
SpyProxy: Execution-based Detection of Malicious Web Content

Alexander Moshchuk, Tanya Bragin, Damien Deville,
Steven D. Gribble, and Henry M. Levy

Department of Computer Science & Engineering
University of Washington

{anm, tbragin, damien, gribble, levy}@cs.washington.edu

Abstract

This paper explores the use of execution-based Web
content analysis to protect users from Internet-borne
malware. Many anti-malware tools use signatures to
identify malware infections on a user’s PC. In contrast,
our approach is to render and observe active Web con-
tent in a disposable virtual machine before it reaches the
user’s browser, identifying and blocking pages whose be-
havior is suspicious. Execution-based analysis can de-
fend against undiscovered threats and zero-day attacks.
However, our approach faces challenges, such as achiev-
ing good interactive performance, and limitations, such
as defending against malicious Web content that contains
non-determinism.

To evaluate the potential for our execution-based
technique, we designed, implemented, and measured
a new proxy-based anti-malware tool called SpyProxy.
SpyProxy intercepts and evaluates Web content in tran-
sit from Web servers to the browser. We present the
architecture and design of our SpyProxy prototype, fo-
cusing in particular on the optimizations we developed
to make on-the-fly execution-based analysis practical.
We demonstrate that with careful attention to design, an
execution-based proxy such as ours can be effective at
detecting and blocking many of today’s attacks while
adding only small amounts of latency to the browsing ex-
perience. Our evaluation shows that SpyProxy detected
every malware threat to which it was exposed, while
adding only 600 milliseconds of latency to the start of
page rendering for typical content.

1 Introduction

Web content is undergoing a significant transforma-
tion. Early Web pages contained simple, passive con-
tent, while modern Web pages are increasingly active,
containing embedded code such as ActiveX components,
JavaScript, or Flash that executes in the user’s browser.
Active content enables a new class of highly interactive
applications, such as integrated satellite photo/mapping

systems. Unfortunately, it also leads to new secu-
rity threats, such as “drive-by-downloads” that exploit
browser flaws to install malware on the user’s PC.

This paper explores a new execution-based approach
to combating Web-borne malware. In this approach we
render and execute Web content in a disposable, iso-
lated execution environment before it reaches the user’s
browser. By observing the side-effects of the execution,
we can detect malicious behavior in advance in a safe
environment. This technique has significant advantages:
because it is based on behavior rather than signatures,
it can detect threats that have not been seen previously
(e.g., zero-day attacks). However, it raises several cru-
cial questions as well. First, can execution-based analy-
sis successfully detect today’s malware threats? Second,
can the analysis be performed without harming browser
responsiveness? Third, what are the limitations of this
approach, in particular in the face of complex, adversar-
ial scripts that contain non-determinism?

Our goal is to demonstrate the potential for execution-
based tools that protect users from malicious content as
they browse the Web. To do this, we designed, proto-
typed, and evaluated a new anti-malware service called
SpyProxy. SpyProxy is implemented as an extended Web
proxy: it intercepts users’ Web requests, downloads con-
tent on their behalf, and evaluates its safety before re-
turning it to the users. If the content is unsafe, the proxy
blocks it, shielding users from the threat. Our intention
is not to replace other anti-malware tools, but to add a
new weapon to the user’s arsenal; SpyProxy is comple-
mentary to existing anti-malware solutions.

SpyProxy combines two key techniques. First, it ex-
ecutes Web content on-the-fly in a disposable virtual
machine, identifying and blocking malware before it
reaches the user’s browser. In contrast, many existing
tools attempt to remove malware after it is already in-
stalled. Second, it monitors the executing Web content
by looking for suspicious “trigger” events (such as reg-
istry writes or process creation) that indicate potentially
malicious activity [28]. Our analysis is therefore based
on behavior rather than signatures.

16th USENIX Security SymposiumUSENIX Association 27

SpyProxy can in principle function either as a service
deployed in the network infrastructure or as a client-side
protection tool. While each has its merits, we focus in
this paper on the network service, because it is more
challenging to construct efficiently. In particular, we de-
scribe a set of performance optimizations that are neces-
sary to meet our goals.

In experiments with clients fetching malicious Web
content, SpyProxy detected every threat, some of which
were missed by other anti-spyware systems. Our eval-
uation shows that with careful implementation, the per-
formance impact of an execution-based malware detector
can be reduced to the point where it has negligible effect
on a user’s browsing experience. Despite the use of a
“heavyweight” Internet proxy and virtual machine tech-
niques for content checking, we introduce an average de-
lay of only 600 milliseconds to the start of rendering in
the client browser. This is small considering the amount
of work performed and relative to the many seconds re-
quired to fully render a page.

The remainder of the paper proceeds as follows. Sec-
tion 2 presents the architecture and implementation of
SpyProxy, our prototype proxy-based malware defense
system. Section 3 describes the performance optimiza-
tions that we used to achieve acceptable latency. In
section 4 we evaluate the effectiveness and performance
of our SpyProxy prototype. Section 5 discusses related
work and we conclude in Section 6.

2 Architecture and Implementation
This section describes SpyProxy—an execution-

based proxy system that protects clients from malicious,
active Web objects. We begin our discussion by plac-
ing SpyProxy in the context of existing malware defenses
and outlining a set of design goals. We next describe the
architecture of SpyProxy and the main challenges and
limitations of our approach.

2.1 Defending Against Modern Web Threats
Over the past several years, attackers have routinely

exploited vulnerabilities in today’s Web browsers to in-
fect users with malicious code such as spyware. Our
crawler-based study of Web content in October 2005
found that a surprisingly large fraction of pages con-
tained drive-by-download attacks [28]. A drive-by-
download attack installs spyware when a user simply vis-
its a malicious Web page.

Many defenses have been built to address this prob-
lem, but none are perfect. For example, many users in-
stall commercial anti-spyware or anti-virus tools, which
are typically signature-based. Many of these tools look
only for malware that is already installed, attempting the
difficult operation of removing it after the fact. Firewall-
based network detectors can filter out some well-known

and popular attacks, but they typically rely on static scan-
ning to detect exploits, limiting their effectiveness. They
also require deployment of hardware devices at organi-
zational boundaries, excluding the majority of household
users. Alternatively, users can examine blacklists or pub-
lic warning services such as SiteAdvisor [41] or Stop-
Badware [43] before visiting a Web site, but this can be
less reliable [5, 44].

None of these defenses can stop zero-day attacks
based on previously unseen threats. Furthermore, sig-
nature databases struggle to keep up with the rising
number of malware variants [9]. As a result, many of
today’s signature-based tools fail to protect users ade-
quately from malicious code on the Web.

2.2 Design Goals

SpyProxy is a new defense tool that is designed for to-
day’s Web threats. It strives to keep Web browsing con-
venient while providing on-the-fly protection from ma-
licious Web content, including zero-day attacks. Our
SpyProxy architecture has three high-level goals:

1. Safety. SpyProxy should protect clients from
harm by preventing malicious content from reach-
ing client browsers.

2. Responsiveness. The use of SpyProxy should not
impair the interactive feel and responsiveness of the
user’s browsing experience.

3. Transparency. The existence and operation of
SpyProxy should be relatively invisible and com-
patible with existing content-delivery infrastructure
(both browsers and servers).

Providing safety while maintaining responsiveness is
challenging. To achieve both, SpyProxy uses several
content analysis techniques and performance-enhancing
optimizations that we next describe.

2.3 Proxy-based Architecture

Figure 1 shows the architecture of a simplified ver-
sion of SpyProxy. Key components include the client
browser, SpyProxy, and remote Web servers. When the
client browser issues a new request to a Web server, the
request first flows through SpyProxy where it is checked
for safety.

When a user requests a Web page, the browser soft-
ware generates an HTTP request that SpyProxy must in-
tercept. Proxies typically use one of two methods for
this: browser configuration (specifying an HTTP proxy)
or network-level forwarding that transparently redirects
HTTP requests to a proxy. Our prototype system cur-
rently relies on manual browser configuration.

16th USENIX Security Symposium USENIX Association28

client
browser

proxy
front end

VM
worker

WebSquid
Web cache

URL
URL

SpyProxy

client
browser

proxy
front end

VM
worker

WebSquid
Web cache

SpyProxy

VM
worker

SpyProxy

safe

proxy
front end

WebSquid
Web cache

client
browser

(a)

(b)

(c)

root
page

URL

root
page

Figure 1: SpyProxy architecture. (a) A client browser re-
quests a Web page; the proxy front end intercepts the request,
retrieves the root page, and statically analyzes it for safety. (b)
If the root page cannot be declared safe statically, the front end
forwards the URL to a VM worker. A browser in the VM down-
loads and renders the page content. All HTTP transfers flow
through the proxy front end and a Squid cache. (c) If the page
is safe, the VM notifies the front end, and the page content is
released to the client browser from the Squid cache. Note that
if the page has been cached and was previously determined to
be safe, the front end forwards it directly to the client.

The SpyProxy front end module receives clients’
HTTP requests and coordinates their processing, as
shown in Figure 1(a). First, it fetches the root page us-
ing a cache module (we use Squid in our prototype).
If the cache misses, it fetches the data from the Web,
caching it if possible and then returning it to the front
end. Second, the front end statically analyzes the page
(described below) to determine whether it is safe. If safe,
the proxy front end releases the root page content to the
client browser, and the client downloads and renders it
and any associated embedded objects.

If the page cannot be declared safe statically, the front
end sends the page’s URL to a virtual machine (VM)
worker for dynamic analysis (Figure 1(b)). The worker
directs a browser running in its VM to fetch the requested
URL, ultimately causing it to generate a set of HTTP
requests for the root page and any embedded objects.
We configure the VM’s browser to route these requests

first through the front end and then through the locally
running Squid Web cache. Routing it through the front
end facilitates optimizations that we will describe in Sec-
tion 3. Routing the request through Squid lets us reduce
interactions with the remote Web server.

