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Finding User/Kernel Pointer Bugs With Type Inference

Rob Johnson David Wagner
University of California at Berkeley

Abstract | Kernel version  Bugs found
Linux 2.4.20 11
Linux 2.4.23 10

Today's operating systems struggle with vulnerabil-
ities from careless handling of user space pointers.
User/kernel pointer bugs have serious consequences fdable 1: User/kernel bugs found by ©@.. Each of
security: a malicious user could exploit a user/kernelthese bugs represents an exploitable security vulnerabil-
pointer bug to gain elevated privileges, read sensitivdty. Four bugs were common to both 2.4.20 and 2.4.23,
data, or crash the system. We show how to detecfor a total of 17 unique bugs. Eight of the bugs in Linux
user/kernel pointer bugs using type-qualifier inference?2.4.23 were also in Linux 2.5.63.
and we apply this method to the Linux kernel using
CQuUAL, a type-qualifier inference tool. We extend the
basic type-inference capabilities of ©@L to support User/kernel pointer bugs are unfortunately all too com-
context-sensitivity and greater precision when analyz-mon. In an attempt to avoid these bugs, the Linux pro-
ing structures so that C@L requires fewer annota- grammers have created several easy-to-use functions for
tions and generates fewer false positives. With thes@ccessing user pointers. As long as programmers use
enhancements, we were able to useu@Qto find 17  these functions correctly, the kernel is safe. Unfortu-
exploitable user/kernel pointer bugs in the Linux kernel.nately, almost every device driver must use these func-
Several of the bugs we found were missed by carefutions, creating thousands of opportunities for error, and
hand audits, other program analysis tools, or both. as a result, user/kernel pointer bugs are endemic. This
class of bugs is not unique to Linux. Every version of
Unix and Windows must deal with user pointers inside
the OS kernel, so a method for automatically checking
1 Introduction an OS kernel for correct user pointer handling would be
a big step in developing a provably secure and depend-
able operating system.
Security critical programs must handle data from un-
trusted sources, and mishandling of this data can leadlVe introduce type-based analyses to detect and elimi-
to security vulnerabilities. Safe data-management is pamate user/kernel pointer bugs. In particular, we augment
ticularly crucial in operating systems, where a single bugthe C type system with type qualifiers to track the prove-
can expose the entire system to attack. Pointers pass@ance of all pointers, and then we use type inference to
as arguments to system calls are a common type of urautomatically find unsafe uses of user pointers. Type
trusted data in OS kernels and have been the cause qgualifier inference provides a principled and semanti-
many security vulnerabilities. Such user pointers oc-cally sound way of reasoning about user/kernel pointer
cur in many system calls, including, for examptead, bugs.
write, ioctl, andstatfs. These user pointers must
be handled very carefully: since the user program andVe implemented our analyses by extendingu@@[7],
operating system kernel reside in conceptually differ-a program verification tool that performs type qualifier
ent address spaces, the kernel must not directly derefemference. With our tool, we discovered several pre-
ence pointers passed from user space, otherwise securityously unknown user/kernel pointer bugs in the Linux
holes can result. By exploiting a user/kernel bug, a makernel. In our experiments, we discovered 11 user/kernel
licious user could take control of the operating systempointer bugs in Linux kernel 2.4.20 and 10 such bugs in
by overwriting kernel data structures, read sensitive datd&inux 2.4.23. Four bugs were common to 2.4.20 and
out of kernel memory, or simply crash the machine by2.4.23, for a total of 17 different bugs, and eight of these
corrupting kernel data. 17 were still present in the 2.5 development series. We



have confirmed all but two of the bugs with kernel de- 4GB

velopers. All the bugs were exploitable. Ker nel
o 3GB

We needed to make several significant improvements to User

CQUAL in order to reduce the number of false positives

it reports. First, we added a context-sensitive analysis

to CQUAL, which has reduced the number of false pos- Unmapped

itives and the number of annotations required from the

programmer. Second, we improved GA.'s handling

of C structures by allowing fields of different instances 0

of a structure to have different types. Finally, we im-

proved CQUAL’s analysis of casts between pointers and

integers. Without these improvements, GAQ reported Figure 1. The Linux virtual memory layout on 32-bit

far too many false positives. These two improvementsarchitectures.

reduce the number of warnings 20-fold and make the

task of using C@AL on the Linux kernel manageable.

