
Efficient Data Structures for Tamper-Evident Logging

Scott A. Crosby Dan S. Wallach
scrosby@cs.rice.edu dwallach@cs.rice.edu

Department of Computer Science, Rice University

Abstract
Many real-world applications wish to collect tamper-

evident logs for forensic purposes. This paper considers
the case of an untrusted logger, serving a number of
clients who wish to store their events in the log, and
kept honest by a number of auditors who will challenge
the logger to prove its correct behavior. We propose
semantics of tamper-evident logs in terms of this auditing
process. The logger must be able to prove that individual
logged events are still present, and that the log, as seen
now, is consistent with how it was seen in the past. To
accomplish this efficiently, we describe a tree-based data
structure that can generate such proofs with logarithmic
size and space, improving over previous linear con-
structions. Where a classic hash chain might require an
800 MB trace to prove that a randomly chosen event is in
a log with 80 million events, our prototype returns a 3 KB
proof with the same semantics. We also present a flexible
mechanism for the log server to present authenticated
and tamper-evident search results for all events matching
a predicate. This can allow large-scale log servers to
selectively delete old events, in an agreed-upon fashion,
while generating efficient proofs that no inappropriate
events were deleted. We describe a prototype imple-
mentation and measure its performance on an 80 million
event syslog trace at 1,750 events per second using a
single CPU core. Performance improves to 10,500 events
per second if cryptographic signatures are offloaded,
corresponding to 1.1 TB of logging throughput per week.

1 Introduction
There are over 10,000 U.S. regulations that govern the

storage and management of data [22, 58]. Many countries
have legal, financial, medical, educational and privacy
regulations that require businesses to retain a variety of
records. Logging systems are therefore in wide use (albeit
many without much in the way of security features).

Audit logs are useful for a variety of forensic purposes,
such as tracing database tampering [59] or building a
versioned filesystem with verifiable audit trails [52].
Tamper-evident logs have also been used to build Byzan-
tine fault-tolerant systems [35] and protocols [15], as well
as to detect misbehaving hosts in distributed systems [28].

Ensuring a log’s integrity is a critical component in the
security of a larger system. Malicious users, including in-

siders with high-level access and the ability to subvert the
logging system, may want to perform unlogged activities
or tamper with the recorded history. While tamper-
resistance for such a system might be impossible, tamper-
detection should be guaranteed in a strong fashion.

A variety of hash data structures have been proposed
in the literature for storing data in a tamper-evident
fashion, such as trees [34, 49], RSA accumulators [5, 11],
skip lists [24], or general authenticated DAGs. These
structures have been used to build certificate revocation
lists [49], to build tamper-evident graph and geometric
searching [25], and authenticated responses to XML
queries [19]. All of these store static data, created by a
trusted author whose signature is used as a root-of-trust
for authenticating responses of a lookup queries.

While authenticated data structures have been adapted
for dynamic data [2], they continue to assume a trusted
author, and thus they have no need to detect inconsis-
tencies across versions. For instance, in SUNDR [36], a
trusted network filesystem is implemented on untrusted
storage. Although version vectors [16] are used to detect
when the server presents forking-inconsistent views to
clients, only trusted clients sign updates for the filesystem.

Tamper-evident logs are fundamentally different: An
untrusted logger is the sole author of the log and is respon-
sible for both building and signing it. A log is a dynamic
data structure, with the author signing a stream of commit-
ments, a new commitment each time a new event is added
to the log. Each commitmentsnapshots the entire log up
to that point. If each signed commitment is the root of
an authenticated data structure, well-known authenticated
dictionary techniques [62, 42, 20] can detect tampering
within each snapshot. However, without additional mech-
anisms to prevent it, an untrusted logger is free to have dif-
ferent snapshots makeinconsistent claims about the past.
To be secure, a tamper-evident log system must both de-
tect tampering within each signed logand detect when
different instances of the log make inconsistent claims.

Current solutions for detecting when an untrusted
server is making inconsistent claims over time require
linear space and time. For instance, to prevent undetected
tampering, existing tamper evident logs [56, 17, 57]
which rely upon a hash chain require auditors examine
every intermediate event between snapshots. One pro-
posal [43] for a tamper-evident log was based on a skip
list. It has logarithmic lookup times, assuming the log

is known to be internally consistent. However, proving
internal consistency requires scanning the full contents of
the log. (See Section 3.4 for further analysis of this.)

In the same manner, CATS [63], a network-storage
service with strong accountability properties, snapshots
the internal state, and only probabilistically detects
tampering by auditing a subset of objects for correctness
between snapshots. Pavlou and Snodgrass [51] show how
to integrate tamper-evidence into a relational database,
and can prove the existence of tampering, if suspected.
Auditing these systems for consistency is expensive,
requiring each auditor visit each snapshot to confirm that
any changes between snapshots are authorized.

If an untrusted logger knows that a just-added event
or returned commitment will not be audited, then any
tampering with the added event or the events fixed by that
commitment will be undiscovered, and, by definition,
the log is not tamper-evident. To prevent this,a tamper-
evident log requires frequent auditing. To this end, we
propose a tree-based history data structure, logarithmic
for all auditing and lookup operations. Events may be
added to the log, commitments generated, and audits
may be performed independently of one another and at
any time. No batching is used. Unlike past designs, we
explicitly focus on how tampering will be discovered,
through auditing, and we optimize the costs of these
audits. Ourhistory tree allows loggers to efficiently prove
that the sequence of individual logs committed to, over
time, make consistent claims about the past.

In Section 2 we present background material and pro-
pose semantics for tamper-evident logging. In Section 3
we present the history tree. In Section 4 we describe
Merkle aggregation, a way to annotate events with
attributes which can then be used to perform tamper-
evident queries over the log andsafe deletion of events,
allowing unneeded events to be removed in-place, with no
additional trusted party, while still being able to prove that
no events were improperly purged. Section 5 describes
a prototype implementation for tamper-evident logging
of syslog data traces. Section 6 discusses approaches
for scaling the logger’s performance. Related work is
presented in Section 7. Future work and conclusions
appear in Section 8.

2 Security Model
In this paper, we make the usual cryptographic assump-

tions that an attacker cannot forge digital signatures or
find collisions in cryptographic hash functions. Further-
more we are not concerned with protecting the secrecy
of the logged events; this can be addressed with external
techniques, most likely some form of encryption [50, 26,
54]. For simplicity, we assume a single monolithic log on
a single host computer. Our goal is to detect tampering.
It is impractical to prevent the destruction or alteration of

digital records that are in the custody of a Byzantine log-
ger. Replication strategies, outside the scope of this paper,
can help ensure availability of the digital records [44].

Tamper-evidence requires auditing. If the log is never
examined, then tampering cannot be detected. To this end,
we divide a logging system into three logical entities—
manyclients which generate events for appending to a log
or history, managed on a centralized but totally untrusted
logger, which is ultimately audited by one or more
trustedauditors. We assume clients and auditors have
very limited storage capacity while loggers are assumed
to have unlimited storage. By auditing the published
commitments and demanding proofs, auditors can be
convinced that the log’s integrity has been maintained.
At least one auditor is assumed to be incorruptible. In
our system, we distinguish between clients and auditors,
while a single host could, in fact, perform both roles.

We must trust clients to behave correctly while they
are following the event insertion protocol, but we trust
clients nowhere else. Of course, a malicious client could
insert garbage, but we wish to ensure that an event, once
correctly inserted, cannot be undetectably hidden or mod-
ified, even if the original client is subsequently colluding
with the logger in an attempt to tamper with old data.

To ensure these semantics, an untrusted logger must
regularly prove its correct behavior to auditors and
clients. Incremental proofs, demanded of the logger,
prove that current commitment and prior commitment
make consistent claims about past events.Membership
proofs ask the logger to return a particular event from the
log along with a proof that the event is consistent with
the current commitment. Membership proofs may be
demanded by clients after adding events or by auditors
verifying that older events remain correctly stored by the
logger. These two styles of proofs are sufficient to yield
tamper-evidence. As any vanilla lookup operation may be
followed by a request for proof, the logger must behave
faithfully or risk its misbehavior being discovered.

2.1 Semantics of a tamper evident history

We now formalize our desired semantics for secure
histories. Each time an eventX is sent to the logger, it
assigns an indexi and appends it to the log, generating a
version-i commitmentCi that depends on all of the events
to-date, X0 . . .Xi. The commitmentCi is bound to its
version numberi, signed, and published.

Although the stream of histories that a logger commits
to (C0 . . .Ci,Ci+1,Ci+2 . . .) are supposed to be mutually-
consistent, each commitment fixes anindependent
history. Because histories are not known, a priori, to
be consistent with one other, we will use primes (′) to
distinguish between different histories and the events
contained within them. In other words, the events in log
Ci (i.e., those committed by commitmentCi) areX0 . . .Xi

and the events in logC′
j areX ′

0 . . .X ′
j, and we will need to

prove their correspondence.

2.1.1 Membership auditing

Membership auditing is performed both by clients,
verifying that new events are correctly inserted, and by
auditors, investigating that old events are still present
and unaltered. The logger is given an event indexi and
a commitmentC j, i ≤ j and is required to return theith
element in the log,Xi, and a proof thatC j implies Xi is
theith event in the log.

2.1.2 Incremental auditing

While a verified membership proof shows that an event
was logged correctly insome log, represented by its
commitmentC j, additional work is necessary to verify
that the sequence of logs committed by the logger is
consistent over time. Inincremental auditing, the logger
is given two commitmentsC j andC′

k, where j ≤ k, and
is required to prove that the two commitments make con-
sistent claims about past events. A verified incremental
proof demonstrates thatXa = X ′

a for all a ∈ [0, j]. Once
verified, the auditor knows thatC j andC′

k commit to the
same shared history, and the auditor can safely discardC j.

A dishonest logger may attempt to tamper with its
history by rolling back the log, creating a new fork on
which it inserts new events, and abandoning the old fork.
Such tampering will be caught if the logging system
satisfieshistorical consistency (see Section 2.3) and by
a logger’s inability to generate an incremental proof
between commitments on different (and inconsistent)
forks when challenged.

