectively constrains a pixel
to be associated with just one principal, making event
owner determination trivial. This is in contrast with
the existing browsers’ policy where a pixel may be as-
sociated with more than one principals when there are
transparent cross-principal overlays. This policy allows
same-origin windows to transparently overlay with one
another. It also allows a page to use a cross-origin im-
age (which is static content) as its background. Note that
no principal instance other than the tenant of the window
can set the background of a window due to our mem-
ory protection across principal instances. So, it is impos-
sible for a principal to fool the user by setting another
principal’s background. The browser kernel associates a
stateless event or a focus-setting event with the dynamic
content-containing window that has the highest stacking
order.

This policy eliminates the attack vector of overlaying a
transparent victim page over an attacker page. However,
by allowing overlapping opaque cross-principal frames
or objects, it allows not only legitimate uses, such as
those denied by the 2D display delegation policy, but it
also allows an attacker page to cover up and expose se-
lective areas of a nested cross-origin victim frame or ob-
ject. The latter scenario can result in infidelity. We leave
as future work the mitigation of such infidelity by deter-
mining how much of a principal’s content is exposed in
an undisturbed fashion to the user when the user clicks
on the page.

We implemented the opaque overlay policy in our pro-
totype.

6 Security Analysis

In Gazelle, the trusted computing base encompasses the
browser kernel and the underlying OS. If the browser
kernel is compromised, the entire browser is compro-
mised. If the underlying OS is compromised, the en-
tire host system is compromised. If the DNS is com-
promised, all the non-HTTPS principals can be compro-
mised. When the browser kernel, DNS, and the OS are
intact, our architecture guarantees that the compromise
of a principal instance does not give it any capabilities
in addition to those already granted to it through browser
kernel system call interface (Section 4).

Next, we analyze Gazelle’s security over classes of
browser vulnerabilities. We also make a comparison with
popular browsers with a study on their past, known vul-
nerabilities.

• Cross-origin vulnerabilities:

By separating principals into different protection
domains and making any sharing explicit, we can
much more easily eliminate cross-origin vulnera-
bilities. The only logic for which we need to en-
sure correctness is the origin determination in the
browser kernel.

This is unlike existing browsers, where origin val-
idations and SOP enforcement are spread through
the browser code base [10], and content from dif-
ferent principals coexists in shared memory. All of
the cross-origin vulnerabilities illustrated in Chen et
al. [10] simply do not exist in our system; no spe-
cial logic is required to prevent them because all of
those vulnerabilities exploit implicit sharing.

Cross-origin script source can still be leaked in our
architecture if a site can compromise its browser in-
stance. Nevertheless, only that site’s browser in-
stance is compromised, while other principals are
intact, unlike all existing browsers except OP.

• Display vulnerabilities:

The display is also a resource that Gazelle’s browser
kernel protects across principals, unlike existing
browsers (Section 5). Cross-principal display and
events protection and access control are enforced in
the browser kernel. This prevents a potentially com-
promised principal from hijacking the display and
events that belong to another principal. Display hi-
jacking vulnerabilities have manifested themselves
in existing browsers [17, 26] that allow an attacker
site to control another site’s window content.

• Plugin vulnerabilities:

Third-party plugins have emerged to be a signifi-
cant source of vulnerabilities [36]. Unlike exist-
ing browsers, Gazelle’s design requires plugins to
interact with system resources only by means of
browser kernel system calls so that they are sub-
ject to our browser’s security policy. Plugins are
contained inside sandboxed processes so that basic
browser code doesn’t share fate with plugin code
(Section 4). A compromised plugin affects the prin-
cipal instance’s plugin process only, and not other
principal instances nor the rest of the system. In
contrast, in existing browsers except OP, a compro-
mised plugin undermines the entire browser and of-
ten the host system as well.

A DNS rebinding attack results in the browser la-
beling resources from different network hosts with
a common origin. This allows an attacker to operate
within SOP and access unauthorized resources [30].
Although Gazelle does not fundamentally address
this vulnerability, the fact that plugins must inter-
act with the network through browser kernel system

426 18th USENIX Security Symposium USENIX Association

IE 7 Firefox 2
Origin validation error 6 11
Memory error 38 25
GUI logic flaw 3 13
Others - 28
Total 47 77

Table 2: Vulnerability Study for IE 7 and Firefox 2

calls defeats the multipin form of such attacks.