User

e We develop guidelines that programmers can fol-

Our principled approach to finding user/kernel pointer ~ low to further reduce the number of false positives

bugs contrasts with the ad-hoc methods used in  Whenusing program verification tools.

MECA[15], a prior tool that has also been used to find

user/kernel pointer bugs. MECA aims for a very Iow ap extended version of this paper is available from the

false positive rate, possibly at the cost of missing bugsy,;thors’ web pages.

in contrast, CQAL aims to catch all bugs, at the cost of

more false positives. C@L’s semantic analysis pro- \yg pegin by describing user/kernel pointer bugs in Sec-

vides a solid foundation that may, with further researchjon 2. \We then describe type qualifier inference, and

enable the possibility of formal verification of the ab- o refinements to this technique, in Section 3. Our ex-

sence of user/kernel pointer bugs in real OS's. perimental setup and results are presented in Sections 4
. . and 5, respectively. Section 6 discusses our false posi-

All program analysis tools have false positives, but wey;, q analysis and programming guidelines. We consider

show that programmers can substantially reduce th@yher approaches in Section 7. Finally, we summarize

number of false positives in their programs by making o results and give several directions for future work in
a few small stylistic changes to their coding style. By ggction s.

following a few simple rules, programmers can write

code that is efficient and easy to read, but can be au-

tomatically checked for security violations. These rules

reduce the likelihood of getting spurious warnings from2 User/kernel Pointer Bugs
program verification or bug-finding tools like G@AL.

These rules are not specific to ©&L and almost al-

ways have the benefit of making programs simpler andy| ynix and Windows operating systems are suscepti-
easier for the programmer to understand. ble to user pointer bugs, but we'll explain them in the
context of Linux. On 32-bit computers, Linux divides
the virtual address space seen by user processes into two
sections, as illustrated in Figure 1. The virtual memory
¢ We introduce a semantically sound method for an-space from 0 to 3GB is available to the user process. The
alyzing user/kernel security bugs. kernel executable code and data structures are mapped
into the upper 1GB of the process’ address space. In
order to protect the integrity and secrecy of the kernel
code and data, the user process is not permitted to read
e We show how to reduce false positives by an orderor write the top 1GB of its virtual memory. When a user
of magnitude, and thereby make type-based analyprocess makes a system call, the kernel doesn’t need to
sis of user/kernel bugs practical, by enhancing ex-change VM mappings, it just needs to enable read and
isting type inference algorithms in several ways. write access to the top 1GB of virtual memory. It dis-
These improvements are applicable to any dataables access to the top 1GB before returning control to
flow oriented program analysis tool. the user process.

In summary, our main contributions are

e We identify 17 new user/kernel bugs in several dif-
ferent versions of the Linux kernel.



This provides a conceptually clean way to prevent user  code with any new code of her choice. For exam-
processes from accessing kernel memory directly, but  ple, she could eliminate permission checking code

it imposes certain obligations on kernel programmers. in order to elevate her privileges.
We will illustrate this with a toy example: suppose we )
want to implement two new system callsstint and e The attacker can setuf to point to kernel data
getint: ! structures that store her user id. By overwriting
these with all0s, the attacker can gain root privi-
leges.
int x; . .
void sys_setint(int *p) e By passing in random values fouf the attacker
{ can cause the kernel to crash.
memcpy (&x, p, sizeof(x)); // BAD!
b The above examples show the importance of validating
void sys_getint(int *p) a buffer pointer passed from user space before copying
{ data into that buffer. If the kernel forgets to perform this
memcpy (p, &x, sizeof(x)); // BAD! check, then a malicious user gains control of the sys-
i tem. In most cases, an attacker can exploit reads from

unchecked pointers, too. Imagine an attacker making
Imagine a user program which makes the system call the system call )
setint (buf) ;
getint (buf) ; The kernel will copy 4 bytes frormbuf into x. An at-

tacker could poinbuf at kernel file buffers, and the ker-

In a well-behaved program, the pointenf, points to  nel would copy the contents of those file buffers irto

a valid region of memory in the user process’ addresst this point, the attacker can read the contents of the

space and the kernel fills the memory pointed tohy  file buffer out ofx via a legitimate call tgetint. With

with the value ok. a little luck, the user can use this attack to learn the con-
tents of/etc/shadow, or even the secret TLS key of the