The browser in the VM worker retrieves and renders
the full Web page, including the root page and all embed-
ded content. Once the full page has been rendered, the
VM worker informs the front end as to whether it has de-
tected suspicious activity; this is done by observing the
behavior of the page during rendering, as described be-
low. If so, the front end notifies the browser that the page
is unsafe. If not, the front end releases the main Web
page to the client browser, which subsequently fetches
and downloads any embedded objects (Figure 1(c)).

2.3.1 Static Analysis of Web Content

On receiving content from the Internet, the SpyProxy
front end first performs a rudimentary form of static anal-
ysis, as previously noted. The goal of static analysis is
simple: if we can verify that a page is safe, we can pass
it directly to the client without a sophisticated and costly
VM-based check. If static analysis were our only check-
ing technique, our analysis tool would need to be com-
plex and complete. However, static analysis is just a per-
formance optimization. Content that can be analyzed and
determined to be safe is passed directly to the client; con-
tent that cannot is passed to a VM worker for additional
processing.

Our static analyzer is conservative. If it cannot iden-
tify or process an object, it declares it to be potentially
unsafe and submits it to a VM worker for examination.
For example, our analyzer currently handles normal and
chunked content encodings, but not compressed content.
Future improvements to the analyzer could reduce the
number of pages forwarded to the VM worker and there-
fore increase performance.

When the analyzer examines a Web page, it tries to
determine whether the page is active or passive. Ac-
tive pages include executable content, such as ActiveX,
JavaScript, and other code; passive pages contain no such
interpreted or executable code. Pages that contain active
content must be analyzed dynamically.

It is possible for seemingly passive content to com-
promise the user’s system if the renderer has security
holes. Such flaws have occurred in the past in both the
JPEG and PNG image libraries. For this reason, we con-
sider any non-HTML content types to be unsafe and send
them for dynamic processing. In principle, a browser’s
HTML processor could have vulnerabilities in it as well;
it is possible to configure SpyProxy to disable all static
checking if this is a concern.

We validated the potential benefits of static checking
with a small measurement study, where we collected a

client
browser

U

client

proxy
front end

VM
worker

Squid
Web cache

URL
URL

SpyProxy

proxy Squid

(a)

root
page

U

p

Web

LURL

root
page

inerorkwVM
content.ded

pebWWebfullthe
wsobrThe

winteractions
Routin3.tion

cilitatesafend
Squidrunning

tthroughfirst

whethtoasendfrontthenforms
rebeenhaspagefulltheOnce

andpagerootethincludingpage,
esvretrieerorkwVMtheinser

.erservebWWeberemotthewith
leSquidthroughrequesttheng

descwillwethatoptimizationss
throuitRoutinghe.cacebWWebd

throughthenandendtfronthe

de-hasither
theendered,

embed-alld
rendersand

reduceusets
Sec-incribe
fronttheugh

locallytheh

client
browser

client
browser

proxy
front end

VM
worker

Squid
Web cache

SpyProxy

safe

proxy
front end

Squid
Web cache

(b)

Web

Web

firstendfront
vinreceiOn

Static2.3.1

wnloaddoand
cthetopage

Ifunsafe.is
theso,If.wlo

thofviorbeha
suspicitected

inerorkwVM

oformrudimentaryasperform
thInternet,thefromcontentng

ContentebWWebofAnalysisc

(Figurjectsobembeddedyands
subsequewhich,wserbrolient

thereleasesendontfrthenot,
twserbrothenotifiesendfronte

deasrendering,duringpagehe
obbydoneisthisvity;actiious

whethtoasendfrontthenforms

anal-ticstaf
yProxySpeh

1(c)).re
fetchesently

ebWWebmaine
pagethethat

be-escribed
theingbserv
dehasither

rendandloads
Utheardsforw

pagroottheIf
rotheesvretrie
pebWWebaquests

Sp1:Figure

VM
worker

SpyProxy
(c)

S
HTTPAllcontent.pagethesder

tinwserbroA.erorkwVMatoURL
staticallysafedeclaredbeotcanne

itanalyzestaticallysandpage,oot
intercependfrontproxythepage;

clienA(a)e.chitecturaroxypyPr

processing.
cannthattent

todetermined
optiformance

compandxple
techniqueing

chVM-based
ttodirectlyit

weifsimple:
viopreasysis,

wflotransfers
wn-doVMthe
endfrontthe,y
(b).safetyfor

request,thepts
re-wserbront

foerorkwVMatoassedpisnot
thetodirectlypassedissafebeo

abecanthatContentimization.
analysisstatic,ervweHoplete.

needouldwtoolanalysisoure,
ourwereanalysisstaticIfheck.

sophisticateawithoutclienthe
safe,ispageathaterifyvcan
staticofoalgThenoted.ously

yp

additionalor
con-client;e
andanalyzed

-perajustis
com-betod

check-only
costlyanded

passcanwe
isanalysisc

cacheaing
Figinwnsho

requeHTTP
yPSpThe

frothesafe,be
haspagetheif
thetoreleased
VMthesafe,is
prthethrough

ourinSquiduse(wemodule
rthefetchesitFirst,1(a).gure

protheirrdinatescooandests
recemoduleendfrontProxy

cethtodirectlyitardsforwendont
viouslypreaswandcachedbeens

cacSquidthefromwserbrocliente
ptheandd,enfrontthenotifiesM

cache.Squidaandendfrontroxy

iti
whdetermine

theWhen
increasefore

pagofnumber
improFuture

conteedchunk
xample,eorF

suandunsafe
procesortify
staticOur

prototype)r
us-geparoot
asocessing,

clients’esvie

client.
todetermined

thatNoteche.
iscontentpage

pagetheIf(c)

ht bll d
paoractiveispagethehether

pagebWWebaxamineseanalyzer
performance.

eorkwVMthetoardedforwges
couldanalyzerthetoementsv

compresnotutbencodings,ent
ndleshacurrentlyanalyzerour

eforerorkwVMatoitubmits
betoitdeclaresitct,objeanss

citIfe.vtiaconservisanalyzer

XA ti
Ac-.assive

totriesite,

there-ander
thereduced

content.ssed
andlnorma

xamination.e
potentiallye

iden-cannot

dforerorkw
thsendsend

pagetheIf

assoyanand
wsebroclient
froproxythe
be(described

Secondend.
ifitcaching

cachetheIf
cacheaing

1(b))(Figureanalysiscdynami
mavirtualatoURLspage’eh

staticasafedeclaredbecannote

objects.embeddedciated
anwnloadsdoclienttheand,er
cpagerootthereleasesendont

isitwhetherdeterminetow)elo
analyystaticallendontfrthed,

itreturningthenandpossible
frodatathefetchesitmisses,
ourinSquiduse(wemodule

procesHTML
dynaforthem
non-yansider
PNandJPEG

flSuchholes.
uthepromise

ibpossisIt
mustcontent

orinterpreted
anaScript,vJa
incpagesevti

erorkwThe
(VM)achine
frontthe,ally

itrendersnd
thetontentco

safe,Ifsafe.
pagethesyze
frontthetot

eb,WWeb,theom
prototype).r

vulnerabilitiesevhacouldssor
nciple,priInprocessing.icam

unsabetotypescontent-HTML
reasthisorFlibraries.imageNG
pasttheinoccurredevhawsfla

hrenderertheifsystemsuser’
contevpassiseeminglyforble

.amicallydynanalyzedbe
cothatgesaPcode.ecutablexer
ncopagesevpassicode;othernd

suchntent,coecutablexeclude

well;asitni
swser’broa

sendandafe
con-weson,

thebothint
securityhas

com-totent

evactiontain
suchnontain
eX,vActias

configureeWWe
forrequests

timaulURL,
wbroadirects
dforerorkw

throutetowserbrosVM’thee
embedyanandpagerootthe

saerategentoitcausingately
tfetchtoVMitsinrunningwser

1(b)).(Figureanalysiscdynami

lsmalawith
alidatveWWe

thifchecking
possibleisit

procesHTML

requestshese
objects.eddd

HTTPofset
requestedthe

erorkwThe

wewhere,studymeasurement
statofbenefitspotentialtheedt

concern.aishis
disabtoyProxySpconfigureto

vulnerabilitiesevhacouldssor

acollectede
checkingtic

staticallble
well;asitni

16th USENIX Security SymposiumUSENIX Association 29

17-hour trace of Web requests generated by the user pop-
ulation in our department. We saw that 54.8% of HTML
pages transferred contain passive content. Thus, there
can be significant benefit in identifying these pages and
avoiding our VM-based check for them.

2.3.2 Execution-based Analysis through VM-based
Page Rendering

A drive-by download attack occurs when a Web page
exploits a flaw in the victim’s browser. In the worst
case, an attack permits the attacker to install and run arbi-
trary software on the victim’s computer. Our execution-
based approach to detecting such attacks is adapted from
a technique we developed in our earlier spyware mea-
surement study [28], where we used virtual machines to
determine whether a Web page had malicious content.
We summarize this technique here.

Our detection method relies on the assumption that
malicious Web content will attempt to break out of the
security sandbox implemented by the browser. For ex-
ample, the simple act of rendering a Web page should
never cause any of the following side-effects: the cre-
ation of a new process other than known helper appli-
cations, modifications to the file system outside of safe
folders such as the browser cache, registry modifications,
browser or OS crashes, and so on. If we can determine
that a Web page triggers any of these unacceptable con-
ditions, we have proof that the Web page contains mali-
cious content.

To analyze a Web page, we use a “clean”
VMware [45] virtual machine configured with unneces-
sary services disabled. We direct an unmodified browser
running in the VM to fetch and render the Web page. Be-
cause we disabled other services, any side effects we ob-
serve must be caused by the browser rendering the Web
page. We monitor the guest OS and browser through
“triggers” installed to look for sandbox violations, in-
cluding those listed above. If a trigger fires, we declare
the Web page to be unsafe. This mechanism is described
in more detail in [28].

Note that this technique is behavior-based rather than
signature-based. We do not attempt to characterize vul-
nerabilities; instead, we execute or render content to
look for evidence of malicious side-effects. Accordingly,
given a sufficiently comprehensive set of trigger condi-
tions, we can detect zero-day attacks that exploit vulner-
abilities that have not yet been identified.