2.2 Client insertion protocol

Once clients receive commitments from the logger af-
ter inserting an event, they must immediately redistribute
them to auditors. This prevents the clients from subse-
quently colluding with the logger to roll back or modify
their events. To this end, we need a mechanism, such as
a gossip protocol, to distribute the signed commitments
from clients to multiple auditors. It’s unnecessary for
every auditor to audit every commitment, so long as some
auditor audits every commitment. (We further discuss
tradeoffs with other auditing strategies in Section 3.1.)

In addition, in order to deal with the logger presenting
different views of the log to different auditors and clients,
auditors must obtain and reconcile commitments received
from multiple clients or auditors, perhaps with the gossip
protocol mentioned above. Alternatively the logger may
publish its commitment in a public fashion so that all
auditors receive the same commitment [27]. All that
matters is that auditors have access to a diverse collection
of commitments and demand incremental proofs to verify
that the logger is presenting a consistent view.

2.3 Definition: tamper evident history
We now define a tamper-evident history system as a

five-tuple of algorithms:

H.ADD(X) →C j. Given an eventX , appends it to the
history, returning a new commitment.

H.INCR.GEN(Ci,C j) → P. Generates an incremental
proof betweenCi andC j, wherei ≤ j.

H.MEMBERSHIP.GEN(i,C j) → (P,Xi). Generates a
membership proof for eventi from commitmentC j,
wherei ≤ j. Also returns the event,Xi.

P.INCR.VF(C′
i ,C j) →{⊤,⊥}. Checks thatP proves that

C j fixes every entry fixed byC′
i (wherei ≤ j). Outputs

⊤ if no divergence has been detected.

P.MEMBERSHIP.VF(i,C j,X ′
i) → {⊤,⊥}. Checks thatP

proves that eventX ′
i is thei’th event in the log defined

byC j (wherei ≤ j). Outputs⊤ if true.

The first three algorithms run on the logger and are used
to append to the logH and to generateproofs P. Auditors
or clients verify the proofs with algorithms{INCR.VF,
MEMBERSHIP.VF}. Ideally, the proofP sent to the au-
ditor is more concise than retransmitting the full history
H. Only commitments need to be signed by the log-
ger. Proofs do not require digital signatures; either they
demonstrate consistency of the commitments and the con-
tents of an event or they don’t. With these five operations,
we now define “tamper evidence” as a system satisfying:

Historical Consistency If we have a valid incremental
proof between two commitmentsC j and Ck, where
j ≤ k, (P.INCR.VF(C j,Ck) → ⊤), and we have a valid
membership proofP′ for the eventX ′

i , wherei ≤ j, in the
log fixed byC j (i.e.,P′.MEMBERSHIP.VF(i,C j,X ′

i) →⊤)
and a valid membership proof forX ′′

i in the log fixed
by Ck (i.e., P′′.MEMBERSHIP.VF(i,Ck,X ′′

i) → ⊤), then
X ′

i must equalX ′′
i . (In other words, if two commitments

commit consistent histories, then they must both fix the
same events for their shared past.)

2.4 Other threat models

Forward integrity Classic tamper-evident logging
uses a different threat model, forward integrity [4]. The
forward integrity threat model has two entities: clients
who are fully trusted but have limited storage, and loggers
who are assumed to be honest until suffering a Byzantine
failure. In this threat model, the logger must be prevented
from undetectably tampering with events logged prior
to the Byzantine failure, but is allowed to undetectably
tamper with events logged after the Byzantine failure.

Although we feel our threat model better characterizes
the threats faced by tamper-evident logging, our history

tree and the semantics for tamper-evident logging are
applicable to this alternative threat model with only
minor changes. Under the semantics of forward-integrity,
membership auditing just-added events is unnecessary
because tamper-evidence only applies to events occurring
before the Byzantine failure. Auditing a just-added event
is unneeded if the Byzantine failure hasn’t happened and
irrelevant afterwards. Incremental auditing is still nec-
essary. A client must incrementally audit received com-
mitments to prevent a logger from tampering with events
occurring before a Byzantine failure by rolling back the
log and creating a new fork. Membership auditing is
required to look up and examine old events in the log.

Itkis [31] has a similar threat model. His design
exploited the fact that if a Byzantine logger attempts to
roll back its history to before the Byzantine failure, the
history must fork into two parallel histories. He proposed
a procedure that tested two commitments to detect
divergence without online interaction with the logger
and proved anO(n) lower bound on the commitment
size. We achieve a tighter bound by virtue of the logger
cooperating in the generation of these proofs.

Trusted hardware Rather than relying on auditing, an
alternative model is to rely on the logger’s hardware itself
to be tamper-resistant [58, 1]. Naturally, the security of
these systems rests on protecting the trusted hardware and
the logging system against tampering by an attacker with
complete physical access. Although our design could cer-
tainly use trusted hardware as an auditor, cryptographic
schemes like ours rest on simpler assumptions, namely
the logger can and must prove it is operating correctly.

3 History tree
We now present our new data structure for representing

a tamper-evident history. We start with a Merkle tree [46],
which has a long history of uses for authenticating static
data. In a Merkle tree, data is stored at the leaves and the
hash at the root is a tamper-evident summary of the con-
tents. Merkle trees support logarithmic path lengths from
the root to the leaves, permitting efficient random access.
Although Merkle trees are a well-known tamper-evident
data structure and our use is straightforward, the nov-
elty in our design is in using a versioned computation of
hashes over the Merkle tree to efficiently prove that differ-
ent log snapshots, represented by Merkle trees, withdis-
tinct root hashes, make consistent claims about the past.

A filled history tree of depthd is a binary Merkle
hash tree, storing 2d events on the leaves. Interior nodes,
Ii,r are identified by their indexi and layerr. Each leaf
node Ii,0, at layer 0, stores eventXi. Interior nodeIi,r

has left childIi,r−1 and right childIi+2r−1,r−1. (Figures 1
through 3 demonstrate this numbering scheme.) When
a tree is not full, subtrees containing no events are

I′0,3

I′0,2

I′0,1

X ′
0 X ′

1

I′2,1

X ′
2

Figure 1: A version 2 history with commitmentC′
2 = I′0,3.

I′′0,3

I′′0,2

I′′0,1

X ′′
0 X ′′

1

I′′2,1

X ′′
2 X ′′

3

I′′4,2

I′′4,1

X ′′
4 X ′′

5

I′′6,1

X ′′
6

Figure 2: A version 6 history with commitmentC′′
6 = I′′0,3.

I0,3

I0,2

I0,1 I2,1

X2 X3

I4,2

I4,1 I6,1

X6

Figure 3: An incremental proofP between a version 2 and
version 6 commitment. Hashes for the circled nodes are
included in the proof. Other hashes can be derived from their
children. Circled nodes in Figures 1 and 2 must be shown to
be equal to the corresponding circled nodes here.

represented as�. This can be seen starting in Figure 1,
a version-2 tree having three events. Figure 2 shows a
version-6 tree, adding four additional events. Although
the trees in our figures have a depth of 3 and can store
up to 8 leaves, our design clearly extends to trees with
greater depth and more leaves.

Each node in the history tree islabeled with a crypto-
graphic hash which, like a Merkle tree, fixes the contents
of the subtree rooted at that node. For a leaf node, the label
is the hash of the event; for an interior node, the label is
the hash of the concatenation of the labels of its children.

An interesting property of the history tree is the ability
to efficiently reconstruct old versions orviews of the tree.
Consider the history tree given in Figure 2. The logger
could reconstructC′′

2 analogous to the version-2 tree in
Figure 1 by pretending that nodesI′′4,2 andX ′′

3 were� and
then recomputing the hashes for the interior nodes and
the root. If the reconstructedC′′

2 matched a previously
advertised commitmentC′

2, then both trees must have the
same contents and commit the same events.

b

X0 X1 X2 X3

b

X4 X5

b

X6

Figure 4: Graphical notation for a history tree analogous to the
proof in Figure 3. Solid discs represent hashes included in the
proof. Other nodes are not included. Dots and open circles
represent values that can be recomputed from the values below
them; dots may change as new events are added while open cir-
cles will not. Grey circle nodes are unnecessary for the proof.

This forms the intuition of how the logger generates an
incremental proofP between two commitments,C′

2 and
C′′

6 . Initially, the auditor only possesses commitmentsC′
2

andC′′
6 ; it does not know the underlying Merkle trees that

these commitments fix. The logger must show that both
histories commit the same events, i.e.,X ′′

0 = X ′
0,X

′′
1 = X ′

1,
andX ′′

2 = X ′
2. To do this, the logger sends apruned tree

P to the auditor, shown in Figure 3. This pruned tree
includes just enough of the full history tree to compute
the commitmentsC2 andC6. Unnecessary subtrees are
elided out and replaced withstubs. Events can be either
included in the tree or replaced by a stub containing their
hash. Because an incremental proof involvesthree history
trees, the trees committed byC′

2 andC′′
6 with unknown

contents and the pruned treeP, we distinguish them by
using a different number of primes (′).

From P, shown in Figure 3, we reconstruct the corre-
sponding root commitment for a version-6 tree,C6. We re-
compute the hashes of interior nodes based on the hashes
of their children until we compute the hash for nodeI0,3,
which will be the commitmentC6. If C′′

6 =C6 then the cor-
responding nodes, circled in Figures 2 and 3, in the pruned
treeP and the implicit tree committed byC′′

6 must match.

Similarly, from P, shown in Figure 3, we can recon-
struct the version-2 commitmentC2 by pretending that
the nodesX3 andI4,2 are� and, as before, recomputing
the hashes for interior nodes up to the root. IfC′

2 = C2,
then the corresponding nodes, circled in Figures 1 and 3,
in the pruned treeP and the implicit tree committed by
C′

2 must match, orI′0,1 = I0,1 andX ′
2 = X2.

If the events committed byC′
2 and C′′

6 are the same
as the events committed byP, then they must be equal;
we can then conclude that the tree committed byC′′

6 is
consistent with the tree committed byC′

2. By this we
mean that the history trees committed byC′

2 and C′′
6

both commit the same events, orX ′′
0 = X ′

0, X ′′
1 = X ′

1, and
X ′′

2 = X ′
2, even though the eventsX ′′

0 = X ′
0, X ′′

1 = X ′
1, X ′′

4 ,
andX ′′

5 are unknown to the auditor.