However, this toy example is insecure. The problem islocal web server.

that a malicious process may try to pass an invalid

to the kernel. There are two waysaf can be invalid. User/kernel pointer bugs are hard to detect during testing
because, in most cases, they succeed silently. As long

First, buf may point to unmapped memory in the user as user programs pass valid pointers to system calls, a

process’ address space. In this case, the virtual addressuggy system call implementation will work correctly.

buf, has no corresponding physical address. If the kerOnIy a malicious program will uncover the bug_

nel attempts to copy to the location pointed to byuf,

then the processor will generate a page fault. In som@he setint and getint functions shown above may

circumstances, the kernel might recover. However, if theseem contrived, but two of the bugs we found effectively

kernel has disabled interrupts, then the page fault hanimplemented these two system calls (albeit not under

dler will not run and, at this point, the whole computer these names).

locks up. Hence the toy kernel code shown above is sus-

ceptible to denial-of-service attacks. In order to avoid these errors, the Linux kernel con-
tains several user pointer access functions that kernel

Alternatively, an attacker may attempt to passid that  developers are supposed to use insteadeafcpy or

points into the kernel's region of memory. The user pro-dereferencing user pointers directly. The two most

cess cannot read or write to this region of memory, butprominent of these functions atepy_from_user and

the kernel can. If the kernel blindly copies databicf, copy_to_user, which behave likenemcpy but perform

then several different attacks are possible: the required safety checks on their user pointer argu-
ments. Correct implementationsoftint andgetint

} ) would look like
e By settingbuf to point to the kernel executable

code, the attacker can make the kernel overwrite

its own code with the contents af Since the user int x;

can also set the value af via legitimate calls to void sys_setint(int *p)
setint, she can use this to overwrite the kernel {



copy_from_user(&x, p, sizeof(x)); then it would be much easier for programmers to dis-

} tinguish user and kernel pointers. Even better, if this
void sys_getint(int *p) type were opaque, then the compiler could check that
{ the programmer never accidentally dereferenced a user
copy_to_user(p, &x, sizeof(x)); pointer. We could thus think of user pointers as an ab-
¥ stract data type (ADT) where the only permitted op-

erations areopy_{to,from}_user, and then the type
system would enforce that user pointers must never be
As long as the user pointer access functions likedereferenced. This would prevent user/kernel pointer
copy-from user andcopy-to_user are used correctly, bugs in a clean and principled way. The downside of
the kernel is safe. Unfortunately, Linux 2.4.20 has 129sych an approach is that programmers can no longer do
system calls accepting pointers from user space as asimple, safe operations, like-+, on user pointers.
guments. Making matters worse, the design of some
system calls, likeloctl, require every device driver to  Fortunately, we can have all the advantages of typed
handle user pointers directly, as opposed to having th@ointers without the inflexibility if we tweak the con-
system call interface sanitize the user pointers as soogept slightly. All that's really needed is gualifier on
as they enter the kernel. Thus the Linux kernel has hunpointer types to indicate whether they were passed from

dreds of sources of user pointers and thousands of cofyser space or not. Consider, for example, the following
sumers, all of which must be checked for correctnessgode:

making manual auditing impossible.