2.4 Limitations
Our approach is effective, but has a number of chal-

lenges and limitations. First, the overhead of cloning a
VM, rendering content within it, and detecting trigger
conditions is potentially high. In Section 3 we describe
several optimizations to eliminate or mask this overhead,

and we evaluate the success of these optimizations in
Section 4. Second, our trigger monitoring system should
be located outside the VM rather than inside it, to prevent
it from being tampered with or disabled by the malware
it is attempting to detect. Though we have not done so,
we believe we could modify our implementation to use
techniques such as VM introspection [18] to accomplish
this. Third, pre-executing Web content on-the-fly raises
several correctness and completeness issues, which we
discuss below.

2.4.1 Non-determinism

With SpyProxy in place, Web content is rendered
twice, once in the VM’s sandboxed environment and
once on the client. For our technique to work, all at-
tacks must be observed by the VM: the client must never
observe an attack that the VM-based execution missed.
This will be true if the Web content is deterministic and
follows the same execution path in both environments. In
this way, SpyProxy is ideal for deterministic Web pages
that are designed to be downloaded and displayed to the
user as information.

However, highly interactive Web pages resemble
general-purpose programs whose execution paths depend
on non-deterministic factors such as randomness, time,
unique system properties, or user input. An attacker
could use non-determinism to evade detection. For ex-
ample, a malicious script could flip a coin to decide
whether to carry out an attack; this simple scheme would
defeat SpyProxy 50% of the time.

As a more pertinent example, if a Web site relies on
JavaScript to control ad banner rotation, it is possible that
the VM worker will see a benign ad while the client will
see a malicious ad. Note, however, that much of Inter-
net advertising today is served from ad networks such
as DoubleClick or Advertising.com. In these systems,
a Web page makes an image request to the server, and
any non-determinism in picking an ad happens on the
server side. In this case, SpyProxy will return the same
ad to both the VM worker and the client. In general,
only client-side non-determinism could cause problems
for SpyProxy.

There are some potential solutions for handling non-
determinism in SpyProxy. Similar to ReVirt [12], we
could log non-deterministic events in the VM and re-
play them on the client; this likely would require exten-
sive browser modifications. We could rewrite the page to
make it deterministic, although a precise method for do-
ing this is an open problem, and is unlikely to generalize
across content types. The results of VM-based rendering
can be shipped directly to the client using a remote dis-
play protocol, avoiding client-side rendering altogether,
but this would break the integration between the user’s
browser and the rest of their computing environment.

16th USENIX Security Symposium USENIX Association30

None of these approaches seem simple or satisfactory;
as a result, we consider malicious non-determinism to be
a fundamental limitation to our approach. In our proto-
type, we did not attempt to solve the non-determinism
problem, but rather we evaluated its practical impact
on SpyProxy’s effectiveness. Our results in Section 4
demonstrate that our system detected all malicious Web
pages that it examined, despite the fact that the major-
ity of them contained non-determinism. We recognize
that in the future, however, an adversary could intro-
duce non-determinism in an attempt to evade detection
by SpyProxy.

2.4.2 Termination

Our technique requires that the Web page rendering
process terminates so that we can decide whether to
block content or forward it to the user. SpyProxy uses
browser interfaces to determine when a Web page has
been fully rendered. Unfortunately, for some scripts ter-
mination depends on timer mechanisms or user input,
and in general, determining when or whether a program
will terminate is not possible.

To prevent “timebomb-based” attacks, we speed up
the virtual time in the VM [28]. If the rendering times
out, SpyProxy pessimistically assumes the page has
caused the browser to hang and considers it unsafe. Post-
rendering events, such as those that fire because of user
input, are not currently handled by SpyProxy, but could
be supported with additional implementation. For exam-
ple, we could keep the VM worker active after rendering
and intercept the events triggered because of user input to
forward them to the VM for pre-checking. The interposi-
tion could be accomplished by inserting run-time checks
similar to BrowserShield [33].

2.4.3 Differences Between the Proxy and Client

In theory, the execution environment in the VM and
on the client should be identical, so that Web page ren-
dering follows the same execution path and produces the
same side-effects in both executions. Differing environ-
ments might lead to false positives or false negatives.

In practice, malware usually targets a broad audience
and small differences between the two environments are
not likely to matter. For our system, it is sufficient that
harmful side-effects produced at the client are a subset
of harmful side-effects produced in the VM. This im-
plies that the VM system can be partially patched, which
makes it applicable for all clients with a higher patch
level. Currently, SpyProxy uses unpatched Windows
XP VMs with an unpatched IE browser. As a result,
SpyProxy is conservative and will block a threat even if
the client is patched to defend against it.

There is a possibility that a patch could contain a bug,
causing a patched client to be vulnerable to an attack to

which the unpatched SpyProxy is immune [24]. We as-
sume this is a rare occurrence, and do not attempt to de-
fend against it.

2.5 Client-side vs. Network Deployment

As we hinted before, SpyProxy has a flexible imple-
mentation: it can be deployed in the network infrastruc-
ture, or it can serve as a client-side proxy. There are
many tradeoffs involved in picking one or the other. For
example, a network deployment lets clients benefit from
the workloads of other clients through caching of both
data and analysis results. On the other hand, a client-side
approach would remove the bottleneck of a centralized
service and the latency of an extra network hop. How-
ever, clients would be responsible for running virtualiza-
tion software that is necessary to support SpyProxy’s VM
workers. Many challenges, such as latency optimizations
or non-determinism issues, apply in both scenarios.

While designing our prototype and carrying out our
evaluation, we decided to focus on the network-based
SpyProxy. In terms of effectiveness, the two approaches
are identical, but obtaining good performance with a net-
work deployment presents more challenges.

3 Performance Optimizations

The simple proxy architecture described in section 2
will detect and block malicious Web content effectively,
but it will perform poorly. For a given Web page request,
the client browser will not receive or render any content
until the proxy has downloaded the full page from the re-
mote Web server, rendered it in a VM worker, and satis-
fied itself that no triggers have fired. Accordingly, many
of the optimizations that Web browsers perform to mini-
mize perceived latency, such as pipelining the transfer of
embedded objects and the rendering of elements within
the main Web page, cannot occur.

To mitigate the cost of VM-based checking in our
proxy, we implemented a set of performance optimiza-
tions that either enable the browser to perform its normal
optimizations or eliminate proxy overhead altogether.

3.1 Caching the Result of Page Checks

Web page popularity is known to follow a Zipf dis-
tribution [6]. Thus, a significant fraction of requests
generated by a user population are repeated requests for
the same Web pages. Web proxy caches take advantage
of this fact to reduce Web traffic and improve response
times [1, 13, 15, 21, 52, 53]. Web caching studies gener-
ally report hit rates as high as 50%.

Given this, our first optimization is caching the result
of our security check so that repeated visits to the same
page incur the overhead of our VM-based approach only

16th USENIX Security SymposiumUSENIX Association 31

once. In principle, the hit rate in our security check cache
should be similar to that of Web caches.

This basic idea faces complications. The principle
of complete mediation warns against caching security
checks, since changes to the underlying security pol-
icy or resources could lead to caching an incorrect out-
come [34]. In our case, if any component in a Web page
is dynamically generated, then different clients may be
exposed to different content. However, in our architec-
ture, our use of the Squid proxy ensures that no confu-
sion can occur: we cache the result of a security check
only for objects that Squid also caches, and we invalidate
pages from the security cache if any of the page’s objects
is invalid in the Squid cache. Thus, we generate a hit
in the security cache only if all of the Web page content
will be served out of the Squid proxy cache. Caching
checks for non-deterministic pages is dangerous, and we
take the simple step of disabling the security cache for
such pages.

3.2 Prefetching Content to the Client
In the unoptimized system shown in Figure 1, the

Web client will not receive any content until the entire
Web page has been downloaded, rendered, and checked
by SpyProxy. As a result, the network between the
client and the proxy remains idle when the page is be-
ing checked. If the client has a low-bandwidth network
connection, or if the Web page contains large objects,
this idle time represents a wasted opportunity to begin
the long process of downloading content to the client.

To rectify this, SpyProxy contains additional com-
ponents and protocols that overlap several of the steps
shown in Figure 1. In particular, a new client-side com-
ponent acts as a SpyProxy agent. The client-side agent
both prefetches content from SpyProxy and releases it
to the client browser once SpyProxy informs it that the
Web page is safe. This improves performance by trans-
mitting content to the client in parallel with checking the
Web page in SpyProxy. Because we do not give any Web
page content to the browser before the full page has been
checked, this optimization does not erode security.

In our prototype, we implemented the client-side
agent as an IE plugin. The plugin communicates with
the SpyProxy front end, spooling Web page content and
storing it until SpyProxy grants it authorization to release
the content to the browser.

3.3 The Staged Release of Content
Although prefetching allows content to be spooled

to the client while SpyProxy is performing its security
check, the user’s browser cannot begin rendering any of
that content until the full Web page has been rendered
and checked in the VM worker. This degrades respon-
siveness, since the client browser cannot take advantage

main page
embedded

object

embedded
object

main page
embedded

object

embedded
object

main page
embedded

object

embedded
object

main page
embedded

object

embedded
object

main page
embedded

object

embedded
object

main page
embedded

object

embedded
object

not
downloaded

downloaded and rendered
but not released

downloaded and
released

(a) (b)

(c) (d)

(e) (f)

Figure 2: Staged release optimization. The progression of
events in the VM worker’s browser shows how staged release
operates on a Web page with two embedded objects. As em-
bedded objects become fully downloaded and rendered by the
VM worker’s browser, more of the Web page is released to the
client-side browser.

of its performance optimizations that render content well
before the full page has arrived.

We therefore implemented a “staged release” opti-
mization. The goal of staged release is to present con-
tent considered safe for rendering to the client browser
in pieces; as soon as the proxy believes that a slice of
content (e.g., an object or portion of an HTML page) is
safe, it simultaneously releases and begins transmitting
that content to the client.