3.1 Is it safe to skip nodes during an audit?

In the pruned tree in Figure 3, we omit the events
fixed by I0,1, yet we still preserve the semantics of a
tamper-evident log. Even though these earlier events
may not be sent to the auditor, they are still fixed by the
unchanged hashes above them in the tree. Any attempted
tampering will be discovered in future incremental or
membership audits of the skipped events. With the
history tree, auditors only receive the portions of the
history they need to audit the events they have chosen
to audit. Skipping events makes it possible to conduct a
variety of selective audits and offers more flexibility in
designing auditing policies.

Existing tamper-evident log designs based on a classic
hash-chain have the formCi = H(Ci−1 ‖ Xi), C−1 = � and
do not permit events to be skipped. With a hash chain,
an incremental or membership proof between two com-
mitments or between an event and a commitment must
includeevery intermediate event in the log. In addition,
because intermediate events cannot be skipped, each audi-
tor, or client acting as an auditor, must eventually receive
every event in the log. Hash chaining schemes, as such,
are only feasible with low event volumes or in situations
where every auditor is already receiving every event.

When membership proofs are used to investigate old
events, the ability to skip nodes can lead to dramatic
reductions in proof size. For example, in our prototype
described in Section 5, in a log of 80 million events, our
history tree can return a complete proof for any randomly
chosen event in 3100 bytes. In a hash chain, where
intermediate events cannot be skipped, an average of 40
million hashes would be sent.

Auditing strategies In many settings, it is possible that
not every auditor will be interested in every logged event.
Clients may not be interested in auditing events inserted or
commitments received by other clients. One could easily
imagine scenarios where a single logger is shared across
many organizations, each only incentivized to audit the in-
tegrity of its own data. These organizations could run their
own auditors, focusing their attention on commitments
from their own clients, and only occasionally exchanging
commitments with other organizations to ensure no fork-
ing has occurred. One can also imagine scenarios where
independent accounting firms operate auditing systems
that run against their corporate customers’ log servers.

The log remains tamper-evident if clients gossip their
received commitments from the logger to at least one hon-
est auditor who uses it when demanding an incremental
proof. By not requiring that every commitment be audited
by every auditor, the total auditing overhead across all
auditors can be proportional to the total number of events
in the log—far cheaper than the number of events times
the number of auditors as we might otherwise require.

Av
i,0 =

{

H(0‖Xi) if v ≥ i (1)

Av
i,r =

{

H(1‖Av
i,r−1‖�) if v < i+2r−1

H(1‖Av
i,r−1‖Av

i+2r−1,r−1
) if v ≥ i+2r−1 (2)

Cn = An
0,d (3)

Av
i,r ≡ FHi,r wheneverv ≥ i+2r −1 (4)

Figure 5: Recurrence for computing hashes.

Skipping nodes offers other time-security tradeoffs.
Auditors may conduct audits probabilistically, selecting
only a subset of incoming commitments for auditing. If a
logger were to regularly tamper with the log, its odds of
remaining undetected would become vanishingly small.

3.2 Construction of the history tree

Now that we have an example of how to use a tree-
based history, we will formally define its construction and
semantics. A version-n history tree storesn + 1 events,
X0 . . .Xn. Hashes are computed over the history tree in
a manner that permits the reconstruction of the hashes
of interior nodes of older versions orviews. We denote
the hash on nodeIi,r by Av

i,r which is parametrized by
the node’s index, layer and view being computed. A
version-v view on a version-n history tree reconstructs
the hashes on interior nodes for a version-v history tree
that only included eventsX0 . . .Xv. When v = n, the
reconstructed root commitment isCn. The hashes are
computed with the recurrence defined in Figure 5.

A history tree can support arbitrary size logs by
increasing the depth when the tree fills (i.e.,n = 2d − 1)
and definingd = ⌈log2(n + 1)⌉. The new root, one level
up, is created with the old tree as its left child and an
empty right child where new events can be added. For
simplicity in our illustrations and proofs, we assume a
tree with fixed depthd.

Once a given subtree in the history tree is complete and
has no more slots to add events, the hash for the root node
of that subtree isfrozen and will not change as future
events are added to the log. The logger caches these
frozen hashes (i.e., the hashes of frozen nodes) into FHi,r

to avoid the need to recompute them. By exploiting the
frozen hash cache, the logger can recomputeAv

i,r for any
node with at mostO(d) operations. In a version-n tree,
nodeIi,r is frozen whenn ≥ i + 2r − 1. When inserting
a new event into the log,O(1) expected case andO(d)
worse case nodes will become frozen. (In Figure 1, node
I′0,1 is frozen. If eventX3 is added, nodesI′2,1 andI′0,2 will
become frozen.)

Now that we have defined the history tree, we will
describe the incremental proofs generated by the logger.
Figure 4 abstractly illustrates a pruned tree equivalent to

b

X0 X1 X2 X3

b

X4 X5

b

X6

Figure 6: A proof skeleton for a version-6 history tree.

the proof given in Figure 3, representing an incremental
proof from C2 to C6. Dots represent unfrozen nodes
whose hashes are computed from their children. Open
circles represent frozen nodes which are not included in
the proof because their hashes can be recomputed from
their children. Solid discs represent frozen nodes whose
inclusion is necessary by being leaves or stubs. Grayed
out nodes represent elided subtrees that are not included
in the pruned tree. From this pruned tree and equations
(1)-(4) (shown in Figure 5) we can computeC6 = A6

0,3

and a commitment from an earlier version-2 view,A2
0,3.

This pruned tree is incrementally built from aproof
skeleton, seen in Figure 6—the minimum pruned tree of a
version-6 tree consisting only of frozen nodes. The proof
skeleton for a version-n tree consists of frozen hashes for
the left siblings for the path fromXn to the root. From the
included hashes and using equations (1)-(4), this proof
skeleton suffices to computeC6 = A6

0,3.
From Figure 6 the logger incrementally builds Figure 4

by splitting frozen interior nodes. A node is split by
including its children’s hashes in the pruned tree instead
of itself. By recursively splitting nodes on the path to
a leaf, the logger caninclude that leaf in the pruned
tree. In this example, we split nodesI0,2 and I2,1. For
each commitmentCi that is to be reconstructable in an
incremental proof the pruned treeP must include a path
to the eventXi. The same algorithm is used to generate
the membership proof for an eventXi.

Given these constraints, we can now define the five
history operations in terms of the equations in Figure 5.

H.ADD(X) →Cn. Event is assigned the next free slot,n.
Cn is computed by equations (1)-(4).

H.INCR.GEN(Ci,C j) → P. The pruned treeP is a
version-j proof skeleton including a path toXi.

H.MEMBERSHIP.GEN(i,C j) → (P,Xi). The pruned tree
P is a version-j proof skeleton including a path toXi.

P.INCR.VF(C′′
i ,C′

j) →{⊤,⊥}. From P apply equations

(1)-(4) to computeAi
0,d and A j

0,d. This can only be
done if P includes a path to the leafXi. Return⊤ if
C′′

i = Ai
0,d andC′

j = A j
0,d .

P.MEMBERSHIP.VF(i,C′
j,X

′
i) →{⊤,⊥}. From P apply

equations (1)-(4) to computeA j
0,d . Also extractXi from

the pruned treeP, which can only be done ifP includes
a path to eventXi. Return⊤ if C′

j = A j
0,d andXi = X ′

i .

Although incremental and membership proofs have dif-
ferent semantics, they both follow an identical tree struc-
ture and can be built and audited by a common implemen-
tation. In addition, a single pruned treeP can embed paths
to several leaves to satisfy multiple auditing requests.

What is the size of a pruned tree used as a proof? The
pruned tree necessary for satisfying a self-contained in-
cremental proof betweenCi andC j or a membership proof
for i in C j requires that the pruned tree include a path to
nodesXi andX j. This resulting pruned tree contains at
most 2d frozen nodes, logarithmic in the size of the log.

In a real implementation, the log may have moved on to
a later version,k. If the auditor requested an incremental
proof betweenCi and C j, the logger would return the
latest commitmentCk, and a pruned tree of at most 3d
nodes, based around a version-k tree including paths toXi

andX j. More typically, we expect auditors will request
an incremental proof between a commitmentCi and the
latest commitment. The logger can reply with the latest
commitmentCk and pruned tree of at most 2d nodes that
included a path toXi.

The frozen hash cache In our description of the
history tree, we described thefull representation when we
stated that the logger stores frozen hashes for all frozen
interior nodes in the history tree. This cache is redundant
whenever a node’s hash can be recomputed from its
children. We expect that logger implementations, which
build pruned trees for audits and queries, will maintain
and use the cache to improve efficiency.

When generating membership proofs, incremental
proofs, and query lookup results, there is no need for
the resulting pruned tree to include redundant hashes on
interior nodes when they can be recomputed from their
children. We assume that pruned trees used as proofs
will use thisminimum representation, containing frozen
hashes only for stubs, to reduce communication costs.

Can overheads be reduced by exploiting redundancy
between proofs? If an auditor is in regular commu-
nication with the logger, demanding incremental proofs
between the previously seen commitment and the latest
commitment, there is redundancy between the pruned
subtrees on successive queries.

If an auditor previously requested an incremental proof
betweenCi andC j and later requests an incremental proof
P betweenC j andCn, the two proofs will share hashes on
the path to leafX j. The logger may send apartial proof
that omits these common hashes, and only contains the
expectedO(log2(n− j)) frozen hashes that are not shared

between the paths toX j andXn. This devolves toO(1)
if a proof is requested after every insertion. The auditor
need only cached frozen hashes to make this work.

Tree history time-stamping service Our history
tree can be adapted to implement a round-based time-
stamping service. After every round, the logger publishes
the last commitment in public medium such as a news-
paper. LetCi be the commitment from the prior round
andCk be the commitment of the round a client requests
that its documentX j be timestamped. A client can
request a pruned tree including a path to leavesXi,X j,Xk.
The pruned tree can be verified against the published
commitments to prove thatX j was submitted in the round
and its order within that round, without the cooperation
of the logger.

If a separate history tree is built for each round, our his-
tory tree is equivalent to the threaded authentication tree
proposed by Buldas et al. [10] for time-stamping systems.