We analyzed the known vulnerabilities of two major
browsers, Firefox 2 [3] and IE 7 [35], since their re-
lease to November 2008, as shown in Table 2. For both
browsers, memory errors are a significant source of er-
rors. Memory-related vulnerabilities are often exploited
by maliciously crafted web pages to compromise the en-
tire browser and often the host machines. In Gazelle,
although the browser kernel is implemented with man-
aged C# code, it uses native .NET libraries, such as net-
work and display libraries; memory errors in those li-
braries could still cause memory-based attacks against
the browser kernel. Memory attacks in principal in-
stances are well-contained in their respective sandboxed
processes.

Cross-origin vulnerabilities, or origin validation er-
rors, constitute another significant share of vulnerabili-
ties. They result from the implicit sharing across princi-
pals in existing browsers and can be much more easily
eliminated in Gazelle because cross-principal protection
is exclusively handled by the browser kernel and because
of Gazelle’s use of sandboxed processes.

In IE 7, there are 3 GUI logic flaws which can be
exploited to spoof the contents of the address bar. For
Gazelle, the address bar UI is owned and controlled by
our browser kernel. We anticipate that it will be much
easier to apply code contracts [6] in the browser kernel
than in a monolithic browser to eliminate many of such
vulnerabilities.

In addition, Firefox had other errors which didn’t map
into these three categories, such as JavaScript privilege
escalation, URL handling errors, and parsing problems.
Since Gazelle enforces security properties in the browser
kernel, any errors that manifest as the result of JavaScript
handling and parsing are limited in the scope of exploit
to the principal instance owning the page. URL handling
errors could occur in our browser kernel as well.

7 Implementation

We have built a Gazelle prototype mostly as described in
Section 4. We have not yet ported an existing plugin onto
our system. Our prototype runs on Windows Vista with

.NET framework 3.5 [4]. We next discuss the implemen-
tation of two major components shown in Figure 2: the
browser kernel and the browser instance.

Browser Kernel. The browser kernel consists of ap-
proximately 5k lines of C# code. It communicates with
principal instances using system calls and upcalls, which
are implemented as asynchronous XML-based messages
sent over named pipes. An overview of browser kernel
system calls and upcalls is presented in Table 3. Sys-
tem calls are performed by the browser instance or plug-
ins and sometimes include replies. Upcalls are messages
from the browser kernel to the browser instance.

Display management is implemented as described in
Section 5 using .NET’s Graphics and Bitmap libraries.
Each browser instance provides the browser kernel with
a bitmap for each window of its rendered content using
a display system call; each change in rendered content
results in a subsequent display call. For each top-level
browsing window (or tab), browser kernel maintains a
stacking order and uses it to compose various bitmaps
belonging to a tab into a single master bitmap, which is
then attached to the tab’s PictureBox form. This straight-
forward display implementation has numerous optimiza-
tion opportunities, many of which have been thoroughly
studied [33, 38, 40], and which are not the focus of our
work.

Browser instance. Instead of undertaking a signifi-
cant effort of writing our own HTML parser, renderer,
and JavaScript engine, we borrow these components
from Internet Explorer 7 in a way that does not com-
promise security. Relying on IE’s Trident renderer has a
big benefit of inheriting IE’s page rendering compatibil-
ity and performance. In addition, such an implementa-
tion shows that it is realistic to adapt an existing browser
to use Gazelle’s secure architecture.

In our implementation, each browser instance embeds
a Trident WebBrowser control wrapped with an interpo-
sition layer which enforces Gazelle’s security properties.
The interposition layer uses Trident’s COM interfaces,
such as IWebBrowser2 or IWebBrowserEvents2, to
hook sensitive operations, such as navigation or frame
creation, and convert them into system calls to the
browser kernel. Likewise, the interposition layer receives
browser kernel’s upcalls, such as keyboard or mouse
events, and synthesizes them in the Trident instance.