Figure 2 depicts the process of staged release. A page
consists of a root page (typically containing HTML) and
a set of embedded objects referred to from within the root
page. As a Web browser downloads and renders more
and more of the root page, it learns about embedded ob-
jects and begins downloading and rendering them.

Without staged release, the proxy releases no content
until the full Web page and its embedded objects have
been rendered in the VM. With staged release, once the
VM has rendered an embedded object, it releases that

dtoxposede
dynamicalis

In[34].come
resouroryic

sincchecks,
completeof

basicThis
simbeshould
incprInonce.

in,ervweHocontent.ferentdiffferent
cliferentdiffferentthengenerated,lly
incomponentyanifcase,ourn
inancachingotleadcouldrces
sunderlyingthetochangese

cachainstagarnswonmediati
Tcomplications.acesffacesideac

caches.ebWWebofthattomilar
ecuritysourinratehittheciple,

architec-our
bemayients

pageebWWeban
out-ncorrect
pol-security

securityhing
principleThe

cachechecky

main page

b dd db dd d

b dd db dd dembedded
object

embedded
object

main page

(a) (b)

b dd db dd d

b dd db dd dembedded
object

embedded
object

pages.such
simptheetak

noforchecks
eservbewill

securitthein
inalidvinvis

thfrompages
objeforonly
occancsion
useourture,

xposed

securithedisablingofstepple
dangeispagesn-deterministico

cachproxySquidtheofouted
ebWWebtheofallifonlycachety

gweThus,cache.Squidthe
ptheofyanifcachesecurityhe
wandcaches,alsoSquidthatcts

seaofresultthecacheweur:
thensuresproxySquidtheofe

,vwe

forcacheity
weandrous,e

Cachinghe.
contentpage

hitaenerate
objectssage’
alidatevinnvwe
checkecurity

confu-nohat

main page

b dd d

b dd db dd d

b dd db dd d

embedded
object

embedded
object

main page

embedded
object

(c) (d)

b dd d

b dd db dd d

b dd db dd d

embedded
object

embedded
object

embedded
object

timeidlethis
oconnection,

ed.checking
thandclient

yProxySpby
hapageebWWeb
wclientebWWeb

untheIn

efetPr3.2

opportunastedwarepresentse
lacontainspageebWWebethifor

w-bandwloahasclienttheIf
thewhenidleremainsproxyhe

orknetwtheresult,aAs.y
rendered,wnloaded,dobeenas

uncontentyanevreceinotwill
Finwnshosystemnoptimized

ClienthetoContenttching

ginbetonity
objects,gear

orknetwidth
be-ispagee
thebetween
edcheckand

entirethentil
the1,Figure

nt
main page

not
downloaded

Vtheinentsve
Sta2:Figure

b dd dembedded
object main page

d
downloaded and rendered

but not released
downloaded and

rel

(e) (f)

swhowsshowserbroser’orkwVM
pTheoptimization.eleaseraged

b dd dembedded
object

oaded and
eased

)

releasestaged
ofprogression

contentpage
inpageebWWeb

contemitting
ispageebWWeb

clienttheto
prefetchboth

aactsponent
Figinwnsho

andponents
rectifyoTTo

proclongthe

pfullthebeforewserbrohetto
gnotdoweBecause.yProxySp

withparallelinclientthetoent
performanesvimproThissafe.

informyProxySponcewserbro
anyProxySpfromcontenthes

clienTheagent.yProxySpaas
cliewnea,particularIn1.gure
eralvseerlapvothatprotocols
addcontainsyProxySpthis,y
tocontentgwnloadindoofcess

beenhaspage
ebWWebyanevgi

thechecking
trans-byenc

thethatitms
itreleasesnd

agentdent-si
com-ent-side
stepstheof
com-ditional

client.the

consideretent
Thmization.

therefoeWWe
fulthebefore

performitsof

wbroclient-side
bser’orkwVM

bjectsobedded
Waonoperates

clitheotrenderingforsafeed
ptoisreleasestagedofgoalhe

re“stagedaentedimplemore
d.evarrihaspagel

renderthattimizationsopmance

.wser
reispageebWWebtheofmore,wserbro

renandwnloadeddofullybecome
objembeddedotwwithpageebWWeb

wserbroient
con-present
opti-elease”

wellcontent

thetoeleased
thebyndered

em-Asects.

clienttheto
Although

SThe3.3

tocontentthe
untiitstoring

yProxypSthe
Ianasagent

prourIn
thised,check

contentpage

performingisyProxySpwhile
tocontentwsalloprefetching

ContentofReleaseStaged

.wserbrotheo
authorizatiitgrantsyProxySpil

pageebWWebspoolingend,fronty
commupluginTheplugin.IE

theimplementedwerototype,
seerodenotoesdoptimizations
pfullthebeforewserbrohetto

securityitsg
spooledbeo

releasetoion
andcontente

withunicates
client-sidee

.ecurity
beenhaspage

gibeandjects
tfomoreand
WaAspage.

embedofseta
raofconsists

de2Figure
tocontentthat

simultitsafe,
(e.g.,content

aspieces;in
consideretent

renderingandwnloadingdoins
emaboutrnsleaitpage,rootthe
reandwnloadsdowserbroebWWeb

wifromtoreferredobjectsdded
containing(typicallypageroot

relestagedofprocesstheepicts
client.theo

ginsbeandreleasestaneously
HTManofrtionpoorobjectan

thaesvbelieproxytheassoon
clitheotrenderingforsafeed

them.
ob-mbedded

moreenders
roottheithin
andHTML)

pageAease.

transmitting
ispage)ML
ofsliceaat

wserbroient

sinceness,vsi
edcheckand

contentthat
usthecheck,

clienttheto

takcannotwserrobclientthece
grdeThis.erorkwVMthein
behaspageebWWebfulltheuntil

rendginbecannotwserbrosser’
performingisyProxySpwhile

antageadvek
respon-rades

renderedeen
ofyandering

securityitsg

rendhasVM
renderedbeen

fulltheuntil
stithoutW
gibeandjects

ritobject,ddedembeandered
releastagedthiWVM.theind

oembeddeditsandpageebWWeb
releaseproxythease,releaged

renderingandwnloadingdoins

thatsesrelea
theoncease,

evhaobjects
contentnos

them.

16th USENIX Security Symposium USENIX Association32

object and all of the root page content that precedes its
reference. If the client browser evaluates the root page in
the same order as the VM browser, this is safe to do; our
results in Section 4 confirm this optimization is safe in
practice. Thus, a pipeline is established in which content
is transmitted and released incrementally to the client
browser.

In Figures 2(a) and 2(b), only part of the main Web
page has been downloaded and rendered by the VM
browser. In Figure 2(c), all of the first embedded object
has been rendered by the VM, which causes that object
and some of the main Web page content (shown in black)
to be released and transmitted to the client browser. More
of the main Web page and the second embedded object
is downloaded and rendered in Figure 2(d), until finally,
in Figures 2(e) and 2(f), the full Web page is released.

Many Web pages contain dozens of embedded im-
ages. For example, CNN’s Web page contains over 32
embedded objects. Faced with such a Web page, our
staged release optimization quickly starts feeding the
client browser more and more of the root page and as-
sociated embedded objects. As a result, the user does not
observe expensive Web access delay.

Note that staged release is independent from prefetch-
ing. With prefetching, content is pushed to the client-side
agent before SpyProxy releases it to the client browser;
however, no content is released until the full page is
checked. With staged release, content is released incre-
mentally, but released content is not prefetched. Staged
release can be combined with prefetching, but since it
does not require a client-side agent to function, it may
be advantageous to implement staged release without
prefetching. We evaluate each of these optimizations in-
dependently and in combination in Section 4.

3.4 Additional optimizations
SpyProxy contains a few additional optimizations.

First, the VM worker is configured to have a browser
process already running inside, ready to accept a URL
to retrieve. This avoids any start-up time associated with
booting the guest OS or launching the browser. Sec-
ond, the virtual disk backing the VM worker is stored
in a RAM-disk file system in the host OS, eliminating
the disk traffic associated with storing cookies or files
in the VM browser. Finally, instead of cloning a new
VM worker for every client request, we re-use VM work-
ers across requests, garbage collecting them only after a
trigger fires or a configurable number of requests has oc-
curred. Currently, we garbage collect a worker after 50
requests.

4 Evaluation
This section evaluates the effectiveness and perfor-

mance of our SpyProxy architecture and prototype. The

browser exploits 27

spontaneous downloads 73malicious pages visited

total 100

sites containing the malicious pages 45

malicious pages blocked by SpyProxy 100%

malicious domains identified by SiteAdvisor 80%

malicious pages containing non-determinism 96%

Table 1: Effectiveness of SpyProxy. The effectiveness of
SpyProxy at detecting and blocking malicious Web content.
SpyProxy was successful at detecting and blocking 100% of
the malicious Web pages we visited, in spite of the fact that
most of them contained non-determinism. In comparison, the
SiteAdvisor service incorrectly classified 20% of the malicious
Web domains as benign.

prototype includes the performance optimizations we de-
scribed previously. Our results address three key ques-
tions: how effective is our system at detecting and block-
ing malicious Web content, how well do our performance
optimizations mask latency from the user, and how well
does our system perform given a realistic workload?

4.1 Effectiveness at Blocking Malicious Code

We first consider the ability of SpyProxy to success-
fully block malicious content. To quantify this, we man-
ually gathered a list of 100 malicious Web pages on 45
distinct sites. Each of these pages performs an attack of
some kind. We found these pages using a combination of
techniques, including: (1) searching Google for popular
Web categories such as music or games, (2) mining pub-
lic blacklists of known attack sites, and (3) examining
public warning services such as SiteAdvisor.

Some of the Web pages we found exploit browser vul-
nerabilities to install spyware. Others try to “push” ma-
licious software at clients spontaneously, requiring user
consent to install it; we have configured SpyProxy to
automatically accept such prompts to evaluate its effec-
tiveness at blocking these threats. The pages include a
diversity of attack methods, such as the WMF exploit,
ActiveX controls, applet-based attacks, JavaScript, and
pop-up windows. A successful attack inundates the vic-
tim with adware, dialer, and Trojan downloader software.

