
An Architecture for Specification-Based Detection of Semantic Integrity
Violations in Kernel Dynamic Data

Nick L. Petroni, Jr.† Timothy Fraser† AAron Walters‡ William A. Arbaugh†

npetroni@cs.umd.edu tfraser@umiacs.umd.edu arwalter@cs.purdue.edu waa@cs.umd.edu
Department of Institute for Advanced Department of Department of

Computer Science Computer Studies Computer Science Computer Science

† University of Maryland, College Park, MD 20742, USA
‡ Purdue University, West Lafayette, IN 47907, USA

Abstract

The ability of intruders to hide their presence in com-
promised systems has surpassed the ability of the current
generation of integrity monitors to detect them. Once
in control of a system, intruders modify the state of
constantly-changing dynamic kernel data structures to
hide their processes and elevate their privileges. Current
monitoring tools are limited to detecting changes in nom-
inally static kernel data and text and cannot distinguish
a valid state change from tampering in these dynamic
data structures. We introduce a novel general architec-
ture for defining and monitoring semantic integrity con-
straints using a specification language-based approach.
This approach will enable a new generation of integrity
monitors to distinguish valid states from tampering.

1 Introduction

The foundation of the Trusted Computing Base
(TCB) [26] on most currently deployed computer sys-
tems is an Operating System that is large, complex, and
difficult to secure. Upon penetrating a system, sophisti-
cated intruders often tamper with the Operating System’s
programs and data to hide their presence from legiti-
mate administrators and to provide backdoors for easy
re-entry. The Operating System kernel itself is a favored
target, since a kernel modified to serve the attacker ren-
ders user-mode security programs ineffective. Many so-
called ”rootkits” are now available to automate this tam-
pering.

Recent advances in defensive technologies, such as
external kernel integrity monitors [17, 37, 13, 29] and
code attestation/execution verification architectures [18,
34, 33], have demonstrated their ability to detect the
kinds of tampering historically performed by rootkits.
Unfortunately, rootkit technology has already moved to
a more sophisticated level. While these defensive tech-
nologies have focused on the relatively straightforward

task of detecting tampering in static and unchanging re-
gions of kernel text and data structures—typical targets
of the previous generation of rootkits—the new rootkit
generation has evolved to more sophisticated tampering
behavior that targets dynamic parts of the kernel. Seek-
ing to avoid detection and subsequent removal from the
system, clever intruders can hide their processes from le-
gitimate administrators by modifying links in the Linux
and Windows XP/2000 kernels’ process tables. Because
the state of the process table changes continuously during
kernel runtime, identifying these modified links is diffi-
cult for the current generation of kernel integrity moni-
toring tools that focus only on static data. Although this
targeting of dynamic data was not entirely unanticipated
by researchers [37, 13], there has yet to be a general ap-
proach for dealing with this threat.

In response to a continually advancing threat, we in-
troduce an architecture for the runtime detection of se-
mantic integrity violations in objects dynamically allo-
cated in the kernel heap or in static objects that change
depending upon the kernel state. This new approach is
the first to address the issue of dynamic kernel data in
a comprehensive way. In order to be effective against
the latest rootkit technology, defensive mechanisms must
consider both static and dynamic kernel data, as changes
in either can lead to the compromise of the whole. We
believe our approach provides an excellent complement
to state of the art binary integrity systems.

Our approach is characterized by the following
properties:

Specification-based. The previous generation’s detec-
tion methods, which can be characterized by calculating
hashes of static kernel data and text and comparing the
result to known-good values, is not applicable to the
continuously changing dynamic data structures now
being targeted by rootkits. Instead of characterizing
a correct state using hashes, our architecture relies
upon an expert to describe the correct operation of

Security ’06: 15th USENIX Security SymposiumUSENIX Association 289

the system via an abstract model for low-level data
structures and the relationships between them. This
model is a simplified description of security-relevant
data structures and how they interoperate. Additionally,
part of the specification is a set of constraints that
must hold at runtime in order for the system to remain
correct with regard to the semantic integrity of the kernel.

Automatic. The architecture includes a compiler that
automatically translates the high-level specification
language into low-level machine code to perform the
checks. This automation allows experts to maximize the
use of their time writing the specification and verifying
its correctness, rather than writing low-level code.

Independent. Our architecture does not depend upon
the correctness of the monitored kernel in order to detect
that something is wrong. Instead, our approach relies
on a trustworthy monitor that has direct access to kernel
memory on the protected system and does not rely on
the protected kernel’s correctness.

Monitor agnostic. While our prototype implemen-
tation utilizes a PCI-based kernel monitor similar to
Copilot [29] as the low-level mechanism for accessing
system resources, our architecture allows for the use of
any monitor with access to kernel memory that can also
provide isolation. Other possibilities include software-
based systems such as Pioneer [33] or a virtual machine
introspection approach [13]. The focus of this work is
on the type of checks performed, not the mechanism
used to perform them. As such, our architecture is
general enough to support different types of monitors,
both software- and hardware-based.

Extensible response. The architecture is designed to
allow specification writers to decide how the system
should react to the violation of a particular constraint.
At a minimum, most cases will require administrator
notification. Currently, this is the only response we have
implemented. However, the possibility for extension
to other responses is apparent, particularly given the
amount of forensic information available to our monitor.

We have demonstrated the feasibility of our approach
by writing sample specifications for two different kernel
subsystems in the Linux 2.6 kernel: the process (task) ac-
counting system and the SELinux [22] mandatory access
control (MAC) system’s access vector cache (AVC). We
have tested the system’s effectiveness at detecting real-
world attacks on dynamic kernel data in each subsystem,
including a publicly available rootkit for the Linux ker-
nel. Our results show that low-level code based on our
initial specifications successfully detects the example at-

tacks, which include data-only process hiding and mod-
ifications of SELinux access control results directly in
memory.

2 Threats Against Dynamic Kernel Data

This section describes two examples of how intrud-
ers might, after gaining full administrative control of a
GNU/Linux system, modify some of the kernel’s dy-
namic data structures to their advantage. In the first ex-
ample, an intruder removes tasks from the Linux kernel’s
all-tasks list in order to hide them from the system’s legit-
imate administrators. In the second example, an intruder
modifies an entry in the Linux kernel’s SELinux access
vector cache to temporarily elevate their privileges and
disable auditing without making visible changes to the
SELinux policy configuration. Note that neither of these
examples expose flaws in the Linux kernel or its SELinux
security module. These examples represent the potential
acts of an intruder who has already gained full control
of the system—perhaps by exploiting the trust or care-
lessness of the system’s human operators in a manner
entirely outside the scope of the system’s technological
safeguards.

2.1 Data-only Process Hiding

Rootkits have evolved beyond the historical methods of
hiding processes, which included modifying the text of
the ps program to lie to legitimate administrators or
causing the kernel itself to lie by replacing the normally-
static values of kernel text or function pointers, such
as the system call vector or jump tables in the /proc
filesystem, with the addresses of malicious functions.
Even the most sophisticated threats became easy to de-
tect by monitors that could compare the modified values
against a known-good value—after all, in a healthy sys-
tem, these values should never change [29].

Unfortunately, attackers do not need to modify any
kernel code to hide processes within a running kernel.
In fact, they do not need to rely on manipulating the con-
trol flow of the kernel at all. Instead, adversaries have
found techniques to hide their processes even from cor-
rect, unmodified kernel code. By directly manipulating
the underlying data structures used for process account-
ing, an attacker can quickly and effectively remove any
desired process from the view of standard, unmodified
administrator tools. While the process remains hidden
for accounting purposes, it continues to execute as nor-
mal and will remain unaffected from the perspective of
the scheduler. To understand how this state is achieved,
we provide a brief overview of Linux 2.6 process man-
agement.

