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Abstract

We describe a “cheat” attack, allowing an ordinary pro-
cess to hijack any desirable percentage of the CPU
cycles without requiring superuser/administrator privi-
leges. Moreover, the nature of the attack is such that,
at least in some systems, listing the active processes will
erroneously show the cheating process as not using any
CPU resources: the “missing” cycles would either be at-
tributed to some other process or not be reported at all (if
the machine is otherwise idle). Thus, certain malicious
operations generally believed to have required overcom-
ing the hardships of obtaining root access and installing a
rootkit, can actually be launched by non-privileged users
in a straightforward manner, thereby making the job of a
malicious adversary that much easier. We show that most
major general-purpose operating systems are vulnerable
to the cheat attack, due to a combination of how they ac-
count for CPU usage and how they use this information
to prioritize competing processes. Furthermore, recent
scheduler changes attempting to better support interac-
tive workloads increase the vulnerability to the attack,
and naive steps taken by certain systems to reduce the
danger are easily circumvented. We show that the attack
can nevertheless be defeated, and we demonstreate this
by implementing a patch for Linux that eliminates the
problem with negligible overhead.

Prologue

Some of the ideas underlying the cheat attack were im-
plemented by Tsutomu Shimomura circa 1980 at Prince-
ton, but it seems there is no published or detailed essay
on the topic, nor any mention of it on the web [54]. Re-
lated publications deal solely with the fact that general-
purpose CPU accounting can be inaccurate, but never
conceive this can be somehow maliciously exploited (see
Section 2.3). Recent trends in mainstream schedulers
render a discussion of the attack especially relevant.

1 Introduction

An attacker can be defined as one that aspires to per-
form actions “resulting [in the] violation of the explicit
or implicit security policy of a system”, which if suc-
cessful, constitute a breach [31]. Under this definition,
the said actions may be divided into two classes. One is
of hostile actions, e.g. unlawful reading of sensitive data,
spamming, lunching of DDoS attacks, etc. The other is
of concealment actions. These are meant to prevent the
hostile actions from being discovered, in an effort to pro-
long the duration in which the compromised machine can
be used for hostile purposes. While not hostile, conceal-
ment actions fall under the above definitions of “attack”
and “breach”, as they are in violation of any reasonable
security policy.

The “cheat” attack we describe embodies both a hos-
tile and a concealment aspect. In a nutshell, the attack
allows to implement a cheat utility such that invoking

cheat p prog

would run the program prog in such a way that it is allo-
cated exactly p percent of the CPU cycles. The hostile as-
pect is that p can be arbitrarily big (e.g. 95%), but prog
would still get that many cycles, regardless of the pres-
ence of competing applications and the fairness policy of
the system. The concealment aspect is that prog would
erroneously appear as consuming 0% CPU in monitor-
ing tools like ps, top, xosview, etc. In other words, the
cheat attack allows a program to (1) consume CPU cy-
cles in a secretive manner, and (2) consume as many of
these as it wants. This is similar to the common secu-
rity breach scenario where an attacker manages to obtain
superuser privileges on the compromised machine, and
uses these privileges to engage in hostile activities and to
conceal them. But in contrast to this common scenario,
the cheat attack requires no special privileges. Rather, it
can be launched by regular users, deeming this important
line of defense (of obtaining root or superuser privileges)
as irrelevant, and making the job of the attacker signifi-
cantly easier.
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Concealment actions are typically associated with
rootkits, consisting of “a set of programs and code that
allows a permanent or consistent, undetectable presence
on a computer” [25]. After breaking into a computer
and obtaining root access, the intruder installs a rootkit
to maintain such access, hide traces of it, and exploit
it. Thus, ordinarily, the ability to perform concealment
actions (the rootkit) is the result of a hostile action (the
break-in). In contrast, with the cheat attack, it is exactly
the opposite: the concealment action (the ability to ap-
pear as consuming 0% CPU) is actually what makes it
possible to perform the hostile action (of monopolizing
the CPU regardless of the system’s fairness policy). We
therefore begin by introducing the OS mechanism that
allows a non-privileged application to conceal the fact it
is using the CPU.

1.1 Operating System Ticks

A general-purpose operating system (GPOS) typically
maintains control by using periodic clock interrupts.
This practice started at the 1960s [12] and has contin-
ued ever since, such that nowadays it is used by most
contemporary GPOSs, including Linux, the BSD fam-
ily, Solaris, AIX, HPUX, IRIX, and the Windows family.
Roughly speaking, the way the mechanism works is that
at boot-time the kernel sets a hardware clock to gener-
ate periodic interrupts at fixed intervals (every few mil-
liseconds; anywhere between 1ms to 15ms, depending
on the OS). The time instance at which the interrupt fires
is called a tick, and the elapsed time between two consec-
utive ticks is called a tick duration. The interrupt invokes
a kernel routine, called the tick handler that is responsi-
ble for various OS activities, of which the following are
relevant for our purposes:

1. Delivering timing services and alarm signals. For
example, a movie player that wants to wakeup on
time to display the next frame, requests the OS (us-
ing a system call) to wake it up at the designated
time. The kernel places this request in an internal
data structure that is checked upon each tick. When
the tick handler discovers there’s an expired alarm,
it wakes the associated player up. The player then
displays the frame and the scenario is repeated until
the movie ends.

2. Accounting for CPU usage by recording that the
currently running process S consumed CPU cycles
during the last tick. Specifically, on every tick, S

is stopped, the tick-handler is started, and the ker-
nel increments S’s CPU-consumption tick-counter
within its internal data structure.

3. Initiating involuntary preemption and thereby
implementing multitasking (interleaving of the

CPU between several programs to create the illu-
sion they execute concurrently). Specifically, after
S is billed for consuming CPU during the last tick,
the tick handler checks whether S has exhausted its
“quantum”, and if so, S is preempted in favor of
another process. Otherwise, it is resumed.

1.2 The Concealment Component

The fundamental vulnerability of the tick mechanism lies
within the second item above: CPU billing is based on
periodic sampling. Consequently, if S can somehow
manage to arrange things such that it always starts to run
just after the clock tick, and always goes to sleep just be-
fore the next one, then S will never be billed. One might
naively expect this would not be a problem because ap-
plications cannot request timing services independent of
OS ticks. Indeed, it is technically impossible for non-
privileged applications to request the OS to deliver alarm
signals in between ticks. Nevertheless, we will show that
there are several ways to circumvent this difficulty.

To make things even worse, the cheat attack leads to
misaccounting, where another process is billed for CPU
time used by the cheating process. This happens because
billing is done in tick units, and so whichever process
happens to run while the tick takes place is billed for
the entire tick duration, even if it only consumed a small
fraction of it. As a result, even if the system administra-
tors suspect something, they will suspect the wrong pro-
cesses. If a cheating process is not visible through system
monitoring tools, the only way to notice the attack is by
its effect on throughput. The cheater can further disguise
its tracks by moderating the amount of CPU it uses so as
not to have too great an impact on system performance.

1.3 The Hostile Component

The most basic defense one has against malicious pro-
grams is knowing what’s going on in the system. Thus, a
situation in which a non-privileged application can con-
ceal the fact it makes use of the CPU, constitutes a seri-
ous security problem in its own right. However, there is
significantly more to cheat attacks than concealment, be-
cause CPU accounting is not conducted just for the sake
of knowing what’s going on. Rather, this information has
a crucial impact on scheduling decisions.

As exemplified in Section 5, the traditional design
principle underlying general-purpose scheduling (as op-
posed to research or special-purpose schemes) is the
same: the more CPU cycles used by a process, the lower
its priority becomes [15]. This negative feedback (run-
ning reduces priority to run more) ensures that (1) all
processes get a fair share of the CPU, and that (2) pro-
cesses that do not use the CPU very much — such as
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I/O bound processes — enjoy a higher priority for those
bursts in which they want it. In fact, the latter is largely
what makes text editors responsive to our keystrokes in
an overloaded system [14].

