
Revamping Security Patching
with Virtual Patches

Gautam Altekar
University of California, Berkeley



Problem

• Conventional security patching is ineffective
– Users don’t patch their systems in time

• Why don’t people patch?
– Patches are unreliable
– Patches are disruptive
– Patches are irreversible

• We need to rethink the way we create and
apply security patches



A simple observation

• Many existing
security patches
have two parts:

1. a check
2. a fix

• Many bug fixes
can be written this
way

Bind 8.2.2 division by 0 bug

Bind 8.2.2 vendor patch



What is a “virtual patch”?

• Programmer
inserted code that
has two clearly
denoted parts:
1. a check and
2. a fix

• Sandbox the check,
but not the fix

Bind 8.2.2 division by 0 bug

Bind 8.2.2 virtual patch



Virtual patches are reliable

• Guarantee: the patch will not side-effect your
application until the fix is applied
– Sandbox the check using Software Fault Isolation

(Wahbe et al. ‘93)
– Internally represent each check and fix as a nested C

function
– Much SFI overhead can be optimized out

• Total overhead = ~50 cycles for patches we have tested



Sandboxing example

Most writes are to the stack
and can be statically optimized
out.

Most jumps are direct and can
be statically verified.



Virtual patches are non-
disruptive

• Put virtual patch code in dynamic library
• Use ptrace(2) to:

– Dynamically load the virtual patch DLL
– Modify process to invoke virtual patch

code at programmer inserted location
• ==> Virtual patches are reversible



Is it practical?

• Problem: programmer has to explicitly denote
the check and the fix
– Departs from established patching practices

• Question: is it possible to automatically derive
the check and fix?
– Assume you have access to the conventional

security patch
• Conjecture: there exists a virtual patch for

any conventional security patch



 Limitations

• Patch programmer may screw up the
check
– False negatives - benign
– False positives - dangerous

• Patch programmer may screw up the
fix
– Program may crash or worse…