3.3 Storing the log on secondary storage
Our history tree offers a curious property: it can be

easily mapped onto write-once append-only storage.
Once nodes become frozen, they become immutable, and
are thus safe to output. This ordering is predetermined,
starting with(X0), (X1, I0,1), (X2), (X3, I2,1, I0,2), (X4)
Parentheses denote the nodes written by each ADD trans-
action. If nodes within each group are further ordered by
their layer in the tree, this order is simply a post-order
traversal of the binary tree. Data written in this linear
fashion will minimize disk seek overhead, improving
the disk’s write performance. Given this layout, and
assuming all events are the same size on disk, converting
from an (index, layer) to the byte index used to store
that node takesO(logn) arithmetic operations, permitting
efficient direct access.

In order to handle variable-length events, event data
can be stored in a separate write-once append-onlyvalue
store, while the leaves of the history tree contain offsets
into the value store where the event contents may be
found. Decoupling the history tree from the value store
also allows many choices for how events are stored, such
as databases, compressed files, or standard flat formats.

3.4 Comparing to other systems
In this section, we evaluate the time and space tradeoffs

between our history tree and earlier hash chain and skip
list structures. In all three designs, membership proofs
have the same structure and size as incremental proofs,
and proofs are generated in time proportional to their size.

Maniatis and Baker [43] present a tamper-evident log
using a deterministic variant of a skip list [53]. The skip
list history is like a hash-chain incorporating extra skip
links that hop over many nodes, allowing for logarithmic
lookups.

Hash chain Skip list History tree
ADD Time O(1) O(1) O(log2n)
INCR.GEN proof size toCk O(n−k) O(n) O(log2n)
MEMBERSHIP.GEN proof size forXk O(n−k) O(n) O(log2n)

Cache size - O(log2 n) O(log2n)
INCR.GEN partial proof size - O(n− j) O(log2(n− j))
MEMBERSHIP.GEN partial proof size - O(log2 (n− i)) O(log2(n− i))

Table 1: We characterize the time to add an event to the log and the sizeof full and partial proofs generated in terms ofn, the number of
events in the log. For partial proofs audits,j denotes the number of events in the log at the time of the last audit andi denotes the index
of the event being membership-audited.

In Table 1 we compare the three designs. All three
designs haveO(1) storage per event andO(1) com-
mitment size. For skip list histories and tree histories,
which support partial proofs (described in Section 3.2),
we present the cache size and the expected proof sizes
in terms of the number of events in the log,n, and the
index, j, of the prior contact with the logger or the index
i of the event being looked up. Our tree-based history
strictly dominates both hash chains and skip lists in
proof generation time and proof sizes, particularly when
individual clients and auditors only audit a subset of the
commitments or when partial proofs are used.

Canonical representation A hash chain history and
our history tree have a canonical representation of both
the history and of proofs within the history. In particular,
from a given commitmentCn, there exists one unique path
to each eventXi. When there are multiple paths auditing
is more complex because the alternative paths must be
checked for consistency with one another, both within
a single history, and between the stream of histories
Ci,Ci+1, . . . committed by the logger. Extra paths may
improve the efficiency of looking up past events, such as
in a skip list, or offer more functionality [17], but cannot
be trusted by auditors and must be checked.

Maniatis and Baker [43] claim to support logarithmic-
sized proofs, however they suffer from this multi-path
problem. To verify internal consistency, an auditor with
no prior contact with the logger must receive every event
in the log in every incremental or membership proof.

Efficiency improves for auditors in regular contact with
the logger that use partial proofs and cacheO(log2 n) state
between incremental audits. If an auditor has previously
verified the logger’s internal consistency up toC j, the
auditor will be able to verify the logger’s internal consis-
tency up to a future commitmentCn with the receipt of
eventsX j+1 . . .Xn Once an auditor knows that the skip list
is internally consistent the links that allow for logarithmic
lookups can be trusted and subsequent membership
proofs on old events will run inO(log2 n) time. Skip list
histories were designed to function in this mode, with
each auditor eventually receiving every event in the log.

Auditing is required Hash chains and skip lists only
offer a complexity advantage over the history tree when

adding new events, but this advantage is fleeting. If
the logger knows that a given commitment will never
be audited, it is free to tamper with the events fixed
by that commitment, and the log is no longer provably
tamper evident. Every commitment returned by the
logger must have a non-zero chance of being audited and
any evaluation of tamper-evident logging must include
the costs of this unavoidable auditing. With multiple
auditors, auditing overhead is further multiplied. After
inserting an event, hash chains and skip lists suffer an
O(n− j) disadvantage the moment they do incremental
audits between the returned commitment and prior
commitments. They cannot reduce this overhead by, for
example, only auditing a random subset of commitments.

Even if the threat model is weakened from our always-
untrusted logger to the forward-integrity threat model
(See Section 2.4), hash chains and skip lists are less
efficient than the history tree. Clients can forgo auditing
just-added events, but are still required to do incremental
audits to prior commitments, which are expensive with
hash chains or skip lists.

4 Merkle aggregation
Our history tree permitsO(log2 n) access to arbitrary

events, given their index. In this section, we extend our
history tree to support efficient, tamper-evident content
searches through a feature we callMerkle aggregation,
which encodes auxiliary information into the history
tree. Merkle aggregation permits the logger to perform
authorized purges of the log while detecting unauthorized
deletions, a feature we callsafe deletion.

As an example, imagine that a client flags certain events
in the log as “important” when it stores them. In the
history tree, the logger propagates these flags to interior
nodes, setting the flag whenever either child is flagged.
To ensure that the tagged history is tamper-evident, this
flag can be incorporated into the hash label of a node
and checked during auditing. As clients are assumed
to be trusted when inserting into the log, we assume
clients will properly annotate their events. Membership
auditing will detect if the logger incorrectly stored a leaf
with the wrong flag or improperly propagated the flag.
Incremental audits would detect tampering if any frozen

node had its flag altered. Now, when an auditor requests
a list of only flagged events, the logger can generate that
list along with a proof that the list is complete. If there
are relatively few “important” events, the query results
can skip over large chunks of the history.

To generate a proof that the list of flagged events is
complete, the logger traverses the full history treeH,
pruning any subtrees without the flag set, and returns
a pruned treeP containing only the visited nodes. The
auditor can ensure that no flagged nodes were omitted
in P by performing its own recursive traversal onP and
verifying that every stub is unflagged.

Figure 7 shows the pruned tree for a query against a
version-5 history with eventsX2 andX5 flagged. Interior
nodes in the path fromX2 andX5 to the root will also be
flagged. For subtrees containing no matching events, such
as the parent ofX0 andX1, we only need to retain the root
of the subtree to vouch that its children are unflagged.

4.1 General attributes

Boolean flags are only one way we may flag log
events for later queries. Rather than enumerate every
possible variation, we abstract an aggregation strategy
over attributes into a 3-tuple,(τ,⊕,Γ). τ represents the
type of attribute or attributes that an event has.⊕ is a
deterministic function used to compute the attributes on
an interior node in the history tree byaggregating the
attributes of the node’s children.Γ is a deterministic
function that maps an event to its attributes. In our
example of client-flagged events, the aggregation strategy
is (τ := BOOL,⊕ := ∨,Γ(x) := x.isFlagged).

For example, in a banking application, an attribute
could be the dollar value of a transaction, aggregated
with the MAX function, permitting queries to find all
transactions over a particular dollar value and detect if the
logger tampers with the results. This corresponds to(τ :=
INT,⊕ := MAX ,Γ(x) := x.value). Or, consider events hav-
ing internal timestamps, generated by the client, arriving
at the logger out of order. If we attribute each node in the
tree with the earliest and latest timestamp found among its
children, we can now query the logger for all nodes within
a given time range, regardless of the order of event arrival.

There are at least three different ways to implement
keyword searching across logs using Merkle aggregation.
If the number of keywords is fixed in advance, then the
attributeτ for events can be a bit-vector or sparse bit-
vector combined with⊕ := ∨. If the number of keywords
is unknown, but likely to be small,τ can be a sorted list
of keywords, with⊕ := ∪ (set union). If the number of
keywords is unknown and potentially unbounded, then
a Bloom filter [8] may be used to represent them, withτ
being a bit-vector and⊕ :=∨. Of course, the Bloom filter
would then have the potential of returning false positives
to a query, but there would be no false negatives.

b

X0 X1 X2 X3

b

X4 X5

Figure 7: Demonstration of Merkle aggregation with some
events flagged as important (highlighted). Frozen nodes that
would be included in a query are represented as solid discs.

Merkle aggregation is extremely flexible becauseΓ
can beany deterministic computable function. However,
once a log has been created,(τ,⊕,Γ) are fixed for that
log, and the set of queries that can be made is restricted
based on the aggregation strategy chosen. In Section 5
we describe how we were able to apply these concepts to
the metadata used in Syslog logs.

4.2 Formal description

To make attributes tamper-evident in history trees, we
modify the computation of hashes over the tree to include
them. Each node now has a hash label denoted byAv

i,r.H
and an annotation denoted byAv

i,r.A for storing attributes.
Together these form the node data that is attached to each
node in the history tree. Note that the hash label of node,
Av

i,r.H, doesnot fix its own attributes,Av
i,r.A. Instead, we

define asubtree authenticator Av
i,r.∗ = H(Av

i,r.H ‖ Av
i,r.A)

that fixes the attributes and hash of a node, and recursively
fixes every hash and attribute in its subtree. Frozen hashes
FHi,r.A and FHi,r.H and FHi,r.∗ are defined analogously
to the non-Merkle-aggregation case.

We could have defined this recursion in several differ-
ent ways. This representation allows us to elide unwanted
subtrees with a small stub, containing one hash and one
set of attributes, while exposing the attributes in a way
that makes it possible to locally detect if the attributes
were improperly aggregated.

Our new mechanism for computing hash and aggre-
gates for a node is given in equations (5)-(10) in Figure 8.
There is a strong correspondence between this recurrence
and the previous one in Figure 5. Equations (6) and (7)
extract the hash and attributes of an event, analogous
to equation (1). Equation (9) handles aggregation of
attributes between a node and its children. Equation (8)
computes the hash of a node in terms of the subtree
authenticators of its children.