The practical meaning of this is that by consistently
appearing to consume 0% CPU, an application gains a
very high priority. As a consequence, when a cheating
process wakes up and becomes runnable (following the
scenario depicted in the previous subsection) it usually
has a higher priority than that of the currently running
process, which is therefore immediately preempted in fa-
vor of the cheater. Thus, as argued above, unprivileged
concealment capabilities indeed allow an application to
monopolize the CPU. However, surprisingly, this is not
the whole story. It turns out that even without conceal-
ment capabilities it is still sometimes possible for an ap-
plication to dominate the CPU without superuser privi-
leges, as discussed next.

1.4 The Interactivity Component and the
Spectrum of Vulnerability to Cheating

Not all GPOSs are vulnerable to cheat attacks to the same
degree. To demonstrate, let us first compare between
Linux-2.4 and Linux-2.6. One of the radical differences
between the two is the scheduling subsystem, which has
been redesigned from scratch and undergone a complete
rewrite. A major design goal of the new scheduler was to
improve users’ experience by attempting to better iden-
tify and service interactive processes. In fact, the lead
developer of this subsystem argued that “the improve-
ment in the way interactive tasks are handled is actually
the change that should be the most noticeable for ordi-
nary users” [3]. Unfortunately, with this improvement
also came increased vulnerability to cheat attacks.

In Linux-2.6, a process need not conceal the fact it is
using the CPU in order to monopolize it. Instead, it can
masquerade as being “interactive”, a concept that is tied
within Linux-2.6 to the number of times the process vol-
untarily sleeps [32]. Full details are given in Section 6,
but in a nutshell, to our surprise, even after we introduced
cycle-accurate CPU accounting to the Linux-2.6 kernel
and made the cheating process fully “visible” at all times,
the cheater still managed to monopolize the CPU. The
reason turned out to be the cheater’s many short volun-
tary sleep-periods while clock ticks take place (as spec-
ified in Section 1.2). This, along with Linux-2.6’s ag-
gressive preference of “interactive” processes yielded the
new weakness.

In contrast, the interactivity weakness is not present
in Linux-2.4, because priorities do not reflect any con-
siderations that undermine the aforementioned negative
feedback. Specifically, the time remaining until a process
exhausts its allocated quantum also serves as its priority,

and so the negative feedback is strictly enforced [36]. In-
deed, having Linux-2.4 use accurate accounting informa-
tion defeats the cheat attack.

The case of Linux 2.4 and 2.6 is not an isolated inci-
dent. It is analogous to the case of FreeBSD and the two
schedulers it makes available to its users. The default
“4BSD” scheduler [5] is vulnerable to cheat attacks due
to the sampling nature of CPU accounting, like Linux-
2.4. The newer “ULE” scheduler [42] (designated to re-
place 4BSD) attempts to improve the service provided
to interactive processes, and likewise introduces an addi-
tional weakness that is similar to that of Linux-2.6. We
conclude that there’s a genuine (and much needed) intent
to make GPOSs do a better job in adequately supporting
newer workloads consisting of modern interactive appli-
cations such as movie players and games, but that this
issue is quite subtle and prone to errors compromising
the system (see Section 5.2 for further discussion of why
this is the case).

Continuing to survey the OS spectrum, Solaris repre-
sents a different kind of vulnerability to cheat attacks.
This OS maintains completely accurate CPU account-
ing (which is not based on sampling) and does not suffer
from the interactivity weakness that is present in Linux-
2.6 and FreeBSD/ULE. Surprisingly, despite this con-
figuration, it is still vulnerable to the hostile component
of cheating. The reason is that, while accurate informa-
tion is maintained by the kernel, the scheduling subsys-
tem does not make use of it (!). Instead, it utilizes the
sampling-based information gathered by the periodic tick
handler [35]. This would have been acceptable if all ap-
plications “played by the rules” (in which case periodic
sampling works quite well), but such an assumption is
of course not justified. The fact that the developers of
the scheduling subsystems did not replace the sampled
information with the accurate one, despite its availabil-
ity, serves as a testament of their lack of awareness to the
possibility of cheat attacks.

Similarly to Solaris, Windows XP maintains accurate
accounting that is unused by the scheduler, which main-
tains its own sample-based statistics. But in contrast to
Solaris, XP also suffers from the interactivity weakness
of Linux 2.6 and ULE. Thus, utilizing the accurate infor-
mation would have had virtually no effect.

From the seven OS/scheduler pairs we have examined,
only Mac OS X was found to be immune from the cheat
attack. The reason for this exception, however, is not a
better design of the tick mechanism so as to avoid the at-
tack. Rather, it is because Mac OS X uses a different tim-
ing mechanism altogether. Similarly to several realtime
OSs, Mac OS X uses one-shot timers to drive its timing
and alarm events [29, 47, 20]. These are hardware inter-
rupts that are set to go off only for specific needs, rather
than periodically. With this design, the OS maintains an
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Figure 1: Classification of major operating systems in terms of features relevant for the cheat attack. General-purpose OSs are
typically tick-based, in which case they invariably use sampling and are therefore vulnerable to cheat attacks to various degrees.

ascending list of outstanding timers and sets a one-shot
event to fire only when it is time to process the event at
the head of the list; when this occurs, the head is poped,
and a new one-shot event is set according to the new
head. This design is motivated by various benefits, such
as reduced power consumption in mobile devices [40],
better alarm resolution [15], and less OS “noise” [53].
However, it causes the time period between two consec-
utive timer events to be variable and unbounded. As a
consequence, CPU-accounting based on sampling is no
longer a viable option, and the Mac OS X immunity to
cheat attacks is merely a side effect of this. Our findings
regarding the spectrum of vulnerabilities to cheat attacks
are summarized in Fig. 1.

While it is possible to rewrite a tick-based OS to be
one-shot, this is a non-trivial task requiring a radical
change in the kernel (e.g. the Linux-2.6.16 kernel source
tree contains 8,997 occurrences of the tick frequency HZ
macro, spanning 3,199 files). Worse, ticks have been
around for so long, that some user code came to directly
rely on them [52]. Luckily, eliminating the threat of
cheat attacks does not necessitate a radical change: there
exists a much simpler solution (Section 6). Regardless,
the root cause of the problem is not implementation dif-
ficulties, but rather, lack of awareness.

1.5 Roadmap

This paper is structured as follows. Section 2 places the
cheat attack within the related context and discusses the
potential exploits. Section 3 describes in detail how to
implement a cheating process and experimentally evalu-
ates this design. Section 4 further shows how to apply
the cheating technique to arbitrary applications, turning
them into “cheaters” without changing their source code.
Section 5 provides more details on contemporary sched-
ulers and highlights their weaknesses in relation to the
cheat attack on an individual basis. Section 6 describes
and evaluates our solution to the problem, and Section 7
concludes.

2 Potential Exploits and Related Work

2.1 The Privileges-Conflict Axis

The conflict between attackers and defenders often re-
volves around privileges of using resources, notably net-
work, storage, and the CPU. The most aggressive and
general manifestation of this conflict is attackers that as-
pire to have all privileges and avoid all restrictions by ob-
taining root/administrator access. Once obtained, attack-
ers can make use of all the resources of the compromised
machine in an uncontrolled manner. Furthermore, using
rootkits, they can do so secretly in order to avoid detec-
tion and lengthen the period in which the resources can
be exploited. Initially, rootkits simply replaced various
system programs, such as netstat to conceal network ac-
tivity, ls to conceal files, and ps/top to conceal processes
and CPU usage [55]. But later rootkits migrated into the
kernel [9, 46] and underneath it [27], reflecting the rapid
escalation of the concealment/detection battle.

At the other end of the privileges conflict one can find
attacks that are more subtle and limited in nature. For
example, in order to take control over a single JVM in-
stance running on a machine to which an attacker has
no physical access, Govindavajhala and Appel suggest
the attacker should “convince it [the machine] to run the
[Java] program and then wait for a cosmic ray (or other
natural source) to induce a memory error”; they then
show that “a single bit error in the Java program’s data
space can be exploited to execute arbitrary code with a
probability of about 70%” within the JVM instance [21].
When successful, this would provide the attacker with
the privileges of the user that spawned the JVM.