For example, suppose a user navigates to a web page
a.com, which embeds a cross-principal frame b.com.
First, the browser kernel will fetch a.com’s HTML con-
tent, create a new a.com process with a Trident compo-
nent, and pass the HTML to Trident for rendering. Dur-
ing the rendering process, we intercept the frame naviga-
tion event for b.com, determine that it is cross-principal,
and cancel it. The frame’s DOM element in a.com’s
DOM is left intact as a placeholder, making the interpo-

USENIX Association 18th USENIX Security Symposium 427

Type Call Name Description
syscall getSameOriginContent(URL) retrieves same origin content
syscall getCrossOriginContent(URL) retrieves script or css content
syscall delegate(URL, delegatedWindowSpec) delegates screen area to a different principal
syscall postMessage(windowID, msg, targetOrigin) cross-frame messaging
syscall display(windowID, bitmap) sets the display buffer for the window
syscall back() steps back in the window history
syscall forward() steps forward in the window history
syscall navigate (windowID, URL) navigates a window to URL
syscall createTopLevelWindow (URL) creates a new browser tab for the URL specified
syscall changeWindow (windowID, position, size) updates the location and size of a window
syscall writePersistentState (type, state) allows writing to origin-partitioned storage
syscall readPersistentState (type) allows reading of origin-partitioned storage
syscall lockPersistentState (type) locks one type of origin-partitioned storage
upcall destroy(windowID) closes a browser instance
upcall resize(windowID, windowSpec) changes the dimensions of the browser instance
upcall createPlugin(windowID, URL, content) creates a plugin instance
upcall createDocument(windowID, URL, content) creates a browser instance
upcall sendEvent(windowID, eventInfo) passes an event to the browser instance

Table 3: Some Gazelle System Calls

sition transparent to a.com. We extract the frame’s po-
sition, dimensions, and CSS properties from this element
through DOM-related COM interfaces, and send this in-
formation in a delegate system call to the browser ker-
nel to allow the landlord a.com to “rent out” part of its
display area to the tenant b.com. The browser kernel
then creates a new b.com process (with a new instance
of Trident), and asks it to render b.com’s frame. For any
rendered display updates for either a.com or b.com,
our interposition code obtains a bitmap of display con-
tent from Trident using the IViewObject interface and
sends it to the browser kernel for rendering.

One intricacy we faced was in rerouting all network
requests issued by Trident instances through the browser
kernel. We found that interposing on all types of fetches,
including frame, script, and image requests, to be very
challenging with COM hooks currently exposed by Tri-
dent. Instead, our approach relies on a local web proxy,
which runs alongside the browser kernel. We configure
each Trident instance to use our proxy for all network
requests, and the proxy converts each request into a cor-
responding system call to the browser kernel, which then
enforces our security policy and completes the request.

One other implementation difficulty that we encoun-
tered was to properly manage the layout of cross-origin
images. It is easy to render a cross-origin image in a sep-
arate process, but difficult to extract the image’s correct
layout information from the host page’s Trident instance.
We anticipate this to be an overcomable implementation
issue. In our current prototype, we are keeping cross-
origin images in the same process as their host page for

proper rendering of the pages.
Our interposition layer ensures that our Trident com-

ponents are never trusted with sensitive operations, such
as network access or display rendering. However, if a
Trident renderer is compromised, it could bypass our in-
terposition hooks and compromise other principals using
the underlying OS’s APIs. To prevent this, we are in the
process of implementing an OS-level sandboxing mecha-
nism, which would prevent Trident from directly access-
ing sensitive OS APIs. The feasibility of such a browser
sandbox has already been established in Xax [15] and
Native Client [47].

To verify that such an implementation does not cause
rendering problems with popular web content, we used
our prototype to manually browse through the top 20
Alexa [5] web sites. We checked the correctness of
Gazelle’s visual output against unmodified Internet Ex-
plorer and briefly verified page interactivity, for exam-
ple by clicking on links. We found that 19 of 20 web
sites rendered correctly. The remaining web site exposed
a (fixable) bug in our interposition code, which caused
it to load with incorrect layout. Two sites experienced
crashes (due to more bugs) when trying to render em-
bedded cross-principal <iframe>’s hosting ads. How-
ever, the crashes only affected the <iframe> processes;
the main pages rendered correctly with the exception of
small blank spaces in place of the failed <iframe>’s.
This illustrates a desirable security property of our archi-
tecture, which prevents malicious or misbehaving cross-
origin tenants from affecting their landlords or other
principals.