This problem is not unique to Linux. For example, int copy_from_user(void * kernel to,

FreeBSD has similar user buffer access functions. Even void * user from,
though we have presented the problem in the context of int len);
the Linux kernel VM setup, the same problem would int memcpy(void * kernel to,
arise in other VM architectures, e.g. if the kernel was void * kernel from,
direct mapped and processes lived in virtual memory. int len);
int x;
The above discussion makes it clear that there are essen-void sys_setint(int * user p)
tially two disjoint kinds of pointers in the kernel: {
copy_from_user(&x, p, sizeof(x));
}
User pointers: A pointer variable whose value isunder  void sys_getint(int * user p)
user control and hence untrustworthy. {

memcpy(p, &x, sizeof(x));
Kernel pointers: A pointer variable whose value isun-  }
der kernel control and guaranteed by the kernel to

always point into the kernel’s memory space, and _ ) _
hence is trustworthy. In this example kernel and user modify the basic

void * type to make explicit whether the pointer is
from user or kernel space. Notice that in the function
User pointers should always be verified to refer to usersys-setint, all the type qualifiers match. For instance,
level memory before being dereferenced. In contrastthe user pointerp is passed into theser argument
kernel pointers do not need to be verified before beingfrom of copy from user. In contrast, the function
dereferenced. sys_getint has a type error, since theser pointerp
is passed tanemcpy, which expects &ernel pointer
It is easy for programmers to make user pointer errordnstead. In this case, this type error indicates an ex-
because user pointers look just like kernel pointers—ploitable user/kernel bug.
they're both of type toid #”. If user pointers had a
completely different type from kernel pointers, say In this paper, we use C@L, which allows program-
mers to add user-defined qualifiers to the C program-

ming language. We createer andkernel type quali-
typedef struct { fiers and we use C@L to type-check the kernel. We
void *p; have analyzed several different versions of the Linux
} user_pointer_t; kernel for user/kernel bugs, finding a total of 17 different



exploitable user/kernel pointer bugs.

3 Type Qualifier Inference

We begin with a review of type qualifier inference. The
C programming language supports a few basic type
like int , float, andchar . Programmers can construct

types such as pointers, or references, to any type. For ed

ample, in our notation;ef (int ) denotes a reference to
a memory location of typent, or, in other words, a
pointer of typeint *. The C language also contains a
few type qualifiers, likeonst, that can be applied to any
of the basic or constructed types.

CQUAL allows programmers to create new, user-define
qualifiers that modify the standard C types, just like
const. In our case, we use QL to define qualifiers
user andkernel. The intended meaning is as follows: a
user int is anint whose value is possibly under user
control and hence is untrustworthy; ifis any type, a
user 7 is a value of typer that is possibly under user
control; and likewise, &ernel T is a value of type- that

is under kernel control. For instanceyser ref (int)

is a reference to amnt that is stored in user space; its

value is an address in the mapped portion of user mem

ory, and dereferencing it yields ant . In C, a pointetp

of this type would be declared by the cotiet * user

p;, and theint typically would be stored in user space,
while the pointer to theint is stored in kernel space.
We refer to a C type, together with its qualifiers, as a
gualified type

adversary, this cannot be relied upon. Thus a pointer
of typekernel ref (---) is safe to dereference directly;
user ref (---) types are not.

The type qualifier inference approach to program anal-
ysis has several advantages. First, type qualifier infer-
ence requires programmers to add relatively few annota-
tions to their programs. Programmers demand tools with

SIow overhead, and type qualifier inference tools certainly

meet those demands. Second, type qualifiers enable pro-
rammers to find bugs at compile time, before an appli-
cation becomes widely distributed and impossible to fix.
Third, type qualifiers are sound; if a sound analysis re-
ports no errors in a source program, then gusranteed

to be free of the class of bugs being checked. Sound-
ness is critical for verifying security-relevant programs;

a single missed security bug compromises the entire pro-

Cgram.

Like standard C types and type qualifiers, @Q is
flow-insensitive. This means that each program expres-
sion must have one qualified type that will be valid
throughout the entire execution of the program. For
example, just as C doesn't allow a local variable to
sometimes be used as amt and sometimes as a
struct, CQUAL does not permit a pointer to some-
times have typeuser ref (int ) and sometimes have
typekernel ref (int).