When positioning the general vs. limited attacks at op-
posite ends of the privileges-conflict “axis”, the cheat at-
tack is located somewhere in between. It is certainly not
as powerful as having root access and a rootkit, e.g. the
attacker cannot manipulate and hide network activity or
file usage. On the other hand, the attack is not limited to
only one user application, written in a specific language,
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on the condition of a low probability event such as a cos-
mic ray flipping an appropriate bit. Instead, at its fullest,
the cheat attack offers non-privileged users one generic
functionality of a rootkit: A ubiquitous way to control,
manipulate, and exploit one computer resource — CPU
cycles — in a fairly secretive manner. In this respect,
cheating is analogous to attacks like the one suggested
by Borisov et al. that have shown how to circumvent
the restrictions imposed by file permissions in a fairly
robust way [8]. As with cheating, non-privileged users
are offered a generic functionality of rootkits, only this
time concerning files. An important difference, how-
ever, is that Borisov’s attack necessitates the presence of
a root setuid program that uses the access/open idiom
(a widely discouraged practice [11]1), whereas our attack
has no requirements but running under a ticking OS.

2.2 Denying or Using the Hijacked Cycles

Cheating can obviously be used for launching DoS at-
tacks. Since attackers can hijack any amount of CPU
cycles, they can run a program that uselessly consumes
e.g. 25%, 50%, or 75% of each tick’s cycles, depend-
ing on the extent to which they want to degrade the ef-
fective throughput of the system; and with concealment
capabilities, users may feel that things work slower, but
would be unable to say why. This is similar to “shrew”
and “RoQ” (Reduction of Quality) attacks that take ad-
vantage of the fact that TCP interprets packet loss as an
indication of congestion and halves a connection’s trans-
mission rate in response. With well-timed low-rate DoS
traffic patterns, these attacks can throttle TCP flows to
a small fraction of their ideal rate while eluding detec-
tion [28, 23, 50].

Another related concept is “parasitic computing”, with
which one machine forces another to solve a piece of a
complex computational problem merely by sending to it
malformed IP packets and observing the response [6].
Likewise, instead of just denying the hijacked cycles
from other applications, a cheating process can leverage
them to engage in actual computation (but in contrast, it
can do so effectively, whereas parasitic computing is ex-
tremely inefficient). Indeed, Section 4 demonstrates how
we secretly monopolized an entire departmental shared
cluster for our own computational needs, without “doing
anything wrong”.

A serious exploit would occur if a cheat application
1The access system call was designed to be used by setuid root

programs to check whether the invoking user has appropriate permis-
sions, before opening a respective file. This induces a time-of-check-
to-time-of-use (TOCTTOU) race condition whereby an adversary can
make a name refer to a different file after the access and before the
open. Thus, its manual page states that “the access system call is
a potential security hole due to race conditions and should never be
used” [1].

was spread using a computer virus or worm. This po-
tential development is very worrying, as it foreshadows
a new type of exploit for computer viruses. So far, com-
puter viruses targeting the whole Internet have been used
mainly for launching DDoS attacks or spam email [34].
In many cases these viruses and worms were found and
uprooted because of their very success, as the load they
place on the Internet become unignorable [38]. But Stan-
iford et al. described a “surreptitious” attack by which a
worm that requires no special privileges can spread in
a much harder to detect contagion fashion, without ex-
hibiting peculiar communication pattens, potentially in-
fecting upwards of 10,000,000 hosts [49]. Combining
such worms with our cheat attack can be used to cre-
ate a concealed ad-hoc supercomputer and run a compu-
tational payload on massive resources in minimal time,
harvesting a huge infrastructure similar to that amassed
by projects like SETI@home [2]. Possible applications
include cracking encryptions in a matter of hours or days,
running nuclear simulations, and illegally executing a
wide range of otherwise regulated computations. While
this can be done with real rootkits, the fact it can also po-
tentially be done without ever requiring superuser privi-
leges on the subverted machines is further alarming. In-
deed, with methods like Borisov’s (circumvent file per-
missions [8]), Staniford’s (networked undetected conta-
gion [49]), and ours, one can envision a kind of “rootkit
without root privileges”.

2.3 The Novelty of Cheating

While the cheat attack is simple, to our knowledge, there
is no published record of it, nor any mention of it on the
web. Related publications point out that general-purpose
CPU accounting might be inaccurate, but never raise the
possibility that this can be maliciously exploited. Our
first encounter with the attack was, interestingly, when it
occurred by chance. While investigating the effect of dif-
ferent tick frequencies [15], we observed that an X server
servicing a Xine movie player was only billed for 2% of
the cycles it actually consumed, a result of (1) X starting
to run just after a tick (following Xine’s repetitive alarm
signals to display each subsequent frame, which are de-
livered by the tick handler), and (2) X finishing the work
within 0.8 of a tick duration. This pathology in fact out-
lined the cheat attack principles. But at the time, we did
not realize that this can be maliciously done on purpose.

We were not alone: There have been others that were
aware of the accounting problem, but failed to realize the
consequences. Liedtke argued that the system/user time-
used statistics, as e.g. provided by the getrusage system
call, might be inaccurate “when short active intervals are
timer-scheduled, i.e. start always directly after a clock
interrupt and terminate before the next one” [30] (exactly
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describing the behavior we observed, but stopping short
from recognizing this can be exploited).

The designers of the FreeBSD kernel were also aware
this might occur, contending that “since processes tend
to synchronize to ’tick’, the statistics clock needs to be
independent to ensure that CPU utilization is correctly
accounted” [26]. Indeed, FreeBSD performs the billing
activity (second item in Section 1.1) independently of the
other tick activities (notably timing), at different times
and in a different frequency. But while this design alle-
viates some of the concerns raised by Liedtke [30] and
largely eliminates the behavior we observed [15], it is
nonetheless helpless against a cheat attack that factors
this design in (Section 5) and only highlights the lack of
awareness to the possibility of systematic cheating.

Solaris designers noticed that “CPU usage measure-
ments aren’t as accurate as you may think ... especially
at low usage levels”, namely, a process that consumes lit-
tle CPU “could be sneaking a bite of CPU time whenever
the clock interrupt isn’t looking” and thus “appear to use
1% of the system but in fact use 5%” [10]. The billing
error was shown to match the inverse of the CPU utiliza-
tion (which is obviously not the case when cheating, as
CPU utilization and the billing error are in fact equal).

Windows XP employs a “partial decay” mechanism,
proclaiming that without it “it would be possible for
threads never to have their quantums reduced; for ex-
ample, a thread ran, entered a wait state, ran again, and
entered another wait state but was never the currently
running thread when the clock interval timer fired” [44].
Like in the FreeBSD case, partial decay is useless against
a cheat attack (Section 5), but in contrast, it doesn’t even
need to be specifically addressed, reemphasizing the elu-
siveness of the problem.

We contend, however, that all the above can be consid-
ered as anecdotal evidence of the absence of awareness to
cheat attacks, considering the bottom line, which is that
all widely used ticking operating systems are susceptible
to the attack, and have been that way for years.2

3 Implementation and Evaluation

As outlined above, the cheat attack exploits the combina-
tion of two operating system mechanisms: periodic sam-
pling to account for CPU usage, and prioritization of pro-
cesses that use less of the CPU. The idea is to avoid the
accounting and then enjoy the resulting high priority. We
next detail how the former is achieved.

2We conceived the attack a few years after [15], as a result of a dis-
pute between PhD students regarding who gets to use the departmental
compute clusters for simulations before some approaching deadlines.
We eventually did not exercise the attack to resolve the dispute, ex-
cept for the experiment described in Section 4.1, which was properly
authorized by the system personnel.

s si iprocess runsproc
prev

scheduler
previous proc

is billed

process scheduled

proc
other

processinterrupt

time

stopshandler

clock
interrupt

other process
is billed

clock
interrupt

Figure 2: The cheat attack is based on a scenario where a pro-
cess starts running immediately after one clock tick, but stops
before the next tick, so as not to be billed.