Table 1 quantifies the effectiveness of our system.
SpyProxy detected and blocked 100% of the attack
pages, despite the diversity of attack methods to which
it was exposed. Further, most of these attack pages con-
tained some form of non-deterministic content; in prac-
tice, none of the attacks we found attempted to evade
detection by “hiding” inside non-deterministic code.

The table also shows the advantage of our on-the-fly
approach compared to a system like SiteAdvisor, which
provides static recommendations based on historical ev-
idence. SiteAdvisor misclassified 20% of the malicious
sites as benign. While we cannot explain why SiteAdvi-

16th USENIX Security SymposiumUSENIX Association 33

sor failed on these sites, we suspect it is due to a combi-
nation of incomplete Web coverage (i.e., not having ex-
amined some pages) and stale information (i.e., a page
that was benign when examined has since become ma-
licious). SpyProxy’s on-the-fly approach examines Web
page content as it flows towards the user, resulting in a
more complete and effective defense.

For an interesting example of how SpyProxy works in
practice, consider www.crackz.ws, one of our 100 mali-
cious pages. This page contains a specially crafted im-
age that exploits a vulnerability in the Windows graph-
ics rendering engine. The exploit runs code that silently
downloads and installs a variety of malware, including
several Trojan downloaders. Many signature-based anti-
malware tools would not prevent this attack from suc-
ceeding; they would instead attempt to remove the mal-
ware after the exploit installs it.

In contrast, when SpyProxy renders a page from
www.crackz.ws in a VM, it detects the exploit when the
page starts performing unacceptable activity. In this case,
as the image is rendered in the browser, SpyProxy de-
tects an unauthorized creation of ten helper processes.
SpyProxy subsequently blocks the page before the client
renders it. Note that SpyProxy does not need to know
any details of the exploit to stop it. Equally important,
in spite of the fact that the exploit attacks a non-browser
flaw that is buried deep in the software stack, SpyProxy’s
behavior-based detection allowed it to discover and pre-
vent the attack.

4.2 Performance of the Unoptimized System

This section measures the performance of the basic
unoptimized SpyProxy architecture we described in Sec-
tion 2.3. These measurements highlight the limitations
of the basic approach; namely, unoptimized SpyProxy
interferes with the normal browser rendering pipeline by
delaying transmission until an entire page is rendered and
checked. They also suggest opportunities for optimiza-
tion and provide a baseline for evaluating the effective-
ness of those optimizations.

We ran a series of controlled measurements, testing
SpyProxy under twelve configurations that varied across
the following three dimensions:

• Proxy configuration. We compared a regular
browser configured to communicate directly with
Web servers with a browser that routes its requests
through the SpyProxy checker.

• Client-side network. We compared a browser
running behind an emulated broadband connection
with a browser running on the same gigabit Ethernet
LAN as SpyProxy. We used the client-side NetLim-
iter tool and capped the upload and download client

Google NY Times MSN blog

render
begins

render
ends

render
begins

render
ends

render
begins

render
ends

direct 0.21s 0.64s 0.41s 4.8s 0.40s 10.2s

unoptimized
SpyProxy

0.79s 1.2s 3.4s 7.3s 2.7s 12.4s

 (a) broadband

Google NY Times MSN blog

render
begins

render
ends

render
begins

render
ends

render
begins

render
ends

direct 0.20s 0.63s 0.41s 3.3s 0.36s 2.3s

unoptimized
SpyProxy

0.79s 1.2s 3.4s 5.3s 2.7s 3.9s

 (b) gigabit

g g

render
begins

render
ends

render
begins

render
ends

render
begins

render
ends

direct 0.21s 0.64s 0.41s 4.8s 0.40s 10.2s

unoptimized
SpyProxy

0.79s 1.2s 3.4s 7.3s 2.7s 12.4s

 (a) broadband

Google NY Times MSN blog

render
begins

render
ends

render
begins

render
ends

render
begins

render
ends

direct 0.20s 0.63s 0.41s 3.3s 0.36s 2.3s

unoptimized
SpyProxy

0.79s 1.2s 3.4s 5.3s 2.7s 3.9s

 (b) gigabit

Table 2: Performance of the unoptimized SpyProxy. These
tables compare the latency of an unprotected browser that
downloads content directly from Web servers to that of a pro-
tected browser downloading through the SpyProxy service. We
show the latency until the page begins to render on the client
and the latency until the page finishes rendering. The data are
shown for three Web pages as well the client on (a) an emulated
broadband access link, and (b) the same LAN as SpyProxy.

bandwidth at 1.5 Mb/s to emulate the broadband
connection.

• Web page requested. We measured three different
Web pages: the Google home page, the front page
of the New York Times, and the “MSN shopping in-
sider” blog, which contains several large, embedded
images. The Google page is small: just 3,166 bytes
of HTML and a single 8,558 byte embedded GIF.
The New York Times front page is larger and more
complex: 92KB of HTML, 74 embedded images, 4
stylesheets, 3 XML objects, 1 flash animation, and
10 embedded JavaScript objects. This represents
844KB of data. The MSN blog consists of a 79KB
root HTML page, 18 embedded images (the largest
of which is 176KB), 2 stylesheets, and 1 embedded
JavaScript object, for a total of 1.4MB of data.

For each of the twelve configurations, we created
a timeline showing the latency of each step from the
client’s Web page request to the final page rendering in
the client. We broke the end-to-end latency into several
components, including WAN transfer delays, the over-
head of rendering content in the VM worker before re-
leasing it to the client, and internal communication over-
head in the SpyProxy system itself. We cleared all caches
in the system to ensure that content was retrieved from
the original Web servers in all cases.

For each configuration, Table 2 shows the time until
content first begins to render on the user’s screen and the
time until the Web page finishes rendering. In all cases,

16th USENIX Security Symposium USENIX Association34

time
(ms)

event

0 user requests URL, browser generates HTTP request

169 SpyProxy FE receives request, requests root page from Squid

538 SpyProxy FE finishes static check, forwards URL to VM

560 VM browser generates HTTP request

561 first byte of root page arrives at VM browser

3055 last byte of last page component arrives at VM browser

3363 VM browser finishes rendering, checking triggers

3374 first byte of root page arrives at client browser

7334 last byte of last page component arrives at client browser

7347 client browser finishes rendering content

client browser transfer and render time: 4.5s
 overhead introduced by VM browser: 2.8s
 other SpyProxy system overhead: 0.05s

Table 3: Detailed breakdown of the unoptimized SpyProxy.
Events occurring when fetching the New York Times page over
broadband through SpyProxy. Most SpyProxy overhead is due
to serializing the VM browser download and trigger checks be-
fore transferring or releasing content to the client browser.

the unoptimized SpyProxy implementation added less
than three seconds to the total page download time. How-
ever, the time until rendering began was much higher on
the unoptimized system, growing in some cases by a fac-
tor of ten. This confirms that our system can perform
well, but, without optimizations, it interferes with the
browser’s ability to reduce perceived latency by pipelin-
ing the transfer and rendering of content.

Table 3 provides a more detailed timeline of events
when fetching the New York Times page from a broad-
band client using the unoptimized SpyProxy. Download-
ing and rendering the page in the VM browser introduced
2.8 seconds of overhead. Since no data flows to the client
browser until SpyProxy finishes rendering and checking
content, this VM rendering latency is responsible for de-
lay experienced by the user.

4.3 Performance Optimizations

To reduce the overhead introduced by the unoptimized
SpyProxy system, we previously described three opti-
mization techniques: prefetching content to a client-side
agent, the staged release of content to the client browser,
and caching the results of security checks. We now
present the results of a set of microbenchmarks that eval-
uate the impact of each optimization.

Figure 3 summarizes the benchmark results. Both fig-
ures show the latency to download three different pages
to a client on the emulated broadband connection. For
each page, we show latency for five cases: (1) the unop-
timized SpyProxy, (2) SpyProxy with only prefetching
enabled, (3) SpyProxy with only staged release enabled,
(4) SpyProxy with a hit in the enabled security cache, and
(5) the base case of a client fetching content directly from
Web servers. Figure 3(a) shows the latency before page
rendering begins in the client browser, while Figure 3(b)

0

1000

2000

3000

4000

Google New York Times MSN Blog

(a)

la
te

n
c

y
to

s
ta

rt
re

n
d

e
ri

n
g

(m
s

)

unoptimized
prefetching only
staged release only
cache hit only
direct

0

2000

4000

6000

8000

10000

12000

14000

Google New York Times MSN Blog

(b)

la
te

n
c

y
to

fi
n

is
h

re
n

d
e

ri
n

g
(m

s
)

unoptimized
prefetching only
staged release only
cache hit only
direct

Figure 3: Performance of optimizations (broadband). The
latency until the client browser (a) begins rendering the page,
and (b) finishes rendering the page. Each graph shows the la-
tency for three different pages for five configurations.

Google NY Times MSN blog

render
begins

render
ends

render
begins

render
ends

render
begins

render
ends

unoptimized
SpyProxy

0.79s 1.21s 3.37s 7.3s 2.7s 12.4s

prefetching
only

.78s
(-0.01s)

1.15s
(-0.06s)

3.43s
(+0.06s)

5.2s
(-2.1s)

2.2s
(-0.5s)

11.3s
(-1.1s)

Table 4: Prefetching (broadband). Latency improvements
gained by the prefetching optimization in the broadband envi-
ronment. Prefetching alone did not yield significant benefits.

shows the latency until page rendering ends.

In combination, the optimizations serve to reduce the
latency before the start of rendering in the client. With
all of the the optimizations in place, the page load “feels”
nearly as responsive through SpyProxy as it does with-
out SpyProxy. In either case, the page begins render-
ing about a second after the request is generated. The
optimizations did somewhat improve the total render-
ing latency relative to the unoptimized implementation
(Figure 3(b)), but this was not nearly as dramatic. Page
completion time is dominated by transfer time over the
broadband network, and our optimizations do nothing to
reduce this.