Programmers can use these qualifiers to express spec-
ifications in their programs. As an example, Figure 2
shows type qualifier annotations febpy_from user

and copy_to_user. With these annotations in place,

if a programmer ever calls one of these functions with,
say, auser pointer where &ernel pointer is expected,

Note that qualifiers can modify each level of a standardC QUAL Will report a type error. Figure 2 also shows

type. The C typeint * user is different fromint
user *; in the former case, it is the pointer (i.e., ad-
dress) whose value is under user control, while in the lat

ter case, it is the integer whose value is under user corfcluding the C ,
dng, and implicit dereferences of references to local vari-

trol. As another example, the programmer could declar
avariable of Ctypent * user * kernel, which corre-
sponds in our notation teernel ref (user ref (int))

this would refer to a pointer, whose value came from the

kernel, that points to a pointer, whose value originally
came from user space, to an integer.

In general, the invariant we maintain is that every pointe
of typekernel ref (---) has a value referring to an ad-
dress in kernel space and cannot be controlled by an
user process. Pointers of typser ref (---) may con-

tain any address whatsoever. Normally, when the sy

S_

CQuAL’s syntax for annotating built-in C operators.
The__op_deref annotation prohibits dereferencinger
pointers. This annotation applies to all dereferences,
' %" and “->" operators, array index-

aples.

In certain cases, Linux allowgernel pointers to be
treated as if they wereser pointers. This is analogous
to the standard C rule thatr@nconst 2 variable can be
passed to a function expectingenst argument, and is

@an example of qualifier subtyping. The notion of sub-

typing should be intuitively familiar from the world of
9bject—oriented programming. In Java, for instancel if
is a subclass aoB, then an object of clasd can be used
wherever an object of clad3 is expected, hencé can

tem is not under attack, user pointers refer to mapped® thought of as a subtype &f (written A < B).
memory within user space, but in the presence of an



int copy from user(void user * kernel kto, up the entire Linux kernel in this way would be im-

void * user ufrom, mense, and so we need some way to reduce the workload
int lemn); on the programmer.
int copy_to_user(void * user uto,
void * kernel kfrom, We reduce the annotation burden ustgge inference
int len); The key observation is that the vast majority of type
a __op_deref(a * kernel p); qualifier annotations would be redundant, and could be

inferred from a few base annotations, like those in Fig-
ure 2. Type qualifier inference provides a way to infer

Figure 2: _Anno_tatlons.for the two basp user space acihese redundant annotations: it checks whether there is
cess functions in the Linux kernel. The first argument to

copy_from.user must be a pointer to kernel space, but any way to extend the source code annotations to make
y - . : ' the result type-check. C@AL implements type quali-
after the copy, its contents will be under user control. yp P ype g

; fier inference. For example, this allow infer
The __op_deref annotation declares that the C derefer-frim tr?eecocdee or example, this allows O to infe
ence operator*”, takes akernel pointer to any typeg,
and returns a value of type

int bad_ioctl(void * user badp)

CQuUAL supports subtyping relations on user-defined {
gualifiers, so we can declare thigrnel is a subtype ;
of user, written askernel < user. CQUAL then void *badq = badp;

extends qualifier subtyping relationships to qualified-  SOPY-to-user(badbuf, badg, 8);
type subtyping rules as follows. First, we declare that
kernel int < user int, because anynt under kernel
control can be treated asiat possibly under user con-
trol. The general rule is

char badbuf[8];

thatbadq must be auser pointer (from the assignment
badq = badp), but it is used as &ernel pointer (since

/ badq is passed t@opy_from_user). This is a type er-
Q<Q : ) )
- — ror. In this case, the type error indicates a bona fide se-
Q@ int < @' int .
curity hole.

This notation states that if qualifi€p is a subtype of
qualifier @’, thenQ int is a subtype ofY’ int, or in  Notice that, in this example, the programmer didn’t have
other words, any value of tyg@ int can be safely used t0 write an annotation for the type ®fadq—instead,
whereever &2/ intis expected_ For examp]e, if a func- it was inferred from other annotations. Inference can
tion expects aonst int, then it may be called with a dramatically reduce the number of annotations required
nonconst int becaus@onconst < const, and therefore ~from the programmer. In our experiments with Linux,
nonconst int < const int. we needed less than 300 annotations for the whole ker-
nel; everything else was inferred by ©@L’s type in-

The rule for subtyping of pointers is slightly more com- ference algorithm.
plicated.