Security ’06: 15th USENIX Security Symposium USENIX Association290

tasks

run_list

pid gid

uids

tasks

run_list

pid gid

uids

tasks

run_list

pid gid

uids

init_task

tasks

run_list

pid gid

uids

per_cpu__runqueues

active

expired

prio_array

bitmap

array[0]

array[1]

array[2]

array[n]

...

Hidden Process

Running Tasks linked−list

Modified All−Tasks linked−list

Figure 1: Data-only process hiding in Linux.

The primary data structure for process management in
the Linux kernel is the task struct structure [23].
All threads are represented by a task struct in-
stance within the kernel. A single-threaded process
will therefore be represented internally by exactly one
task struct. Since scheduling occurs on a per-
thread basis, a multi-threaded processes is simply a set of
task struct objects that share certain resources such
as memory regions and open files, as well as a few other
properties including a common process identifier (PID),
the unique number given to each running process on the
system.

In a correctly-running system, all task struct ob-
jects are connected in a complex set of linked lists
that represent various groupings relevant to that task at
a particular time [23]. For accounting purposes, all
tasks are members of a single doubly-linked list, iden-
tified by the task struct.tasks member. This
list, which we refer to as the all-tasks list, insures
that any kernel function needing access to all tasks can
easily traverse the list and be sure to encounter each
task exactly once. The head of the task list is the
swapper process (PID 0), identified by the static sym-
bol init task. In order to support efficient lookup
based on PID, the kernel also maintains a hash table that
is keyed by PID and whose members are hash-list nodes
located in the task struct.pid structure. Only one
thread per matching hash of the PID is a member of
the hash table; the rest are linked in a list as part of
task struct.pid member. Other list memberships

include parent/child and sibling relationships and a set
of scheduler-related lists discussed next.

Scheduling in the Linux kernel is also governed by a
set of lists [23]. Each task exists in exactly one state. For
example, a task may be actively running on the processor,
waiting to be run on the processor, waiting for some other
event to occur (such as I/O), or waiting to be cleaned up
by a parent process. Depending on the state of a task,
that task will be a member of at least one scheduling list
somewhere in the kernel. At any given time, a typical
active task will either be a member of one of the many
wait queues spread throughout the kernel or a member
of a per-processor run queue. Tasks cannot be on both a
wait queue and a run queue at the same time.

Primed with this knowledge of the internals of Linux
process management, we now describe the trivial tech-
nique by which an attacker can gain the ultimate stealth
for a running process. Figure 1 depicts the primary step
of the attack: removing the process from the doubly-
linked all-tasks list (indicated by the solid line between
tasks). Since this list is used for all process accounting
functions, such as the readdir() call in the /proc
filesystem, removal from this list provides all of the
stealth needed by an adversary. For an attacker who
has already gained access to kernel memory, making this
modification is as simple as modifying two pointers per
hidden process. As a secondary step to the attack, adver-
saries might also choose to remove their processes from
the PID hash table (not pictured) in order to prevent the
receipt of unwanted signals.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 291

As shown in Figure 1, a task not present in the all-tasks
list can continue to function because the set of lists used
for scheduling is disjoint from the set used for account-
ing. The dashed line shows the relationship between ob-
jects relevant to a particular processor’s run queue, in-
cluding tasks that are waiting to be run (or are currently
running) on that processor. Even though the second de-
picted task is no longer present in the all-tasks list, it con-
tinues to be scheduled by the kernel. Two simple changes
to dynamic data therefore result in perfect stealth for the
attacker, without any modifications to static data or ker-
nel text.

2.2 Modification of System Capabilities

When most actions occur in the kernel, some form of a
capability is used to identify whether or not a principal
should be given (or already has been given) access to a
resource. These capabilities therefore represent a prime
target for attackers wishing to elevate privilege. Chang-
ing process user identifiers (UIDs) has long been a fa-
vorite technique of attackers. Other examples include file
descriptors and sockets (both implemented in the same
abstraction in the kernel).

The SELinux access vector cache provides a good ex-
ample of this kind of capability and represents a potential
target for an adversary seeking privilege escalation. This
section describes the structure and purpose of the AVC
and how an adversary might tamper with its state. Sec-
tion 4 describes an experiment that demonstrates such
tampering and the effectiveness of a prototype monitor
for detecting this tampering.

SELinux [22] is a security module for Linux kernels
that implements a combination of Type Enforcement [3]
and Role-based [11] mandatory access control, now in-
cluded in some popular GNU/Linux distributions. Dur-
ing runtime, SELinux is responsible for enforcing nu-
merous rules governing the behavior of processes. For
example, one rule might state that the DHCP [10] client
daemon can only write to those system configuration
files needed to configure the network and the Domain
Name Service [24], but no others. By enforcing this rule,
SELinux can limit the damage that a misbehaving DHCP
client daemon might cause to the system’s configuration
files should it be compromised by an adversary (perhaps
due to a buffer overflow or other flaw).

To enforce its rules, SELinux must make numerous de-
cisions during runtime such as “Does the SELinux con-
figuration permit this process to write this file?” or “Does
it permit process A to execute program B?” Answering
these questions involves some overhead, so SELinux in-
cludes a component called the access vector cache to
save these answers. Whenever possible, SELinux rapidly
retrieves answers from the AVC, resorting to the slower

method of consulting the policy configuration only on
AVC misses.

On our experimental system, the AVC is configured to
begin evicting least frequently used entries after reaching
a threshold of 512 entries. Our single-user system never
loaded the AVC much beyond half of this threshold—
although it was occasionally busy performing builds,
these builds tended to pose the same small number of
access control questions again and again. However, one
could imagine a more complex multi-user system that
might cause particular AVC entries to appear and dis-
appear over time. Installations that permit SELinux con-
figuration changes during runtime might also see AVC
entries evicted due to revocation of privileges.

SELinux divides all resources on a system (such as
processes and files) into distinct classes and gives each
class a numeric Security Identifier or “SID.” It expresses
its mandatory access rules in terms of what processes
with a particular SID may and may not do to resources
with another SID. Consequently, at a somewhat simpli-
fied abstract level, AVC entries take the form of tuples:

<ssid, tsid, class, allowed, decided,
audit-allow, audit-deny>

The ssid field is the SID of the process taking ac-
tion, the tsid field is the SID of the resource the pro-
cess wishes to act upon, and the class field indicates
the kind of resource (file, socket, and so on). The
allowed field is a bit vector indicating which actions
(read, write, and so on) should be allowed and which
should be denied. Only some of the allowed field bits
may be valid—for example, if the questions answered by
SELinux so far have involved only the lowest-order bit,
then that may be the only bit that contains a meaning-
ful 0 or 1. SELinux may or may not fill in the other
allowed field bits until a question concerning those
bits comes up. To distinguish a 0 bit indicating “deny”
from a 0 bit indicating “invalid,” the decided field
contains a bit vector with 1 bits for all valid posi-
tions in the allowed field. The audit-allow and
audit-deny fields are also bit vectors; they contain
1 bits for operations that should be logged to the system
logger when allowed or denied, respectively.

It is conceivable that adversaries who have already
gained administrative control over a system might wish
to modify the SELinux configuration to give their pro-
cesses elevated privileges. Certainly, they could accom-
plish this most directly by modifying the SELinux con-
figuration files, but such modifications would be eas-
ily detected by filesystem integrity monitors like Trip-
wire [19]. Alternately, they might modify the in-kernel
data structures representing the SELinux configuration—
the same data structures SELinux consults to service an
AVC miss. However, these data structures change in-

Security ’06: 15th USENIX Security Symposium USENIX Association292

frequently, when administrators decide to modify their
SELinux configuration during runtime. Consequently,
any tampering might be discovered by a traditional ker-
nel integrity monitor that performs hashing or makes
comparisons with correct, known-good values.

