Revamping Security Patching
with Virtual Patches

Gautam Altekar
University of California, Berkeley

Problem

e Conventional security patching is ineffective
— Users don’t patch their systems in time

* Why don’t people patch?
— Patches are unreliable
— Patches are disruptive

— Patches are irreversible

* We need to rethink the way we create and
apply security patches

A simple observation

* Many existing
security patches
have two parts:

Bind 8.2.2 division by 0 bug

choice = ({u_intirand()>>3) ¥
non_sig_count:

1. a check
2. a fix .

. Many bug Fes Bind 8.2.2 vendor patch
can be written this o sta-coune S
way I

choice = ({u_intlrand()>:3) %
non_sig_count?

What is a “virtual patch”?2
Bind 8.2.2 division by 0 bug

* Programmer choice = ({u_int)rand(}>»3) ¥
inserted code that non_sig_count.;
has two clearly
denoted parts:
P Bind 8.2.2 virtual patch
1. a check and
. BEGIN_CHECK:
2. a fix (hon_sig_count <= 03 {
BEGIN_FI¥:
e Sandbox the check, non. a1 oount = 13
but not the fix , EWDFIE:

EMDI_CHECK:

choice = ({u_int)rand()>>3) ¥
non_sig_count?

Virtual patches are reliable

e Guarantee: the patch will not side-effect your
application until the fix is applied

— Sandbox the check using Software Fault Isolation

(Wahbe et al. ‘93)

— Internally represent each check and fix as a nested C
function

— Much SFI overhead can be optimized out
e Total overhead = ~50 cycles for patches we have tested

Sandboxing example

BEGIN_CHECK:

¥ IF the the input string i= too long,

*ehen truncate it, */

(strlentargu[l]i+1 > (etr)) {
BEGIM_FIkK*

argu[1][(ztr) - 1] = 02
EMD_FI®:

¥
ENDI_CHECK:

Most writes are to the stack
and can be statically optimized
out.

Most jumps are direct and can
be statically verified.

i i

AeCi, ROS: BHTROFF+3
Aeav, hOsi BN TROFF+0

i R

A

REEP. &

o, &

oo, —4(Hebp)
—4{¥ebp), ¥
—20(Eecx), ¥
dideza), X
$4,. &

$1d, &

(Hea)

¥16, &
A
$10, &

Aebp, &
o2

i i

Ao=l E +a, A
Ao=l E +i, A

i R

Virtual patches are non-
disruptive
® Put virtual patch code in dynamic library
e Use ptrace(2) to:

— Dynamically load the virtual patch DLL

— Modify process to invoke virtual patch
code at programmer inserted location

e ==> Virtual patches are reversible

s it practical?

* Problem: progrc:mmer has to explicitly denote
the check and the fix

— Departs from established patching practices

e Question: is it possible to automatically derive
the check and fix@

— Assume you have access to the conventional
security patch

e Conjecture: there exists a virtual patch for
any conventional security patch

Limitations

* Patch programmer may screw up the

check

— False negatives - benign
— False positives - dangerous

® Patch programmer may screw up the
fix

— Program may crash or worse...