Q<Q T=1 3.1 Soundness
Q ref (1) < Q' ref (1)

Notice that this rule requires that the referent types,
and7’, be equal, not just that < 7/. This is a well-
known typing rule that is required for soundness. This
rule captures CQaL’s sound handling of aliasing, a
problem that has plagued other bug-finding tools.

As mentioned before, the theoretical underpinnings of
type inference are sound, but C contains several con-
structs that can be used in unsound ways. Here we ex-
plain how CQUAL deals with these constructs.

So far, we have described the basis for a type-checking

analysis. If we were willing to manually insertuser No memory safety. CQUAL assumes programs are
or kernel qualifier at every level of every type decla- memory safe, i.e. that they contain no buffer overflows.
ration in the Linux kernel, we would be able to detect Type qualifiers cannot detect buffer overflows, but other
user/pointer bugs by running standard type-checking altools, such as BOON[14] or CCured[10], do address
gorithms. However, the annotation burden of markingmemory safety. In conjunction with these tools, GAQ



forms a powerful system for verifying security proper- the analysis’ precision and reduce the number of false

ties. positives without sacrificing scalability or soundness.
One of the contributions of this work is that we have
developed a number of refinements to @Q that meet

Unions. CQUAL assumes programmers use unionsthis challenge. These refinements may be generally use-
safely, i.e. that the programmer does not write to oneful in other applications as well, so our techniques may

field of a union and read from a different one. Like be of independent interest. However, because the tech-
memory-safety, type qualifiers cannot detect invalid use&lical details require some programming language back-
of unions, but union-safety could plausibly be checkedground to explain precisely, we leave the details to to the

by another program analysis tool. Programmers coul@xtended version of this paper and we only summarize

use CQUAL together with such a tool if it seems unre- our improvements here.

alistic to assume that programmers always use unions

safely.

Context-Sensitivity. Context-sensitivity enables

I o . CQUAL to match up function calls and returns. With-
Separate Compilation. Type qualifier inference L .
out context-sensitivity, type constraints at one call

works from a few base annotations, but if the anno'site to a functionf will “flow” to other call sites.

tations are incomplete or incorrect, then the refsults’Context—sensitivity simultaneously reduces the number
may not be sound. In legacy systems like the Linux

: . 8f annotations programmers must write and the number
kernel, each source module provides one interface an o .
of false positives CQAL generates. Experiments

makes use of many others, but none of these 'nterfac.eserformed with Percent-S, a @@L -based tool for de-
are annotated. Thus any analysis of one source fil

in isolation will be unsound. To et sound results. a ecting format string bugs, found that context-sensitivity
>ound. 10 g " “could reduce the false positive rate by over 90%,
whole-program analysis is required.

depending on the application[11].

Type casts. C allows programmers to cast values to

arbitrary types. We had to extend ©&L slightly to  Field-sensitivity. Field-sensitivity enables C@AL to

handle some obscure cases. With these enhancemengfstinguish different instances of structures. Without

our experience is that Q@\L just “does the right thing”  field-sensitivity, every variable of typetruct foo

in all cases we've encountered. For example, if the proshares one qualified type, so a type constraint on field

grammer casts from one type of struct to another, ther of one instance flows to fietd of every other instance.