428 18th USENIX Security Symposium USENIX Association

Gazelle Internet Explorer 7 Google Chrome
Memory Memory Memory

Time Used Time Used Time Used
1. Browser startup (no page) 668 ms 9 MB 635 ms 14 MB 500 ms 25 MB
2. New tab (blank page) 602 ms 14 MB 115 ms 0.7 MB 230 ms 1.8 MB
3. New tab (google.com) 939 ms 16 MB 499 ms 1.4 MB 480 ms 7.6 MB
4. Navigate from google.com 955 ms 6 MB 1139 ms 3.1 MB 1020 ms 1.4 MB

to google.com/ads
5. Navigate to nytimes.com 5773 ms 88 MB 3213 ms 53 MB 3520 ms 19.4 MB

(with a cross-origin frame)

Table 4: Loading times and memory overhead for a sequence of typical browser operations.

8 Evaluation

In this section, we measure the impact of our architecture
on browser performance. All tests were performed on an
Intel 3.00Ghz Core 2 Duo with 4GB of RAM, running
32-bit Windows Vista with a gigabit Ethernet connec-
tion. To evaluate Gazelle’s performance, we measured
page loading latencies, the memory footprint, and re-
sponsiveness of our prototype in comparison with IE7,
a monolithic browser, and Google Chrome v1, a multi-
process browser. We found that while Gazelle performs
on-par with commercial browsers while browsing within
an origin, it introduces some overhead for cross-origin
navigation and rendering embedded cross-origin princi-
pals (e.g., frames). Nevertheless, our main sources of
overhead stem from our interposition layer, various ini-
tialization costs for new browser instances, and the un-
optimized nature of our prototype. We point out simple
optimizations that would eliminate much of the overhead
along the way.

Page load latency. Table 4 shows the loading times
for a series of browser operations a typical user might
perform using our prototype, IE7, and Google Chrome.
The operations are repeated one after another within the
same browser. A web page’s loading time is defined as
the time between pressing the “Go” button and seeing the
fully-rendered web page. All operations include network
latency.

Operation 1 measures the time to launch the browser
and is similar for all three browsers. Although Gazelle’s
browser kernel is small and takes only 225 ms to start,
Gazelle also initializes the local proxy subsystem (see
Section 7), which takes an additional 443 ms. Operations
2 and 3 each carry an overhead of creating a new process
in Gazelle and Chrome, but not IE7. Operation 4 reuses
the same google.com process in Gazelle to render a
same-origin page to which the user navigates via a link
on google.com. Here, Gazelle is slightly faster than
both IE7 and Chrome, possibly because Gazelle does not
yet manage state such as browsing history between nav-

igations. Finally, operation 5 causes Gazelle to create a
new process for nytimes.com to render the popular
news page 3. In addition, NYTimes contains an embed-
ded cross-principal <iframe>, which triggers window
delegation and another process creation event in Gazelle.
Gazelle’s overall page load latency of 5773 ms includes
the rendering times of both the main page and the em-
bedded <iframe>, with the main page becoming visi-
ble and interactive to the user in 5085 ms.

Compared to both IE7 and Chrome, it is expected that
Gazelle will have a performance overhead due to ex-
tra process creation costs, messaging overhead, and the
overhead of our Trident interposition layer as well as Tri-
dent itself. Table 5 breaks down the major sources of
overhead involved in rendering the three sites in Table 4.

Our Trident interposition layer is a big source of
overhead, especially for larger sites like NYTimes.com,
where it consumes 813 ms. Although we plan to op-
timize our use of Trident’s COM interfaces, we are also
limited by the Trident host’s implementation of the hooks
that we rely on, and by the COM layer which exposes
these hooks. Nevertheless, we believe we could mitigage
most of this latency if Trident were to provide us with a
direct (non-COM) implementation for a small subset of
its hooks that Gazelle requires.

Our local proxy implementation for network interpo-
sition constitutes another large source of overhead, for
example 541 ms for NYTimes.com. Much of this over-
head would disappear if Trident were to make direct net-
work system calls to the browser kernel, rather than go-
ing through an extra proxy indirection. Another part of
this overhead stems from the fact that the browser kernel
currently releases web page data only when a whole net-
work transfer finishes; instead, it could provide browser
instances with chunks of data as soon as they arrive (e.g.,
by changing getContent system calls to the semantics
of a UNIX read() system call), allowing them to better
overlap network transfers with rendering.