The state of the AVC, on the other hand, is dynamic
and difficult to predict at system configuration time. En-
tries come and go with the changing behavior of pro-
cesses. An adversary might insert a new AVC entry or
modify an old one to effectively add a new rule to the
SELinux configuration. Such an entry might add ex-
tra allowed and decided field bits to grant addi-
tional privileges, or remove existingaudit-allow and
audit-deny field bits to turn off troublesome logging.
Such an entry would override the proper in-memory and
on-disk SELinux configuration for as long as it remained
in the cache. On a single-user installation like our experi-
mental system, it would face little danger of eviction. On
a busier system, frequent use might keep it cached for as
long as needed.

3 The Specification Architecture

Our approach for detecting semantic integrity violations
in dynamic kernel data structures is to define a high-level
security specification [20] for kernel data that provides a
simplified but accurate representation of how kernel ob-
jects in memory relate to one another, as well as a set
of constraints that must hold on those data objects for
the integrity of the kernel to remain intact. The result
is a methodology that allows experts to concentrate on
high-level concepts such as identifying security-relevant
constraints, rather than writing low-level code to parse
kernel data structures. The architecture we propose is
composed of the following five components:

• A low-level monitor. The monitor is the entity
that provides access to kernel memory at runtime.
While there are a number of possible implemen-
tations, the primary requirement is consistent ac-
cess to all of kernel virtual memory without re-
liance on the correctness of the protected kernel.
Monitors that provide synchronous access to ker-
nel memory, such as virtual machine monitors [13]
or verifiable code execution [33], provide consis-
tent views of kernel data, but run on the same host
as the protected system and must contend with lo-
cal applications for processor time. Asynchronous
monitors typically have their own dedicated pro-
cessor [29, 37, 17], but must make sense of snap-
shots of kernel memory that catch data structures
in a temporarily-inconsistent mid-update state. In
addition, monitors with access to system registers
can protect themselves against attempts to bypass
the monitor via malicious register changes [33].

• A model builder. The model builder is responsible
for taking raw data from the low-level monitor and
turning that data into the model abstraction defined
by the specification, which is an input to the model
builder. Effectively, the model builder is the bridge
between the “bits” in kernel memory and the ab-
stract objects defined by the user.

• A constraint verifier. As described above, the goal
of the system is to apply high-level constraints to
an abstract model of kernel data. The constraint
verifier operates on objects provided by the model
builder to determine if the constraints identified by
the specification are met.

• Response mechanisms. When a constraint is vio-
lated, there is a security concern within the system.
Depending on the nature of the violated constraint,
an administrator may wish to take actions varying
from logging an error to notifying an administrator
or even shutting down the system. The constraint
verifier is aware of the available response mecha-
nisms and initiates those mechanisms according to
the response determined by the specification.

• A specification compiler. Specifications are written
in a high-level specification language (or languages)
that describes the model, the constraints, and the re-
sponses to violated constraints. The specification
compiler is responsible for turning the high-level
language into a form that can be used by the model
builder and the constraint verifier.

As shown in Figure 2, the first four of these are run-
time components that work together to assess the in-
tegrity of a running kernel based on the input specifica-
tion. The specification compiler is an offline component
used only at the time of system setup or when specifi-
cation updates are required. The primary logic of the
monitor is driven by the constraint verifier, which iter-
ates through all constraints to verify each in order. To
facilitate the verification of each constraint, the verifier
requests a consistent subset of the model from the model
builder, which either has the information readily avail-
able or uses the low-level monitor to re-build that portion
of the model. If a constraint passes, the verifier simply
continues to the next. Failed constraints cause the veri-
fier to dispatch a response mechanism according to the
specification.

We now describe several aspects of the system in more
detail, focusing primarily on the requirements for each
component.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 293

Constraint
Verifier

Mechanisms
Response

Monitor
Low−level

Model

Builder

OS Configuration
Policy and Constraints

Model Definition

Request
Response

Alert
Data
Kernel

Data
Additional

Model

Data

Compiled Model
Constraints

Compiled

Runtime
System

Low−level Data

Specification
Compiler Specification

Administrator

Offline
Components

Figure 2: The semantic integrity monitor architecture.

3.1 Modeling Kernel Data

The concept of modeling low-level kernel data structures
can be loosely thought of as a form of “inverted software
design.” A software designer’s job is typically to take
a high-level abstraction or set of real-world objects and
represent those objects digitally in the system. One of the
complex tasks for the programmer is efficiently and cor-
rectly representing real-world relationships among digi-
tal objects. Object modeling languages like the Unified
Modeling Language (UML) [1] seek to aid the designer
by providing formal constructs with which to define ob-
jects. In our system, the goal of the model specification
writer is to abstract on the programmer’s choice of data
structures in order to describe the relevant relationships
among digital objects. The resulting model allows an
expert to write constraints at a high enough level of ab-
straction to express relevant object relationships without
getting caught up in low-level details. To this end, the
choice of modeling language directly affects the types
of constraints that can and cannot be expressed on the
model. Modeling languages that fail to capture relevant
details of the underlying system will not allow poten-
tially important constraints to be expressed. Similarly,
modeling languages that provide too much expressive
power on the underlying data will make the job of con-
straint writing overly complex. As a convenience, rather

than inventing our own modeling language, we have cho-
sen to reuse the data structure specification language cre-
ated by Demsky and Rinard [7]. After redefining the
language’s semantics for our domain, the syntax proved
effective for our example kernel data specifications with
only minor modifications. We discuss these example ker-
nel data specifications in Section 4.

It should be noted that model specifications corre-
spond to a particular version (or versions) of the kernel.
Therefore, as updates are made to kernel subsystems,
so must the specification be updated. However, once a
specification is written for a given kernel version, it can
be shared and used at any deployed location. Further-
more, the specification compiler takes into account site-
specific kernel configuration and symbol information to
allow more widespread use of the specification. Finally,
the relationships described in the specification will not
change frequently and, even when they do change, will
rarely change significantly enough to invalidate the en-
tire specification. Tools for automating and improving
the specification process are an area for future work.

3.2 Writing Model Constraints

At a high level, constraints are the underlying logic that
determine whether or not the kernel is secure with re-
gard to integrity. Constraints are therefore expressions of

Security ’06: 15th USENIX Security Symposium USENIX Association294

predicates reflecting invariant relationships among ker-
nel objects represented in the model. Conceptually, con-
straints can be divided into two classes: those that are
inherent to the correct operation of the system and those
that represent site-specific policy. For example, the hid-
den process example described previously is clearly a vi-
olation of kernel integrity in any running kernel. How-
ever, one can envision a set of external constraints on ker-
nel data objects that do not relate explicitly to the “cor-
rect” operation of the kernel as it was designed by kernel
developers, but rather to conditions that an administrator
has deemed should never occur on that machine. One ex-
ample of such a constraint would be a requirement that
no shell processes have user id zero (root). The require-
ments for a good constraint language include easy ex-
pression of properties of the underlying model, an ability
to specify conditions under which a constraint must hold,
and a mechanism for assigning a response to any violated
constraint. To match our choice of initial modeling lan-
guage, we have adapted Demsky and Rinard’s constraint
language to meet the needs described here [7].

Similar to the model specification, the constraints that
must hold for a system may change when kernel devel-
opers make changes. However, like model specifications,
constraints can be distributed for use at any deployment
where a given model is valid.

3.3 Automating the System

One of the fundamental goals of our architecture is to re-
lieve the engineering difficulties related to dynamic ker-
nel data constraint checking and allow the expert to fo-
cus on security-relevant relationships among kernel ob-
jects. To this end, automating the model builder is a crit-
ical step. The primary responsibility of the specification
compiler is to provide the model builder with a descrip-
tion of how digital objects should be turned into abstract
objects and how those abstract objects are related. As
in Demsky and Rinard’s work [7], we propose that the
specification compiler utilize automatic code generation
to automate the model building and constraint checking
processes. However, unlike the environment in which
Demsky and Rinard’s system functioned, the likely re-
sponse for our system when a constraint fails is not re-
pair. In fact, there may be reasons not to immediately fix
the integrity violation so that more forensic information
can be obtained without the attacker becoming aware that
he or she has been detected. Furthermore, unlike Dem-
sky and Rinard, in our system we do not have the bene-
fit of executing within the running program that we are
checking. Memory accesses are not free and pointer val-
ues are not local. In our system, every pointer derefer-
ence requires read operations by the low-level monitor.
For these reasons, optimizing for repair is not the best

approach for our environment. Rather, optimizing for ef-
ficient object accesses is more appropriate. Finally, per-
forming checks asynchronously with the running kernel
adds some additional challenges.

