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Abstract

A very effective means to evade signature-based intru-

sion detection systems (IDS) is to employ polymor-

phic techniques to generate attack instances that do

not share a fixed signature. Anomaly-based intrusion

detection systems provide good defense because existing

polymorphic techniques can make the attack instances

look different from each other, but cannot make them

look like normal. In this paper we introduce a new

class of polymorphic attacks, called polymorphic blend-

ing attacks, that can effectively evade byte frequency-

based network anomaly IDS by carefully matching the

statistics of the mutated attack instances to the normal

profiles. The proposed polymorphic blending attacks

can be viewed as a subclass of the mimicry attacks. We

take a systematic approach to the problem and formally

describe the algorithms and steps required to carry out

such attacks. We not only show that such attacks are

feasible but also analyze the hardness of evasion under

different circumstances. We present detailed techniques

using PAYL, a byte frequency-based anomaly IDS, as a

case study and demonstrate that these attacks are indeed

feasible. We also provide some insight into possible

countermeasures that can be used as defense.

1 Introduction

In the continuing arms race in computer and network

security, a common trend is that attackers are employing

polymorphic techniques. Toolkits such as ADMmutate

[17], PHATBOT [10], and CLET [5] are available for

novices to generate polymorphic attacks. The purpose of

using polymorphism is to evade detection by an intrusion

detection system (IDS). Every instance of a polymor-

phic attack looks different and yet carries out the same

malicious activities. For example, the payload of each

instance of a polymorphic worm can have different byte

contents. It follows that signature-based (misuse) IDS

may not reliably detect a polymorphic attack because

it may not have a fixed or predictable signature, or

because the invariant parts of the attack may not be

sufficient to construct a signature that produces very

few false positives. On the other hand, each instance

of a polymorphic attack needs to contain exploit code

that is typically not used in normal activities. Thus,

each instance looks different from normal. Existing

polymorphic techniques [28] focus on making the attack

instances look different from each other, and not much on

making them look like normal. This means that network

payload anomaly detection systems can provide a good

defense against the current generation of polymorphic

attacks. However, if a polymorphic attack can blend

in with (or look like) normal traffic, it can successfully

evade an anomaly-based IDS that relies solely on pay-

load statistics.

In this paper, we show that it is possible to evade

network anomaly IDS based on payload statistics us-

ing a class of polymorphism that we call polymorphic

blending. A polymorphic blending attack is a polymor-

phic attack that also has the ability to evade a payload

statistics-based anomaly IDS. In addition to making all

the mutated attack instances different, an attacker (or the

attack code) attempts to make them appear normal by

transforming each instance in such a way that its payload

characteristics (e.g., the byte frequency distribution) fit

the normal profile used by the anomaly IDS. Since

polymorphic blending attacks try to evade the IDS by

making the attacks look like normal, they can be viewed

as a subclass of the mimicry attacks [29, 33].

This paper makes several contributions. We study

the class of polymorphic blending attacks against byte

frequency-based network anomaly IDS, which was in-

troduced by Kolesnikov et al. in [12]. We present the

general techniques and design considerations for such

attacks. We provide rationales of why these attacks are

practical and show that network anomaly IDS based on

payload statistics do not guarantee adequate protection

against sophisticated attacks.

Using 1-gram and 2-gram PAYL [35, 36] as a case
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study, we take a systematic approach to the problem

and describe the necessary steps required to carry out

an effective attack. Our work provides insight into not

only how such an attack can be performed, but also

how hard it is to launch these attacks under different

circumstances. We analyze the amount of learning re-

quired for the attacker and the time and space complexity

required for blending. We use a real attack vector [8] to

implement a polymorphic blending attack and provide

experimental evidence that our attack can effectively

evade detection. We also discuss possible countermea-

sures that a defender (e.g., IDS designer or operator)

can take to decrease the likelihood that a polymorphic

blending attack will succeed.

Organization of the paper The rest of the paper is

organized as follows. We discuss related work in poly-

morphic attacks and detection in Section 2. In Section 3,

we introduce polymorphic blending attacks and discuss

the general techniques and design issues of polymorphic

blending attacks. We present our case study in Section 4

and conclude the paper in Section 5.

2 Related Work

Transforming attack packets to avoid detection is a

common practice among attackers. Attackers can exploit

the ambiguities present in the traffic stream to trans-

form an attack instance to another so that an IDS is

not able to recognize the attack pattern. IP and TCP

transformations ([11, 22]) techniques are used to evade

NIDS that analyzes TCP/IP headers. Vigna et al. [31]

discussed multiple network, application and exploit layer

(shellcode polymorphism) mutation mechanisms. A

formal model to combine multiple transformations was

presented by Rubin et al. [24]. Multiple tools such

as Fragroute [26], Whisker [23], and AGENT [24] are

available that can perform attack mutation.

Code polymorphism has been used extensively by

virus writers to write polymorphic viruses. Mistfall, tPE,

EXPO, and DINA [28, 37] are some of the polymorphic

engines used by virus writers. Worm writers have also

started using polymorphic engines. ADMmutate [17],

PHATBOT [10], and JempiScodes [25] are some of

the polymorphic shellcode generators commonly used to

write polymorphic worms. Garbage and NOP insertions,

register shuffling, equivalent code substitution, and en-

cryption/decryption are some of the common techniques

used to write polymorphic shellcodes.

Quite a few approaches have been proposed to detect

polymorphic attacks. In [30], Toth et al. proposed a

technique to locate the presence of executable shellcode

inside the payload. They used abstract execution of

network flows to find the MEL (Maximum Executable

Length) of the payload. The flow is marked suspicious

if its MEL is above certain length. Chinchani et al. [2]

performed fast static analysis to check if a network

flow contains exploit code. STRIDE [1] focuses on

detecting polymorphic sleds used by buffer overflow

attacks. In [14], Kruegel et al. used structural analysis of

binary code to find similarities between different worm

instances. Using a graph coloring technique on a worm’s

control flow graph, this approach is able to accurately

model the structure of the worm. Given a set of suspi-

cious flows, Polygraph [20] generates a set of disjoint in-

variant substrings that are present in multiple suspicious

flows. These substrings can then be used as a signature

to detect worm instances. In a recent work, Perdisci et al.

[21] proposed an attack on Polygraph [20] where noise

is injected into the dataset of suspicious flows so that

Polygraph is not able to generate a reliable signature for

the worm. Shield [34] uses transport layer filters to block

the traffic that exploits a known vulnerability. Filters are

exploit-independent, and vulnerabilities are described as

a partial state machines of the vulnerable application.

In [3], Christodorescu et al. proposed an instruction

semantics based worm detection technique. The pro-

posed approach can detect code polymorphism that uses

instruction reordering, register shuffling, and garbage

insertions. It is worth noting that unless the attacker

combines the polymorphic blending attack proposed in

this paper with other evasion techniques, the approaches

cited above [1, 2, 3, 14, 20, 30, 34] may be able to detect

the attack. We further discuss possible countermeasures

against the polymorphic blending attack in Section 4.7.

A number of attacks aimed at evading Host-based

anomaly IDS have been developed. Wagner et al. [33]

and Tan et al. [29] presented mimicry attacks against the

stide model [9] developed by Forrest et al. The main

idea behind these mimicry attacks was to inject dummy

system calls into an attack sequence to make the final

system call sequence look similar to the normal system

call sequence. As a defense against mimicry attacks as

well as other impossible path attacks [7, 32], more ad-

vanced detection approaches (e.g., [6, 7]) were proposed,

which use call stack information along with the system

call sequences. Recently, a more sophisticated mimicry

attack was proposed by Kruegel et al. [13], which can

evade most system call based anomaly IDS.