3.1 Using the CPU Without Being Billed

When a tick (= periodic hardware clock interrupt) occurs,
the entire interval since the previous tick is billed to the
application that ran just before the current tick occurred.
This mechanism usually provides reasonably accurate
billing, despite the coarse tick granularity of a few mil-
liseconds and the fact that nowadays the typical quanta
is much shorter, for many applications [15].3 This is a
result of the probabilistic nature of the sampling: Since
a large portion of the quanta are shorter than one clock
tick, and the scheduler can only count in complete tick
units, many of the quanta are not billed at all. But when
a short quantum does happen to include a clock interrupt,
the associated application is overbilled and charged a full
tick. Hence, on average, these two effects tend to cancel
out, because the probability that a quantum includes a
tick is proportional to its duration.

Fig. 2 outlines how this rationale is circumvented. The
depicted scenario has two components: (1) start running
after a given billing sample, and (2) stop before the next.
Implementing the first component is relatively easy, as
both the billing and the firing of pending alarm timers are
done upon a tick (first and second items in Section 1.1;
handling the situation where the two items are indepen-
dent, as in FreeBSD, is deferred to Section 5). Con-
sequently, if a process blocks on a timer, it will be re-
leased just after a billing sample. And in particular, set-
ting a very short timer interval (e.g. zero nanoseconds)
will wake a process up immediately after the very next
tick. If in addition it will have high priority, as is the case
when the OS believes it is consistently sleeping, it will
also start to run.

The harder part is to stop running before the next tick,
when the next billing sample occurs. This may happen
by chance as described above in relation to Xine and X.
The question is how to do this on purpose. Since the
OS does not provide intra-tick timing services, the pro-
cess needs some sort of a finer-grained alternative timing

3In this context, quantum is defined to be the duration between the
time an application was allocated the CPU and the time in which it
relinquished the CPU, either voluntary or due to preemption.
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inline cycle_t get_cycles()
{

cycle_t ret;
asm volatile("rdtsc" : "=A" (ret));
return ret;

}

cycle_t cycles_per_tick()
{

nanosleep(&zero,0); // sync with tick
cycle_t start = get_cycles();

for(int i=0 ; i<1000 ; i++)
nanosleep(&zero,0);

return (get_cycles() - start)/1000;
}

void cheat_attack( double fraction )
{

cycle_t work, tick_start, now;

work = fraction * cycles_per_tick();

nanosleep(&zero,0); // sync with tick
tick_start = get_cycles();

while( 1 ) {
now = get_cycles();
if( now - tick_start >= work ) {

nanosleep(&zero,0); // avoid bill
tick_start = get_cycles();

}
// do some short work here...

}
}

Figure 3: The complete code for the cheater process (cycle t is typedef-ed to be an unsigned 64-bit integer).

mechanism. This can be constructed with the help of
the cycle counter, available in all contemporary architec-
tures. The counter is readable from user level using an
appropriate assembly instruction, as in the get cycles
function (Fig. 3, top/left) for the Pentium architecture.

The next step is figuring out the interval between each
two consecutive clock ticks, in cycles. This can be done
by a routine such as cycles per tick (Fig. 3 bottom/left),
correctly assuming a zero sleep would wake it up at the
next clock interrupt, and averaging the duration of a thou-
sand ticks. While this was sufficient for our purposes, a
more precise method would be to tabulate all thousand
timestamps individually, calculate the intervals between
them, and exclude outliers that indicate some activity in-
terfered with the measurement. Alternatively, the data
can be deduced from various OS-specific information
sources, e.g. by observing Linux’s /proc/inte rrupts file
(reveals the OS tick frequency) and /proc/cpuinfo (pro-
cessor frequency).

It is now possible to write an application that uses any
desired fraction of the available CPU cycles, as in the
chea t a ttack function (Fig. 3, right). This first calcu-
lates the number of clock cycles that constitute the de-
sired percentage of the clock tick interval. It then iter-
ates doing its computation, while checking whether the
desired limit has been reached at each iteration. When
the limit is reached, the application goes to sleep for
zero time, blocking till after the next tick. The only
assumption is that the computation can be broken into
small pieces, which is technically always possible to do
(though in Section 4 we further show how to cheat with-
out this assumption). This solves the problem of know-
ing when to stop to avoid being billed. As a result, this
non-privileged application can commandeer any desired
percentage of the CPU resources, while looking as if it is
using zero resources.

3.2 Experimental Results

To demonstrate that this indeed works as described, we
implemented such an application and ran it on a 2.8GHz
Pentium-IV, running a standard Linux-2.6.16 system de-
fault installation with the usual daemons, and no other
user processes except our tests. The application didn’t
do any useful work — it just burned cycles. At the
same time we also ran another compute-bound applica-
tion, that also just burned cycles. An equitable scheduler
should have given each about 50% of the machine. But
the cheat application was set to use 80%, and got them.

During the execution of the two competing applica-
tions, we monitored every important event in the system
(such as interrupts and context switches) using the Klog-
ger tool [17]. A detailed rendition of precisely what hap-
pened is given in Fig. 4. This shows 10 seconds of exe-
cution along the X axis, at tick resolution. As the system
default tick rate is 250 Hz, each tick represents 4ms. To
show what happens during each tick, we spread those
4ms along the Y axis, and use color coding. Evidently,
the cheat application is nearly always the first one to run
(on rare occasions some system daemon runs initially for
a short time). But after 3.2ms (that is, exactly 80% of the
tick) it blocks, allowing the honest process or some other
process to run.

Fig. 5 scatter-plots the billing accuracy, where each
point represents one quantum. With accurate accounting
we would have seen a diagonal, but this is not the case.
While the cheat process runs for just over 3ms each time,
it is billed for 0 (bottom right disk). The honest process,
on the other hand, typically runs for less than 1ms, but is
billed for 4 (top left); on rare occasions it runs for nearly
a whole tick, due to some interference that caused the
cheater to miss one tick (top right); the cheater neverthe-
less recovers at the following tick. The other processes
run for a very short time and are never billed.
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Figure 4: Timeline of 10 seconds of competition between a cheat and hon-
est processes. Legends give the distribution of CPU cycles.
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Figure 5: Billing accuracy achieved during the
test shown in Fig. 4.

Tasks: 70 total, 3 running, 67 sleeping, 0 stopped, 0 zombie
Cpu(s): 99.7% us, 0.3% sy, 0.0% ni, 0.0% id, 0.0% wa, 0.0% hi, 0.0% si
Mem: 513660k total, 306248k used, 207412k free, 0k buffers
Swap: 0k total, 0k used, 0k free, 227256k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
5522 dants 21 0 2348 820 728 R 99.3 0.2 0:07.79 honest
5508 dants 16 0 2232 1168 928 R 0.3 0.2 0:00.04 top
5246 dants 16 0 3296 1892 1088 S 0.0 0.4 0:00.04 csh
5259 dants 16 0 3304 1924 1088 S 0.0 0.4 0:00.06 csh
5509 dants 16 0 3072 1552 964 S 0.0 0.3 0:00.03 bm-no-klog.sh
5521 dants 15 0 2352 828 732 S 0.0 0.27 0:00.00 cheater

Figure 6: Snippet of the output of the top utility for user dants (the full output includes dozens of processes, and the cheater
appears near the end and is hard to notice). The honest process is billed for 99.3% of the CPU, while actually getting only 20%.
The cheater looks as if it is not getting any CPU, while it actually consumes 80%.

The poor accounting information propagates to system
usage monitoring tools. Like any monitoring utility, the
view presented to the user by top is based on OS billing
information, and presents a completely distorted picture
as can be seen in Fig. 6. This dump was taken about
8 seconds into the run, and indeed the honest process is
billed for 99.3% of the CPU and is reported as having run
for 7.79 seconds. The cheater on the other hand is shown
as using 0 time and 0% of the CPU. Moreover, it is re-
ported as being suspended (status S), further throwing off
any system administrator that tries to understand what is
going on. As a result of the billing errors, the cheater has
the highest priority (lowest numerical value: 15), which
allows it to continue with its exploits.