For a system that is externally analyzing a running ker-
nel, the design of the model builder is non-trivial due to
the complications of constantly changing data within the
kernel. The assumptions that can be made by the model
builder are closely tied to the properties of the low-level
monitor. However, assuming a monitor that is running
asynchronously relative to the protected kernel, the fol-
lowing are a minimal set of design considerations for the
model builder and specification compiler components:

• How will the system distinguish inconsistent data
resulting from a read that occurs while the kernel
is in the middle of a data structure update from an
invalid kernel state?

• How can the system schedule data reads such that
relationships to be tested among digital objects are
tested on a set of objects that were read at or about
the same time?

• How can the system schedule data reads to mini-
mize the total number of reads necessary to check a
particular constraint or set of constraints?

In Section 4, we discuss how our initial implementation
handles these issues. To summarize our results, we pos-
tulate that simple extensions to the modeling language
can help the specification compiler reason about the na-
ture of underlying data, including how likely it is to
change over time and the best order in which to process
it. As a promising indication of our success, the resulting
system experienced no false positives in any of our tests.
However, in a specification-based system the possibility
for false positives or false negatives is more a reflection
of the specification than of the system. An expert with
better knowledge of the system will have more success
in this regard.

4 Implementation

In this section, we describe our implementation of the
above architecture and the testing we performed on a sys-
tem running the Fedora Core 4 GNU/Linux distribution.
Using our system, we have implemented (in C) two spec-
ifications designed to protect the Linux 2.6 process ac-
counting and SELinux AVC subsystems respectively. We
then tested our specifications against implementations of
the two attacks described in Section 2. We successfully
detected both of these attacks with zero false positives
when our detection code was running on a PCI-based
monitor similar to Copilot [29]. Table 1 provides more
detailed information about our test environment. These

Security ’06: 15th USENIX Security SymposiumUSENIX Association 295

Protected Host PCI-based Monitor
Machine Type Dell Dimension 4700 Bus-mastering PCI add-in card
RAM 1GB 32MB
Processor Single 2.8GHz Pentium 4 200MHz Motorola PowerPC 405GP
Storage 40GB IDE Hard Disk 4MB Flash memory
Operating System Redhat Fedora Core 4 full installation Embedded Linux 2.4 kernel
Networking 10/100 PCI NIC 10/100 on-board NIC

Table 1: Semantic integrity test platform summary.

tests demonstrate that it is possible to write useful spec-
ifications using our technique, and that these specifica-
tions can be coupled with an existing integrity monitor
to provide an effective defense against real attacks.

We begin our discussion by describing our specifica-
tion language, an adaptation of that presented by Dem-
sky and Rinard [7], in the context of our Linux process
accounting example.

4.1 Writing Specifications: a Linux
Hidden Process Example

Demsky and Rinard introduced a system for automat-
ically repairing data structure errors based on model
and constraint specifications [7]. The goal of their
system was to produce optimized data structure error
detection and repair algorithms [9] that were guaranteed
to terminate [8]. Because of the differences explained
in Section 3, we have adapted Demsky and Rinard’s
specification languages and the corresponding parser and
discarded all of the automatic code generation portions.
Our intention is to replace them with a code generation
algorithm better suited to our environment. This section
provides a brief overview of their specification language
syntax and identifies the changes necessary to support
our kernel integrity system. It also introduces our first
example specification for detecting hidden processes in
the Linux kernel. Demsky and Rinard’s specification
system is actually composed of four separate languages:

Low-level Structure Definition: The structure defi-
nition language provides C-like constructs for describing
the layout of objects in memory. Demsky and Rinard
provide a few additions to the normal C language syntax.
First, fields may be marked “reserved,” indicating that
they exist but are not used. Second, array lengths may be
variable and determined at runtime through expression
evaluation. Third, a form of structure “inheritance” is
provided for notational simplicity whereby structures can
be defined based on other structures and then expanded
with additional fields. We found no need to change the
structure definition language syntax developed by Dem-
sky and Rinard. However, it was necessary to adapt the

language’s semantics in two important ways because of
the “external” nature of our monitor.

First, named structure instances, which are also de-
clared in the structure definition language, cannot be re-
solved because our monitor is not part of the normal
software linking process. Instead, we must use an ex-
ternal source for locating variables. Our current im-
plementation allows the user to provide these locations
manually or to have them extracted automatically from
a Linux System.map symbol table file. The second
semantic modification necessary for the structure defini-
tion language is the handling of pointer values, which
are not “local” to our monitor. Instead, pointers must be
treated as foreign addresses accessed through the moni-
tor’s memory access mechanism.

Figure 3(a) contains our specification of the Linux
kernel’s process accounting data structures written in the
structure definition language. Figure 3(b) contains the
result of a manual translation from this specification into
the corresponding C declarations that will become part of
the monitoring code. Note the use of the host addr t
to represent host addresses after byte-order conversion
on the monitor. As described above, the appropriate
value for the LINUX SYMBOL init task constant
(and other required symbols) is automatically extracted
from the Linux System.map symbol table file by our
configuration tool.

Model Space Definition: The second language,
shown in Figure 3(c) for our process accounting ex-
ample, defines a group of sets or relations (there are
no relations in our first example) that exist in the
model [7]. There are two sets in our specification: one
corresponding to all processes in the all-tasks list (the
AllTasks set) and one corresponding to all processes
in the run queue (the RunningTasks set). Both are of
type Task in the model. We made no modifications to
this simple language, as all of our example specifications
were able to be expressed in the context of sets and
relations. The model space definition language provided
by Demsky and Rinard also provides support for set
partitions and subsets.

Security ’06: 15th USENIX Security Symposium USENIX Association296

Task init_task;

structure Task {
 reserved byte[32];
 ListHead run_list;
 reserved byte[52];
 ListHead tasks;
 reserved byte[52];
 int pid;
 reserved byte[200];
 int uid;
 reserved byte[60];
 byte comm[16];
}

structure ListHead {
 ListHead *next;
 ListHead *prev;
}

sructure Runqueue {
 reserved byte[52];
 Task *curr;
}

set AllTasks(Task);

set RunningTasks(Task);

host_addr_t init_task =

struct Task {

 ListHead run_list;
 unsigned char reserved_2[52];
 ListHead tasks;
 unsigned char reserved_3[52];
 int pid;
 unsigned char reserved_4[200];
 int uid;
 unsigned char reserved_5[60];
 unsigned char comm[16];
};

struct ListHead {
 host_addr_t next;
 host_addr_t prev;
};

 unsigned char reserved_1[32];

struct Runqueue {
 unsigned char reserved_1[52];
 host_addr_t curr;
};

LINUX_SYMBOL_init_task;

(a) Low−Level Structure Definiton (b) Translated Structure Definiton

[for_circular_list i as ListHead.next starting init_task.tasks.next], true => container(i, Task,tasks.next) in AllTasks;
[], true => runqueue.curr in RunningTasks;

[for t in RunningTasks], t in AllTasks
 : notify_admin("Hidden task " + t.comm + " with PID " + t.pid + " detected at kernel virtual address " + t);

(e) Constraints

(d) Model Building Rules

(c) Model Space Definition

Figure 3: Process accounting subsystem specification.