16th USENIX Security SymposiumUSENIX Association 35

Google NY Times MSN blog

render
begins

render
ends

render
begins

render
ends

render
begins

render
ends

unoptimized
SpyProxy

0.79s 1.21s 3.37s 7.3s 2.7s 12.4s

staged release
only

0.64s
(-0.15s)

1.13s
(-0.08s)

0.92s
(-2.45s)

5.2s
(-2.1s)

1.3s
(-1.4s)

11.3s
(-1.1s)

Table 5: Staged release (broadband). Latency improvements
from staged release in the broadband environment. Staged re-
lease significantly improved the latency until rendering starts.
It yielded improvements similar to prefetching in the latency
until full page rendering ends.

4.3.1 Prefetching

Prefetching by itself does not yield significant ben-
efits. As shown in Table 4, it did not reduce render-
ing start-time latency. With prefetching alone, the client
browser effectively stalls while the VM browser down-
loads and renders the page fully in the proxy. That is,
SpyProxy does not release content to the client’s browser
until the VM-based check ends.

However, we did observe some improvement in
finish-time measurements. For example, the time to fully
render the New York Times page dropped by 2.1 seconds,
from 7.3 seconds in the unoptimized SpyProxy to 5.2
seconds with prefetching enabled. Prefetching success-
fully overlaps some transmission of content to the client-
side agent with SpyProxy’s security check, slightly low-
ering overall page load time.

4.3.2 Staged Release

Staged release very successfully reduced initial la-
tency before rendering started; this time period has the
largest impact on perceived responsiveness. As shown
in Table 5, staged release reduced this latency by sev-
eral seconds for both the New York Times and MSN blog
pages. In fact, from the perspective of a user, the New
York Times page began rendering nearly four times more
quickly with staged release enabled. For all three pages,
initial rendering latency was near the one-second mark,
implying good responsiveness.

The staged release optimization also reduced the la-
tency of rendering the full Web page to nearly the same
point as prefetching. Even though content does not start
flowing to the client until it is released, this optimiza-
tion releases some content quickly, causing an overlap of
transmission with checking that is similar to prefetching.

Staged release outperforms prefetching in the case
that matters—initial time to rendering. It also has the
advantage of not requiring a client-side agent. Once
SpyProxy decides to release content, it can simply begin
uploading it directly to the client browser. Prefetching
requires the installation of a client-side software compo-

Google NY Times MSN blog

render
begins

render
ends

render
begins

render
ends

render
begins

render
ends

unoptimized
SpyProxy

0.79s 1.21s 3.37s 7.3s 2.7s 12.4s

security
cache hit

0.23s
(-0.56s)

0.64s
(-0.57s)

0.71s
(-2.66s)

4.6s
(-2.7s)

0.5s
(-2.2s)

10.2s
(-2.2s)

Table 6: Security cache hit (broadband). This table shows
the latency improvements gained when the security cache opti-
mization is enabled and the Web page hits in the cache.

nent, and it provides benefits above staged release only
in a narrow set of circumstances (namely, pages that con-
tain very large embedded objects).

To better visualize the impact of staged release, Fig-
ure 4 depicts the sequence of Web object completion
events that occur during the download and rendering of a
page. Figure 4(a) shows completion events for the New
York Times page. The unoptimized SpyProxy (top) does
not transmit or release events to the client browser until
the full page has rendered in the VM. With staged re-
lease (4(a) bottom), as objects are rendered and checked
by the SpyProxy VM, they are released and transmitted
to the client browser and then rendered. Accordingly, the
sequence of completion events is pipelined between the
two browsers. This leads to much more responsive ren-
dering and an overall lower page load time.

Figure 4(b) shows a similar set of events for the MSN
blog page. Since this page consists of few large embed-
ded images, the dominant cost in both the unoptimized
and staged-release-enabled SpyProxy implementations is
the time to transmit the images to the client over broad-
band. Accordingly, though staged release permits the
client browser to begin rendering more quickly, most ob-
jects queue up for transmission over the broadband link
after being released by SpyProxy.

4.3.3 Caching

When a client retrieves a Web page using the opti-
mized SpyProxy, both the outcome of the security check
and the page’s content are cached in the proxy. When
a subsequent request arrives for the same page, if any
of its components are cached and still valid, our system
avoids communicating with the origin Web server. In ad-
dition, if all components of the page are cached and still
valid, the system uses the previous security check results
instead of incurring the cost of a VM-based evaluation.

In Table 6, we show the latency improvement of hit-
ting in the security cache compared with the unoptimized
SpyProxy. As with the other optimizations, the primary
benefit of the security cache is to improve the latency un-
til the page begins rendering. Though the full page load
time improves slightly, the transfer time over the broad-

16th USENIX Security Symposium USENIX Association36

0 2000 4000 6000 8000 10000

Time (ms) -- unoptimized SpyProxy

client
VM

0 2000 4000 6000 8000 10000

Time (ms) -- staged release enabled

VM

client

0 2000 4000 6000 8000 10000 12000

Time (ms) -- unoptimized SpyProxy

VM client

0 2000 4000 6000 8000 10000 12000

Time (ms) -- staged release enabled

VM
client

(a) New York Times (b) MSN

Figure 4: Timeline of events with staged release (broadband). The sequence of object rendering completion events that occur
over time for (a) the New York Times, and (b) MSN blog pages. The top figures show the sequence of events for the unoptimized
SpyProxy, while the bottom figures show what happens with staged release. In each figure, the top series of dots represents
completions in the client browser and the bottom series in SpyProxy’s VM browser. Staged release is effective at the early release
of objects to the browser.

band connection still dominates. However, on a security
cache hit, the caching optimization is extremely effec-
tive, since it eliminates the need to evaluate content in a
VM.

4.4 Performance on a Realistic Workload
Previous sections examined the individual impact of

each of our optimizations. In the end, however, the ques-
tion remains: how does SpyProxy perform for a “typ-
ical” user Web-browsing workload? A more realistic
workload will cause the performance optimizations —
caching, static analysis, and staged release — to be exer-
cised together in response to a stream of requests.

To study the behavior of SpyProxy when confronted
with a realistic request stream, we measured the re-
sponse latencies of 1,909 Web page requests issued by
our broadband Web client. These requests were gener-
ated with a Zipf popularity distribution drawn from a list
of 703 different safe URLs from 124 different sites. We
chose the URLs by selecting a range of popular and un-
popular sites ranked by the Alexa ranking service. By
selecting real sites, we exercised our system with the dif-
ferent varieties and complexities of Web page content to
which users are typically exposed. By generating our
workload with a Zipf popularity distribution, we gave
our caching optimization the opportunity to work in a
realistic scenario. None of the sites we visited contained
attacks; our goal was simply to evaluate the performance
impact of SpyProxy on browsing.

Figure 5(a) presents a cumulative distribution func-
tion for the time to start page rendering in the client
browser. This is the delay the user sees before the
browser responds to a request. Figure 5(b) shows the
CDF for full-page-load latencies. Each figure depicts
distributions for three cases: (1) directly connecting to
the Web site without SpyProxy, (2) using the optimized
SpyProxy implementation, and (3) using SpyProxy with
optimizations disabled. We flushed all caches before
gathering the data for each distribution.

0

25

50

75

100

2
5

5
2
5

1
0
2
5

1
5
2
5

2
0
2
5

2
5
2
5

3
0
2
5

3
5
2
5

4
0
2
5

4
5
2
5

5
0
2
5

5
5
2
5

6
0
2
5

6
5
2
5

7
0
2
5

7
5
2
5

8
0
2
5

8
5
2
5

9
0
2
5

9
5
2
5

render start latency (ms)

C
D

F

direct

optimized

unoptimized

0

25

50

75

100

1
0
0

1
1
0
0

2
1
0
0

3
1
0
0

4
1
0
0

5
1
0
0

6
1
0
0

7
1
0
0

8
1
0
0

9
1
0
0

1
0
1
0
0

1
1
1
0
0

1
2
1
0
0

1
3
1
0
0

1
4
1
0
0

1
5
1
0
0

1
6
1
0
0

1
7
1
0
0

1
8
1
0
0

1
9
1
0
0

(a)

0

25

50

75

100

1
0
0

1
1
0
0

2
1
0
0

3
1
0
0

4
1
0
0

5
1
0
0

6
1
0
0

7
1
0
0

8
1
0
0

9
1
0
0

1
0
1
0
0

1
1
1
0
0

1
2
1
0
0

1
3
1
0
0

1
4
1
0
0

1
5
1
0
0

1
6
1
0
0

1
7
1
0
0

1
8
1
0
0

1
9
1
0
0

page load completion latency (ms)

C
D

F

direct
optimized

unoptimized

(b)

Figure 5: Overall performance (broadband). These graphs
show the distributions of (a) render start latencies and (b) full
page load latencies for a workload consisting of 1,909 requests
issued to 703 pages from 102 Web sites. Each graph compares
the response time for a direct client, the unoptimized system,
and the fully optimized system. The artifact visible at low la-
tencies on the optimized line in (a) corresponds to hits in our
security cache.

Our results demonstrate that the optimized SpyProxy
system delivers content to browsers very quickly. The
median time until rendering began was 0.8 seconds in
the optimized system compared to 2.4 seconds in the un-
optimized system. There is still room to improve; the
median start time for the direct connection was 0.2 sec-
onds. However, the optimized system feels acceptably
fast to a user. In contrast, the unoptimized system seems
noticeably sluggish compared to the optimized system
and direct connections.

A typical request flowing through the optimized sys-

16th USENIX Security SymposiumUSENIX Association 37

tem involves several potential sources of overhead, in-
cluding interacting with the Squid proxy cache and pre-
executing content in a virtual machine. In spite of this,
the optimized SpyProxy effectively masks latency, re-
sulting in an interactive, responsive system. In addition,
our system generated very few false positives: only 4 of
the 1,909 Web page requests resulted in an alarm being
raised. Even though the offending pages were benign,
they did in fact attempt to install software on the user’s
computer, albeit by requesting permission from the user
first. For example, one of the pages prompted the user
to install a browser plug-in for the QuickTime media
player. We chose not to deal with such opt-in installers,
as SpyProxy is primarily intended for zero-day attacks
that never ask for permission before installing malware.
However, we do reduce the number of false positives by
including the most common browser plug-ins, such as
Flash, in the base VM image.