Process creation is an expected source of overhead that

3In contrast, Chrome reuses the tab’s old google.com process

USENIX Association 18th USENIX Security Symposium 429

increases whenever sites embed cross-principal content,
such as NYTimes’s cross-origin <iframe>. As well,
each process must instantiate and initialize a new Trident
object, which is expensive. As an optimization, we could
use a worker pool of a few processes that have been pre-
initialized with Trident. This would save us 275 ms on
NYTimes’s load time and 134 ms on google.com’s
load time.

We encountered an unexpected performance hit when
initializing named pipes that we use to transfer system
calls: a new process’s first write to a pipe stalls for a con-
siderable time. This could be caused by initialization of
an Interop layer between .NET and the native Win32 pipe
interfaces, on which our implementation relies. We can
avoid this overhead by either using an alternate imple-
mentation of a system call transfer mechanism, or pre-
initializing named pipes in our worker pool. This would
save us 439 ms in NYTimes’s render time.

Retrieving bitmap display updates from Trident and
sending them to the browser kernel is expensive for large,
complex sites such as NYTimes.com, where this takes
422 ms. Numerous optimizations are possible, including
image compression, VNC-like selective transfers, and a
more efficient bitmap sharing channel between Trident
and the browser kernel. Our mechanism for transferring
bitmap updates currently performs an inefficient .NET-
based serialization of the image’s data (which takes 176
ms for NYTimes); passing this data directly would fur-
ther improve performance.

Overall, we believe that with the above optimizations,
Gazelle’s performance would be on par with production
browsers like Chrome or IE8; for example, we anticipate
that NYTimes.com could be rendered in about 3.6 s.

Memory overhead. As a baseline measurement, the
browser kernel occupies around 9MB of memory after
a page load. This includes the user interface compo-
nents of the browser to present the rendered page to the
user and the buffers allocated for displaying the rendered
page. Memory measurements do not include shared li-
braries used by multiple processes.

Table 4 shows the amount of memory for perform-
ing various browsing operations. For example, to open
a new tab to a blank page, Gazelle consumes 14MB, and
to open a new tab for google.com, Gazelle consumes
an additional 16MB. Each empty browser instance uses
1.5MB of internal storage plus the memory required for
rendered content. Given our implementation, the lat-
ter closely corresponds to Trident’s memory footprint,
which at the minimum consists of 14MB for a blank
page. In the case of NYTimes, our memory footprint
further increases because of structures allocated by the
interposition layer, such as a local DOM cache.

Responsiveness. We evaluated the response time of a
user-generated event, such as a mouse click. When the

browser kernel detects a user event, it issues a sendEvent
upcall to the destination principal’s browser instance.
Such calls take only 2 ms on average to transfer, plus
1 ms to synthesize in Trident. User actions might lead
to display updates; for example, a display update for
google.com would incur an additional 77 ms. Most
users should not perceive this overhead and will experi-
ence good responsiveness.

Process creation. In addition to latency and memory
measurements we also have tested our prototype on the
top 100 popular sites reported by Alexa [5] to provide an
estimate of the number of processes created for different
sites. Here, we place a cross-origin image into a separate
process to evaluate our design. The number of processes
created is determined by the use of different-origin con-
tent on sites, which is most commonly image content.
For the top 100 sites, the median number of processes re-
quired to view a single page is 4, the minimum is 1, and
the maximum is 28 (caused by skyrock.com, which
uses an image farm). Although creation of many pro-
cesses introduces additional latency and memory foot-
print, we did not experience difficulties when Gazelle
created many processes during normal browsing. Our
test machine easily handles a hundred running processes,
which are enough to keep 25 average web sites open si-
multaneously.

9 Discussions on compatibility vs. security

While Gazelle’s architecture can be made fully backward
compatible with today’s web, it is interesting to inves-
tigate the compatibility cost of eliminating the insecure
policies in today’s browsers. We have considered several
policies that differ from today’s browsers but offer bet-
ter security. We conducted a preliminary study on their
compatibility cost. This is by no means a conclusive or
complete study, but only a first look on the topic.