INCR.GEN and MEMBERSHIP.GEN operate the same
as with an ordinary history tree, except that wherever
a frozen hash was included in the proof (FHi,r), we
now include both the hash of the node, FHi,r.H, and its
attributes FHi,r.A. Both are required for recomputing
Av

i,r.A and Av
i,r.H for the parent node. ADD, INCR.VF,

Av
i,r.∗ = H(Av

i,r.H ‖Av
i,r.A) (5)

Av
i,0.H =

{

H(0‖Xi) if v ≥ i (6)

Av
i,0.A =

{

Γ(Xi) if v ≥ i (7)

Av
i,r.H =

{

H(1‖Av
i,r−1.∗‖�) if v < i+2r−1

H(1‖Av
i,r−1.∗‖Av

i+2r−1,r−1
.∗) if v ≥ i+2r−1

(8)

Av
i,r.A =

{

Av
i,r−1.A if v < i+2r−1

Av
i,r−1.A⊕Av

i+2r−1,r−1
.A if v ≥ i+2r−1 (9)

Cn = An
0,d.∗ (10)

Figure 8: Hash computations for Merkle aggregation

and MEMBERSHIP.VF are the same as before except for
using the equations (5)-(10) for computing hashes and
propagating attributes. Merkle aggregation inflates the
storage and proof sizes by a factor of(A + B)/A whereA
is the size of a hash andB is the size of the attributes.

4.2.1 Queries over attributes

In Merkle aggregation queries, we permit query results
to contain false positives, i.e., events that do not match
the queryQ. Extra false positive events in the result only
impact performance, not correctness, as they may be
filtered by the auditor. We forbid false negatives; every
event matchingQ will be included in the result.

Unfortunately, Merkle aggregation queries can only
match attributes, not events. Consequently, we must
conservatively transform a queryQ over events into a
predicateQΓ over attributes and require that it bestable,
with the following properties: IfQ matches an event then
QΓ matches the attributes of that event (i.e.,∀x Q(x) ⇒
QΓ(Γ(x))). Furthermore, ifQΓ is true for either child of a
node, it must be true for the node itself (i.e.,∀x,y QΓ(x)∨
QΓ(y)⇒ QΓ(x⊕y) and∀x QΓ(x)∨QΓ(�)⇒ QΓ(x⊕�)).

Stable predicates can falsely match nodes or events for
two reasons: events’ attributes may matchQΓ without
the events matchingQ, or nodes may occur where
(QΓ(x)∨QΓ(y)) is false, butQΓ(x⊕ y) is true. We call
a predicateQ exact if there can be no false matches. This
occurs whenQ(x) ⇔ QΓ(Γ(x)) and QΓ(x) ∨ QΓ(y) ⇔
QΓ(x ⊕ y). Exact queries are more efficient because a
query result does not include falsely matching events and
the corresponding pruned tree proving the correctness of
the query result does not require extra nodes.

Given these properties, we can now define the addi-
tional operations for performing authenticated queries on
the log for events matching a predicateQΓ.

H.QUERY(C j,QΓ) → P Given a predicateQΓ over
attributesτ, returns a pruned tree where every elided

subtrees does not matchQΓ.

P.QUERY.VF(C′
j,Q

Γ) →{⊤,⊥} Checks the pruned tree

P and returns⊤ if every stub inP does not matchQΓ

and the reconstructed commitmentC j is the same asC′
j.

Building a pruned tree containing all events matching
a predicateQΓ is similar to building the pruned trees
for membership or incremental auditing. The logger
starts with a proof skeleton then recursively traverses
it, splitting interior nodes whenQΓ(FHi,r.A) is true.
Because the predicateQΓ is stable, no event in any elided
subtree can match the predicate. If there aret events
matching the predicateQΓ, the pruned tree is of size at
most O((1+ t) log2 n) (i.e., t leaves with log2 n interior
tree nodes on the paths to the root).

To verify thatP includes all events matchingQΓ, the
auditor does a recursive traversal overP. If the auditor
finds an interior stub whereQΓ(FHi,r.A) is true, the ver-
ification fails because the auditor found a node that was
supposed to have been split. (Unfrozen nodes will always
be split as they compose the proof skeleton and only occur
on the path fromX j to the root.) The auditor must also
verify that pruned treeP commits the same events as the
commitmentC′

j by reconstructing the root commitment
C j using the equations (5)-(10) and checking thatC j =C′

j.
As with an ordinary history tree, a Merkle aggregating

tree requires auditing for tamper-detection. If an event is
never audited, then there is no guarantee that its attributes
have been properly included. Also, a dishonest logger
or client could deliberately insert false log entries whose
attributes are aggregated up the tree to the root, causing
garbage results to be included in queries. Even so, ifQ
is stable, a malicious logger cannot hide matching events
from query results without detection.

4.3 Applications
Safe deletion Merkle aggregation can be used for
expiring old and obsolete events that do not satisfy some
predicate and prove that no other events were deleted
inappropriately. While Merkle aggregation queries prove
that no matching event is excluded from a query result,
safe deletion requires the contrapositive: proving to an
auditor that each purged event was legitimately purged
because it did not match the predicate.

Let Q(x) be a stable query that is true for all events that
the logger must keep. LetQΓ(x) be the corresponding
predicate over attributes. The logger stores a pruned tree
that includes all nodes and leaf events whereQΓ(x) is
true. The remaining nodes may be elided and replaced
with stubs. When a logger cannot generate a path to a
previously deleted eventXi, it instead supplies a pruned
tree that includes a path to an ancestor nodeA of Xi where
QΓ(A) is false. BecauseQ is stable, ifQΓ(A) is false,
thenQΓ(Γ(Xi)) andQ(Xi) must also be false.

Safe deletion and auditing policies must take into
account that if a subtree containing eventsXi . . .X j is
purged, the logger is unable to generate incremental or
membership proofs involving commitmentsCi . . .C j. The
auditing policy must require that any audits using those
commitments be performed before the corresponding
events are deleted, which may be as simple as requiring
that clients periodically request an incremental proof to a
later or long-lived commitment.

Safe deletion will not save space when using the
append-only storage described in Section 3.3. However,
if data-destruction policies require destroying a subset of
events in the log, safe deletion may be used to prove that
no unauthorized log events were destroyed.

“Private” search Merkle aggregation enables a weak
variant of private information retrieval [14], permitting
clients to have privacy for the specific contents of their
events. To aggregate the attributes of an event, the logger
only needs the attributes of an event,Γ(Xi), not the event
itself. To verify that aggregation is done correctly also
only requires the attributes of an event. If clients encrypt
their events and digitally sign their public attributes,
auditors may verify that aggregation is done correctly
while clients preserve their event privacy from the logger
and other clients and auditors.

Bloom filters, in addition to providing a compact and
approximate way to represent the presence or absence
of a large number of keywords, can also enable private
indexing (see, e.g., Goh [23]). The logger has no idea
what the individual keywords are within the Bloom
filter; many keywords could map to the same bit. This
allows for private keywords that are still protected by the
integrity mechanisms of the tree.

5 Syslog prototype implementation
Syslog is the standard Unix-based logging system [38],

storing events with many attributes. To demonstrate the
effectiveness of our history tree, we built an implementa-
tion capable of storing and searching syslog events. Using
events from syslog traces, captured from our departmental
servers, we evaluated the storage and performance costs
of tamper-evident logging and secure deletion.

Each syslog event includes a timestamp, the host gener-
ating the event, one of 24facilities or subsystem that gen-
erated the event, one of 8 logginglevels, and themessage.
Most events also include atag indicating the program
generating the event. Solutions for authentication, man-
agement, and reliable delivery of syslog events over the
network have already been proposed [48] and are in the
process of being standardized [32], but none of this work
addresses the logging semantics that we wish to provide.

Our prototype implementation was written in a hybrid
of Python 2.5.2 and C++ and was benchmarked on an

Intel Core 2 Duo 2.4GHz CPU with 4GB of RAM in
64-bit mode under Linux. Our present implementation is
single-threaded, so the second CPU core is underutilized.
Our implementation uses SHA-1 hashes and 1024-bit
DSA signatures, borrowed from the OpenSSL library.

In our implementation, we use the array-based post-
order traversal representation discussed in Section 3.3.
The value store and history tree are stored in separate
write-once append-only files and mapped into memory.
Nodes in the history tree use a fixed number of bytes,
permitting direct access. Generating membership and
incremental proofs requires RAM proportional to the
size of the proof, which is logarithmic in the number of
events in the log. Merkle aggregation query result sizes
are presently limited to those which can fit in RAM,
approximately 4 million events.

The storage overheads of our tamper-evident history
tree are modest. Our prototype stores five attributes for
each event. Tags and host names are encoded as 2-of-32
bit Bloom filters. Facilities and hosts are encoded as
bit-vectors. To permit range queries to find every event
in a particular range of time, an interval is used to encode
the message timestamp. All together, there are twenty
bytes of attributes and twenty bytes for a SHA-1 hash for
each node in the history tree. Leaves have an additional
twelve bytes to store the offset and length of the event
contents in the value store.

We ran a number of simulations of our prototype to
determine the processing time and space overheads of
the history tree. To this end, we collected a trace of
four million events from thirteen of our departmental
server hosts over 106 hours. We observed 9 facilities,
6 levels, and 52 distinct tags. 88.1% of the events are
from the mail server and 11.5% are from 98,743 failed
ssh connection attempts. Only .393% of the log lines
are from other sources. In testing our history tree, we
replay this trace 20 times to insert 80 million events. Our
syslog trace, after the replay, occupies 14.0 GB, while the
history tree adds an additional 13.6 GB.

5.1 Performance of the logger

The logger is the only centralized host in our design
and may be a bottleneck. The performance of a real world
logger will depend on the auditing policy and relative
frequency between inserting events and requesting audits.
Rather than summarize the performance of the logger for
one particular auditing policy, we benchmark the costs of
the various tasks performed by the logger.

Our captured syslog traces averaged only ten events per
second. Our prototype can insert events at a rate of 1,750
events per second, including DSA signature generation.
Inserting an event requires four steps, shown in Table 2,
with the final step, signing the resulting commitment,
responsible for most of the processing time. Throughput

Step Task % of CPU Rate
(events/sec)

A Parse syslog message 2.4% 81,000
B Insert event into log 2.6% 66,000
C Generate commitment 11.8% 15,000
D Sign commitment 83.3% 2,100

Membership proofs - 8,600
(with locality)

Membership proofs - 32
(no locality)

Table 2: Performance of the logger in each of the four steps re-
quired to insert an event and sign the resulting commitment and
in generating membership proofs. Rates are given assuming
nothing other than the specified step is being performed.

would increase to 10,500 events per second if the DSA
signatures were computed elsewhere (e.g., leveraging
multiple CPU cores). (Section 6 discusses scalability
in more detail.) This corresponds to 1.9MB/sec of
uncompressed syslog data (1.1 TB per week).