Several application payload-based anomaly IDS [15,

18, 19] have been proposed which monitor the payload

of a packet for anomalies. In [16], Kruegel et al. pro-

posed four different models, namely, length, character

distribution, probabilistic grammar, and token finder, for

the detection of HTTP attacks. PAYL, proposed by

Wang and Stolfo [35], records the average frequency

of occurrences of each byte in the payload of a normal

packet. A separate profile is created for each port and

packet length. In their recent work [36], the authors

suggested an improved version of PAYL that computes
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several profiles for each port. At the end of the training,

clustering is performed to reduce the number of profiles.

They proposed that instead of byte frequency, one can

also use an n-gram model in a similar fashion. One main

drawback of the system is that they do not consider an

advanced attacker, who may know the IDS running at

the target and actively try to evade it. In this paper we

provide strong evidence that such byte frequency based

anomaly IDS are open to attacks and may be easily

evaded.

CLET [5], an advanced polymorphic engine, comes

closest to our polymorphic blending attack. It performs

spectrum analysis to evade IDS that use data mining

methods for worm detection. Given an attack pay-

load, CLET adds padding bytes in a separate cramming

bytes zone (of a given length) to try and make the

byte frequency distribution of the attack close to the

normal traffic. However, the encoded shellcode (using

XOR) in CLET may still deviate significantly from the

normal distribution and the obtained polymorphic attack

may be detected by the IDS. A preliminary work by

Kolesnikov et al. [12] introduced and cursorily explored

polymorphic blending attacks. In this paper we present

a systematic approach for evading byte frequency-based

network anomaly IDS, and provide detailed analysis of

the design, complexity and possible countermeasures for

the polymorphic blending attacks. We also show that our

polymorphic blending technique is much more effective

than CLET in evading byte frequency-based anomaly

IDS.

3 Blending Attacks

3.1 Polymorphism

A polymorphic attack is an attack that is able to change

its appearance with every instance. Thus, there may

be no fixed or predictable signature for the attack. As

a result, it may evade detection because most current

intrusion detection systems and anti-virus systems are

signature-based. Exploit mutation and shellcode poly-

morphism are two common ways to generate polymor-

phic attacks. In general, there are three components in a

polymorphic attack:

1. Attack Vector: an attack vector is used for exploit-

ing the vulnerability of the target host. Certain

parts of the attack vector can be modified to create

mutated but still valid exploits. There might still

be certain parts, called the invariant, of the attack

vector that have to be present in every mutant for

the attack to work. If the attack invariant is very

small and exists in the normal traffic, then an IDS

may not be able to use it as a signature because it

will result in a high number of false positives.

2. Attack Body: the code that performs the intended

malicious actions after the vulnerability is ex-

ploited. Common techniques to achieve attack body

(shellcode) polymorphism include register shuf-

fling, equivalent instruction substitution, instruction

reordering, garbage insertions, and encryption. Dif-

ferent keys can be used in encryption for different

instances of the attack to ensure that the byte se-

quence is different every time.

3. Polymorphic Decryptor: this section contains the

part of the code that decrypts the shellcode. It

decrypts the encrypted attack body and transfers

control to it. Polymorphism of the decryptor can

be achieved using various code obfuscation tech-

niques.

Detection of Polymorphic Attacks All attack in-

stances contain exploit code and/or input data that are

typically not used in normal activities. For example, an

attack instance, especially its decryptor and encrypted

shellcode, may contain characters that have very low

probability of appearing in a normal packet. Thus, an

anomaly-based IDS can detect the polymorphic attack

instances by recognizing their deviation from the normal

profile. For example, Wang et al. [35, 36] showed

that the byte frequency distribution of an (polymorphic)

attack is quite different from that of normal traffic, and

can thus be used by the anomaly-based IDS PAYL to

detect simple polymorphic attacks. However, detection

of a sophisticated polymorphic attack is much more

challenging.

3.2 Blending Attacks

Clearly, if a polymorphic attack can “blend in” with

(or “look” like) normal, it can evade detection by an

anomaly-based IDS. Normal traffic contains a lot of

syntactic and semantic information, but only a very small

amount of such information can be used by a high speed

network-based anomaly IDS. This is due to fundamental

difficulties in modeling complex systems and perfor-

mance overhead concerns in real-time monitoring. The

network traffic profile used by high speed anomaly IDS,

e.g., PAYL, typically includes simple statistics such as

maximum or average size and rate of packets, frequency

distribution of bytes in packets, and range of tokens at

different offsets.

Given the incompleteness and the imprecision of the

normal profiles based on simple traffic statistics, it is

quite feasible to launch what we call polymorphic blend-

ing attacks. The main idea is that, when generating a

polymorphic attack instance, care can be taken so that

its payload characteristics, as measured by the anomaly

IDS, will match the normal profile. For example, in order

to evade detection by PAYL [35, 36], the polymorphic
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attack instance can carefully choose the characters used

in encryption and pad the attack payload with a chosen

set of characters, so that the resulting byte frequency of

the attack instance closely matches the normal profiles

and thus will be considered normal by PAYL.

3.2.1 A Realistic Attack Scenario

Before presenting the general strategies and techniques

used in polymorphic blending attacks, we present an

attack scenario and argue that such attacks are realistic.

Figure 1 shows the attack scenario that is the basis of

our case study. There are a few assumptions behind this

scenario:

• The adversary has already compromised a host X
inside a network A which communicates with the

target host Y inside network B. Network A and

host X may lack sufficient security so that the

attack can penetrate without getting detected, or the

adversary may collude with an insider.

• The adversary has knowledge of the IDS (IDSB)

that monitors the victim host network. This might

be possible using a variety of approaches, e.g.,

social engineering (e.g., company sales or purchase

data), fingerprinting, or trial-and-error. We argue

that one cannot assume that the IDS deployment is

a secret, and security by obscurity is a very weak

position. We assume IDSB is a payload statistics

based system (e.g., PAYL). Since the adversary

knows the learning algorithm being used by IDSB ,

given some packet data from X to Y , the adversary

will be able to generate its own version of the

statistical normal profile used by IDSB .

• A typical anomaly IDS has a threshold setting that

can be adjusted to obtain a desired false positive

rate. We assume that the adversary does not know

the exact value of the threshold used by IDSB ,

but has an estimation of the generally acceptable

false positive and false negative rates. With this

knowledge, the adversary can estimate the error

threshold when crafting a new attack instance to

match the IDS profile.

We now explain the attack scenario. Once the adver-

sary has control of host X , it observes the normal traffic

going from X to Y . The adversary estimates a normal

profile for this traffic using the same modeling technique

that IDSB uses. We call this an artificial profile. With it,

the adversary creates a mutated instance of itself in such

a way that the statistics of the mutated instance match the

artificial profile. When IDSB analyzes these mutated

attack packets, it is unable to discern them from normal

traffic because the artificial profile can be very close to

the actual profile in use by IDSB . Thus, the attack

successfully infiltrates the network B and compromises

host Y .