Our demonstration used a setting of 80% for the cheat
application (a 0.8 fraction argument to the cheat attack
function in Fig. 3). But other values can be used. Fig. 7
shows that the attack is indeed very accurate, and can
achieve precisely the desired level of usage. Thus, an at-
tacker that wants to keep a low profile can set the cheat-
ing to be a relatively small value (e.g. 15%); the chances
users will notice this are probably very slim.

Finally, our demonstration have put forth only one
competitor against the cheater. But the attack is in

fact successful regardless of the number of competitors
that form the background load. This is demonstrated in
Fig. 8: An honest process (left) gets its equal share of
the CPU, which naturally becomes smaller and smaller
as more competing processes are added. For example,
when 5 processes are present, each gets 20%. In con-
trast, when the process is cheating (right) it always gets
what it wants, despite the growing competition. The rea-
son of course is that the cheater has very a high priority,
as it appears as consuming no CPU cycles, which implies
an immediate service upon wakeup.

4 Running Unmodified Applications

A potential drawback of the above design is that it re-
quires modifying the application to incorporate the cheat
code. Ideally, from an attacker’s perspective, there
should be a “cheat” utility such that invoking e.g.

cheat 95% application

would execute the application as a 95%-cheater, without
having to modify and recompile its code. This section
describes two ways to implement such a tool.
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Figure 8: Cheating is immune to the background load.

4.1 Cheat Server

The sole challenge a cheat application faces is obtaining
a timing facility that is finer than the one provided by
the native OS. Any such facility would allow the cheater
to systematically block before ticks occur, insuring it is
never billed and hence the success of the attack. In the
previous section, this was obtained by subdividing the
work into short chunks and consulting the cycle counter
at the end of each. A possible alternative is obtaining
the required service using an external machine, namely,
a cheat server.

The idea is very simple. Using a predetermined cheat
protocol, a client opens a connection and requests the
remote server to send it a message at some designated
high-resolution time, before the next tick on the local
host occurs. (The request is a single UDP packet spec-
ifying the required interval in nanoseconds; the content
of the response message is unimportant.) The client then
polls the connection to see if a message arrived, instead
of consulting the cycle counter. Upon the message ar-
rival, the client as usual sleeps-zero, wakes up just after
the next tick, sends another request to the server, and so
on. The only requirement is that the server would indeed
be able to provide the appropriate timing granularity. But
this can be easily achieved if the server busy-waits on its
cycle counter, or if its OS is compiled with a relatively
high tick rate (the alternative we preferred).

By switching the fine-grained timing source — from
the cycle counter to the network — we gain one impor-
tant advantage: instead of polling, we can now sleep-wait
for the event to occur, e.g. by using the select system
call. This allows us to divide the cheater into two sepa-
rate entities: the target application, which is the the un-
modified program we want to run, and the cheat client,
which is aware of the cheat protocol, provisions the tar-
get application, and makes sure it sleeps while ticks oc-
cur. The client exercises its control by using the standard
SIGSTOP/SIGCONT signals, as depicted in Fig. 9:

Figure 9: The cheat protocol, as used by a 80%-cheater.

1. The client forks the target application, sends it a
stop signal, and goes to sleep till the next tick.

2. Awoken on a tick, the client does the following:
(a) It sends the cheat server a request for a timing

message including the desired interval.
(b) It sends the target application a cont signal to

wake it up.
(c) It blocks-waiting for the message from the

cheat server to arrive.
3. As the cheat client blocks, the operating system will

most probably dispatch the application that was just
unblocked (because it looks as if it is always sleep-
ing, and therefore has high priority).

4. At the due time, the cheat server sends its message
to the cheat client. This causes a network interrupt,
and typically the immediate scheduling of the cheat
client (which also looks like a chronic sleeper).

5. The cheat client now does two things:
(a) It sends the target application a stop signal to

prevent it from being billed
(b) It goes to sleep-zero, till the next (local) tick.

6. Upon the next tick, it will resume from step 2.
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Figure 10: The combined throughput of honest vs. 60%-
cheating processes, as a function of the number of cluster nodes
used. On each node there are ten honest processes and one
cheater running. The cheaters’ throughput indicates that the
server simultaneously provides good service to all clients.

void cheat_analysis()
{

cycle_t c = get_cycles();

if( c-tick_start >= WORK ) {
nanosleep(&zero,0);
tick_start = get_cycles();

}
}

Figure 11: The injected cheat “analysis” routine. (The
WORK macro expends to the number of cycles that reflect the
desired cheat fraction; the tick start global variable is initial-
ized beforehand to hold the beginning of the tick in which the
application was started.)

To demonstrate that this works, we have implemented
this scenario, hijacking a shared departmental cluster of
Pentium-IV machines. As a timing server we used an old
Pentium-III machine, with a Linux 2.6 system clocked
at 10,000 Hz. While such a high clock rate adds over-
head [15], this was acceptable since the timing server
does not have any other responsibilities. In fact, it could
easily generate the required timing messages for the full
cluster size, which was 32 cheat clients in our case, as
indicated by Fig. 10.

4.2 Binary Instrumentation

Using a cheat server is the least wasteful cheating method
in terms of throughput loss, as it avoids all polling. The
drawback however is the resulting network traffic that
can be used to detect the attack, and the network latency
which is now a factor to consider (observe the cheaters’
throughput in Fig. 10 that is higher than requested). Ad-
ditionally, it either requires a dedicated machine to host
the server (if it busy-waits to obtain the finer resolution)
or the ability to install a new kernel (if resolution is ob-
tained through higher tick rate). Finally, the server con-
stitutes a single point of failure.

Binary instrumentation of the target application is
therefore an attractive alternative, potentially providing
a way to turn an arbitrary program into a cheater, requir-
ing no recompilation and avoiding the drawbacks of the
cheat-server design. The idea is to inject the cheating
code directly into the executable, instead of explicitly in-
cluding it in the source code. To quickly demonstrate the
viability of this approach we used Pin, a dynamic binary
instrumentation infrastructure from Intel [33], primarily
used for analysis tasks as profiling and performance eval-
uation. Being dynamic, Pin is similar to a just-in-time
(JIT) compiler that allows attaching analysis routines to
various pieces of the native machine code upon the first
time they are executed.

The routine we used is listed in Fig. 11. Invoking it
often enough would turn any application into a cheater.
The question is where exactly to inject this code, and
what is the penalty in terms of performance. The answer
to both questions is obviously dependent on the instru-
mented application. For the purpose of this evaluation,
we chose to experiment with an event-driven simulator of
a supercomputer scheduler we use as the basis of many
research effort [39, 19, 18, 51]. Aside from initially read-
ing an input log file (containing a few years worth of par-
allel jobs’ arrival times, runtimes, etc.), the simulator is
strictly CPU intensive. The initial part is not included in
our measurements, so as not to amortize the instrumen-
tation overhead and overshadow its real cost by hiding it
within more expensive I/O operations.

Fig. 12 shows the slowdown that the simulator ex-
perienced as a function of the granularity of the injec-
tion. In all cases the granularity was fine enough to
turn the simulator into a full fledged cheater. Instru-
menting every machine instruction in the program in-
curs a slowdown of 123, which makes sense because
this is approximately the duration of cheat analysis in
cycles. This is largely dominated by the rdtsc opera-
tion (read time-stamp counter; wrapped by get cycles),
which takes about 90 cycles. The next grain size is a ba-
sic block, namely, a single-entry single-exit instructions
sequence (containing no branches). In accordance to the
well known assertion that “the average basic block size
is around four to five instructions” [56], it incurs a slow-
down of of 25, which is indeed a fifth of the slowdown
associated with instructions. A trace of instructions (as-
sociated with the hardware trace-cache) is defined to be
a single-entry multiple exits sequence of basic blocks
that may be separated spatially, but are adjacent tempo-
rally [43]. This grain size further reduces the slowdown
to 15. Instrumenting at the coarser function level brings
us to a slowdown factor of 3.6, which is unfortunately
still far from optimal.
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Figure 13: Throughput of a 80%-cheater competing against
an honest process, under the operating systems with which we
experimented. These measurements were executed on the fol-
lowing OS versions: Linux 2.4.32, Linux 2.6.16, Window XP
SP2, Solaris 10 (SunOS 5.10 for i386), and FreeBSD 6.1.