We also measured the rate at which our prototype can
generate membership and incremental proofs. The size of
an incremental proof between two commitments depends
upon the distance between the two commitments. As the
distance varies from around two to two million events,
the size of a self-contained proof varies from 1200 bytes
to 2500 bytes. The speed for generating these proofs
varies from 10,500 proofs/sec to 18,000 proofs/sec, with
shorter distances having smaller proof sizes and faster
performance than longer distances. For both incremental
and membership proofs, compressing by gzip [18] halves
the size of the proofs, but also halves the rate at which
proofs can be generated.

After inserting 80 million events into the history tree,
the history tree and value store require 27 GB, several
times larger than our test machine’s RAM capacity.
Table 2 presents our results for two membership auditing
scenarios. In our first scenario we requested membership
proofs for random events chosen among the most recent
5 million events inserted. Our prototype generated 8,600
self-contained membership proofs per second, averaging
2,400 bytes each. In this high-locality scenario, the most
recent 5 million events were already sitting in RAM. Our
second scenario examined the situation when audit re-
quests had low locality by requesting membership proofs
for random events anywhere in the log. The logger’s
performance was limited to our disk’s seek latency. Proof
size averaged 3,100 bytes and performance degraded to
32 membership proofs per second. (We discuss how this
might be overcome in Section 6.2.)

To test the scalability of the history tree, we bench-
marked insert performance and auditing performance on
our original 4 million event syslog event trace, without
replication, and the 80 million event trace after 20x
replication. Event insertion and incremental auditing are

roughly 10% slower on the larger log.

5.2 Performance of auditors and clients
The history tree places few demands upon auditors

or clients. Auditors and clients must verify the logger’s
commitment signatures and must verify the correctness
of pruned tree replies to auditing requests. Our machine
can verify 1,900 DSA-1024 signatures per second. Our
current tree parser is written in Python and is rather slow.
It can only parse 480 pruned trees per second. Once
the pruned tree has been parsed, our machine can verify
9,000 incremental or membership proofs per second.
Presently, one auditor cannot verify proofs as fast as the
logger can generate them, but auditors can clearly operate
independently of one another, in parallel, allowing for
exceptional scaling, if desired.

5.3 Merkle aggregation results
In this subsection, we describe the benefits of Merkle

aggregation in generating query results and in safe
deletion. In our experiments, due to limitations of our
implementation in generating large pruned trees, our
Merkle aggregation experiments used the smaller four
million event log.

We used 86 different predicates to investigate the
benefits of safe deletion and the overheads of Merkle
aggregation queries. We used 52 predicates, each match-
ing one tag, 13 predicates, each matching one host, 9
predicates, each matching one facility, 6 predicates, one
matching each level, and 6 predicates, each matching the
k highest logging levels.

The predicates matching tags and hosts use Bloom
filters, areinexact, and may have false positives. This
causes 34 of the 65 Bloom filter query results to include
more nodes than our “worst case” expectation for exact
predicates. By using larger Bloom filters, we reduce
the chances of spurious matches. When a 4-of-64
Bloom filter is used for tags and hostnames, pruned trees
resulting from search queries average 15% fewer nodes,
at the cost of an extra 64 bits of attributes for each node
in the history tree. In a real implementation, the exact
parameters of the Bloom filter would best be tuned to
match a sample of the events being logged.

Merkle aggregation and safe deletion Safe deletion
allows the purging of unwanted events from the log.
Auditors define a stable predicate over the attributes of
events indicating which events must be kept, and the
logger keeps a pruned tree of only those matching events.
In our first test, we simulated the deletion of all events
except those from a particular host. The pruned tree was
generated in 14 seconds, containing 1.92% of the events
in the full log and serialized to 2.29% of the size of the
full tree. Although 98.08% of the events were purged, the
logger was only able to purge 95.1% of the nodes in the

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 a
nn

ot
at

io
ns

 k
ep

t

Fraction of events kept

Non-bloom
Bloom, 2-of-32 bits
Bloom, 4-of-64 bits

Worst Case
Best Case

Figure 9: Safe deletion overhead. For a variety of queries,
we plot the fraction of hashes and attributes kept after deletion
versus the fraction of events kept.

history tree because the logger must keep the hash label
and attributes for the root nodes of elided subtrees.

When measuring the size of a pruned history tree
generated by safe deletion, we assume the logger caches
hashes and attributes for all interior nodes in order to be
able to quickly generate proofs. For each predicate, we
measure thekept ratio, the number of interior node or
stubs in a pruned tree of all nodes matching the predicate
divided by the number of interior nodes in the full history
tree. In Figure 9 for each predicate we plot the kept ratio
versus the fraction of events matching the predicate. We
also plot the analytic best-case and worst-case bounds,
based on a continuous approximation. The minimum
overhead occurs when the matching events are contiguous
in the log. The worst-case occurs when events are max-
imally separated in the log. Our Bloom-filter queries do
worse than the “worst-case” bound because Bloom filter
matches are inexact and will thus trigger false positive
matches on interior nodes, forcing them to be kept in the
resulting pruned tree. Although many Bloom filters did
far worse than the “worst-case,” among the Bloom filters
that matched fewer than 1% of the events in the log, the
logger is still able to purge over 90% of the nodes in the
history tree and often did much better than that.

Merkle aggregation and authenticated query results
In our second test, we examine the overheads for Merkle
aggregation query lookup results. When the logger
generates the results to a query, the resulting pruned
tree will contain both matching events and history tree
overhead, in the form of hashes and attributes for any
stubs. For each predicate, we measure thequery overhead
ratio—the number of stubs and interior nodes in a pruned
tree divided by the number of events in the pruned tree.
In Figure 10 we plot the query overhead ratio versus the
fraction of events matching the query for each of our 86
predicates. This plot shows, for each event matching a
predicate, proportionally how much extra overhead is in-

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 a
nn

ot
at

io
ns

 in
 p

ro
of

 p
er

 e
ve

nt

Fraction of events in the query result

Non-bloom
Bloom, 2-of-32 bits
Bloom, 4-of-64 bits

Worst case
Best case

Figure 10: Query overhead per event. We plot the ratio be-
tween the number of hashes and matching events in the result
of each query versus the fraction of events matching the query.

curred, per event, for authentication information. We also
plot the analytic best-case and worst-case bounds, based
on a continuous approximation. The minimum overhead
occurs when the matching events are contiguous in the
log. The worst-case occurs when events are maximally
separated in the log. With exact predicates, the overhead
of authenticated query results is very modest, and again,
inexact Bloom filter queries will sometimes do worse
than the “worst case.”

6 Scaling a tamper-evident log
In this section, we discuss techniques to improve the

insert throughput of the history tree by using concurrency,
and to improve the auditing throughput with replication.
We also discuss a technique to amortize the overhead of
a digital signature over several events.

6.1 Faster inserts via concurrency
Our tamper-evident log offers many opportunities to

leverage concurrency to increase throughput. Perhaps
the simplest approach is to offload signature generation.
From Table 2, signatures account for over 80% of the
runtime cost of an insert. Signatures are not included
in any other hashes and there are no interdependencies
between signature computations. Furthermore, signing
a commitment does not require knowing anything other
than the root commitment of the history tree. Conse-
quently, it’s easy to offload signature computations onto
additional CPU cores, additional hosts, or hardware
crypto accelerators to improve throughput.

It is possible for a logger to also generate commitments
concurrently. If we examine Table 2, parsing and inserting
events in the log is about two times faster than generating
commitments. Like signatures, commitments have no
interdependencies on one other; they depend only on the
history tree contents. As soon as eventX j is inserted into
the tree andO(1) frozen hashes are computed and stored,

a new event may be immediately logged. Computing
the commitmentC j only requires read-only access to the
history tree, allowing it to be computed concurrently by
another CPU core without interfering with subsequent
events. By using shared memory and taking advantage of
the append-only write-once semantics of the history tree,
we would expect concurrency overhead to be low.

We have experimentally verified the maximum rate
at which our prototype implementation, described in
Section 5, can insert syslog events into the log at 38,000
events per second using only one CPU core on commodity
hardware. This is the maximum throughput our hardware
could potentially support. In this mode we assume that
digital signatures, commitment generation, and audit
requests are delegated to additional CPU cores or hosts.
With multiple hosts, each host must build a replica of
the history tree which can be done at least as fast as
our maximum insert rate of 38,000 events per second.
Additional CPU cores on these hosts can then be used for
generating commitments or handling audit requests.

For some applications, 38,000 events per second may
still not be fast enough. Scaling beyond this would
require fragmenting the event insertion and storage tasks
across multiple logs. To break interdependencies between
them, the fundamental history tree data structure we
presently use would need to evolve, perhaps into disjoint
logs that occasionally entangle with one another as in
timeline entanglement [43]. Designing and evaluating
such a structure is future work.

6.2 Logs larger than RAM

For exceptionally large audits or queries, where the
working set size does not fit into RAM, we observed
that throughput was limited to disk seek latency. Similar
issues occur in any database query system that uses
secondary storage, and the same software and hardware
techniques used by databases to speed up queries may
be used, including faster or higher throughput storage
systems or partitioning the data and storing it in-memory
across a cluster of machines. A single large query can
then be issued to the cluster node managing each sub-tree.
The results would then be merged before transmitting the
results to the auditor. Because each sub-tree would fit in
its host’s RAM, sub-queries would run quickly.

6.3 Signing batches of events

When large computer clusters are unavailable and the
performance cost of DSA signatures is the limiting factor
in the logger’s throughput, we may improve performance
of the logger by allowing multiple updates to be handled
with one signature computation.