We mostly used the data set of the front pages of the
top 100 most popular web sites ranked by Alexa [5]. We
used a combination of browser instrumentation with au-
tomatic script execution and manual inspection in our
study. We consider any visual differences in the render-
ing of a web page to be a violation of compatibility. We
discuss our findings below.

Subdomain treatment Existing browsers and SOP
make exceptions for subdomains (e.g., news.google.com
is a subdomain of google.com) [39]: a page can set
the document.domain property to suffixes of its do-
main and assume that identity. This feature was one
of the few methods for cross-origin frames to communi-
cate before the advent of postMessage [25]. Changing
document.domain is a dangerous practice and violates
the Principle of Least Privilege: Once a subdomain sets
its domain to a suffix, it has no control over which other

430 18th USENIX Security Symposium USENIX Association

Latency
Location Overhead blank site google.com nytimes.com

Overhead before rendering
Browser kernel - process creation 44 ms 40 ms 78 ms
Browser instance - creating interposed instances of Trident 94 ms 94 ms 197 ms
Browser instance - named pipe initialization 137 ms 145 ms 439 ms

Overhead during rendering
Browser instance - proxy-based network interposition 4 ms 134 ms 541 ms
Browser instance - other Trident interposition 127 ms 122 ms 813 ms

Overhead after rendering
Browser instance - bitmap capture 13 ms 35 ms 196 ms
Browser instance - bitmap transfer 37 ms 67 ms 226 ms
Browser kernel - display rendering 10 ms 11 ms 101 ms

Table 5: A breakdown of Gazelle’s overheads involved in page rendering. Note that nytimes.com creates two processes
for itself and an <iframe>; the other two sites create one process.

subdomains can access it. This is also observed by Za-
lewski [48]. Therefore, it would be more secure not to
allow a subdomain to set document.domain.

Our experiments indicate that six of the top 100 Alexa
sites set document.domain to a different origin, though
restricting write access to document.domain might not
actually break the operation of these web sites.

Mixed HTTPS and HTTP Content. When an
HTTPS site embeds HTTP content, browsers typically
warn users about the mixed content, since the HTTPS
site’s content can resist a network attacker, but the em-
bedded HTTP content could be compromised by a net-
work attacker.

When an HTTPS site embeds other HTTP principals
(through <iframe>, <object>, etc.), HTTPS princi-
pals and HTTP principals will have different protection
domains and will not interfere with each other.

However, when an HTTPS site embeds a script or style
sheet delivered with HTTP, existing browsers would al-
low the script to run with the HTTPS site’s privileges (af-
ter the user ignores the mixed content warning). This is
dangerous because a network attacker can then compro-
mise the HTTP-transmitted script and attack the HTTPS
principal despite its intent of preventing network attack-
ers. Therefore, a more secure policy is to deny ren-
dering of HTTP-transmitted scripts or style sheets for
an HTTPS principal. Instead of the Alexa top 100, we
identified a few different sites that provide SSL ses-
sions for parts of their web application: amazon.com,
mail.google.com, mail.microsoft.com, blogger.com, and
a few popular banking sites where we have existing ac-
counts. This allows us to complete the login process dur-
ing testing. These sites do not violate this policy. In
addition, we have also gathered data from one of the au-
thor’s browsing sessions over the course of a few months
and found that out of 5,500 unique SSL URLs seen, less

than two percent include HTTP scripts and CSS.
Layout policies. The opaque overlay policy allows

only opaque (and not transparent) cross-origin frames or
objects (Section 5.2). We test this policy with the top
100 Alexa sites by determining if any cross-origin frames
or objects are overlapped with one another. We found
that two out of 100 sites attempt to violate this policy.
This policy does not generate rendering errors; instead,
we convert transparent cross-origin elements to opaque
elements when displaying content.

We also tested the 2D display delegation policy that
we analyzed in Section 5.2. We found this policy to have
higher compatibility cost than our opaque overlay policy:
six of the top 100 sites attempt to violate this policy.

Sites that attempt to violate either policy have reduced
functionality, and will render differently than what the
web page author intends.

Plugins. Existing plugin software must be adapted
(ported or binary-rewritten) to use browser kernel sys-
tem calls to accomplish its tasks. Of top 100 Alexa sites,
34 sites use Flash, but no sites use any other kinds of plu-
gins. This indicates that porting or adapting Flash alone
can address a significant portion of the plugin compati-
bility issue.