The average instructions-per-function number within a
simulator run, is very small (about 35), the result of mul-
tiple abstraction layers within the critical path of execu-
tion. This makes the function-granularity inappropriate
for injecting the cheat code to our simulator, when at-
tempting to turn it into an efficient cheater. Furthermore,
considering the fact that nowadays a single tick consists
of millions of cycles (about 11 millions on the platform
we used, namely, a 2.8 GHz Pentium-IV at 250 Hz tick
rate), a more adequate grain size for the purpose of cheat-
ing would be, say, tens of thousands of cycles. Thus, a
slightly more sophisticated approach is required. Luck-
ily, simple execution profiling (using Pin or numerous
other tools) quickly reveal where an application spends
most of its time; in the case of our simulator this was
within two functions, the one that pops the next event to
simulate and the one that searches for the next parallel
job to schedule. By instructing Pin to instrument only
these two functions, we were able to turn the simulator
into a cheater, while reducing the slowdown penalty to
less than 2% of the baseline. We remark that even though
this selective instumentation process required our man-
ual intervention, we believe it reflects a fairly straight-
forward and simple methodology that can probably be
automated with some additional effort.

Finally, note that all slowdowns were computed with
respect to the runtime of a simulator that was not instru-
mented, but still executed under Pin. This was done so as
not to pollute our evaluation with unrelated Pin-specific
performance issues. Indeed, running the simulator na-
tively is 45% faster than the Pin baseline, a result of Pin
essentially being a virtual machine [33]. Other binary
instrumentation methods, whether static [48], exploiting
free space within the executable itself [41], or linking to
it loadable modules [4], do not suffer from this deficiency
and are expected to close the gap.

5 General-Purpose Schedulers

The results shown so far are associated with Linux-
2.6. To generalize, we experimented with other tick-
ing operating systems and found that they are all sus-
ceptible to the cheat attack. The attack implementation
was usually as shown in Fig. 3, possibly replacing the
nanosleep with a call to pause, which blocks on a re-
peated tick-resolution alarm-signal that was set before-
hand using setitimer (all functions are standard POSIX;
the exceptions was Windows XP, for which we used
Win32’s GetMessage for blocking). Fig. 13 shows the
outcome of repeating the experiment described in Sec-
tion 3 (throughput of simultaneously running a 80%-
cheater against an honest process) under the various OSs.

Our high level findings were already detailed in Sec-
tion 1.4 and summarized in Fig. 1. In this section we
describe in more detail the design features that make
schedulers vulnerable to cheating; importantly, we ad-
dress the “partial quantum decay” mechanism of Win-
dows XP and provide more details regarding FreeBSD,
which separates billing from timing activity and requires
a more sophisticated cheating approach.

5.1 Multilevel Feedback Queues

Scheduling in all contemporary general-purpose operat-
ing systems is based on a multilevel feedback queue. The
details vary, but roughly speaking, the priority is a com-
bination of a static component (“nice” value), and a dy-
namic component that mostly reflects lack of CPU us-
age, interpreted as being “I/O bound”; processes with
the highest priority are executed in a round-robin man-
ner. As the cheat process avoids billing, it gets the high-
est priority and hence can monopolize the CPU. This is
what makes cheating widely applicable.

16th USENIX Security SymposiumUSENIX Association 249



A potential problem with the multilevel feedback
queues is that processes with lower priorities might
starve. OSs employ various policies to avoid this. For ex-
ample, Linux 2.4 uses the notion of “epochs” [36]. Upon
a new epoch, the scheduler allocates a new quantum to
all processes, namely, allows them to run for an addi-
tional 60ms. The epoch will not end until all runnable
processes have exhausted their allocation, insuring all
of them get a chance to run before new allocations are
granted. Epochs are initiated by the tick handler, as part
of the third item in Section 1.1. The remaining time a
process has to run in the current epoch also serves as its
priority (higher values imply higher priority). Schedul-
ing decisions are made only when the remaining alloca-
tion of the currently running process reaches zero (pos-
sibly resulting in a new epoch if no runnable processes
with positive allocation exist), or when a blocked process
is made runnable.

This design would initially seem to place a limit on the
fraction of cycles hijacked by the cheater. However, as
always, cheating works because of the manner Linux-2.4
rewards sleepers: upon a new epoch, a currently blocked
process gets to keep half of its unused allocation, in ad-
dition to the default 60ms. As a cheater is never billed
and always appears blocked when a tick takes place, its
priority quickly becomes

∑
∞

i=0
60 ·2−i = 120 (the max-

imum possible), which means it is always selected to run
when it unblocks.

In Solaris, the relationship between the priority and
the allocated quantum goes the other way [35]. When a
thread is inserted to the run-queue, a table is used to al-
locate its new priority and quantum (which are two sep-
arate things here) based on its previous priority and the
reason it is inserted into the queue — either because its
time quantum expired or because it just woke up after
blocking. The table is designed such that processes that
consume their entire allocation receive even longer al-
locations, but are assigned lower priorities. In contrast,
threads that block or sleep are allocated higher priori-
ties, but shorter quanta. By avoiding billing the cheater
is considered a chronic sleeper that never runs, causing
its priority to increase until it reaches the topmost prior-
ity available. The short-quanta allocation restriction is
circumvented, because the scheduler maintains its own
(misguided) CPU-accounting based on sampling ticks.

5.2 Prioritization For Interactivity

An obvious feature of the Linux 2.4 and Solaris schemes
is that modern interactive processes (as games or movie
players that consume a lot of CPU cycles) will end up
having low priority and will be delayed as they wait for
all other processes to complete their allocations. This is
an inherent feature of trying to equally partition the pro-

cessor between competing processes. Linux 2.6 there-
fore attempts to provide special treatment to processes it
identifies as interactive by maintaining their priority high
and by allowing them to continue to execute even if their
allocation runs out, provided other non-interactive pro-
cesses weren’t starved for too long [32]. A similar mech-
anism is used in the ULE scheduler on FreeBSD [42].

In both systems, interactive processes are identified
based on the ratio between the time they sleep and the
time they run, with some weighting of their relative influ-
ence. If the ratio passes a certain threshold, the process is
deemed interactive. This mechanism plays straight into
the hands of the cheater process: as it consistently ap-
pears sleeping, it is classified interactive regardless of
the specific value of the ratio. The anti-starvation mech-
anism is irrelevant because other processes are allowed
to run at the end of each tick when the cheater sleeps.
Thus, cheating would have been applicable even in the
face of completely accurate CPU accounting. (The same
observation holds for Windows XP, as described in the
next subsection.)

We contend that the interactivity weakness manifested
by the above is the result of two difficulties. The first is
how to identify multimedia applications, which is cur-
rently largely based on their observed sleep and CPU
consumption patterns. This is a problematic approach:
our cheater is an example of a “false positive” it might
yield. In a related work we show that this problem is
inherent, namely, that typical CPU-intensive interactive
application can be paired with non-interactive applica-
tions that have identical CPU consumption patterns [14].
Thus, it is probably impossible to differentiate between
multimedia applications and others based on such crite-
ria, and attempts to do so are doomed to fail; we argue
that the solution lies in directly monitoring how applica-
tions interact with devices that are of interest to human
users [16].

The second difficulty is how to schedule a process
identified as being interactive. The problem here arises
from the fact that multimedia applications often have
both realtime requirements (of meeting deadlines) and
significant computational needs. Such characteristics are
incompatible with the negative feedback of “running re-
duces priority to run more”, which forms the basis of
the classic general-purpose scheduling [5] (as in Linux
2.4, Solaris, and FreeBSD/4BSD) and only delivers fast
response times to applications that require little CPU.
Linux-2.6, FreeBSD/ULE, and Windows XP tackled this
problem in a way that compromises the system. And
while it is possible to patch this to a certain extent, we
argue that any significant divergence from the aforemen-
tioned negative-feedback design necessitates a much bet-
ter notion of what is important to users than can ever be
inferred solely from CPU consumption patterns [14, 16].
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5.3 Partial Quantum Decay

In Windows XP, the default time quantum on a work-
station or server is 2 or 12 timer ticks, respectively, with
the quantum itself having a value of “6” (3 × 2) or “36”
(3 × 12), implying that every clock tick decrements the
quantum by 3 units [44]. The reason a quantum is stored
internally in terms of a multiple of 3 units per tick rather
than as single units is to allow for “partial quantum de-
cay”. Specifically, each waiting thread is charged one
unit upon wakeup, so as to prevent situations in which
a thread avoids billing just because it was asleep when
the tick occurred. Hence, the cheater loses a unit upon
each tick. Nonetheless, this is nothing but meaningless
in comparison to what it gains due its many sleep events.