Normally, when a client requests an eventX to be
inserted, the logger assigns it an indexi, generates the
commitmentCi, signs it, and returns the result. If the

logger has insufficient CPU to sign every commitment,
the logger could instead delay returningCi until it has
a signature for some later commitmentC j (j ≥ i). This
later signed commitment could then be sent to the client
expecting an earlier one. To ensure that the eventXi in
the log committed byC j was X , the client may request
a membership proof from commitmentC j to eventi and
verify thatXi = X . This is safe due to the tamper-evidence
of our structure. If the logger were ever to later sign aCi

inconsistent withC j, it would fail an incremental proof.
In our prototype, inserting events into the log is twenty

times faster than generating and signing commitments.
The logger may amortize the costs of generating a signed
commitment over many inserted events. The number of
events per signed commitment could vary dynamically
with the load on the logger. Under light load, the logger
could sign every commitment and insert 1,750 events per
second. With increasing load, the logger might sign one in
every 16 commitments to obtain an estimated insert rate of
17,000 events per second. Clients will still receive signed
commitments within a fraction of a second, but several
clients can now receive the same commitment. Note that
this analysis only considers the maximum insert rate for
the log and does not include the costs of replying to audits.
The overall performance improvements depend on how
often clients request incremental and membership proofs.

7 Related work
There has been recent interest in creating append-only

databases for regulatory compliance. These databases
permit the ability to access old versions and trace tam-
pering [51]. A variety of different data structures are
used, including a B-tree [64] and a full text index [47].
The security of these systems depends on a write-once
semantics of the underlying storage that cannot be
independently verified by a remote auditor.

Forward-secure digital signature schemes [3] or stream
authentication [21] can be used for signing commitments
in our scheme or any other logging scheme. Entries in the
log may be encrypted by clients for privacy. Kelsey and
Schneier [57] have the logger encrypt entries with a key
destroyed after use, preventing an attacker from reading
past log entries. A hash function is iterated to generate
the encryption keys. The initial hash is sent to a trusted
auditor so that it may decrypt events. Logcrypt [29]
extends this to public key cryptography.

Ma and Tsudik [41] consider tamper-evident logs built
using forward-secure sequential aggregating signature
schemes [39, 40]. Their design is round-based. Within
each round, the logger evolves its signature, combining
a new event with the existing signature to generate a new
signature, and also evolves the authentication key. At the
end of a round, the final signature can authenticate any
event inserted.

Davis et. al. [17] permits keyword searching in a log
by trusting the logger to build parallel hash chains for
each keyword. Techniques have also been designed for
keyword searching encrypted logs [60, 61]. A tamper-
evident store for voting machines has been proposed,
based on append-only signatures [33], but the signature
sizes grow with the number of signed messages [6].

Many timestamping services have been proposed in
the literature. Haber and Stornetta [27] introduce a time-
stamping service based on hash chains, which influenced
the design of Surety, a commercial timestamping service
that publishes their head commitment in a newspaper
once a week. Chronos is a digital timestamping service
inspired by a skip list, but with a hashing structure similar
to our history tree [7]. This and other timestamping
designs [9, 10] are round-based. In each round, the logger
collects a set of events and stores the events within that
round in a tree, skip list, or DAG. At the end of the round
the logger publicly broadcasts (e.g., in a newspaper)
the commitment for that round. Clients then obtain a
logarithmically-sized, tamper-evident proof that their
events are stored within that round and are consistent
with the published commitment. Efficient algorithms
have been constructed for outputting time stamp au-
thentication information for successive events within a
round in a streaming fashion, with minimal storage on the
server [37]. Unlike these systems, our history tree allows
events to be added to the log, commitments generated,
and audits to be performed at any time.

Maniatis and Baker [43] introduced the idea oftimeline
entanglement, where every participant in a distributed
system maintains a log. Every time a message is received,
it is added to the log, and every message transmitted
contains the hash of the log head. This process spreads
commitments throughout the network, making it harder
for malicious nodes to diverge from the canonical time-
line without there being evidence somewhere that could
be used in an audit to detect tampering. Auditorium [55]
uses this property to create a shared “bulletin board” that
can detect tampering even whenN −1 systems are faulty.

Secure aggregation has been investigated as a dis-
tributed protocol in sensor networks for computing sums,
medians, and other aggregate values when the host
doing the aggregation is not trusted. Techniques include
trading off approximate results in return for sublinear
communication complexity [12], or using MAC codes
to detect one-hop errors in computing aggregates [30].
Other aggregation protocols have been based around
hash tree structures similar to the ones we developed for
Merkle aggregation. These structures combine aggrega-
tion and cryptographic hashing, and include distributed
sensor-network aggregation protocols for computing au-
thenticated sums [13] and generic aggregation [45]. The
sensor network aggregation protocols interactively gener-

ate a secure aggregate of a set of measurements. In Merkle
aggregation, we use intermediate aggregates as a tool for
performing efficient queries. Also, our Merkle aggre-
gation construction is more efficient than these designs,
requiring fewer cryptographic hashes to verify an event.

8 Conclusions
In this work we have shown that regular and continous

auditing is a critical operation for any tamper-evident log
system, for without auditing, clients cannot detect if a
Byzantine logger is misbehaving by not logging events,
removing unaudited events, or forking the log. From this
requirement we have developed a new tamper-evident
log design, based on a new Merkle tree data structure
that permits a logger to produce concise proofs of its
correct behavior. Our system eliminates any need to trust
the logger, instead allowing clients and auditors of the
logger to efficiently verify its correct behavior with only a
constant amount of local state. By sharing commitments
among clients and auditors, our design is resistant even
to sophisticated forking or rollback attacks, even in cases
where a client might change its mind and try to repudiate
events that it had logged earlier.

We also proposed Merkle aggregation, a flexible
mechanism for encoding auxiliary attributes into a
Merkle tree that allows these attributes to be aggregated
from the leaves up to the root of the tree in a verifiable
fashion. This technique permits a wide range of efficient,
tamper-evident queries, as well as enabling verifiable,
safe deletion of “expired” events from the log.

Our prototype implementation supports thousands of
events per second, and can easily scale to very large
logs. We also demonstrated the effectiveness of Bloom
filters to enable a broad range of queries. By virtue of its
concise proofs and scalable design, our techniques can
be applied in a variety of domains where high volumes
of logged events might otherwise preclude the use of
tamper-evident logs.

Acknowledgements
The authors gratefully acknowledge Farinaz Koushan-

far, Daniel Sandler, and Moshe Vardi for many helpful
comments and discussions on this project. The authors
also thank the anonymous referees and Micah Sherr, our
shepherd, for their assistance. This work was supported,
in part, by NSF grants CNS-0524211 and CNS-0509297.

References
[1] ACCORSI, R., AND HOHL, A. Delegating secure logging

in pervasive computing systems. InSecurity in Pervasive
Computing (York, UK, Apr. 2006), pp. 58–72.

[2] A NAGNOSTOPOULOS, A., GOODRICH, M. T., AND
TAMASSIA , R. Persistent authenticated dictionaries and
their applications. InInternational Conference on

Information Security (ISC) (Seoul, Korea, Dec. 2001),
pp. 379–393.

[3] BELLARE, M., AND M INER, S. K. A forward-secure
digital signature scheme. InCRYPTO ’99 (Santa Barbara,
CA, Aug. 1999), pp. 431–448.

[4] BELLARE, M., AND YEE, B. S. Forward integrity for
secure audit logs. Tech. rep., University of California at
San Diego, Nov. 1997.

[5] BENALOH, J.,AND DE MARE, M. One-way
accumulators: a decentralized alternative to digital
signatures. InWorkshop on the Theory and Application of
Cryptographic Techniques on Advances in Cryptology
(EuroCrypt ’93) (Lofthus, Norway, May 1993),
pp. 274–285.

[6] BETHENCOURT, J., BONEH, D., AND WATERS, B.
Cryptographic methods for storing ballots on a voting
machine. InNetwork and Distributed System Security
Symposium (NDSS) (San Diego, CA, Feb. 2007).

[7] BLIBECH, K., AND GABILLON , A. CHRONOS: An
authenticated dictionary based on skip lists for
timestamping systems. InWorkshop on Secure Web
Services (Fairfax, VA, Nov. 2005), pp. 84–90.

[8] BLOOM, B. H. Space/time trade-offs in hash coding with
allowable errors.Communications of the ACM 13, 7
(1970), 422–426.

[9] BULDAS, A., LAUD , P., LIPMAA , H., AND
WILLEMSON, J. Time-stamping with binary linking
schemes. InCRYPTO ’98 (Santa Barbara, CA, Aug.
1998), pp. 486–501.

[10] BULDAS, A., L IPMAA , H., AND SCHOENMAKERS, B.
Optimally efficient accountable time-stamping. In
International Workshop on Practice and Theory in Public
Key Cryptography (PKC) (Melbourne, Victoria, Australia,
Jan. 2000), pp. 293–305.

[11] CAMENISCH, J.,AND LYSYANSKAYA , A. Dynamic
accumulators and application to efficient revocation of
anonymous credentials. InCRYPTO ’02 (Santa Barbara,
CA, Aug. 2002), pp. 61–76.

[12] CHAN , H., PERRIG, A., PRZYDATEK , B., AND SONG,
D. SIA: Secure information aggregation in sensor
networks.Journal Computer Security 15, 1 (2007),
69–102.

[13] CHAN , H., PERRIG, A., AND SONG, D. Secure
hierarchical in-network aggregation in sensor networks.
In ACM Conference on Computer and Communications
Security (CCS ’06) (Alexandria, VA, Oct. 2006),
pp. 278–287.

[14] CHOR, B., GOLDREICH, O., KUSHILEVITZ , E., AND
SUDAN , M. Private information retrieval. InAnnual
Symposium on Foundations of Computer Science
(Milwaukee, WI, Oct. 1995), pp. 41–50.

[15] CHUN, B.-G., MANIATIS , P., SHENKER, S.,AND
KUBIATOWICZ , J. Attested append-only memory:
Making adversaries stick to their word. InSOSP ’07
(Stevenson, WA, Oct. 2007), pp. 189–204.

[16] D. S. PARKER, J., POPEK, G. J., RUDISIN, G.,
STOUGHTON, A., WALKER , B. J., WALTON , E., CHOW,
J. M., EDWARDS, D., KISER, S.,AND KLINE , C.
Detection of mutual inconsistency in distributed systems.
IEEE Transactions on Software Engineering 9, 3 (1983),
240–247.

[17] DAVIS , D., MONROSE, F., AND REITER, M. K.
Time-scoped searching of encrypted audit logs. In
Information and Communications Security Conference

(Malaga, Spain, Oct. 2004), pp. 532–545.
[18] DEUTSCH, P. Gzip file format specification version 4.3.