Figure 1: Attack Scenario of Polymorphic Blending

Attack

3.2.2 Desirable Properties of Polymorphic Blending

Attacks

Clearly, the key for a polymorphic blending attack to

succeed in evading an IDS is to be able to learn an

artificial profile that is very close to the actual nor-

mal profile used by the IDS, and create polymorphic

instances that match the artificial profile. There are

other desirable properties. First, the blending process

(e.g., with encoding and padding) should not result in

an abnormally large attack size. Otherwise, a simple

detection heuristic will be to monitor the network flow

size. Second, although we do not put any constraint on

the resources available to the adversary, the polymorphic

blending process should be economical in terms of time

and space. Otherwise, it will not only slow down the

attack, but also increase the chance of detection by

the local IDS (e.g., IDSA or host-based IDS.) More

formally, given a description of the algorithm that the

IDS uses to learn and match the normal profile and an

attack instance, the time (and space) complexity of the

algorithm used to apply polymorphic blending to the

attack instance should be a small degree polynomial with

respect to the initial attack size. Algorithms that require

exponential time and space may not be practical. Since

the learning time should be small, the blending algorithm

should not require to collect a lot of normal packets to

learn the normal statistics.

3.3 Steps of Polymorphic Blending Attacks

The polymorphic blending attack has three basic steps:

(1) learn the IDS normal profile; (2) encrypt the attack

body; (3) and generate a polymorphic decryptor.

3.3.1 Learning The IDS Normal Profile

The task at hand for the adversary is to observe the

normal traffic going from a host, say X , to another host
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in the target network, say Y , and generate a normal

profile close to the one used by the IDS at the target

network, say IDSB , using the same algorithm used by

the IDS.

A simple method to get the normal data is by sniffing

the network traffic going from network A to host Y .

This can be easily accomplished in a bus network. In a

switched environment, it may be harder to obtain such

data. Since the adversary knows the type of service

running at the target host, he can simply generate normal

request packets and learn the artificial profile using these

packets.

In theory, even if the adversary learns a profile from

just a single normal packet, and then mutates an attack

instance so that it matches the statistics of the normal

packet perfectly, the resulting polymorphic blended at-

tack packet should not be flagged as an anomaly by

IDSB , provided the normal packet does not result in

a false positive in the first place. On the other hand,

it is beneficial to generate an artificial profile that is as

close to the normal profile used by IDSB as possible, so

that if a polymorphic blended attack packet matches the

artificial profile closely it has a high chance of evading

IDSB . In general, if more normal packets are captured

and used by the adversary, she will be able to learn an

artificial normal profile that is closer to the normal profile

used by IDSB .

3.3.2 Attack Body Encryption

After learning the normal profile, the adversary creates a

new attack instance and encrypts (and blends) it to match

the normal profile. A straightforward byte substitution

scheme followed by padding can be used for encryption.

The main idea here is that every character in the attack

body can be substituted by a character(s) observed from

the normal traffic using a substitution table. The en-

crypted attack body can then be padded with some more

garbage normal data so that the polymorphic blended

attack packet can match the normal profile even better.

To keep the padding (and hence the packet size) minimal,

the substituted attack body should already match the

normal profile closely. We can use this design criterion

to produce a suitable substitution table.

To ensure that the substitution algorithm is reversible

(for decrypting and running the attack code), a one-to-

one or one-to-many mapping can be used. A single-

byte substitution is preferred over multi-byte substitution

because multi-byte substitution will inflate the size of the

attack body after substitution. An obvious requirement

of such encryption scheme is that the encrypted attack

body should contain characters from only the normal

traffic. Although this may be hard for a general en-

cryption technique (because the output typically looks

random), it is an easy requirement for a simple byte

substitution scheme. However, finding an optimal substi-

tution table that requires minimal padding is a complex

problem. In Section 4, we show that for certain cases

this is a very hard problem. We can instead use a greedy

method to find an acceptable substitution table. The

main idea is to first sort the statistical features in the

descending order of the frequency for both the attack

body and normal traffic. Then, for each unassigned entry

with the highest frequency in the attack body, we simply

map it to an available (not yet mapped) normal entry with

the highest frequency. This procedure is repeated until

all entries in the attack body are mapped. The feature

mapping can be translated to a character mapping and

a substitution table can be created for encryption and

decryption purposes.

3.3.3 Polymorphic Decryptor

A decryptor first removes all the extra padding from the

encrypted attack body and then uses a reverse substitu-

tion table (or decoding table) to decrypt the attack body

to produce the original attack code (shellcode).

The decryptor is not encrypted but can be mutated

using multiple iterations of shellcode polymorphism pro-

cessing (e.g., mapping an instruction to an equivalent one

randomly chosen from a set of candidates). To reverse

the substitution done during blending, the decryptor

needs to look up a decoding table that contains the

required reverse mappings. The decoding table for one-

to-one mapping can be stored in an array where the i-th
entry of the array represents the normal character used

to substitute attack character i. Such an decoding table

contains only normal characters. Unused entries in the

table can be used for padding. On the other hand, storage

of decoding tables for one-to-many mapping or variable-

length mapping is complicated and typically requires

larger space.

3.4 Attack Design Issues

3.4.1 Incorporating Attack Vector and Polymorphic

Decryptor in Blending

We discussed in Section 3.3.2 that the encryption of the

attack body is guided by the need to make the attack

packet match the normal statistical profile (or more

precisely, the learned artificial profile).

The attack vector, decryptor, and substitution table

are not encrypted. Their addition to the attack packet

payload alters the packet statistics. The new statistics

may deviate significantly from the normal profile. In

such a case, we must find a new substitution table in

order to match the whole attack packet to the normal

profile. First, we take the normal profile and subtract the

frequencies of characters in the attack vector, decryptor,

and existing substitution table. Next, we find a new

substitution table using the adjusted normal profile. If the
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statistics of the new substitution table is not significantly

different from the old substitution table, we use the new

substitution table for encryption. Otherwise we repeat

the above steps.

3.4.2 Packet Length based IDS Profile

If IDSB has different profiles for packets of different

lengths, as in the case of PAYL, the substitution phase

and padding phase need to use the normal profile cor-

responding to the final attack packet size. A target

length greater than the length of the original attack packet

(before polymorphic blending) is chosen at first. The

encryption step is then applied and the packet is padded

to the target length. If the statistics of the resulting

attack packet is not very close to the normal profile, a

different target length is chosen and the above process is

repeated. Another strategy is to divide the attack body

into multiple small packets and perform the polymorphic

blending process for all of them separately.

4 Evaluation and Results

To demonstrate that polymorphic blending attacks are

feasible and practical, we show how an attack can use

polymorphic blending to evade the anomaly IDS PAYL.

In this section, we first describe the polymorphic

blending techniques to evade PAYL. Then we report the

results of the experiments we ran to evaluate the evasion

capabilities of the polymorphic blending attacks.

In our evaluation, we first established a baseline per-

formance by sending polymorphic instances (generated

using the CLET polymorphic engine) of the attack to

PAYL and verified that all of the instances were detected

by the IDS as anomalies. Then, without changing

the configuration of PAYL, we used our polymorphic

blending techniques to generate attack instances to see

how well they can evade the IDS.

4.1 PAYL Anomaly IDS as A Case Study

PAYL has been shown to be effective in detecting poly-

morphic attacks and worms [35, 36]. For this reason

we used PAYL in our case study. We used the 2-gram

version in addition to the 1-gram version to evaluate how

polymorphic blending attack is affected when an IDS

uses a more comprehensive model.

PAYL uses n-gram analysis by recording the fre-

quency distribution of n-grams in the payload of a

packet. A sliding window of width n is used to record

the number of occurrences of all the n-grams present

in the payload. A separate model is generated for each

packet length. These models are clustered together

at the end of the training to reduce the number of

models. Furthermore, the length of a packet is also

monitored for anomalies. Thus a packet with an unseen

or very low frequency length is flagged as an anomaly.