After a nonzero wait period (regardless of how short),
Windows XP grants the awakened thread a “priority
boost” by moving it a few steps up within the multi-
level feedback queue hierarchy, relative to its base prior-
ity. Generally, following a boost, threads are allowed to
exhaust their full quantum, after which they are demoted
one queue in the hierarchy, allocated another quantum,
and so forth until they reach their base priority again.
This is sufficient to allow cheating, because a cheater is
promoted immediately after being demoted (as it sleeps
on every tick). Thus, it consistently maintains a higher
position relative to the “non-boosted” threads and there-
fore always gets the CPU when it awakes. By still allow-
ing others to run at the end of each tick, it prevents the
anti-starvation mechanism from kicking in.

Note that this is true regardless of whether the billing
is accurate or not, which means XP suffers from the in-
teractivity weakness as Linux 2.6 and FreeBSD/ULE.
To make things even worse, “in the case where a wait
is not satisfied immediately” (as for cheaters), “its [the
thread’s] quantum is reset to a full turn” [44], rendering
the partial quantum decay mechanism (as any hypotheti-
cal future accurate billing) completely useless.

5.4 Dual Clocks

Compromising FreeBSD, when configured to use its
4BSD default scheduler [37], required us to revisit the
code given in Fig. 3. Noticing that timer-oriented appli-
cations often tend to synchronize with ticks and start to
run immediately after they occur, the FreeBSD design-
ers decided to separate the billing from the timing activ-
ity [26]. Specifically, FreeBSD uses two timers with rel-
atively prime frequencies — one for interrupts in charge
of driving regular kernel timing events (with frequency
HZ), and one for gathering billing statistics (with fre-
quency STATHZ). A running thread’s time quantum is
decremented by 1 every STATHZ tick. The test sys-
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Figure 14: The three possible alignments of the two FreeBSD
clocks: no STATHZ tick between consecutive HZ ticks
(case 1), STATHZ ticks falls on an even timer interrupt along-
side a HZ tick (case 2), and a STATHZ tick falling on an odd
clock interrupt between HZ ticks (case 3).

tem that was available to us runs with a HZ frequency
of 1000Hz and STATHZ frequency of ∼133Hz.

Both the HZ and STATHZ timers are derived from a
single timer interrupt, configured to fire at a higher fre-
quency of 2 × HZ = 2000Hz. During each timer inter-
rupt the handler checks whether the HZ and/or STATHZ
tick handlers should be called — the first is called ev-
ery 2 interrupts, whereas the second is called every 15–
16 interrupts (≈ 2000

133
). The possible alignments of the

two are shown in Fig. 14. The HZ ticks are executed
on each even timer interrupt (case 1). Occasionally the
HZ and STATHZ ticks align on an even timer interrupt
(case 2), and sometimes STATHZ is executed on an odd
timer interrupt (case 3). By avoiding HZ ticks we also
avoid STATHZ ticks in case 2. But to completely avoid
being billed for the CPU time it consumes, the cheater
must identify when case 3 occurs and sleep between the
two consecutive HZ tick surrounding the STATHZ tick.

The kernel’s timer interrupt handler calculates when
to call the HZ and STATHZ ticks in a manner which re-
aligns the two every second. Based on this, we mod-
ified the code in Fig. 3 to pre-compute a 2 × HZ sized
STATHZ-bitmap, in which each bit corresponds to a spe-
cific timer interrupt in a one second interval, and set-
ting the bit for those interrupts which drive a STATHZ
tick. Further, the code reads the number of timer inter-
rupts that occurred since the system was started, avail-
able through a sysctl call. The cheater then requests the
system for signals at a constant HZ rate. The signal han-
dler in turn accesses the STATHZ bitmap with a value of
(interrupt index + 1) mod (2× HZ) to check whether
the next timer interrupt will trigger a STATHZ tick. This
mechanism allows the cheater thread to identify case 3
and simply sleep until the next HZ tick fires. The need
to occasionally sleep for two full clock ticks slightly re-
duces the achievable throughput, as indicated in Fig. 13.
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6 Protecting Against the Cheat Attack

6.1 Degrees of Accuracy

While all ticking OSs utilize information that is exclu-
sively based on sampling for the purpose of schedul-
ing, some operating system also maintain precise CPU-
usage information (namely, Solaris and Windows XP).
Under this design, each kernel entry/exit is accompanied
by reading the cycle counter to make the kernel aware
of how many cycles were consumed by the process thus
far, as well as to provide the user/kernel usage statistics.
(Incidentally this also applies to the one-shot Mac OS
X.) Solaris, provides even finer statistics by saving the
time a thread spends in each of the thread states (running,
blocked, etc.). While such consistently accurate informa-
tion can indeed be invaluable in various contexts, it does
not come without a price.

Consider for example the per system call penalty.
Maintaining user/kernel statistics requires that (at least)
the following would be added to the system call invo-
cation path: two rdtsc operations (of reading the cycle
counter at kernel entry and exit), subtracting of the as-
sociated values, and adding the difference to some accu-
mulator. On our Pentium-IV 2.8GHz this takes ∼200
cycles (as each rdtsc operation takes ∼90 cycles and
the arithmetics involves 64bit integers on a 32bit ma-
chine). This penalty is significant relative to the duration
of short system calls, e.g. on our system, s igprocmask
takes ∼430/1020 cycles with an invalid/valid argument,
respectively, implying 20-47% of added overhead.

Stating a similar case, Liedtke argued against this type
of kernel fine-grained accounting [30], and indeed the as-
sociated overheads may very well be the reason why sys-
tems like Linux and FreeBSD do not provide such a ser-
vice. It is not our intent to express an opinion on the mat-
ter, but rather, to make the tradeoff explicit and to high-
light the fact that designers need not face it when protect-
ing against cheat attacks. Specifically, there is no need to
know exactly how many cycles were consumed by a run-
ning process upon each kernel entry (and user/kernel or
finer statistics are obviously irrelevant too). The sched-
uler would be perfectly happy with a much lazier ap-
proach: that the information would be updated only upon
a context switch. This is a (1) far less frequent and a (2)
far more expensive event in comparison to a system call
invocation, and therefore the added overhead of reading
the cycle counter is made relatively negligible.

6.2 Patching the Kernel

We implemented this “lazy” perfect-billing patch within
the Linux 2.6.16 kernel. It is only a few dozen lines
long. The main modification is in the task s truct struc-

ture to replace the time s lice field that counts down
a process’ CPU allocation in a resolution of “jiffies”
(the Linux term for clock ticks). It is replaced by
two fields: ns time s lice , which counts down the al-
located time slice in nanoseconds instead of jiffies, and
ns las t update , which records when ns time s lice was
last updated. The value of ns time s lice is decremented
by the elapsed time since ns las t update , in two places:
on each clock tick (this simply replaces the original
time s lice jiffy decrement, but with the improvement
of only accounting for cycles actually used by this pro-
cess), and from within the schedule function just before
a context switch (this is the new part). The rest of the
kernel is unmodified, and still works in a resolution of
jiffies. This was done by replacing accesses to time s lice
with an inlined function that wraps ns time s lice and
rounds it to jiffies.