10 Concluding Remarks

We have presented Gazelle, the first web browser that
qualifies as a multi-principal OS for web site princi-
pals. This is because Gazelle’s browser kernel exclu-
sively manages resource protection, unlike all existing
browsers which allow cross-principal protection logic to
reside in the principal space. Gazelle enjoys the security
and robustness benefit of a multi-principal OS: a com-
promise or failure of one principal leaves other principals
and the browser kernel intact.

USENIX Association 18th USENIX Security Symposium 431

Our browser construction exposes challenging design
issues that were not seen in previous work, such as pro-
viding legacy protection to cross-origin script source and
cross-principal, cross-process display and event protec-
tion. We are the first to provide comprehensive solutions
to them.

The implementation and evaluation of our IE-based
prototype shows promise of a practical multi-principal
OS-based browser in the real world.

In our future work, we are exploring the fair sharing
of resources among web site principals in our browser
kernel and a more in-depth study of the tradeoffs between
compatibility and security in browser policy design.

11 Acknowlegements

We thank Spencer Low, David Ross, and Zhenbin Xu
for giving us constant help and fruitful discussions. We
thank Adam Barth and Charlie Reis for their detailed and
insightful feedback on our paper. We also thank the fol-
lowing folks for their help: Barry Bond, Jeremy Con-
dit, Rich Draves, David Driver, Jeremy Elson, Xiaofeng
Fan, Manuel Fandrich, Cedric Fournet, Chris Hawblitzel,
Jon Howell, Galen Hunt, Eric Lawrence, Jay Lorch, Rico
Malvar, Wolfram Schulte, David Wagner, Chris Wilson,
and Brian Zill. We also thank our paper shepherd Niels
Provos for his feedback over our last revisions.

References
[1] Changes in allowScriptAccess default (Flash Player). http://

www.adobe.com/go/kb403183.

[2] Developer center: Security changes in Flash Player 7.
http://www.adobe.com/devnet/flash/articles/
fplayer_security.html.

[3] Security advisories for Firefox 2.0. http://www.
mozilla.org/security/known-vulnerabilities/
firefox20.html.

[4] .NET Framework Developer Center, 2008. http:
//msdn.microsoft.com/en-us/netframework/
default.aspx.

[5] Alexa, 2009. http://www.alexa.com/.

[6] M. Barnett, K. Rustan, M. Leino, and W. Schulte. The Spec#
programming system: An overview. In LNCS, editor, CAS-
SIS, volume 3362. Springer, 2004. http://research.
microsoft.com/en-us/projects/specsharp/.

[7] A. Barth and C. Jackson. Protecting browsers from frame hijack-
ing attacks, April 2008. http://crypto.stanford.edu/
websec/frames/navigation/.

[8] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame com-
munication in browsers. In In Proceedings of the 17th USENIX
Security Symposium (USENIX Security), 2008.

[9] A. Barth, C. Jackson, C. Reis, and T. G. C. Team. The
security architecture of the Chromium browser, 2008.
http://crypto.stanford.edu/websec/chromium/
chromium-security-architecture.pdf.

[10] S. Chen, D. Ross, and Y.-M. Wang. An Analysis of Browser
Domain-Isolation Bugs and A Light-Weight Transparent Defense
Mechanism. In Proceedings of the ACM Conference on Computer
and Communications Security, 2007.

[11] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A Safety-
Oriented Platform for Web Applications. In Proceedings of the
IEEE Symposium on Security and Privacy, 2006.

[12] D. Crockford. JSONRequest. http://www.json.org/
jsonrequest.html.

[13] D. Crockford. The Module Tag: A Proposed Solution to
the Mashup Security Problem. http://www.json.org/
module.html.

[14] Document Object Model. http://www.w3.org/DOM/.

[15] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leverag-
ing legacy code to deploy desktop applications on the web. In
Proceedings of the Symposium on Operating Systems Design and
Implementation, 2008.

[16] Firefox 3 for developers, 2008. https://developer.
mozilla.org/en/Firefox_3_for_developers.

[17] Mozilla Browser and Mozilla Firefox Remote Window Hijacking
Vulnerability, 2004. http://www.securityfocus.com/
bid/11854/.