{f(xi), σ(xi)} represents the PAYL model of normal

traffic, where xi is the ith gram, which is a character in

1-gram PAYL, and a tuple in 2-gram PAYL. f(xi) is the

average relative frequency of xi in the normal traffic, and

σ(xi) is the standard deviation of xi in the normal traffic.

The anomaly score as calculated by PAYL is shown in

Equation 1.

score(P ) =
∑

i

(f̊(xi) − f(xi))/(σ(xi) + α) (1)

Here, P is the monitored packet, f̊(xi) is the relative

frequency of the ith gram xi in P , and α is a smoothing

factor used to prevent division by zero. For convenience

we will use the term frequency to denote relative fre-

quency.

We evaluated our polymorphic blending attack with

the first version of PAYL as described in [35]. Wang et

al. [36] proposed some improvements on PAYL in their

recent version. We believe that our attack still works

for this new version of PAYL. The main improvement of

the new version is to use multiple centroids for a given

packet length, so that a low false positive rate can be

achieved using a relatively low anomaly threshold. In

this case, our polymorphic blending attack has to use the

same learning algorithm as the new version of PAYL.

Furthermore, more normal traffic needs to be used to

learn an artificial profile that is close to the actual normal

profile. Thus, the effect is that our attack may take a

little more time. The new version also matches ingress

suspicious traffic with egress suspicious traffic to find

worms. This feature does not have any effect on our

attack because the attack instances blend in with normal.

4.2 Evading 1-gram

To evade 1-gram PAYL, the frequency of each character

in the attack packet should be close to the average fre-

quency recorded during the learning phase. We substitute

the characters in the attack packet with the characters

seen in the normal traffic, and apply sufficient amount of

padding so that the 1-gram frequencies of the resulting

packet match the normal profile very closely. We first

present analytical results on the amount of padding

required to match the substituted attack body with the

normal profile perfectly. Then we present a substitution

algorithm that uses the padding criteria to minimize the

amount of required padding.

In the following sections, we assume that the normal

frequency f(x) has already been adjusted for the attack

vector, the decryptor, and the decoding table (as dis-

cussed in Section 3.4.1, these parts need to be accounted

for when computing the frequencies of characters to find

a suitable substitution).
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4.2.1 Padding

Let ŵ and ẃ be the substituted attack body before and

after padding, respectively. Let n be the number of

distinct characters in the normal traffic. ‖s‖ denotes

the length of a string s, and λi denotes the number of

occurrences of the normal character xi in the padding

section of the blending packet. Then,

‖ẃ‖ = ‖ŵ‖ +

n∑

i=1

λi (2)

Suppose the relative frequency of character xi in the

normal traffic and the substituted attack body is f(xi)

and f̂(xi), respectively. Since the final desired frequency

of xi is f(xi), the number of occurrences of xi in the

blending packet should be ‖ẃ‖f(xi). Thus, λi can be

defined using the following equation:

λi = ‖ẃ‖f(xi) − ‖ŵ‖f̂(xi), 1 ≤ i ≤ n (3)

Equation 3 can be re-written as,

‖ẃ‖ =
λi + ‖ŵ‖f̂(xi)

f(xi)
, 1 ≤ i ≤ n (4)

Since f(x) and f̂(x) are relative frequency distributions,∑
i f(xi) =

∑
i f̂(xi) = 1. Unless they are identical,

there exists some character xi for which f̂(xi) > f(xi).
The character xi is perhaps “overused” in the substituted

attack body. It is trivial to see that we need to pad all

the characters except the one that is most overused. Let

xk be the character that has highest overuse and δ be the

degree of overuse. That is,

δ = δk = maxi{δi}, where δi =
f̂(xi)

f(xi)
, 1 ≤ i ≤ n

(5)

Since no padding is required for character xk, λk = 0.

Putting this value in Equation (4) we get:

‖ẃ‖ =
0 + ‖ŵ‖f̂(xk)

f(xk)
= δ‖ŵ‖ (6)

The amount of padding required for each character xi

can be calculated by substituting the value of ‖ẃ‖ in

Equation (3):

λi = ‖ŵ‖(δf(xi) − f̂(xi)) (7)

Thus, using the padding defined by the above equation,

we can match the final attack packet perfectly to the

normal frequency f(x). Furthermore, the amount of

padding required by the above equation is the minimum

amount that is needed to match the normal profile ex-

actly. Please refer to Appendix 6.1 for the proof.

4.2.2 Substitution

The analysis in Section 4.2.1 shows that the amount of

padding can be minimized by minimizing δ, which is

max( f̂(xi)
f(xi)

). This in turn means that the objective of the

substitution process is to minimize the resulting δ. There

are two possible cases for substitution. The first is when

the number of distinct characters present in the attack

body (m) is less than or equal to the number of distinct

characters present in the normal traffic (n), i.e. m ≤ n.

In this case we can perform single-byte encoding, either

one-to-one or one-to-many. If m > n, we need to use

multi-byte encoding.

Case: m ≤ n We suggest a greedy algorithm to

generate a one-to-many mapping from the attack charac-

ters to the normal characters that provides an acceptable

solution and is computationally efficient. Our algorithm

tries to minimize the ratio δ locally for each substitution

assignment.

Let xi represents a normal character and yj represent

an attack character. Let f(xi) be the frequency of

character xi in normal traffic and g(yj) be the frequency

of character yj in the attack body. Let S(yj) be the

set of normal characters to which yj is mapped. Let

t̂f(yj) = Σxi∈S(yj)f(xi). The probability that yj is

substituted by xi, xi ∈ S(yj), during substitution is
f(xi)

t̂f(yj)
. Thus, the number of occurrences of xi in the

substituted attack body is
f(xi)×g(yj)

t̂f(yj)
. We then have δi =

(f(xi)×g(yj)/t̂f(yj))
f(xi)

=
g(yj)

t̂f(yj)
. Our greedy algorithm

tries to minimize this ratio δi locally. The substitution

algorithm is as follows.

Sort the normal character frequency f(x) and the

attack character frequency g(y) in descending order. For

the first m characters, map yi to xi and set S(yi) = {xi}

and t̂f(yi) = f(xi), ∀1 ≤ i ≤ m. For the (m + 1)th
normal character, xm+1, find an attack character (yj)

with maximum ratio of
g(yj)

t̂f(yj)
. Assign xm+1 to yj and

set S(yj) = {xm+1} ∪ S(yj) and t̂f(yj) = t̂f(yj) +
f(xm+1). This is performed for each of the remaining

characters until we reach the end of the frequency list

f(x). While substituting alphabet yj in the attack

body, we choose a character xi from the set S(yj) with

probability
f(xi)

t̂f(yj)
.

Consider an example where f(a, b, c) =
{0.3, 0.4, 0.3}, attack body w = qpqppqpq, and

g(p, q) = {0.5, 0.5}. According to the above algorithm,

initially, b and a are assigned to p and q respectively. At

this point, ratio
g(p)
ˆtf(p)

= 1.25 and
g(q)
ˆtf(q)

= 1.66. So we

assign c to q. Thus, p will be substituted by b and q will

be substituted by a with probability 0.5 and by c with

probability 0.5. Thus, the attack after substitution can be
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ŵ = cbabbcba.