CQuAL matches up the corresponding fields and flowswithout this enhancement, QL was effectively un-

qualifiers appropriately. able to provide any useful results on the Linux kernel be-
cause the kernel uses structures so heavily. In our early
experiments, the field-insensitive analysis produced a

Inline assembly. CQUAL ignores inline assembly, false positive for almost every call twopy_from_ user,

which may cause it to miss some type errors. Analyz-copy_to_user, etc. With our more precise analysis of

ing inline assembly would require detailed knowledge ofstructures and fields, Q@L produces only a few hun-

the instruction set and instruction semantics of a specifielred warnings.

processor. Inline assembly is rare in most programs, and

programmers can obtain sound analysis results by an-

notating functions containing inline assembly. Alterna- )

tively, programmers could provide C implementations of Well-formedness Constraints. Well-formedness con-

inline assembly blocks. The C implementations wouldStraints enable CQ@aL to enforce special type rules re-

not only benefit CQAL, they would serve to document lated to structures and pointers. We used this feature to
the corresponding assembly code. encode rules like, “If a structure was copied from user

space (and hence is under user control), then so were

all its fields.” Without support for well-formedness con-
3.2 Our Analysis Refinements straints, CQAL would miss some user/kernel bugs (see,

e.g., Figure 4). Well-formedness constraints require no

additional annotations; they are optional properties that
We made several enhancements tou@Q to support are enabled or disabled in the configuration file that de-
our user/kernel analysis. The challenge was to improvescribes the type system used for an analysis.



Sound and Precise Pointer/Integer Casts. CQUAL a scheme for selecting error paths for display to the user
now analyzes casts between pointers and integersould benefit a variety of program analyses.
soundly. Our improvement to Q@\L’s cast handling
simultaneously fixes a soundness bug and improve3o understand the idea behind our heuristic, imagine an
CQUAL’s precision. ideal error reporting algorithm. This algorithm would
pick out a small setS, of statements in the original
Together, these refinements dramatically reducesource code that break the type-correctness of the pro-
CQuaAL’s false positive rate. Before we made thesegram. These statements may or may not be bugs, so
improvements, CQAL reported type errors (almost all we refer to them simply as untypable statements. The
of which were false positives) in almost every kernel algorithm should select these statements such that, if
source file. Now CQAL finds type errors in only about the programmer fixed these lines of code, then the pro-
5% of the kernel source files, a 20-fold reduction in thegram would type-check. The ideal algorithm would then
number of false positives. look at each error path and decide which statement in
S is the “cause” of this error path. After bucketing
the error paths by their causal statement, the ideal al-
3.3 Error Reporting gorithm would select one representive error path from
each bucket and display it to the user.

In addition to developing new refinements to type qual-'mPlémenting the ideal algorithm is impossible, so we
tapproximate it as best we can. The goal of our approxi-

ifier inference, we also created a heuristic that drama ek X
mation is to print out a small number of error traces from

ically increases the “signal-to-noise” ratio of type in- h of the ideal buck hen th SO
ference error reports. We implemented this heuristic inéach of the ideal buckets. When the approximation suc-

CQuAL, but it may be applicable to other program anal_ceeds, each of the untypable statements from the ideal
ysis tools as well algorithm will be represented, enabling the programmer

to address all his mistakes.

Before explaining our heuristic, we first need to explain
how CQUAL detects type errors. When @@L ana- o A ; N ,
ntfllmlnate derivative” and “redundant” errors, i.e., errors

lyzes a source program, it creates a qualifier constrai ) h leaki ) h f
graph representing all the type constraints it discoversca@used by one type mismatch leaking outinto the rest o

A typing error occurs whenever there is a valid path :jhf? program, as well as multiple grlror paths that only
from qualifierQ to qualifier()’ where the user-specified 9/er IN SOme minor, inconsequential way.

type system requires th&@) £ Q’. In the user/kernel . .
example, C@AL looks for valid paths fronaser to ker- The heuristic works as follows. First, G@L sorts all

nel. Since each edge in an error path is derived from 4N€ €rror paths in order of increasing length. It is ob-
specific line of code, given an error path, GQ can viously easier for the programmer to understand shorter

walk the user through the sequence of source code Statg_aths than longer ones, so those will be printed first. Itis

ments that gave rise to the error, as is shown in Figure 310t énough to just print the shortest path, though, since
This allows at least rudimentary error reporting, and it isthe program may have two or more unrelated errors.

what was implemented in Q@AL prior to our work.