Model Building Rules: Thus far we have discussed
languages for describing the low-level format and orga-
nization of data in kernel memory and for declaring the
types of high-level entities we will use in our model.
The model building rules bridge the gap between these
by identifying which low-level objects should be used
within the abstract model. These rules take the form

[<quantifiers>], <guard> ->
<inclusion rule>;

For each rule, there is a set of quantifiers that enumer-
ates the objects to be processed by the rule, a guard that
is evaluated for each object to determine if it should be
subject to the rule, and an inclusion that determines how
that object should be classified in the abstract model. We
have made the following (syntactic and semantic) mod-
ifications to Demsky and Rinard’s model building lan-
guage:

1. User-defined rule order. In Demsky and Rinard’s
system, the specification compiler could identify the
dependencies among rules and execute them in the

most appropriate order. Furthermore, their denota-
tional semantics required execution of the rule func-
tion until a least fixed point was reached. This ap-
proach is not suited for external monitors for two
reasons. First, because memory accesses are of a
much higher performance penalty in our system, the
expert benefits from the ability to describe which
objects should be read in which order to build a
complete model. Second, unlike in Demsky and
Rinard’s environment, the low-level monitor may
be performing its reads asynchronously with the
monitored system’s execution. Model building ac-
cesses that have not been optimized are more likely
to encounter inconsistent data as the system state
changes.

2. Pointer handling. As previously mentioned, pointer
references are not local in our environment and
must go through the low-level monitor’s memory
access system. To detect invalid pointers, Dem-
sky and Rinard developed a runtime system that
instruments the heap allocation and deallocation
(malloc(), free(), etc.) functions to keep

Security ’06: 15th USENIX Security SymposiumUSENIX Association 297

track of valid memory regions. This approach is
clearly not an option for external monitors, which
are not integrated with the system’s runtime envi-
ronment. Currently, invalid pointers are handled by
restarting the model build process. If the same in-
valid pointer is encountered during two consecutive
model build operations, an error is generated. If
the invalid pointer is not encountered again, it is as-
sumed the first error was an inconsistency stemming
from the asynchronous nature of the monitor.

3. The contains() expression. A common pro-
gramming paradigm (especially in the Linux ker-
nel) is to embed generic list pointer structures as
members within another data structure. Our added
expression gives specification writers an easy way
to identify the object of which a particular field is a
member.

4. The for list quantification. Linked lists are a
common programming paradigm. This expression
gives specification writers a straightforward way to
indicate they intend to traverse a list up to the pro-
vided stop address (or NULL if not indicated).

5. The for circular list quantification. This is
syntactic sugar for the for list construct where
the end address is set equal to the first object’s ad-
dress. The Linux kernel makes heavy use of circular
lists.

Figure 3(d) shows the model rules for our process ac-
counting example. The first rule indicates that a circular
list starting (and ending) at init task.tasks.next
will be processed. The keyword true in the guard indi-
cates that all members of this list should be subject to the
inclusion. The inclusion itself uses our container()
expression to locate the Task that contains the list
pointer and to include that Task in AllTasks. The
second rule is very simple; it creates a singleton set
RunningTasks with the current task running on the
run queue.

Constraints: The final part of the specification de-
fines the set of constraints under which the model is to
be evaluated. The basic form of a rule in Demsky and
Rinard’s constraint language is as follows [7]:

[<quantifiers>], <predicate>;

In the constraint language, the set of quantifiers may in-
clude only sets defined in the model. The predicate is
evaluated on each quantified member and may include
set operations and evaluations of any relations defined in
the model. If the predicate fails for any quantified mem-
ber, Demsky and Rinard’s system would seek to repair

the model (and the underlying data structures accord-
ingly). In our system, however, we have added a “re-
sponse” clause to the end of the constraint rule as fol-
lows:

[<quantifiers>], <predicate> :
<[consistency,] response>;

This critical extension allows the specification writer to
dictate how failures are to be handled for a particular
rule. In addition to identifying which action to take, the
response portion allows for an optional “consistency pa-
rameter.” This parameter allows the specification writer
to identify a “safe” number of failures before taking ac-
tion and helps prevent false positives that might occur
due to data inconsistencies. If no such parameter is pro-
vided, the default value of two consecutive failures is
used. Of course, a secondary result is that actual rule
violations will be given an opportunity to occur once
without detection. The specification writer will need to
balance the advantages and the disadvantages for each
constraint rule and can always disable this feature by set-
ting the value to zero. For the threat considered in our
Linux process accounting example, the default value is
acceptable because of the nature of the targeted threat. A
process that is short-lived has no reason to hide, since an
administrator is unlikely to notice the process. Finally,
the consistency value has no meaning for synchronous
monitors, which do not suffer from the same consistency
problems.

Figure 3(e) shows the single constraint rule for our
hidden process example. The rule states that if any pro-
cess is ever seen running on the processor that is not in
the all-tasks list, we have a security problem and need
to alert the administrator. This example describes a rel-
atively simple method of detecting hidden processes. In
order to detect a hidden process, the monitor must catch
the process while it has the host CPU—a probabilis-
tic strategy that is likely to require the taking of many
snapshots of the host’s state over time before the hidden
process’s luck runs out. A more deterministic approach
might be to compare the population of the kernel’s nu-
merous wait and run queues with the population of the
all-tasks list. In order to be eligible for scheduling, a
process must be on one of these wait or run queues; a
process on a wait or run queue but not in the all-tasks list
is hiding. This strategy would require a more complex
model specification.

4.2 A Second Example: the SELinux AVC

In Section 2, we described an attack against the SELinux
AVC whereby an attacker with the ability to write to
memory could modify the permissions of an entry in

Security ’06: 15th USENIX Security Symposium USENIX Association298

structure SidTabNode {
 int sid;
 int user;
 int role;
 int type;
 reserved byte[24];
 SidTabNode *next;
}

structure SidTab {
 SidTabNode **htable;
 int nel;
}

structure ListHead {
 ListHead *next;
 ListHead *prev;
}

structure AVCCache {
 ListHead slots[512];
}

structure Policydb {
 reserved byte[108];
 AVTab te_avtab;
 rserved byte[8];
 AVTab te_cond_avtab;
}

structure AVTab {
 AVTabNode **htable;
 int nel;
}

structure AVTabNode {
 int source_type;
 int target_type;
 int target_class;
 int specified;
 int allowed;
 int auditdeny;
 int auditallow;
 AVTabNode *next;
}

structure AVCNode {
 int ssid;
 int tsid;
 short tclass;
 reserved short;
 int allowed;
 int decided;
 int auditallow;
 int auditdeny;
 int seqno;
 int atomic;
 ListHead list;
}

Set AllSids(SidTabNode);
Set AllAVCNodes(AVCNode);
Set TEAVTabNodes(AVTabNode);
Set TECondAVTabNodes(AVTabNode);

avcssidtype : AVCNode −> SidTabNode;
avctsidtype : AVCNode −> SidTabNode;
avcteavtabmapping : AVCNode −> TEAVTabNode;
avctecondavtabmapping : AVCNode −> TECondAVTabNode;

SidTab sidtab;
AVCCache avc_cache;
Policydb policydb;

(b) Model Space Definition

(a) Low−Level Structure Definitons

Figure 4: SELinux access vector cache structure and model definitions.

the cache to give a particular process access not permit-
ted by the SELinux policy. We further explained that
existing hashing techniques can be used to protect the
memory-resident full policy, but not the AVC because
of its dynamic nature. Our approach for protecting the
AVC therefore begins with the assumption that a sim-
ple “binary” integrity system is protecting the static data
structures that represent the full policy. We then use our
semantic integrity monitor to implement a specification
whose goal is to compare all AVC entries with their pro-
tected entries in the full policy. Figures 4 and 5 dis-
play the full specification we used to protect the SELinux
AVC. This specification is more complex than the pre-
vious example largely due to the complexities of the
SELinux system and its data structures. However, the
complexity of the specification is minimal as compared
with the number of lines of code that would be required
to implement the equivalent checks in low-level code
(eight model definition rules and one constraint rule ver-
sus the 709 lines of C code in our example implementa-
tion).