Somewhat surprisingly, using this patch did not solve
the cheat problem: a cheat process that was trying to ob-
tain 80% of the cycles still managed to get them, despite
the fact that the scheduler had full information about this
(Fig. 15). As explained in Section 5, this happened be-
cause of the extra support for “interactive” processes in-
troduced in the 2.6 kernel. The kernel identifies pro-
cesses that yield a lot as interactive, provided their nice
level is not too high. When an “interactive” process ex-
hausts its allocation and should be moved from the “ac-
tive array” into the “expired array”, it is nevertheless al-
lowed to remain in the active array, as long as already ex-
pired processes are not starved (they’re not: the cheater
runs less than 100% of the time by definition, and thus
the Linux anti-starvation mechanism is useless against
it). In effect, the scheduler is overriding its own quanta
allocations; this is a good demonstration of the two sides
of cheating prevention: it is not enough to have good in-
formation — it is also necessary to use it effectively.

In order to rectify the situation, we disallowed pro-
cesses to circumvent their allocation by commenting out
the line that reinserts expired “interactive” processes to
the active array. As shown in Fig. 16, this has finally
succeeded to defeat the attack. The timeline is effec-
tively divided into epochs of 200ms (corresponding to
the combined duration of the two 100ms time-slices of
the two competing processes) in which the processes
share the CPU equitably. While the “interactive” cheater
has higher priority (as its many block events gains it a
higher position in the multilevel queue hierarchy), this is
limited to the initial part of the epoch, where the cheater
repeatedly gets to run first upon each tick. However, after
∼125ms of which the cheater consumes 80%, its alloca-
tion runs out (125ms· 80

100
=100ms). It is then moved to

the expired array and its preferential treatment is tem-
porarily disabled. The honest process is now allowed to
catch up and indeed runs for ∼75ms until it too exhausts
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Figure 15: In Linux 2.6, cheating is still possible even with perfect billing (compare with Figs. 4-5).

its quantum and is removed from the active array, leav-
ing it empty. At this point the expired/active array are
swapped and the whole thing is repeated.

The above exposes a basic tradeoff inherent to prior-
itizing based on CPU consumption patterns: one must
either enforce a relatively equitable distribution of CPU
cycles, or be exposed to attacks by cheaters that can eas-
ily emulate “interactive” behavior. (We note in passing
that processes with +19 nice value are never regarded as
interactive by the 2.6 kernel, so the “optimization” that
allows interactive processes to deprive the others is ef-
fectively disabled; see right table in Fig. 15.)

Finally, let us discuss the patch overheads. The
schedule function was ∼80 cycles (=5%) slower:
1636 ± 182 cycles on average instead of 1557 ± 159
without the patch (± denotes standard deviation). At the
same time, the overhead of a tick handler (the sched-
uler tick function) was reduced by 17%, from 8439 ±
9323 to 6971 ± 9506. This is probably due to the fact
that after the patch, the cheater ran much less, and there-
fore generated a lot less timers for the handler to process.
Note that these measurements embody the direct over-
head only (does not include traps to the kernel and back,
nor cache pollution due to the traps or context switches).
Also note that as the high standard deviations indicate,
the distribution of ticks has a long tail, with maximal
values around 150,000 cycles. Lastly, the patch did not
affect the combined throughput of the processes, at all.

6.3 Other Potential Solutions

Several solutions may be used to prevent cheating appli-
cations from obtaining excessive CPU resources. Here
we detail some of them, and explain why they are infe-
rior to the accurate billing we suggested above. Perhaps
the simplest solution is to charge for CPU usage up-front,
when a process is scheduled to run, rather than relying
on sampling of the running process. However, this will
overcharge interactive processes that in fact do not use
much CPU time. Another potential solution is to use
two clocks, but have the billing clock operate at a finer
resolution than the timer clock. This leads to two prob-

lems. One is that it requires a very high tick rate, which
leads to excessive overhead. The other is that it does not
completely eliminate the cheat attack. An attack is still
possible using an extension of the cheat server approach
described in Section 4. The extension is that the server
is used not only to stop execution, but also to start it. A
variant of this is to randomize the clock in order to make
it impossible for an attacker to predict when ticks will
occur as suggested by Liedtke in relation to user/kernel
statistics [30]. This can work, but at the cost of overheads
and complexity. Note however that true randomness is
hard to come by, and it has already been shown that
a system’s random number generator could be reverse-
engineered in order to beat the randomness [24]. A third
possible approach is to block access to the cycle counter
from user level (this is possible at least on the Intel ma-
chines). This again suffers from two problems. First, it
withdraws a service that may have good and legitimate
uses. Second, it too does not eliminate the cheat attack,
only make it somewhat less accurate. A cheat application
can still be written without access to a cycle counter by
finding approximately how much application work can
be done between ticks, and using this directly to decide
when to stop running.

6.4 A Note About Sampling

In the system domain, it is often tempting to say “let us
do this chore periodically”. It is simple and easy and
therefore often the right thing to do. But if the chore is
somehow related to accounting or safeguarding a system,
and if “periodically” translates to “can be anticipated”,
then the design might be vulnerable. This observation
is hardly groundbreaking. However, as with ticks, we
suspect it is often brushed aside for the sake of simplicity.
Without any proof, we now list a few systems that may
posses this vulnerability.

At a finer granularity than ticks, one can find Cisco’s
NetFlow router tool that “preforms 1 in N periodic [non-
probabilistic] sampling” [13] (possibly allowing an ad-
versary to avoid paying for his traffic). At coarser gran-
ularity is found the per-node infod of the MOSIX cluster
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Figure 16: Cheating is eliminated when expired processes are not reinserted to the active list (compare with Fig. 15).

infrastructure [7], which wakes up every 5 seconds to
charge processes that migrated to the node (work can be
partitioned to shorter processes). The FAQ of IBM’s in-
ternal file infrastructure called GSA (Global Storage Ar-
chitecture) states that “charges will be based on daily file
space snapshots” [22] (raising the possibility of a well-
timed mv between two malicious cooperating users).
And finally, the US Army MDARS (Mobile Detection
Assessment Response System) patrol robots that “stop
periodically during their patrols to scan for intruders us-
ing radar and infrared sensors” in search of moving ob-
jects [45] again raise the question of what exactly does
“periodically” mean.

7 Conclusions

The “cheat” attack is a simple way to exploit computer
systems. It allows an unprivileged user-level application
to seize whatever fraction of the CPU cycles it wants,
often in a secretive manner. The cycles used by the
cheater are attributed to some other innocent applica-
tion or simply unaccounted for, making the attack hard
to detect. Such capabilities are typically associated with
rootkits that, in contrast, require an attacker to obtain su-
peruser privileges. We have shown that all major general-
purpose systems are vulnerable to the attack, with the
exception of Mac OS X that utilizes one-shot timers to
drive its timing mechanism.

Cheating is based on two dominant features of
general-purpose systems: that CPU accounting and timer
servicing are tied to periodic hardware clock interrupts,
and that the scheduler favors processes that exhibit low
CPU usage. By systematically sleeping when the inter-
rupts occur, a cheater appears as not consuming CPU
and is therefore rewarded with a consistent high priority,
which allows it to monopolize the processor.

The first step to protect against the cheat attack is to
maintain accurate CPU usage information. This is al-
ready done by Solaris and Windows XP that account for
each kernel entry. In contrast, by only accounting for

CPU usage before a context switch occurs, we achieve
sufficient accuracy in a manner more suitable for systems
like Linux and FreeBSD that are unwilling to pay the as-
sociated overhead of the Solaris/Windows way. Once the
information is available, the second part of the solution
is to incorporate it within the scheduling subsystem (So-
laris and XP don’t do that).

The third component is to use the information judi-
ciously. This is not an easy task, as indicated by the fail-
ure of Windows XP, Linux 2.6, and FreeBSD/ULE to do
so, allowing a cheater to monopolize the CPU regardless
of whether accurate information is used for scheduling
or not. In an attempt to better support the ever increasing
CPU-intensive multimedia component within the desk-
top workload, these systems have shifted to prioritizing
processes based on their sleep-events frequency, instead
of duration. This major departure from the traditional
general-purpose scheduler design [5] plays straight into
the hands of cheaters, which can easily emulate CPU-
usage patterns that multimedia applications exhibit. A
safer alternative would be to explicitly track user interac-
tions [14, 16].
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