
Evaluating SFI for a CISC Architecture
Stephen McCamant and Greg Morrisett

smcc@csail.mit.edu, greg@eecs.harvard.edu

MIT CSAIL and Harvard EECS

Outline

SFI as a security technique

Classic (RISC) SFI

A CISC-compatible approach

PittSFIeld implementation

Machine-checked proof

Conclusion

Software security: isolation

How can I keep a piece of code from
doing bad things?

Author might be malicious, or code
might be subverted by malicious input

Identify legal interfaces; how to limit
interaction to them?

Application: future-proof archives

Embed decompressor in .zip file so
it’s always available [Ford, 2005]

How to safely execute untrusted
library?

�������

���	��

�������

�����

�

�����	
�

��������

�

�������

�������

�������

Well-known isolation techniques

OS process abstraction
+ Robust hardware enforcement
– System-call interface inflexible

Type-safe programming language
(e.g., Java)

+ Allows fine-grained data sharing
– Not applicable to C/C++

SFI in outline

“Software-based Fault Isolation”

Simulate hardware-style protection
with binary-level rewriting

Insert checks to confine jumps and
memory writes to sandbox regions

Outline

SFI as a security technique

Classic (RISC) SFI

A CISC-compatible approach

PittSFIeld implementation

Machine-checked proof

Conclusion

Key problem: circumventing checks

f00: check %rs

f04: unsafe op %rs
... ...

f80: jmp f04
... ...

fbc: check-bounds %rt

fc0: jmp %rt

Do checks always precede unsafe ops?

Solution: dedicated registers

Indirect write only through %rs

Maintain invariant: at jump, %rs
contains a legal data address

Safe to jump into middle of checks
f40: mov %rt -> %rs

f44: check %rs

f48: store %x, (%rs)

Requires several registers

Bitwise memory isolation

Distinct code and data areas to
prevent self-modifying code

Areas have power-of-two size and
alignment

Enforce by bitwise AND and OR on
addresses

Ensure, don’t check

Ideal: if the original program would
have violated the security policy, the
transformed program will halt with an
error message right before the
violation.

Ensure, don’t check

Relaxed: if the original program would
have violated the security policy, the
transformed program will do something
allowed by the security policy.

More optimizations

Trusted register: check after
modification, not before use

Invariant: frame pointer always safe for
data region

Guard pages: put unmapped pages at
edges of data area

E.g., push needs no checks

Outline

SFI as a security technique

Classic (RISC) SFI

A CISC-compatible approach

PittSFIeld implementation

Machine-checked proof

Conclusion

Key problem: overlapping instructions

push %esi

mov $0x56,%dh sbb $0xff,%al inc %eax or %al,%dh

movzbl 0x1c(%esi),%edx incl 0x8(%eax) ...

0f b6 56 1c ff 40 08 c6

Processor can jump to any byte

Hard to make hidden instructions safe

Solution: enforce instruction alignment

No instruction crosses a 16-byte
boundary

Jump targets have low 4 bits zero

call instructions end on 16-byte
boundaries

Only need one spare register

Optimization: AND-only sandboxing

0x00000000

0xffffffff

0x10000000

0x10ffffff

0x20000000

0x20ffffff

SFI data

SFI code

trusted
code
and
data

0x00ffffff

Reduce sandboxing
sequence to one
instruction

Mask address with
20ffffff

Reserve 00000000 to
00ffffff

Security model

Compiler and rewriter are untrusted

Check rewriting on load; only this
checker needs to be trusted

Disallow unknown instructions

Safety does not depend on compiler
sanity

Outline

SFI as a security technique

Classic (RISC) SFI

A CISC-compatible approach

PittSFIeld implementation

Machine-checked proof

Conclusion

Prototype IA-32 Transformation Tool for
Software-based Fault Isolation Enabling
Load-time Determinations (of safety)

http://pag.csail.mit.edu/�smcc/

projects/pittsfield

Google: PittSFIeld SFI

Assembly-language rewriting

Rewriter is a Perl program that
operates on GAS assembly code

Alignment using .align directives and
conservative length estimation

Important to rewrite before symbolic
references resolved (done by code
producer)

One-pass, local verification

Single in-order pass over instruction
sequence
State machine keeps track of static
invariant validity

Conservative assumptions at potential
jump targets
Must clean up before jumping elsewhere

SPEC benchmarks (gcc = 1:0)

benchmark time size compr. size
Geom. Mean 1:21 1:75 1:07

164.gzip 1:16 1:65 1:10

175.vpr 1:07 1:67 1:07

176.gcc 1:55 1:84 1:05

181.mcf 1:01 1:74 1:13

186.crafty 1:29 1:62 1:06

197.parser 1:14 1:92 1:06

252.eon 1:35 1:72 1:05

253.perlbmk 1:36 1:96 1:07

254.gap 1:24 1:84 1:05

255.vortex 1:23 1:63 0:98

256.bzip2 1:16 1:63 1:09

300.twolf 1:08 1:80 1:08

Sources of time overhead

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

Real sandboxing

NOP sandboxing

Padding

No %ebx

No scheduling

gcc perl vortex eon gap crafty twolf parser vpr gzip bzip2 mcf G. mean

<− increasing binary size <−

Outline

SFI as a security technique

Classic (RISC) SFI

A CISC-compatible approach

PittSFIeld implementation

Machine-checked proof

Conclusion

One good basket

For security, key is verifier

Want to know that if verifier says OK,
code is really safe

Prove it!

Machine-checked proof for increased
assurance

ACL2

ACL2 is a proof-assistant environment
from J Moore et al. (UT Austin)
Model a problem in restricted subset of
Common Lisp

(no mutation, higher-order functions)

Refine goal into small sub-lemmas,
each proved automatically

(perhaps with ‘hints’)

Statement to prove

Verifier implements a predicate on the
code image

Model the processor as an interpreter

Unsafe operations cause it to halt,
no exit

8 code: (code passes verifier))
(code runs forever)

Proof status

Verified for a small but representative
instruction subset:

nop mov addr, %eax xchg %eax, %ebx
inc %eax mov %eax, addr xchg %eax, %ebp
jmp addr and $immed, %ebx mov %eax, (%ebx)
jmp *%ebx and $immed, %ebp mov %eax, (%ebp)

Realistic padding and encoding

Outline

SFI as a security technique

Classic (RISC) SFI

A CISC-compatible approach

PittSFIeld implementation

Machine-checked proof

Conclusion

Conclusion

It is possible to do SFI efficiently on a
CISC architecture

It is possible to apply SFI to full-scale
applications

It is possible to trust an SFI
implementation

Questions?