In our experiments, we used a simple one-to-one map-

ping where characters with the highest frequencies in the

attack packet are mapped to characters with the highest

frequencies in normal traffic. This simple mapping is

shown to be sufficient for the blending purpose.

Case: m > n We suggest a heuristic based on

Huffman encoding scheme to obtain a small attack size

after encoding. Given the frequency distribution of the

characters in the attack body being encoded, Huffman

encoding provides a minimum length packet after encod-

ing. The weights of the nodes in Huffman tree is the

sum of the relative frequencies of all its descendant leaf

nodes. The weight of a leaf node is the frequency of a

given character in the attack body. Every edge in the tree

is assigned to a character from the normal profile. In

the original Huffman coding the edges of the Huffman

tree are labeled randomly. Random labeling of the edges

may give us a very large value of δ. We developed a

heuristic to assign labels to edges of Huffman tree to find

a mapping that gives us a very small δ. Before stating the

heuristic, we present the problem of optimally assigning

the labels to the edges in Huffman tree:

Given a Huffman tree, assign labels l(v) ∈ N to the

vertices v in the tree, such that after substitution, δ =

max( f̂(x)
f(x) ), ∀x ∈ N , is minimum. The constraint on

the label l(v) is that if parent(v1) = parent(v2), then

l(v1) 6= l(v2).

We propose a greedy algorithm to find an approximate

solution for the above problem. First sort the vertices

in descending order of their weight and initialize the

capacity of each character cap(xi) = f(xi), ∀xi ∈ N .

Then starting from the leftmost unlabeled vertex vj , find

a character xi with the maximum cap(xi) and that is not

assigned to any of the direct siblings of vj . Assign xi

to vj and reduce the capacity of xi by the weight of

the vertex. Repeat until all the vertices are assigned.

The labels generated by the above algorithm are used

for the substitution process. An example is explained in

Figure 2.

4.3 Evading 2-gram

The 1-gram PAYL model assumes that the bytes oc-

curring in the stream are independent. It does not try

to capture any information of byte sequencing of the

normal traffic. The 2-gram model on the other hand can

capture some byte sequencing information. It records

the frequencies of all the 2-grams present in the normal

traffic. It is easy to see that by matching 2-grams we are

inherently performing 1-gram matching as well.

For 2-gram, the polymorphic blending process needs

to match the frequencies of not only all the characters

but also all the tuples. Similar to 1-gram substitution,

b

p q

1

r s

0.4 0.6

ab

0.15 0.25 0.25 0.35

baa

Figure 2: 1-gram multibyte encoding. The

frequency of the normal character is f(a, b) =
{0.5, 0.5}. Sorted weights of the nodes are

{0.6, 0.4, 0.35, 0.25, 0.25, 0.15}. Using the proposed

algorithm we get S : {p, q, r, s} 7→ {ba, bb, aa, ab}

d

a

b

c

Figure 3: 2-gram multibyte encoding. e0 = da, e1 = bc.

w = 01101010. ŵ = bdabcbcbdabcbdabcbda

one can either use single-byte encoding or multi-byte

encoding for substitution. For single-byte encoding, the

goal is to find a one-to-one or one-to-many mapping that

ensures that all the tuples in the substituted attack body

are also present in normal profile. In Appendix 6.2,

we show that this is NP-complete for the general case

by reducing the well known sub-graph isomorphism

problem [4] to the mapping problem. Unlike single-byte

encoding, it is possible for an attacker to find a multi-

byte encoding scheme that produces only valid 2-grams.

Here, we present a viable multi-byte encoding scheme.

4.3.1 Multi-byte Encoding

A 2-gram normal profile can be viewed as a Moore

machine (FSM) which has a state for each character in

N . Every state is a start state and end state. A transition

from state v1 to state v2 exists if and only if 2-gram

v1v2 exists in normal profile. This FSM represents the

language accepted by the IDS with given 2-gram profile.

Strings generated by the FSM contain only normal 2-

grams. Characters in an attack body can be mapped

to paths in this FSM. For example, suppose the state

machine has two cycles reachable from each other. e1

and e2 be two edges such that e1 is present only in the

first cycle and e2 is present only in the second cycle.

Given a bit representation of the attack body, we can

encode 0 using e0 and 1 using e1. We can generate any

bit string represented using these two tuples interleaved
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by other non-informative characters present in the cycles

and in the paths between two cycles. Figure 3 shows an

example of such an encoding scheme. Such an encoded

attack string will have a very large size. We use it to

show the existence of an encoding scheme that is able

to match the normal 2-grams. We can generate a more

efficient encoding scheme by using the entropy measure

of transitions at each state. The complete details of such

an encoding scheme are not addressed in this paper. The

authors suggest readers to refer to coding theory for more

on entropy based encoding.

4.3.2 Approximate Single-Byte Encoding

As discussed above, the problem of finding a single-byte

substitution is hard for 2-gram. On the other hand, multi-

byte encoding may increase the size of the attack pack-

ets considerably. We can use a simple approximation

algorithm to find a good one-to-one substitution. The

algorithm performs single byte substitution in such a way

that tuples with high frequencies in the attack packet are

greedily matched with tuples with high frequencies in

normal traffic.

The details of the algorithm are as follows. First,

sort the normal tuple frequencies f(xi,j) and the attack

tuple frequencies g(yi,j) in descending order. Initially,

all tuples in the list f(xi,j) are marked unused and the

substitution table is cleared. The frequency list g(y)
is traversed from the top. For every tuple yi,j in the

sorted attack tuple list, the list f(x) is traversed from

the beginning to find an unmarked tuple xi′,j′ so that

substituting yi with xi′ and yj with xj′ does not violate

any mappings that were already made. The tuple xi′,j′

is marked and the substitution table is updated. The

above algorithm is fast and provides consistent reversible

matching. The algorithm does not guarantee to provide

the best substitution, i.e., the closest distance to the target

frequency distribution.

4.3.3 Padding

We introduce an efficient padding algorithm that does not

provide minimal padding but tries to match the target

distribution in a greedy manner. Let df (xi,j) be the

difference between the frequency of tuple xi,j in the

normal profile and the substituted attack body. Find a

tuple xk,l from the list of normal tuples that starts with

the last padded character (xk) and that has the highest

df (xk,m), ∀1 ≤ m ≤ 256. The second character of the

tuple, xl, is padded to the end of the packet and df (xk,l)
is reduced. This step is repeated until the blending attack

size reaches a desired length.

4.4 Complexity of Blending Attacks

We now summarize the methods provided above and

analyze the hardness of a polymorphic blending attack

while keeping the design goals (Section 3.2.2) in mind.

For 1-gram blending, although finding a substitution that

minimizes the padding seems to be a hard-problem and

may take exponential time, we have proposed greedy

algorithms that find a good substitution that require

small amount of padding to perfectly match the normal

byte frequency. For 2-gram blending, finding a single-

byte substitution that ensures only normal tuples after

substitution is shown to be NP-hard (see the proof in

Appendix 6.2). An approximation algorithm can be used

to efficiently compute a substitution that may introduce

a few invalid tuples. A multibyte encoding scheme can

achieve a very good match with no invalid tuples at the

expense of very large attack sizes. An attacker has to

therefore consider several trade-offs between the degree

of matching, attack size, and time complexity to mount

successful blending attacks.