RFC 1952, May 1996.http://www.ietf.org/rfc/rfc1952.txt.
[19] DEVANBU , P., GERTZ, M., KWONG, A., MARTEL, C.,

NUCKOLLS, G., AND STUBBLEBINE, S. G. Flexible
authentication of XML documents.Journal of Computer
Security 12, 6 (2004), 841–864.

[20] DEVANBU , P., GERTZ, M., MARTEL, C., AND
STUBBLEBINE, S. G. Authentic data publication over the
internet.Journal Computer Security 11, 3 (2003),
291–314.

[21] GENNARO, R., AND ROHATGI, P. How to sign digital
streams. InCRYPTO ’97 (Santa Barbara, CA, Aug.
1997), pp. 180–197.

[22] GERR, P. A., BABINEAU , B., AND GORDON, P. C.
Compliance: The effect on information management and
the storage industry. The Enterprise Storage Group, May
2003.http://searchstorage.techtarget.com/tip/0,289483,
sid5 gci906152,00.html.

[23] GOH, E.-J. Secure indexes. Cryptology ePrint Archive,
Report 2003/216, 2003.http://eprint.iacr.org/2003/216/
See alsohttp://eujingoh.com/papers/secureindex/.

[24] GOODRICH, M., TAMASSIA , R., AND SCHWERIN, A.
Implementation of an authenticated dictionary with skip
lists and commutative hashing. InDARPA Information
Survivability Conference & Exposition II (DISCEX II)
(Anaheim, CA, June 2001), pp. 68–82.

[25] GOODRICH, M. T., TAMASSIA , R., TRIANDOPOULOS,
N., AND COHEN, R. F. Authenticated data structures for
graph and geometric searching. InTopics in Cryptology,
The Cryptographers’ Track at the RSA Conference
(CT-RSA) (San Francisco, CA, Apr. 2003), pp. 295–313.

[26] GOYAL , V., PANDEY, O., SAHAI , A., AND WATERS, B.
Attribute-based encryption for fine-grained access control
of encrypted data. InACM Conference on Computer and
Communications Security (CCS ’06) (Alexandria,
Virginia, Oct. 2006), pp. 89–98.

[27] HABER, S.,AND STORNETTA, W. S. How to time-stamp
a digital document. InCRYPTO ’98 (Santa Barbara, CA,
1990), pp. 437–455.

[28] HAEBERLEN, A., KOUZNETSOV, P.,AND DRUSCHEL,
P. PeerReview: Practical accountability for distributed
systems. InSOSP ’07 (Stevenson, WA, Oct. 2007).

[29] HOLT, J. E. Logcrypt: Forward security and public
verification for secure audit logs. InAustralasian
Workshops on Grid Computing and E-research (Hobart,
Tasmania, Australia, 2006).

[30] HU, L., AND EVANS, D. Secure aggregation for wireless
networks. InSymposium on Applications and the Internet
Workshops (SAINT) (Orlando, FL, July 2003), p. 384.

[31] ITKIS, G. Cryptographic tamper evidence. InACM
Conference on Computer and Communications Security
(CCS ’03) (Washington D.C., Oct. 2003), pp. 355–364.

[32] KELSEY, J., CALLAS , J.,AND CLEMM , A. Signed
Syslog messages.
http://tools.ietf.org/id/draft-ietf-syslog-sign-23.txt (work in
progress), Sept. 2007.

[33] K ILTZ , E., MITYAGIN , A., PANJWANI , S.,AND
RAGHAVAN , B. Append-only signatures. InInternational
Colloquium on Automata, Languages and Programming
(Lisboa, Portugal, July 2005).

[34] KOCHER, P. C. On certificate revocation and validation.
In International Conference on Financial Cryptography

(FC ’98) (Anguilla, British West Indies, Feb. 1998),
pp. 172–177.

[35] KOTLA , R., ALVISI , L., DAHLIN , M., CLEMENT, A.,
AND WONG, E. Zyzzyva: Speculative byzantine fault
tolerance. InSOSP ’07 (Stevenson, WA, Oct. 2007),
pp. 45–58.

[36] L I , J., KROHN, M., MAZI ÈRES, D., AND SHASHA, D.
Secure untrusted data repository (SUNDR). InOperating
Systems Design & Implementation (OSDI) (San
Francisco, CA, Dec. 2004).

[37] L IPMAA , H. On optimal hash tree traversal for interval
time-stamping. InProceedings of the 5th International
Conference on Information Security (ISC02) (Seoul,
Korea, Nov. 2002), pp. 357–371.

[38] LONVICK , C. The BSD Syslog protocol. RFC 3164,
Aug. 2001.http://www.ietf.org/rfc/rfc3164.txt.

[39] MA , D. Practical forward secure sequential aggregate
signatures. InProceedings of the 2008 ACM symposium
on Information, computer and communications security
(ASIACCS’08) (Tokyo, Japan, Mar. 2008), pp. 341–352.

[40] MA , D., AND TSUDIK, G. Forward-secure sequential
aggregate authentication. InProceedings of the 2007
IEEE Symposium on Security and Privacy (Oakland, CA,
May 2007), IEEE Computer Society, pp. 86–91.

[41] MA , D., AND TSUDIK, G. A new approach to secure
logging. Transactions on Storage 5, 1 (2009), 1–21.

[42] MANIATIS , P.,AND BAKER, M. Enabling the archival
storage of signed documents. InFAST ’02: Proceedings
of the 1st USENIX Conference on File and Storage
Technologies (Monterey, CA, 2002).

[43] MANIATIS , P.,AND BAKER, M. Secure history
preservation through timeline entanglement. InUSENIX
Security Symposium (San Francisco, CA, Aug. 2002).

[44] MANIATIS , P., ROUSSOPOULOS, M., GIULI , T. J.,
ROSENTHAL, D. S. H.,AND BAKER, M. The LOCKSS
peer-to-peer digital preservation system.ACM
Transactions on Computer Systems 23, 1 (2005), 2–50.

[45] MANULIS , M., AND SCHWENK, J. Provably secure
framework for information aggregation in sensor
networks. InComputational Science and Its Applications
(ICCSA) (Kuala Lumpur, Malaysia, Aug. 2007),
pp. 603–621.

[46] MERKLE, R. C. A digital signature based on a
conventional encryption function. InCRYPTO ’88 (1988),
pp. 369–378.

[47] M ITRA , S., HSU, W. W., AND WINSLETT, M.
Trustworthy keyword search for regulatory-compliant
records retention. InInternational Conference on Very
Large Databases (VLDB) (Seoul, Korea, Sept. 2006),
pp. 1001–1012.

[48] MONTEIRO, S. D. S.,AND ERBACHER, R. F.
Exemplifying attack identification and analysis in a novel
forensically viable Syslog model. InWorkshop on
Systematic Approaches to Digital Forensic Engineering
(Oakland, CA, May 2008), pp. 57–68.

[49] NAOR, M., AND NISSIM, K. Certificate revocation and
certificate update. InUSENIX Security Symposium (San
Antonio, TX, Jan. 1998).

[50] OSTROVSKY, R., SAHAI , A., AND WATERS, B.
Attribute-based encryption with non-monotonic access
structures. InACM Conference on Computer and
Communications Security (CCS ’07) (Alexandria, VA,
Oct. 2007), pp. 195–203.

[51] PAVLOU , K., AND SNODGRASS, R. T. Forensic analysis
of database tampering. InACM SIGMOD International
Conference on Management of Data (Chicago, IL, June
2006), pp. 109–120.

[52] PETERSON, Z. N. J., BURNS, R., ATENIESE, G., AND
BONO, S. Design and implementation of verifiable audit
trails for a versioning file system. InUSENIX Conference
on File and Storage Technologies (San Jose, CA, Feb.
2007).

[53] PUGH, W. Skip lists: A probabilistic alternative to
balanced trees. InWorkshop on Algorithms and Data
Structures (1989), pp. 437–449.

[54] SAHAI , A., AND WATERS, B. Fuzzy identity based
encryption. InWorkshop on the Theory and Application
of Cryptographic Techniques on Advances in Cryptology
(EuroCrypt ’05) (May 2005), vol. 3494, pp. 457 – 473.

[55] SANDLER, D., AND WALLACH , D. S. Casting votes in
the Auditorium. InUSENIX/ACCURATE Electronic
Voting Technology Workshop (EVT’07) (Boston, MA,
Aug. 2007).

[56] SCHNEIER, B., AND KELSEY, J. Automatic event-stream
notarization using digital signatures. InSecurity Protocols
Workshop (Cambridge, UK, Apr. 1996), pp. 155–169.

[57] SCHNEIER, B., AND KELSEY, J. Secure audit logs to
support computer forensics.ACM Transactions on
Information and System Security 1, 3 (1999).

[58] SION, R. Strong WORM. InInternational Conference on
Distributed Computing Systems (Beijing, China, May
2008), pp. 69–76.

[59] SNODGRASS, R. T., YAO, S. S.,AND COLLBERG, C.
Tamper detection in audit logs. InConference on Very
Large Data Bases (VLDB) (Toronto, Canada, Aug. 2004),
pp. 504–515.

[60] SONG, D. X., WAGNER, D., AND PERRIG, A. Practical
techniques for searches on encrypted data. InIEEE
Symposium on Security and Privacy (Berkeley, CA, May
2000), pp. 44–55.

[61] WATERS, B. R., BALFANZ , D., DURFEE, G., AND
SMETTERS, D. K. Building an encrypted and searchable
audit log. InNetwork and Distributed System Security
Symposium (NDSS) (San Diego, CA, Feb. 2004).

[62] WEATHERSPOON, H., WELLS, C., AND KUBIATOWICZ ,
J. Naming and integrity: Self-verifying data in
peer-to-peer systems. InFuture Directions in Distributed
Computing (2003), vol. 2584 ofLecture Notes in
Computer Science, pp. 142–147.

[63] YUMEREFENDI, A. R., AND CHASE, J. S. Strong
accountability for network storage.ACM Transactions on
Storage 3, 3 (2007).

[64] ZHU, Q., AND HSU, W. W. Fossilized index: The
linchpin of trustworthy non-alterable electronic records.
In ACM SIGMOD International Conference on
Management of Data (Baltimore, MD, June 2005),
pp. 395–406.