4.5 Scalability

SpyProxy is designed to service many concurrent
users in an organizational setting. Our implementation
runs on a cluster of workstations, achieving incremen-
tal scalability by executing VM workers on additional
nodes. We now provide some back-of-the-envelope es-
timations of SpyProxy’s scalability. We have not per-
formed an explicit scaling benchmark, but our calcula-
tions do provide an approximate indication of how many
CPUs would be necessary to support user population of
a given size.

Our estimate is based on the assumption that the CPU
is likely to be the bottleneck of a deployed system; for
this to be true, the system must be configured with an
adequate amount of memory and network bandwidth to
support the required concurrent virtual machines and
Web traffic. While performing the evaluation in sec-
tion 4.4, we measured the amount of CPU time required
to process a Web page in SpyProxy. On a 2.8GHz Pen-
tium 4 machine with 4GB of RAM and a single 80GB
7200 RPM disk, we found the average CPU time con-
sumed per page was 0.35 seconds.

There is little published data on the number of Web
pages users view per day. In a study of Internet content-
delivery systems [38], users requested 930 HTTP ob-
jects per day on average, and another study found that
an average Web page contains about 15 objects [27].
Combining these, we conservatively estimate that a typ-
ical user browses through 100 pages per day. Assuming
this browsing activity is uniformly distributed over an 8-
hour workday, one CPU can process 82286 Web pages
per day, implying a single-CPU SpyProxy could support
approximately 822 users. A single quad-core machine
should be able to handle the load from an organization
containing a few thousand people.

4.6 Summary

This section evaluated the effectiveness and perfor-
mance of our SpyProxy prototype. Our measurements
demonstrated that SpyProxy effectively detects mali-
cious content. In our experiments, SpyProxy correctly
detected and blocked every threat, including several that
SiteAdvisor failed to identify. Our experiments with
fully optimized SpyProxy show that a proxy-based spy-
ware checker can be implemented with only minimal
performance impact on the user. On average, the use
of SpyProxy added only 600 milliseconds to the user-
visible latency before rendering starts. In our experience
using the system, this small additional overhead does not
noticeably degrade the system’s responsiveness.

5 Related Work

We now discuss related research on spyware detection
and prevention, intrusion detection and firewall systems,
and network proxies.

5.1 Spyware and Malware Detection

In previous work, we used passive network monitor-
ing to measure adware propagation on the University of
Washington campus [37]. In a follow-on study, we used
Web crawling to find and analyze executable programs
and Web pages that lead to spyware infections [28]; the
trigger-based VM analysis technique in that work forms
the foundation for SpyProxy’s detection mechanism.

Strider HoneyMonkey [49] and the commercial
SiteAdvisor service [41] both use a VM-based technique
similar to ours to characterize malicious Web sites and
pages. Our work differs in two main ways: we show that
our VM-based technique can be used to build a transpar-
ent defense system rather than a measurement tool, and
we examine optimizations that enable our system to per-
form efficiently and in real time.

Our system detects malicious Web content by execut-
ing it and looking for evidence of malicious side-effects.
Other systems have attempted to detect malware by ex-
amining side-effects, including Gatekeeper [51], which
monitors Windows extensibility hooks for evidence of
spyware installation. Another recent detector identifies
spyware by monitoring API calls invoked when sensi-
tive information is stolen and transmitted [20]. However,
these systems only look for malware that is already in-
stalled. In contrast, SpyProxy uses behavioral analysis
to prevent malware installation.

Other works have looked at addressing limitations
of signature-based detection. Semantics-aware malware
detection [8] uses an instruction-level analysis of pro-
grams to match their behavior against signature tem-
plates. This technique improves malware detection, but

16th USENIX Security Symposium USENIX Association38

not prevention. Several projects explore automatic gen-
eration of signatures for detection of unknown malware
variants [7, 29, 40, 46, 48]. These typically need at-
tack traffic and time to generate signatures, leaving some
clients vulnerable when a new threat first appears.

Some commercial client-side security tools have be-
gun to incorporate behavioral techniques, and two re-
cent products, Prevx1 [32] and Primary Response Safe-
Connect [35], use purely behavioral detection. How-
ever, these tools must run on systems packed with client-
installed programs, which limits their behavioral analy-
sis. In contrast, SpyProxy pre-executes content in a clean
sandbox, where it can apply a much stricter set of behav-
ioral rules.

Other approaches prevent Web-based malware infes-
tations by protecting the user’s system from the Web
browser using VM isolation [10], OS-level sandbox-
ing [16, 36], or logging/rollback [17]. Fundamentally,
this containment approach is orthogonal to our preven-
tion approach. Although these tools provide strong isola-
tion, they have different challenges, such as data sharing
and client-side performance overhead.

Remote playgrounds move some of the browser func-
tionality (namely, execution of untrusted Java applets)
away from the client desktop and onto dedicated ma-
chines [26]; the client browser becomes an I/O termi-
nal to the actual browser running elsewhere. Our archi-
tecture is different — SpyProxy pre-executes Web pages
using an unmodified browser and handles any form of
active code, allowing it to capture a wider range of at-
tacks. Nevertheless, SpyProxy could benefit from this
technique in the future, for example by forwarding user
input to the VM worker in AJAX sites.

Several projects tackle the detection and prevention
of other classes of malware, including worms, viruses,
and rootkits [19, 39, 50]. SpyProxy complements these
defenses with protection against Web-borne attacks, re-
sulting in better overall desktop security.

5.2 Intrusion Detection and Firewalls

Intrusion detection systems (e.g., Bro [31] and
snort [42]) protect networks from attack by searching
through incoming packets for known attack signatures.
These systems are typically passive, monitoring traffic as
it flows into a network and alerting a system administra-
tor when an attack is suspected. More sophisticated in-
trusion detection systems attempt to identify suspicious
traffic using anomaly detection [3, 4, 22, 23]. A related
approach uses protocol-level analysis to look for attacks
that exploit specific vulnerabilities, such as Shield [47].
The same idea has been applied at the HTML level in
client-side firewalls and proxies [25, 30, 33].

These systems typically look for attack signatures for
well-established protocols and services. As a result, they

cannot detect new or otherwise undiscovered attacks.
Since they are traditionally run in a passive manner, at-
tacks are detected but not prevented. Our system exe-
cutes potentially malicious content in a sandboxed envi-
ronment, using observed side-effects rather than signa-
tures to detect attacks and protect clients.

Shadow honeypots combine network intrusion detec-
tion systems and honeypots [2]. They route risky net-
work traffic to a heavily instrumented version of a vulner-
able application, which detects certain types of attacks at
run-time. In contrast, SpyProxy does not need to instru-
ment the Web browser that it guards, and its run-time
checks are more general and easier to define.

5.3 Proxies
Proxies have been used to introduce new services be-

tween Web clients and servers. For example, they have
been used to provide scalable distillation services for mo-
bile clients [14], Web caching [1, 13, 15, 21, 52, 53], and
gateway services for onion-routing anonymizers [11].
SpyProxy builds on these advantages, combining active
content checking with standard proxy caching. Spy-
Bye [30] is a Web proxy that uses a combination of
blacklisting, whitelisting, ClamAV-based virus scanning,
and heuristics to identify potentially malicious Web con-
tent. In contrast, SpyProxy uses execution-based analy-
sis to identify malicious content.

6 Conclusions
This paper described the design, implementation, and

evaluation of SpyProxy, an execution-based malware de-
tection system that protects clients from malicious Web
pages, such as drive-by-download attacks. SpyProxy ex-
ecutes active Web content in a safe virtual machine be-
fore it reaches the browser. Because SpyProxy relies on
the behavior of active content, it can block zero-day at-
tacks and previously unseen threats. For performance,
SpyProxy benefits from a set of optimizations, including
the staged release of content and caching the results of
security checks.

Our evaluation of SpyProxy demonstrates that it
meets its goals of safety, responsiveness, and trans-
parency:

1. SpyProxy successfully detected and blocked all of
the threats it faced, including threats not identified
by other detectors.

2. The SpyProxy prototype adds only 600 millisec-
onds of latency to the start of page rendering—an
amount that is negligible in the context of browsing
over a broadband connection.

3. Our prototype integrates easily into the network and
its existence is transparent to users.

16th USENIX Security SymposiumUSENIX Association 39

Execution-based analysis does have limitations. We
described several of these, including issues related to
non-determinism, termination, and differences in the ex-
ecution environment between the client and the proxy.

There are many existing malware detection tools, and
although none of them are perfect, together they con-
tribute to a “defense in depth” security strategy. Our goal
is neither to build a perfect tool nor to replace existing
tools, but to add a new weapon to the Internet security
arsenal. Overall, our prototype and experiments demon-
strate the feasibility and value of on-the-fly, execution-
based defenses against malicious Web-page content.

References
[1] Virgı́lio Almeida, Azer Bestavros, Mark Crovella, and

Adriana de Oliveira. Characterizing reference locality in
the WWW. In Proceedings of the IEEE Conference on
Parallel and Distributed Information Systems (PDIS ’96),
Miami Beach, FL, December 1996.

[2] Kostas G. Anagnostakis, Stelios Sidiroglou, Periklis
Akritidis, Konstantinos Xinidis, Evangelos Markatos, and
Angelos D. Keromytis. Detecting targeted attacks using
shadow honeypots. In Proceedings of the 14th USENIX
Security Symposium, August 2005.

[3] Kevin Borders and Atul Prakash. Web tap: Detecting
covert Web traffic. In Proceedings of the 11th ACM Con-
ference on Computer and Communications Security (CCS
’04), New York, NY, October 2004.

[4] Kevin Borders, Xin Zhao, and Atul Prakash. Siren:
Catching evasive malware (short paper). In Proceedings
of the 2006 IEEE Symposium on Security and Privacy,
Washington, DC, May 2006.

[5] Tanya Bragin. Measurement study of the Web through
a spam lens. Technical Report TR-2007-02-01, Univer-
sity of Washington, Computer Science and Engineering,
February 2007.