[18] Security Advisories for Firefox 2.0. http://www.
mozilla.org/security/known-vulnerabilities/
firefox20.html.

[19] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media
Inc., August 2006.

[20] Adobe Flash Player 9 Security, July 2008. http://
www.adobe.com/devnet/flashplayer/articles/
flash_player_9_security.pdf.

[21] C. Grier, S. Tang, and S. T. King. Secure web browsing with the
OP web browser. In Proceedings of the 2008 IEEE Symposium
on Securiy and Privacy, 2008.

[22] J. Grossman.
Advanced Web Attack Techniques using GMail. http:
//jeremiahgrossman.blogspot.com/2006/01/
advanced-web-attack-techniques-using.html.

[23] W. H. A. T. W. Group. Web Applications 1.0, February
2007. http://www.whatwg.org/specs/web-apps/
current-work/.

[24] HTML 5 Editor’s Draft, October 2008. http://www.w3.
org/html/wg/html5/.

[25] What’s New in Internet Explorer 8, 2008. http://msdn.
microsoft.com/en-us/library/cc288472.aspx.

[26] Microsoft Internet Explorer Remote Window Hijacking Vulner-
ability, 2004. http://www.securityfocus.com/bid/
11855.

[27] S. Ioannidis and S. M. Bellovin. Building a secure web browser.
In Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, 2001.

[28] S. Ioannidis, S. M. Bellovin, and J. M. Smith. Sub-operating sys-
tems: a new approach to application security. In Proceedings of
the 10th workshop on ACM SIGOPS European workshop, pages
108–115, New York, NY, USA, 2002. ACM.

[29] C. Jackson and A. Barth. Beware of Finer-Grained Origins. In
Web 2.0 Security and Privacy, May 2008.

[30] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Pro-
tecting Browsers from DNS Rebinding Attacks. In Proceedings
of ACM Conference on Computer and Communications Security,
2007.

432 18th USENIX Security Symposium USENIX Association

[31] JavaScript Object Notation (JSON). http://www.json.
org/.

[32] D. Kristol and L. Montulli. HTTP State Management Mecha-
nism. IETF RFC 2965, October 2000.

[33] T. W. Mathers and S. P. Genoway. Windows NT Thin Client So-
lutions: Implementing Terminal Server and Citrix MetaFrame.
Macmillan Technical Publishing, Indianapolis, IN, November
1998.

[34] IEBlog: IE8 Security Part V: Comprehensive Protection,
2008. http://blogs.msdn.com/ie/archive/2008/
07/02/ie8-security-part-v-comprehensive-
protection.aspx.

[35] Microsoft security bulletin. http://www.microsoft.
com/technet/security/.

[36] Microsfot Security Intelligence Report, Volume 5, 2008.
http://www.microsoft.com/security/portal/
sir.aspx.

[37] C. Reis and S. D. Gribble. Isolating web programs in modern
browser architectures. In Proceedings of Eurosys, 2009.

[38] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper.
Virtual network computing. IEEE Internet Computing, 2(1):33–
38, 1998.

[39] J. Ruderman. The Same Origin Policy. http://www.
mozilla.org/projects/security/components/
same-origin.html.

[40] R. W. Scheifler and J. Gettys. The X window system. ACM
Transactions on Graphics (TOG), 5(2):79–109, April 1986.

[41] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.
Design of the EROS TrustedWindow system. In Usenix Security,
2004.

[42] Symantec Global Internet Security Threat Report: Trends for July
- December 07, April 2008.

[43] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
Communication Abstractions in MashupOS. In ACM Symposium
on Operating System Principles, October 2007.

[44] Cross-Domain Vulnerability In Microsoft Internet
Explorer 6. http://cyberinsecure.com/
cross-domain-vulnerability-in-microsoft-
internet-explorer-6/.

[45] The XMLHttpRequest Object. http://www.w3.org/TR/
XMLHttpRequest/.

[46] W3C XMLHttpRequest Level 2. http://dev.w3.org/
2006/webapi/XMLHttpRequest-2/.

[47] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sandbox
for portable, untrusted x86 native code. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2009.

[48] M. Zalewski. Browser security handbook, 2008. http://
code.google.com/p/browsersec/wiki/Main.

