
The Program Counter Security
Model: Automatic Detection and
Removal of Control-Flow Side

Channel Attacks

David Molnar, Matt Piotrowski,
David Schultz, and David Wagner

UC-Berkeley and MIT

Regular Cryptographic Attacks
Key k

Input x

f
Output
f(k,x)

Idealized “box”
computing
cryptographic
function f

Side Channel Attacks
Key k

Input x

P
Output
f(k,x)

Real-world
program P
implementing
function f

Side Channel Attacks
Key k

Input x

P
Output
f(k,x)

Real-world
program P
implementing
function f

Side Information S

Side Channel Attacks
Key k

Input x

P
Output
f(k,x)

Real-world
program P
implementing
function f

Side Information S
Control-Flow Side Channel: S depends on control flow of P

What We Do

• Define “control-flow side information”

• Detect potential control-flow attacks

• Transform C code to remove attacks

• Check compiled C code free of attacks

Define Program Counter Model

• Adversary sees transcript of all values of
program counter (PC) in run of P(k,x)

• States “contract” with hardware
– Only PC transcript leaked on run of program
– Could be none of today’s HW meets contract

• Define security with simulation argument
– Program is PC-secure if exists simulator that

can “fake” PC transcripts without secret key k
– Informally, adversary “learns nothing”

Detect potential attacks
• Use gcov to see code coverage for P(k,x)

• Run P with many different keys k, same x

• Different code coverage  potential attack

• Example: PGP implementation of IDEA
p = a * b;
if (p) {

b = low16(p);
a = p >> 16; mean std mean max
return (b – a) + (b < a); 27 0.03 26 27
} else if (a) {

return 1 – a; 7 0.02 7 8
} else {

return 1 – b; 0 0.02 0 1
}

}

Over fixed x, 10,000 different keys k

Transform

• C-to-C source transform

• Transformed code provably PC-secure
– For subset of C including most crypto code

• ~5x slowdown, ~2x stack space

If (n % 2) {
r = r * b;
n = n – 1;

} else {
b = b * b;
n = n/2;

}

m = -(n % 2);
 r = (m & (r * b)) | (~m & r);
 n = (m & (n-1)) | (~m & n);
m = ~m;
 b = (m & (b * b)) | (~m & b);
 n = (m & (n/2)) | (~m & n);

Check

• Will C compiler preserve PC-security?

• We built static checker for x86 assembly

• Check information flow between key, PC

• Caught unsafe compilation of “!” by gcc
– Even with –O0 flag

• Found Intel compiler output PC-secure
assembly even with optimizations

Questions?
dmolnar@eecs.berkeley.edu

www.cs.berkeley.edu/~dmolnar/pcmodel-wip.ppt

Recap:
1) Formal security model for control-flow side channels
2) Automatic detection of potential control-flow attacks
3) C-to-C transform to remove attacks
4) Static x86 assembly checker verifies compiled code
5) Result: remove large class of side channel attacks (not all)