There are four primary entities in our SELinux spec-
ification: the security identifier table (of type SIDTab),
the access vector cache (an AVCCache), the Type En-
forcement access vector table (an AVTab), and its coun-
terpart the Type Enforcement conditional access vector
table (also an AVTab). The model definition rules first

create a set of SIDs by walking through the SID table
and then, similarly, create a set of all AVC nodes from
the AVC. The third and fourth rules are used to create
mappings between the AVC nodes and their source and
target SIDs. Rules five and six look-up each AVC node
in the full Type Enforcement policy for both conditional
and non-conditional access vector tables. The final two
model definition rules create a mapping between AVC
nodes and their corresponding entries in the Type En-
forcement access vector tables. The single constraint rule
simply walks through all AVC nodes and checks that the
allowable field matches the combined (bitwise OR) value
of the two corresponding Type Enforcement access vec-
tor entries for that AVC node. As with the last exam-
ple, an administrator is notified if the data structures are
found to be inconsistent.

We have tested our code against an attacking loadable
kernel module that modifies the permissions for a par-
ticular AVC entry. A rootkit might make such a mod-
ification to temporarily elevate the privileges of one or
more processes in a manner that could not be detected by
an integrity monitor that observed only static data struc-
tures. Our specification successfully detects the attack
against our Fedora Core 4 system configured with the de-
fault SELinux “targeted” policy operating in “enforcing”
mode.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 299

[for i = 0 to 128, for_list j as SidTabNode.next starting sidtab.htable[i]], true => j in AllSids ;
[for i = 0 to 512, for_circular_list j as ListHead.next starting avc_cache.slots[i]], true =>
 true => container (j, AVCNode, list.next) in AllAVCNodes ;
[for a in AllAVCNodes, for s in AllSids], (a.ssid = s.sid) => <a,s> in avcssidtype ;
[for a in AllAVCNodes, for s in AllSids], (a.tsid = s.sid) => <a,s> in avctsidtype ;

[for a in AllAVCNodes, for_list j as AVTabNode.next starting
 policydb.te_cond_avtab.htable[a.tclass + a.avctsidtype.type * 4 + a.avcssidtype.type * 512].next],
 (j.source_type = a.avcssidtype.type AND j.target_type = a.avctsidtype.type)

[for a in AllAVCNodes, for_list j as AVTabNode.next starting
 policydb.te_avtab.htable[a.tclass + a.avctsidtype.type * 4 + a.avcssidtype.type * 512].next],
 (j.source_type = a.avcssidtype.type AND j.target_type = a.avctsidtype.type)

 => j in TEAVTabNodes;

 => j in TECondAVTabNodes;

(a) Model Building Rules

[for c in AllAVCNodes], c.allowed = (c.avcteavtabmapping.allowed | c.avctecondavtabmapping.allwed)
 : notify_admin ("AVC Cache entry has improper privileges " + c.callowed + " at virtual address " + c);

(b) Constraints

[for c in AllACNodes, for a in TEAVTabNodes],
 (c.avcssidtype.sid = a.source_type AND
 c.avctsidtype.sid = a.target_type AND
 c.tclass = a.target_class) =>
 <c,a> in avcteavtabmapping;

[for c in AllACNodes, for a in TECondAVTabNodes],
 (c.avcssidtype.sid = a.source_type AND
 c.avctsidtype.sid = a.target_type AND
 c.tclass = a.target_class) =>
 <c,a> in avctecondavtabmapping;

Figure 5: SELinux access vector cache specification rules.

5 Discussion

The approach proposed in this paper is to detect mali-
cious modifications of kernel memory by comparing ac-
tual observed kernel state with a specification of correct
kernel state. The specification describes possible cor-
rect kernel states, not signatures of known attacks. In
this way, our approach is a type of specification-based
intrusion detection. We do not follow the approach of
traditional signature-based virus scanners. Thus far, we
have provided two example specifications for our system
and identified the types of modifications that these spec-
ifications can detect. While our examples are useful for
demonstrating how the proposed system works, they pro-
vide little intuition about how specifications would be de-
veloped in a real deployment. In this section, we provide
a high-level methodology for identifying system proper-
ties of interest and describe three classes of threats we
have identified.

Currently, there are two methods for identifying data
properties and writing their corresponding specifications:
(1) analyzing and abstracting on known threats and (2)
deriving data properties and specifications from a high-
level English-language security policy. In the analysis
of known threats, the goal is to classify the techniques
used by adversaries in previous attacks in order to ab-

stract on these methodologies. The result is the identifi-
cation of a set of data invariants that may be violated by
future attacks. Of course, this approach permits the pos-
sibility that new attacks may avoid detection by exploit-
ing only those details of the kernel abstracted out of the
specification, leading to an interminable ”arms race” be-
tween attackers and specification-writers. Nevertheless,
this approach is still better than the traditional signature-
based virus-scanning approach in that each specification
has the potential to detect an entire class of similar at-
tacks, rather than only a single instance.

It may be possible to avoid such an arms race by us-
ing an alternate approach: deriving specifications from
a high-level English-language security policy rather than
from an analysis of known attacks. In this approach, an
analyst might begin with a policy such as ”no runnable
processes shall be hidden” or ”my reference monitor en-
forces my particular mandatory access control policy”
and then examine the kernel source to determine which
data structures have relevant properties and what those
properties should be in order for the high-level policy to
hold. The analyst’s task is similar to constructing a for-
mal argument for correctness, except that the end result
is a configuration for a runtime monitor.

Section 4 presents two examples of the types of
specifications one might obtain as a result of the

Security ’06: 15th USENIX Security Symposium USENIX Association300

methodologies just described. Using these techniques,
we have identified three classes of attacks against
dynamic kernel data. While it is likely there are other
classes of attacks, we believe the three identified thus
far provide evidence of the potential success of our
approach. The following are the attack classes we have
identified:

Data hiding attacks. This class of attacks was demon-
strated in Section 2.1 with the Linux process hiding
example. The distinguishing characteristic of this class
is the removal of objects from data structures used
by important kernel subsystems for accounting and
reporting. Writing specifications capable of detecting
these attacks requires identifying data structures that
are used by kernel resource reporting procedures such
as system calls and, in the case of Linux, the /proc
filesystem.

Capability/access control modification attacks. One
of the fundamental goals of kernel attackers is to provide
their processes with privileges and access to resources.
To this end, process capabilities in the form of tokens,
flags, and descriptors are likely targets of an attacker
with kernel memory access. In addition to the SELinux
AVC example, described in Section 2.2, we have iden-
tified user/group identifiers, scheduler parameters (e.g.,
nice value), and POSIX capabilities as potential targets.
We are actively writing specifications to protect this data.

Control flow modification attacks. One popular tech-
nique for gaining control of kernel functionality is the
modification of function pointers in dynamic data struc-
tures such as those associated with the virtual filesystem
(VFS) and /proc filesystem. As demonstrated by
popular rootkits like adore-ng, manipulating these
pointers provides attackers with a “hook” to execute
their inserted code. While previous generations of
kernel integrity monitors have demonstrated effective
detection of hooks placed in static data (e.g., the system
call table), dynamic function pointers have remained an
elusive target. We are actively writing a large number of
simple specification rules to test the validity of kernel
pointers throughout dynamic data. Additionally, we
intend to investigate the use of automated tools to make
this process easier and more complete.

Unlike misuse detection systems, our specification-
based approach allows for the identification and detec-
tion of classes of attacks without a priori knowledge of
particular instances of threats.

6 Related Work

The architecture we have proposed was inspired by
the work of four separate areas: external kernel mon-
itors [17, 37, 13, 29], specification-based intrusion de-
tection [20, 32], specification-based data structure re-
pair [7], and semantic integrity in database systems [15].
Work in the areas of software attestation and verifiable
code generation is also closely related. We briefly de-
scribe this body of work here.