4.5 Experiment Setup

4.5.1 Attack Vector

We chose an attack that targets a vulnerability in Win-

dows Media Services (MS03-022). The attack vector

we selected exploits a problem with the logging ISAPI

extension that handles incoming client requests. It is

based on the implementation by firew0rker [8]. The

size of the attack vector is 99 bytes and is required to

be present at the start of the HTTP request. The attack

needs to send approximately 10KB of data to cause the

buffer overflow and compromise the system. Our attack

body opens a TCP client socket to an IP address and

sends system registry files. The size of the unencrypted

attack body is 558 bytes and contains 109 different

characters. During the blending process, we divided our

attack into several packets. If our final blending attack

after padding does not add up to 10KB, we just send

some normal packets as a part of the attack to cause the

buffer overflow. The decryptor was divided into multiple

sections and distributed among different packets. The

attack body was divided among all the attack packets.
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4.5.2 Dataset

Data Type Feature
Packet length

418 730 1460

IDS Training

Num. of Pkts 16,490 540 1,781

One Grams 106 90 128

Two Grams 4,325 3,791 3,903

Attack Training

Num. of Pkts 2,168 82 249

One Grams 89 86 86

Two Grams 2,847 2,012 2,196

Table 1: HTTP Traffic dataset

We collected around 15 days of HTTP traffic coming

to our department’s network in November 2004. We used

several IDSs, including Snort, to verify that this data

contains no known attack. We removed all the packets

with no TCP payload. We used the data of the first

14 days (4,356,565 packets, 1.9GB) for IDS training to

obtain the IDS normal profiles. A separate profile was

created for each TCP payload length (or simply packet

length). The full payload section of each packet was used

to compute the profiles. The last day of the HTTP traffic

was made available to the attacker to learn the artificial

profile. We also used cross-validation, i.e., randomly

picking one of the 15 days for attack training and the rest

for IDS training, to verify the results of our experiments.

The packet length distributions in the IDS training

dataset and the attack training dataset are shown in

Figure 4. Among this packet lengths, we chose three dif-

ferent lengths to implement the blending attack, namely

418, 730 and 1460. These packets lengths are large

enough to accommodate the attack data into a small num-

ber of packets. These lengths also occurred frequently

in the training dataset. A separate artificial profile was

created for each packet length using the attack training

data of the same packet length. Thus, we generated three

1-gram models and three 2-gram models for different

packet lengths. Table 1 shows the details of the datasets

used for the evaluation. The numbers of unique 1-grams

and 2-grams in the data are also shown in the table.

4.6 Evaluation

Training time of 1-gram and 2-gram PAYL: We per-

formed experiments on the training time required to learn

the profiles used by PAYL. Figure 5 shows the numbers

of unique 1-grams and 2-grams observed in HTTP traffic

stream. Since the numbers of observed 1-gram and 2-

gram continue to increase as new packets arrive in the

stream, the training of profiles for 1-gram and 2-gram

takes a long time to converge. We trained our IDS model

using all of the available IDS training data.

Traditional polymorphic attacks: To the best of our

knowledge, CLET [5] is the only publicly available

tool that implements evasion techniques against byte

frequency-based anomaly IDS. For this reason we used

CLET as our baseline. As mentioned in Section 2,

given an attack CLET adds padding bytes in the payload

to make the byte frequency distribution of the attack

close to the normal traffic. However, CLET does not

apply any byte substitution technique (see Section 4.2.2).

Further, CLET does not address the evasion of 2-gram

PAYL explicitly. We also generated polymorphic attacks

using other well known tools (e.g., ADMutate [17]), and

verified that they are less effective than CLET in evading

PAYL.

We generated multiple polymorphic instances of our

attack body using CLET and tested them against PAYL.

Each attack instance contained one or more attack pack-

ets of given length. Different amount of bytes were

crammed (padded) to obtain the desired attack size.

Attack training data was used to generate spectral files

used for cramming by the CLET engine. A polymorphic

attack instance will evade an IDS model if and only if all

the attack packets corresponding to the attack instance

are able to evade the IDS. Thus, the anomaly score of

an attack instance was calculated as the highest of all

the anomaly scores (Equation 1) obtained by the attack

packets corresponding to the attack instance. Table 2

shows the anomaly threshold setting of different PAYL

models that result in the detection of all the attack

instances. The anomaly thresholds were calculated as

the minimum anomaly score over all the attack instances.

Using the given thresholds, both 1-gram and 2-gram

PAYLwere successful in detecting all the instances of the

attack. Having established this “baseline” performance,

we would like to show that our blending attacks can

evade PAYL even if a lower threshold is used.

Packet Length 1-gram 2-gram

418 872 1,399

730 652 1,313

1460 355 977

Table 2: IDS anomaly threshold setting that detects all

the polymorphic attacks sent by the CLET engine
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Figure 6: Anomaly score of Artificial Profile

Packet Length 1-gram 2-gram

418 8 20

730 8 18

1460 14 40

Table 3: Number of packets required for the convergence

of attacker’s training

4.6.1 Artificial Profile

We used a simple convergence technique, similar to

PAYL, to stop the training of the artificial profile. At

every certain interval (convergence check interval) we

check if the Manhattan 1 distance between the artificial

profiles at the last interval and the current interval is

smaller than a certain threshold (convergence threshold).

It stops training if the distance is smaller than the

threshold. We set the convergence threshold (= 0.05)

to be the same as the original implementation of PAYL.

The artificial profile does not have to become very stable

or match the normal profile perfectly because some

deviation from the normal profile can be tolerated. To

reduce the training time we set the convergence check

interval to 2 packets. Thus, if we see two consecutive

packets of a given length that are close to the learned

profile, we stop training. Table 3 shows the number

of packets required to converge the artificial profile of

different packet lengths. As expected, the artificial

profile converges very fast. The 1-gram profile converges

faster than the 2-gram profile for the same packet length.

We show that a small number of packets are enough

to create an effective polymorphic blending attack. In

practice, the attacker can use more learning data to create

a better profile.

Figure 6 shows the anomaly score of the artificial

normal profile, as calculated by the IDS normal profile,

versus the number of attack training packets used to learn

the artificial profile. As the number of attack training

packets increases, the anomaly score of artificial normal

profile decreases, which means that the artificial profile

trained using more packets is a better estimation of the

PAYL normal profile. The score needs to be less than

the anomaly threshold of PAYL for the blending attack

packets to have a realistic chance of evading PAYL. For

all attack training sizes shown in Figure 6, the score

is well under the threshold (Table 2) used to configure

PAYL to detect all the traditional (without blending)

polymorphic attack instances.

4.6.2 Blending Attacks for 1-gram and 2-gram

PAYL

For each packet length, we generated both the 1-gram

and 2-gram PAYL normal profiles using the entire IDS

training dataset (i.e., the first 14 days of HTTP traffic).

For each packet length, the 1-gram and 2-gram artificial

normal models were learned using a fraction of the attack

training dataset. The learning stops at the point the

models converge, as shown in Table 3.

We used the one-to-one single-byte substitution tech-

nique discussed in Section 4.2.2 for constructing the

blending attack against 1-gram PAYL, and the single

byte encoding scheme discussed in Section 4.3.2 for

the blending attack against 2-gram PAYL. Two sets of

blending experiments were performed. In the first set of

experiments, the substituted attack body was divided into

multiple packets and each packet was padded separately

to match the normal profile. A single decoding table

is required to decode the whole attack flow. In the

second set of experiments, the attack body was first

divided into a given number of packets. Each of the

attack body sections were substituted using one-to-one

single byte substitution and then padded to match the

normal frequency. Individually substituting the attack

body for each packet allowed us to match the statistical

profile of the substituted attack body closer to the normal

profile. But it requires a separate decoding table for each

packet, thus reducing the padding space considerably.