[6] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and Zipf-like distributions: Evi-
dence and implications. In Proceedings of 18th Annual
IEEE Conference on Computer Communications (IEEE
INFOCOM ’99), March 1999.

[7] David Brumley, James Newsome, Dawn Song, Hao
Wang, and Somesh Jha. Towards automatic generation
of vulnerability-based signatures. In Proceedings of the
2006 IEEE Symposium on Security and Privacy, Wash-
ington, DC, May 2006.

[8] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia,
Dawn Song, and Randal E. Bryant. Semantics-aware mal-
ware detection. In Proceedings of the 2005 IEEE Sympo-
sium on Security and Privacy, Oakland, CA, May 2005.

[9] Andrew Conry-Murray. Product focus: Behavior-
blocking stops unknown malicious code. http:
//mirage.cs.ucr.edu/mobilecode/
resources_files/behavior.pdf, June 2002.

[10] Richard Cox, Steven Gribble, Henry Levy, and Jacob
Hansen. A safety-oriented platform for Web applications.
In Proceedings of the 2006 IEEE Symposium on Security
and Privacy, Washington, DC, May 2006.

[11] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceedings
of the 13th USENIX Security Symposium, San Diego, CA,
August 2004.

[12] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-
taza Basrai, and Peter M. Chen. ReVirt: Enabling intru-
sion analysis through virtual-machine logging and replay.
In Proceedings of the 5th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’02),
Boston, MA, December 2002.

[13] Brian Duska, David Marwood, and Michael J. Feeley.
The measured access characteristics of World Wide Web
client proxy caches. In Proceedings of the 1st USENIX
Symposium on Internet Technologies and Systems (USITS
’97), Monterey, CA, December 1997.

[14] Armando Fox, Steven Gribble, Yatin Chawathe, Eric A.
Brewer, and Paul Gauthier. Cluster-based scalable net-
work services. In Proceedings of the 16th ACM Sympo-
sium on Operating Systems Principles (SOSP ’97), St.-
Malo, France, October 1997.

[15] Steven Glassman. A caching relay for the World Wide
Web. Computer Networks and ISDN Systems, 27(2):165–
173, 1994.

[16] Green Border Technologies. GreenBorder desktop
DMZ solutions. http://www.greenborder.com,
November 2005.

[17] Francis Hsu, Hao Chen, Thomas Ristenpart, Jason Li, and
Zhendong Su. Back to the future: A framework for auto-
matic malware removal and system repair. In Proceedings
of the 22nd Annual Computer Security Applications Con-
ference (ACSAC ’06), Washington, DC, December 2006.

[18] Ashlesha Joshi, Samuel T. King, George W. Dunlap, and
Peter M. Chen. Detecting past and present intrusions
through vulnerability-specific predicates. In Proceedings
of the 20th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’05), Brighton, United Kingdom, October
2005.

[19] Darrell Kienzle and Matthew Elder. Recent worms: A
survey and trends. In Proceedings of the 2003 ACM Work-
shop on Rapid Malcode (WORM ’03), Washington, DC,
October 2003.

[20] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni
Vigna, and Richard Kemmerer. Behavior-based spyware
detection. In Proceedings of the 15th USENIX Security
Symposium, Vancouver, BC, Canada, August 2006.

[21] Tom M. Kroeger, Darrell D. E. Long, and Jeffrey C.
Mogul. Exploring the bounds of Web latency reduction
from caching and prefetching. In Proceedings of the 1st
USENIX Symposium on Internet Technologies and Sys-
tems (USITS ’97), Monterey, CA, December 1997.

16th USENIX Security Symposium USENIX Association40

[22] Christopher Kruegel and Giovanni Vigna. Anomaly de-
tection of Web-based attacks. In Proceedings of the 10th
ACM Conference on Computer and Communications Se-
curity (CCS ’03), New York, NY, October 2003.

[23] Lancope StealthWatch. http://www.lancope.com.

[24] Robert Lemos. Microsoft patch opens users to at-
tack. http://www.securityfocus.com/news/
11408, August 2006.

[25] LinkScanner Pro. http://www.explabs.com/
products/lspro.asp.

[26] Dahlia Malkhi and Michael K. Reiter. Secure execution
of java applets using a remote playground. IEEE Transac-
tions on Software Engineering, 26(12):1197–1209, 2000.

[27] Mikhail Mikhailov and Craig Wills. Embedded objects in
Web pages. Technical Report WPI-CS-TR-0005, Worces-
ter Polytechnic Institute, Worcester, MA, March 2000.

[28] Alexander Moshchuk, Tanya Bragin, Steven Gribble, and
Henry Levy. A crawler-based study of spyware on the
Web. In Proceedings of the 13th Annual Network and
Distributed Systems Security Symposium (NDSS ’06), San
Diego, CA, February 2006.

[29] James Newsome and Dawn Song. Dynamic taint analy-
sis for automatic detection, analysis, and signature gen-
eration of exploits on commodity software. In Proceed-
ings of the 2005 Network and Distributed System Security
Symposium (NDSS ’05), San Diego, CA, February 2005.

[30] Niels Provos. SpyBye. http://www.spybye.org.

[31] Vern Paxson. Bro: A system for detecting network in-
truders in real-time. In Proceedings of the 7th USENIX
Security Symposium, San Antonio, TX, January 1998.

[32] Prevx. http://www.prevx.com.

[33] Charles Reis, John Dunagan, Helen Wang, Opher
Dubrovsky, and Saher Esmeir. BrowserShield:
Vulnerability-driven filtering of dynamic HTML.
In Proceedings of the 7th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’06),
Seattle, WA, November 2006.

[34] Jerome H. Saltzer and Michael D. Schroeder. The protec-
tion of information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308, September 1975.

[35] Sana Security. http://www.sanasecurity.com.

[36] Sandboxie. http://www.sandboxie.com.

[37] Stefan Saroiu, Steven Gribble, and Henry Levy. Measure-
ment and analysis of spyware in a university environment.
In Proceedings of the First Symposium on Networked Sys-
tems Design and Implementation (NSDI ’04), San Fran-
cisco, CA, March 2004.

[38] Stefan Saroiu, Krishna Gummadi, Richard Dunn, Steven
Gribble, and Henry Levy. An analysis of internet con-
tent delivery systems. In Proceedings of the 5th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI ’02), New York, NY, December 2002. ACM
Press.

[39] Prabhat Singh and Arun Lakhotia. Analysis and detec-
tion of computer viruses and worms: An annotated bibli-
ography. ACM SIGPLAN Notices, 37(2):29–35, February
2002.

[40] Sumeet Singh, Cristian Estan, George Varghese, and Ste-
fan Savage. Automated worm fingerprinting. In Proceed-
ings of the 6th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’04), December 2004.

[41] SiteAdvisor, Inc. http://www.siteadvisor.com.

[42] Snort. The open source network intrusion detection sys-
tem. http://www.snort.org.

[43] StopBadware. http://www.stopbadware.org/.

[44] StopBadware.org - Incompetence or McCarthyism
2.0? http://www.adwarereport.com/mt/
archives/stopbadwareorg.php.

[45] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-
Hong Lim. Virtualizing I/O devices on VMware worksta-
tion’s hosted virtual machine monitor. In Proceedings of
the 2001 Annual USENIX Technical Conference, Boston,
MA, June 2001.

[46] Hao Wang, Somesh Jha, and Vinod Ganapathy.
NetSpy: Automatic generation of spyware signa-
tures for NIDS. In Proceedings of the 22nd
Annual Computer Security Applications Conference
(ACSAC ’06), Miami Beach, FL, December 2006.
http://dx.doi.org/10.1109/ACSAC.2006.34.

[47] Helen Wang, Chuanxiong Guo, Daniel Simon, and Alf
Zugenmaier. Shield: Vulnerability-driven network fil-
ters for preventing known vulnerability exploits. In Pro-
ceedings of ACM SIGCOMM 2004, Portland, OR, August
2004.

[48] XiaoFeng Wang, Zhuowei Li, Jun Xu, Michael K. Reiter,
Chongkyung Kil, and Jong Youl Choi. Packet vaccine:
Black-box exploit detection and signature generation. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS ’06), October 2006.

[49] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Rous-
sev, Chad Verbowski, Shuo Chen, and Samuel T. King.
Automated Web patrol with Strider HoneyMonkeys:
Finding Web sites that exploit browser vulnerabilities. In
Proceedings of the 13th Annual Network and Distributed
Systems Security Symposium (NDSS ’06), San Diego, CA,
February 2006.

[50] Yi-Min Wang, Doug Beck, Binh Vo, Roussi Roussev,
Chad Verbowski, and Aaron Johnson. Detecting stealth
software with Strider GhostBuster. In Proceedings of the
2005 International Conference on Dependable Systems
and Networks (DSN ’05), Yokohama, Japan, July 2005.

[51] Yi-Min Wang, Roussi Roussev, Chad Verbowski, Aaron
Johnson, Ming-Wei Wu, Yennun Huang, and Sy-Yen
Kuo. Gatekeeper: Monitoring auto-start extensibility
points (ASEPs) for spyware management. In Proceedings
of 18th Large Installation System Administration Confer-
ence (LISA ’04), Atlanta, GA, November 2004.

16th USENIX Security SymposiumUSENIX Association 41

[52] Alec Wolman, Geoff Voelker, Nitin Sharma, Neal Card-
well, Molly Brown, Tashana Landray, Denise Pinnel,
Anna Karlin, and Henry Levy. Organization-based anal-
ysis of Web-object sharing and caching. In Proceedings
of the 2nd USENIX Conference on Internet Technologies
and Systems (USITS ’99), Boulder, CO, October 1999.

[53] Alec Wolman, Geoff Voelker, Nitin Sharma, Neal Card-
well, Anna Karlin, and Henry Levy. On the scale and
performance of cooperative Web proxy caching. In Pro-
ceedings of the 17th ACM Symposium on Operating Sys-
tems Principles (SOSP ’99), Kiawah Island, SC, Decem-
ber 1999.

16th USENIX Security Symposium USENIX Association42