6.1 Kernel Integrity Monitors

We broadly categorize external kernel monitors as any
system that operates outside of the protected kernel in
order to provide independent, trustworthy analysis of the
state of the protected host. Examples of such systems
in the recent literature include coprocessor-based moni-
tors [37, 29], SMP-based monitors [17], and virtual ma-
chine introspection [13]. While each of these systems
has introduced its own mechanism for inspecting the in-
ternal state of the protected host, all have at least one
common goal: to monitor a running host for unautho-
rized modifications of kernel memory. While some ad-
hoc techniques for limited protection of dynamic data
have been demonstrated (although not described in de-
tail) on a couple of these systems [13, 37], the predom-
inant detection technique remains binary or checksum
comparison of known static objects in memory.

The types of checks performed by these systems are
not incorrect or without value. These systems provide
a foundation on which our approach aims to extend to
broaden the set of kernel attacks detectable from such
platforms.

6.2 Attestation and Verifiable Execution

Code attestation [18, 12, 34, 30, 31, 35] is a technique by
which a remote party, the “challenger” or “verifier,” can
verify the authenticity of code running on a particular
machine, the “attestor.” Attestation is typically achieved
via a set of measurements performed on the attestor that
are subsequently sent to the challenger, who identifies
the validity of the measurements as well as the state of
the system indicated by those measurements [30]. Both
hardware-based [12, 30, 31] and software-based [18, 34]
attestation systems have been developed. Measurement
typically occurs just before a particular piece of code is
loaded, such as between two stages of the boot process,
before a kernel loads an new kernel module, or when a
kernel loads a program to be executed in userspace [30].
All of the hardware-based systems referenced in this pa-
per utilize the Trusted Computing Group’s (TCG) [2]
Trusted Platform Module (TPM), or a device with sim-

Security ’06: 15th USENIX Security SymposiumUSENIX Association 301

ilar properties, as a hardware root of trust that validates
measurements prior to software being loaded at runtime.
Software-based attestation systems attempt to provide
similar guarantees to those that utilize trusted hardware
and typically rely on well-engineered verification func-
tions that, when modified by an attacker, will necessarily
produce incorrect output or take noticeably longer to run.
This deviation of output or running time is designed to be
significant enough to alert the verifier of foul play.

Traditional attestation systems verify only binary
properties of static code and data. In such systems, the
only runtime benefit provided is the detection of illegal
modifications that utilize well-documented transitions or
interfaces where a measurement has explicitly been in-
serted before the malicious software was loaded. Un-
fortunately, attackers are frequently not limited to using
only these interfaces [33].

Haldar et al. have proposed a system known as “se-
mantic remote attestation” [14] in an attempt to extend
the types of information the verifying party can learn
about the attesting system. Their approach is to use a
language-based trusted virtual machine that allows the
measurement agent to perform detailed analysis of the
application rather than simple binary checksums. The
basic principle is that language-based analysis can pro-
vide much more semantic information about the proper-
ties of an application. Their approach does not extend
to semantic properties of the kernel and, since their VM
runs on top of a standard kernel, there is a requirement
for traditional attestation to bootstrap the system.

Verifiable code execution is a stronger property than
attestation whereby a verifier can guarantee that a par-
ticular piece of code actually runs on a target plat-
form [33]. This contrasts traditional attestation, where
only the loading of a particular piece of software can
be guaranteed. Once that software is loaded however,
it could theoretically be compromised by an advanced
adversary. With verifiable code execution, such a modi-
fication should not be possible without detection by the
verifier. Both hardware-based [5, 35] and, more recently,
software-based [33] systems have been proposed.

Verifiable code execution is a promising direction for
ensuring that the correct code is run on a potentially un-
trusted platform. As shown by Seshadri et al. [33], such
a system could be used as the foundation for a kernel in-
tegrity monitor. We therefore view verifiable code execu-
tion as a potential monitor extension for our architecture.

6.3 Specification-Based Detection

Specification-based intrusion detection is a technique
whereby the system policy is based on a specification
that describes the correct operation of the monitored en-
tity [20]. This approach contrasts signature-based ap-

proaches that look for known threats and statistical ap-
proaches for modeling normalcy in an operational sys-
tem. Typically, specification-based intrusion detection
has been used to describe program behavior [20, 21, 32]
rather than correct state, as we have used it [20, 21,
32]. More recently, specifications have been used for
network-based intrusion detection as well [36].

6.4 Data Structure Detection and Repair

We have already described Demsky and Rinard’s [7]
work towards data structure error detection and repair.
This work places one level of abstraction on top of the
historical 5ESS [16] and MVS [25] work: in those sys-
tems, the inconsistency detection and repair procedures
were coded manually. We have utilized the basic tech-
niques of Demsky and Rinard’s specification system with
the necessary adaptations for operating system semantic
integrity. The environments are sufficiently different so
as to require significant modifications. These differences
were discussed in Section 3.3.

In similar work, Nentwich and others [27] have devel-
oped xlinkit, a tool that detects inconsistencies between
distributed versions of collaboratively-developed docu-
ments structured in XML [4]. It does so based on con-
sistency constraints written manually in a specification
language based on first order logic and XPath [6] expres-
sions. These constraints deal with XML tags and val-
ues, such as “every item in this container should have a
unique name value.” In later work [28], they describe
a tool which analyzes these constraints and generates
a set of repair actions. Actions for the above exam-
ple might include deleting or renaming items with non-
unique names. Human intervention is required to prune
repair actions from the list and to pick the most appropri-
ate action from the list at repair time.

6.5 Semantic Integrity in Databases

There is a long history of concern for the correct and con-
sistent representation of data within databases. Hammer
and McLeod addressed the issue in the mid 1970’s as it
applies to data stored in a relational database [15]. The
concept of insuring transactional consistency on modifi-
cations to a database is analogous to that of doing process
accounting within the operating system. The database,
like the operating system, assumes that data will be mod-
ified only by authorized parties through pre-defined inter-
faces. While the environments are very different, Ham-
mer and McLeod’s work provided excellent insight to us
regarding constraint verification. Their system includes
a set of constraints over database relations that include
an assertion (a predicate like in our system), a validity
requirement (analogous to the guard in Demsky and Ri-

Security ’06: 15th USENIX Security Symposium USENIX Association302

nard’s model language), and a violation action, similar
to our response mechanism but which only applies to up-
dating the database. Hammer and McLeod argue that
assertions should not be general purpose predicates (like
first-order logic), but should instead be well-defined.

7 Future Work

Each part of the architecture described above provides
avenues for significant impact and advancement in the
system. The three most promising areas are the extension
to other monitors, advancement in system responses, and
the analysis and automation of specifications.

We have designed the semantic integrity architecture
to be easily extended to other monitor platforms. Two
of the most promising such platforms include virtual
machine monitors [13, 12] and software-based monitors
achieved via verifiable code execution [33]. These sys-
tems provide the possibility for unique extensions such
as the inclusion of register state into specifications and
the benefit of added assurance without the need for ex-
tra hardware. It is our intention to extend our work to at
least one such software-based monitor.

A second avenue of work we intend to pursue is that
of additional response vectors. Having an independent
monitor with access to system memory and a system
for easily interpreting that memory can provide a huge
amount of leverage for advanced response. Perhaps the
most significant potential for work is the advancement of
automated runtime memory forensics.

Finally, as with all security systems, having a good
policy is very important for the success of the system.
Our current architecture requires experts with advanced
knowledge of kernel internals to write and verify speci-
fications. Developing tools to help automate the process,
including a number of kernel static analysis tools, could
significantly improve this process. We intend to investi-
gate techniques for analyzing kernel properties automat-
ically, both statically and at runtime.

8 Conclusion

We have introduced a novel and general architecture for
defining and monitoring semantic integrity constraints—
functionality required to defeat the latest generation of
kernel-tampering rootkit technology. For our initial pro-
totype implementation, we have adapted Demsky and Ri-
nard’s specification languages for implementing internal
monitors for application data structures [7] to the task
of implementing external monitors for operating system
kernel data structures. This adaptation required adding
features to their specification languages to overcome a
number of issues not present in the original application
problem domain, including managing memory transfer

overhead and providing for flexible responses to detected
compromises.