For convenience, we call the first set of experiments
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Figure 7: Comparison of frequency distribution of normal profile and attack packet
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Figure 8: Anomaly score of the blending attack packets (with local substitution) for artificial profile and IDS profile

global substitution, and the second local substitution. If

m > n for any of the above experiments, we simply

substituted the low frequency attack characters using

non-existing characters in the normal. This increased

the error in blending attack but reduced the complexity

of the blending attack algorithm. Figure 7 shows the

comparison of the frequency distribution of different

characters present in the HTTP traffic. The byte fre-

quency distribution of the original attack instance is very

different from the normal profile because the normal

data has mainly printable ASCII characters whereas the

attack payload has many characters that are unprintable.

Thus, this was easily detected by both 1-gram and 2-

gram IDS models. The attack was substituted and padded

to obtain a single packet of length 1460. As shown in

Figure 7(b), the frequency distribution of attack payload

after substitution and padding becomes almost identical

to the PAYL normal profile. This demonstrates the

effectiveness of our polymorphic blending techniques.

We studied how dividing an attack instance into several

packets and blending them separately help match the

attack packets with the artificial profile and evade PAYL.

The experiments were performed with the number of

attack packets ranging from 1 to 12. We checked the

anomaly score of each attack packet as calculated by

both the artificial profile and the IDS profile. Similar

to the anomaly score of attack instances generated by

CLET, the anomaly score of a blending attack instance

was calculated as the highest of all the scores obtained by

the attack packets corresponding to the blending attack

instance. Figure 8 and Figure 9 show the anomaly scores

of blending attacks with local substitution and global

substitution, respectively. For each attack flow, we show

the score of the packet with the highest score. It is

evident that if the attack is divided into more packets,

it matches the profile more closely. The reason is that

if the attack body is divided into multiple fragments,

for each packet there is more padding space available

to match the profile. Also, local substitution works

better than global substitution scheme for all cases except

for 2-gram blending for packet length 418. Since our

substitution table contains only normal 1-grams but may

contain foreign 2-grams, a large substitution table may

produce a large error for the 2-gram model. Considering
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Figure 9: Anomaly score of the blending attack packets (with global substitution) for artificial profile and IDS profile

that small packets have small padding space to reduce

the error caused by the substitution table, having an

individual substitution table in each packet can cause

large error.

Although the score of the blending attack as calculated

by the IDS model is greater than the score calculated by

the artificial normal profile, it is still much lower than

the anomaly threshold set for the detection of traditional

polymorphic attacks.

Thus, our experiment clearly shows that unlike tradi-

tional polymorphic attacks, our blending attack is very

effective in evading 1-gram and 2-gram PAYL for all the

packet lengths and number of attack packets.

4.6.3 IDS False Positive Rate And Its Impact on

Blending Attacks

We also studied the effect of false positive rates on the

detection of blending attacks. Anomaly threshold for a

given false positive rate (fp) is set such that only fp
fraction of normal data has anomaly score higher than the

anomaly threshold. The anomaly thresholds for different

false positive rates are shown in Table 4. The number

of attack packets required to evade the IDS successfully

for a given threshold is shown in the parenthesis. As

we increase the false positive rate, we need to divide

the attack into more packets to keep the score below the

anomaly threshold. Thus, keeping a high false positive

rate may increase the size of the blending attack. From

the table we can infer that even if the IDS keeps its false

positive rate high to detect more attacks, blending attack

can still easily evade it using an attack size as small as

3,650, i.e. five packets of length 730.

Since 2-gram PAYL records some sequence informa-

tion along with byte frequencies, it seems to be a good

representation of normal traffic. In our experiments we

found that 2-gram PAYL consistently produces higher

anomaly score than 1-gram PAYL for all attack packet

lengths. But at the same time, the 2-gram IDS needs

to set very high anomaly thresholds to avoid high false

positive rates. Thus, in practice, the 2-gram PAYL is

actually only marginally more effective than the 1-gram

version in detecting attacks.

Blending attacks can be successfully launched on both

1-gram and 2-gram models. Larger packet lengths are

more suitable for blending attacks. With few exceptions,

the local substitution scheme works better than the global

substitution scheme. The 2-gram model provides only

marginal advantage over the 1-gram model in detecting

blending attacks but requires huge space to store the

model. Thus, the 2-gram model may not be a better

choice over the 1-gram model.

4.7 Countermeasures

The experimental results reported above show that the

statistical models used by PAYL are not sufficiently ac-

curate to detect deliberate evasion attempts. We believe

this problem is common to other network anomaly IDS

that use traffic statistics [15, 18]. By following the ideas

presented in this paper, it may be fairly easy to devise

different blending algorithms in order to evade other

network anomaly IDSs that rely solely on some form of

packet statistics. The reason is that traffic statistics used

by such network-based anomaly IDS do not provide a

comprehensive representation of normal traffic. Appli-

cation syntax and semantics related information cannot

be modeled accurately using simple statistics of network

packets. On the other hand, some of the IDS introduced

in Section 2, e.g., [1, 2, 30], use syntax and semantics

related information and could be used to detect the

polymorphic blending attack. Nevertheless, modeling

application syntax and semantic information is in general

more expensive than measuring simple traffic statistics.

Thus the trade-off between detection accuracy, hardness

of evasion and operational speed has to be considered.

A key direction to explore is to develop a more efficient

semantic-based IDS that can be deployed on high-speed
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False Positive 418 730 1460

1-gram 2-gram 1-gram 2-gram 1-gram 2-gram

0.1 61.07 (17,-) 373.4 (-,12) 63.70 (5,7) 467.6 (5,5) 74.50 (3,3) 447.7 (2,2)

0.01 78.61 (12,15) 456.9 (22,8) 143.6 (2,3) 625.5 (3,3) 81.98 (3,3) 531.0 (2,2)

0.001 125.5 (5,7) 561.8 (7,6) 164.6 (2,3) 670.5 (3,3) 239.2 (1,1) 931.9 (1,1)

0.0001 166.8 (5,5) 582.6 (7,5) 244.5 (2,2) 805.0 (2,2) 243.4 (1,1) 935.0 (1,1)

Table 4: Anomaly thresholds for different false positive rates in IDS models. Bracketed entries are the the numbers of

packets required to evade the IDS using the local and global substitution scheme, respectively.

networks.

Another defense approach is to use multiple IDS mod-

els that use independent features. Such a collective set

of models may be a better representation of the normal

traffic. In such a case, a polymorphic blending attack will

need to evade all (or the majority) of the models.

One reason blending attacks work is that the attacker

has the complete knowledge of the IDS model being

used. This gives the attacker an enormous advantage. A

possible countermeasure is to introduce randomness [27]

in the IDS model. Consider a model constructed by

measuring the occurrence frequency of pairs of non-

consecutive bytes that are separated by ν number of

bytes. For example, given a payload containing the

sequence of byte values {b1, b2, · · · , bl}, the IDS could

measure the occurrence frequency of the pair of byte

values (bi, bi+ν+1), ∀i = 0, · · · , (l − ν − 1), where l
is the payload length. We call this a 2ν-gram model. For

ν = 0, the 2ν-gram model is the same as the 2-gram

PAYL model. If the IDS chooses ν at random during

the training phase, this makes the blending attack more

difficult given that the attacker needs to guess the value

of ν before applying the blending algorithm (note that ν
is chosen at random before the model is created and is

fixed for each packet. Therefore, the 2ν-gram model is

as complex as the 2-gram model used by PAYL). Fur-

thermore, the IDS could construct m different models,

each of them having a different randomly chosen νk,

with k = 1, · · · , m, and combine their output in order

to obtain a more accurate decision about the packets. In

this case the attacker needs to guess m values for the

parameter ν and needs to devise a blending algorithm

that “satisfies” all the m different models at the same

time. This means that even if the attacker knows exactly

how the IDS performs the training and test phases, it is

much more difficult to evade it.