Our general architecture is applicable to a variety of
low-level monitoring technologies, including external
hardware monitors [29], software-based monitors [33]
and virtual machine introspection [13]. We believe our
approach is the first to address the issue of monitoring
the integrity of dynamic kernel data in a comprehensive
way, and we believe it will provide an excellent comple-
ment to present state of the art binary integrity systems.

Acknowledgments

We would like to thank Trent Jaeger for his time and
feedback during the final preparation of this work. We
would also like to thank the anonymous reviewers for
their helpful comments. This work was supported by
the National Science Foundation (NSF) under CAREER
award 0133092.

References

[1] The Unified Modeling Language (UML).
http://www.uml.org, 2005.

[2] Trusted Computing Group (TCG).
http://www.trustedcomputinggroup.org,
2005.

[3] W. E. Boebert and R. Y. Kain. A Practical Alternative
to Hierarchical Integrity Policies. In Proceedings of the
8th National Computer Security Conference, pages 18–
27, Gaithersburg, Maryland, September 1985.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.
Extensible Markup Language. Recommendation REC-
xml-20001006, World Wide Web Consortium, October
2000.

[5] B. Chen and R. Morris. Certifying Program Execution
with Secure Processors. In 9th Workshop on Hot Top-
ics in Operating Systems (HotOS), Lihue, Hawaii, May
2003.

[6] J. Clark and S. Derose. XML Path Language (XPath)
Version 1.0. Recommendation REC-xpath-19991116,
World Wide Web Consortium, November 1999.

[7] B. Demsky and M. Rinard. Automatic Detection and
Repair of Errors in Data Structures. In Proceedings of
the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), Anaheim, CA, October 2003.

[8] B. Demsky and M. Rinard. Static Specification Analy-
sis for Termination of Specification-Based Data Structure
Repair. In Proceedings of the 14th International Sym-
posium on Software Reliability Engineering, November
2003.

[9] B. Demsky and M. Rinard. Data Structure Repair Using
Goal-Directed Reasoning. In Proceedings of the 27th In-
ternational Conference on Software Engineering (ICSE),
St. Louis, MO, May 2005.

[10] R. Droms. Dynamic host configuration protocol. Techni-
cal Report RFC 2131, Bucknell University, March 1997.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 303

[11] D. Ferraiolo and R. Kuhn. Role-Based Access Controls.
In Proceedings of the 15th National Computer Security
Conference, pages 554–563, Baltimore, Maryland, Octo-
ber 1992.

[12] T. Garfink el, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A Virtual-Machine Based Platform for
Trusted Computing. In 19th ACM Symposium on Operat-
ing Systems Principles (SOSP), Sagamore, NY, October
2003.

[13] T. Garfink el and M. Rosenblum. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection.
In The 10th Annual Symposium on Network and Dis-
tributed System Security (NDSS), San Diego, CA, Febru-
ary 2003.

[14] V. Haldar, D. Chandra, and M. Franz. Semantic re-
mote attestation – a virtual machine directed approach to
trusted computing. In Proceedings of the 3rd USENIX
Virtual Machine Research & Technology Symposium,
May 2004.

[15] M. Hammer and D. McLeod. A Framework For Data
Base Semantic Integrity. In Proceedings of the 2nd In-
ternational Conference on Software Engineering (ICSE),
San Francisco, CA, October 1976.

[16] G. Haugk, F. Lax, R. Royer, and J. Williams. The
5ESS(TM) switching system: Maintenance capabilities.
AT & T Technical Journal, 64 part 2(6):1385 – 1416,
July-August 1985.

[17] D. Hollingworth and T. Redmond. Enhancing operat-
ing system resistance to information warfare. In MIL-
COM 2000. 21st Century Military Communications Con-
ference Proceedings, volume 2, pages 1037–1041, Los
Angeles, CA, USA, October 2000.

[18] R. Kennell and L. H. Jamieson. Establishing the Gen-
uinity of Remote Computer Systems. In Proceedings of
the 12th USENIX Security Symposium, pages 295–310,
Washington, D.C., August 2003.

[19] G. H. Kim and E. H. Spafford. The Design and Imple-
mentation of Tripwire: A File System Integrity Checker.
In Proceedings of the 2nd ACM Conference on Com-
puter and Communications Security, pages 18–29, Fair-
fax, Virgina, November 1994.

[20] C. Ko, G. Fink, and K. Levitt. Automated Detection
of Vulnerabilities in Privileged Programs by Execution
Monitoring. In Proceedings of the 10th Annual Com-
puter Security Applications Conference (ACSAC), Or-
lando, FL, 1994.

[21] C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitor-
ing of Security-Critical Programs in Distributed Systems:
A Specification-based Approach . In 1997 IEEE Sympo-
sium on Security and Privacy, Oakland, CA, May 1997.

[22] P. A. Loscocco and S. D. Smalley. Integrating Flexible
Support for Security Policies into the Linux Operating
System. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, Boston, Mas-
sachusetts, June 2001.

[23] R. Love. Linux Kernel Development. Novell Press, sec-
ond edition, 2005.

[24] P. Mockapetris. Domain names—conceptsand facilities.
Technical Report RFC 1034, ISI, November 1987.

[25] S. Mourad and D. Andrews. On the Reliability of the
IBM MVS/XA Operating System. IEEE Transactions on
Software Engineering, 13(10):1135–1139, 1987.

[26] National Computer Security Center. Department of De-
fense Trusted Computer System Evaluation Criteria, De-
cember 1985.

[27] C. Nentwich, L. Capra, W. Emmerich, and A. Finkel-
stein. xlinkit: a Consistency Checking and Smart Link
Generation Service. ACM Transactions on Internet Tech-
nology, 2(2):151 – 185, May 2002.

[28] C. Nentwich, W. Emmerich, and A. Finkelstein. Consis-
tency management with repair actions. In Proceedings fo
the 25th International Conference on Software Engineer-
ing, May 2003.

[29] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh.
Copilot – a Coprocessor-based Kernel Runtime Integrity
Monitor. In 13th USENIX Security Symposium, San
Diego, CA, August 2004.

[30] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn.
Attestation-based Policy Enforcement for Remote Ac-
cess. In 11th ACM Conference on Computer and Com-
munications Security (CCS), Washington, DC, Novem-
ber 2004.

[31] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and Implementation of a TCG-based Integrity Measure-
ment Architecture. In 13th USENIX Security Symposium,
San Diego, CA, August 2004.

[32] R. Sekar and P. Uppuluri. Synthesizing fast intrusion pre-
vention/detection systems from high-level specifications.
In 8th USENIX Security Symposium, pages 63–78, Wash-
ington, D.C., August 1999.

[33] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying Code Integrity and Enforc-
ing Untampered Code Execution on Legacy Systems. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP), Brighton, United Kingdom,
October 2005.

[34] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWATT: SoftWare-based ATTestation for Embedded De-
vices. In IEEE Symposium on Security and Privacy, Oak-
land, CA, May 2004.

[35] E. Shi, A. Perrig, and L. V. Doorn. BIND: A Fine-grained
Attestation Service for Secure Distributed Systems. In
Proceedings of the 2005 IEEE Symposium on Security
and Privacy, Oakland, CA, May 2005.

[36] C. Tseng, P. Balasubramanyam, C. Ko, R. Limprasitti-
porn, J. Rowe, and K. Levitt. A specification-based in-
strusion detection system for aodv. In 2003 ACM Work-
shop on security of Ad Hoc and Sensor Networks (SASN
’03), Fairfax, VA, October 2003.

[37] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and
R. Sailer. Secure Coprocessor-based Intrusion Detec-
tion. In Proceedings of the Tenth ACM SIGOPS Euro-
pean Workshop, Saint-Emilion, France, September 2002.

Security ’06: 15th USENIX Security Symposium USENIX Association304