Preliminary experimental results show that if ν is

small with respect to the payload size, the 2ν-gram

model is able to capture a sufficient amount of structural

information that allows to construct an accurate IDS

model. Further, the combination of different 2ν-gram

models appears to be a promising technique. However,

the complexity of the detection system grows linearly

with m. A thorough analysis of this modeling technique

is beyond the scope of this paper and will be the subject

of our future work.

While countermeasures may make evasion harder to

succeed, they typically require more resources and can

be more complex in design and implementation. It

may also produce higher error rates if the IDS uses too

many features such that its models “overfit” the data. In

short, trade-offs between “hardness of evasion” and other

performance measures need to be carefully considered.

5 Conclusion

In this paper, we presented a new class of attacks called

polymorphic blending attacks. Existing polymorphic

techniques can be used for evading signature-based IDS

because the attack instances do not share a consistent

signature. But anomaly IDS can detect these attack

instances because the polymorphism techniques fail to

mask their statistical anomalies. Our proposed attack

overcomes this very shortcoming. The idea is to first

learn the normal profiles used by the IDS, and then, while

creating a polymorphic instance of an attack, make sure

that its statistics match the normal profiles.

We described the basic steps and general techniques

that can be used to devise polymorphic blending attacks.

We presented a case study using the anomaly IDS PAYL

to demonstrate that these attacks are practical and feasi-

ble. Our experiments showed that polymorphic blending

attacks can evade PAYL while traditional polymorphic

attacks cannot. We also showed that an attacker does not

need a large number of packets to learn the normal profile

and blend in successfully. The results with 2-gram PAYL

suggested that simply using more complex features or

models do not always provide a good defense against

these polymorphic blending attacks. We discussed some

possible defenses against polymorphic blending attacks.
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6 APPENDIX

6.1 Proof of Optimal Padding for 1-gram

Blending Attack

We prove that the padding calculated using Equation (7)

is minimum for matching the 1-gram profile exactly.

Theorem 6.1 λi ≥ 0, ∀1 ≤ i ≤ n

Proof We prove the theorem by contradiction. Assume

that for some j, λj < 0. Then from Equation (7),

‖ŵ‖(δf(xj) − f̂(xj)) < 0. Thus, δ <
f̂(xj)
f(xj)

. This

contradicts Equation (5), therefore, all λi ≥ 0.

The frequency of a character xi in the packet after

padding is f́(xi) = ‖ŵ‖f̂(xi)+λi

‖ẃ‖ . Using Equation (7)

and Equation (4), f́(xi) = f(xi). Thus, the final attack

packet after padding has the exact target distribution,

f(xi).

Theorem 6.2 The padding calculated using Equa-

tion (7) is the minimum required padding to match

frequencies exactly.

Proof Suppose we perform padding using Equation (7).

Suppose there exists another packet (say p, ‖p‖ <
‖ŵ‖) with smaller padding and matches the frequencies

exactly. Since λk = 0, the number of occurrences of xk

in p cannot decrease. Thus, frequency of xk in packet

p is fp(xk) = ‖ŵ‖f̂(xk)
‖p‖ = ‖ẃ‖f(xk)

‖p‖ > f(xk). Thus,

packet p does not match the normal frequencies exactly.

Thus, we have reached a contradiction.

6.2 Proof of Hardness of 2-gram Single-

Byte Encoding

First, we look at the problem of evading a simple IDS

that stores all the 2-grams present in the normal stream.

While monitoring, it checks if all the 2-grams present in

the traffic are also present in the normal 2-gram list. In

the event that the IDS finds a 2-gram that was not present

in normal traffic, IDS raises an alarm. Blending the

attack packet with the normal traffic requires the attacker

to transform the packet such that all the 2-grams in the

packet after substitution are also present in the normal

2-gram list. Matching the frequencies of the tuples is at

least as hard as the above simplified problem.

Suppose we have a normal traffic profile (N, TN) and

an attack packet description (M, TM ), where N and M
is the set of normal and attack characters, respectively.

TN and TM is the set of different 2-grams present in

normal traffic and the attack, respectively. Also, the

attacker is allowed to do only one-to-one substitution

from M to N . Then, blending of the packet translates to

finding a substitution S such that all the tuples in S(w)

are also present the normal profile. That is if a1a2 ∈ TM ,

then S(a1a2) ∈ TN .

Theorem 6.3 The problem of finding a one-to-one sub-

stitution S to match 2-grams is NP-complete.

Proof To prove that the problem is in NP-complete,

we need to show that the problem is polynomial time

verifiable and NP-hard.

Given a solution substitution S for the 2-gram match-

ing problem, we can calculate S(w) in O(‖w‖) steps.

For each 2-gram present in S(w), checking if it is present

in TN can be done in O(‖w‖.TM ) steps. Thus, this

problem is poly-verifiable and consequently in NP.

To show that the problem is NP-hard, we reduce the

problem of sub-graph isomorphism to substitution prob-

lem. A sub-graph isomorphism problem is that given two

graphs G(V, E) and G′(V ′, E′), decide whether G′ is

a sub-graph of G. Mathematically, we want to check

if there is a mapping S(V ′ 7→ V ), s.t. ∀(v1, v2) ∈
E′, (S(v1), S(v2)) ∈ E.

Suppose, N = V . For each edge e = (v1, v2) ∈ E,

add two 2-grams (v1v2, v2v1) in the normal profile (TN ).

Suppose M = V ′. For each edge e′ = (v1, v2) ∈ E′, we

add two 2-grams (v1v2, v2v1) in the attack profile (TM ).

If the above 2-gram matching problem has a solution,

then we can find a mapping S(V ′ 7→ V ) such that for

all 2-grams (a1a2) ∈ TM , S(a1a2) ∈ TN . Since the 2-

grams in TM correspond to edges in G′ and the 2-grams

in TN correspond to edges in G, the above statement

suggests that ∀e′ ∈ G′, S(e′) ∈ G. This means that

graph G′ is isomorphic to a sub-graph of G with mapping

given by S.

Also, if there does not exist a solution to the 2-

gram matching problem, then there does not exists a

substitution St such that G′ is a sub-graph of G after

substitution. Otherwise, St will result in a successful 2-

gram mapping.

Thus, the 2-gram matching problem is at least as hard

as the sub-graph isomorphism problem. It is known that

the sub-graph isomorphism problem is NP-complete.

Also, we have already proved that the 2-gram matching

problem is in NP. Thus, the 2-gram matching problem is

NP-complete.

Even if an IDS allows constant number of mismatches,

it can be shown that the problem still remains NP-

complete. This is followed by the result that sub-graph

isomorphism with constant number of edge insertion,

deletion, and substitution is also NP-complete. This

means that an attacker cannot get the substitution that

will match the normal profile with a small constant

number of mismatched 2-grams. Also, the one-to-one

substitution problem can be easily reduced to one-to-

many substitution. Thus, solving one-to-many substitu-

tion is also hard.
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