Another way to understand our heuristic is that it tries to

Instead, lef be the set of all qualifier variables that trig-

Unfortunately, though, such a Simple approach is tota”yger type errors. To eliminate derivative errors we require

inadequate for a system as large as the Linux kernel. Be"at: for each qualifief) € £, CQUAL prints outat most

cause typing errors tend to “leak out” over the rest of thepnepath passing through). To see why this rule works,

program, one programming mistake can lead to thoulMagdine a local variable that is used as botlser and

sands of error paths. Presenting all these paths to thigernel pointer. This variable causes a type error, and the

user, as CQAL used to do, is overwhelming: it is un- error may spread to other variables through assignments,
likely that any user will have the patience to sort through€tUrn statements, etc. When using our heuristic, these
thousands of redundant warning messages. Our heuriQiher, derivative errors will not be printed because they

tic enables C@AL to select a few canonical paths that necessarily will have longer error paths. After printing

capture the fundamental programming errors so the usépe path of the original error, the qualifier variable with
can correct them the type error will be marked, suppressing any extrane-

ous error reports. Thus this heuristic has the additional
benefit of selecting the error path that is most likely to

Many program analyses reduce finding errors in the in
Y prog y g highlight the actual programming bug that caused the er-

put program to finding invalid paths through a graph, so



buf.win_info.handle: $kernel $user

proto-noderef.cq:66 $kernel == _op_deref_argl@6601208
cs.c:1208 == &win->magic
cs.c:1199 == *yin
ds.c:809 == *pcmcia_get_first_window_argl@809
ds.c:809 == buf.win_info.handle
include/pcmcia/ds.h:76 == buf.win_info
ds.c:716 == buf
ds.c:748 == *cast
ds.c:748 == *__generic_copy_from_user_argl@748
ds.c:748 == *__generic_copy_from_user_argl
proto-noderef.cq:27 == $user

Figure 3: The CQAL error report for a bug in the PCMCIA system of Linux 2.4.5 through 2.6.0. We shortened file
names for formatting. By convention, QAL type qualifiers all begin with “$”.

ror. The heuristic will also clearly eliminate redundant we annotated several common functions implemented in
errors since if two paths differ only in minor, inconse- pure assembly, such asmset andstrlen. Finally, we
qguential ways, they will still share some qualifier vari- annotated all the Linux system calls as acceptisgy
able with a type error. In essence, our heuristic approxiarguments. There are 221 system calls in Linux 2.4.20,
mates the buckets of the ideal algorithm by using quali-so these formed the bulk of our annotations. All told, we
fier variables as buckets instead. created 287 annotations. Adding all the annotations took
about half a day. The extended version of this paper lists
Before we implemented this heuristic, ©@L often re-  all the functions we annotated.
ported over 1000 type errors per file, in the kernel source
files we analyzed. Now, C@nL usually emits one or The Linux kernel can be configured with a variety of
two error paths, and occasionally as many as 20. Furfeatures and drivers. We used two different configura-
thermore, in our experience with GQQAL, this error re-  tions in our experiments. In the file-by-file experiments
porting strategy accomplishes the main goals of the idewe configured the kernel to enable as many drivers and
alized algorithm described above: it reports just enougHeatures as possible. We call this the “full” configura-
type errors to cover all the untypable statements in thaion. For the whole-kernel analyses, we used the default
original program. configuration as shipped with kernels on kernel.org.

CQUAL can be used to perform two types of analyses:
file-by-file or whole-program. A file-by-file analysis
4 Experiment Setup Ipoks at each source fille_in isolation. As rr.le.ntioned ear-
lier, this type of analysis is not sound, but it is very con-
venient. A whole-program analysis is sound, but takes

We performed experiments with three separate goaldnore time and memory. Some of our experiments are
First, we wanted to verify that C@uL is effective at file-by-file and some are whole-program, depending on
finding user/kernel pointer bugs. Second, we wanted tdh€ goal of the experiment.

demonstrate that our advanced type qualifier inference ] o

algorithms scale to huge programs like the Linux kernel.T0 validate CQ@AL as a bug-finding tool we performed

Third, we wanted to construct a Linux kernel provably file-by-file analyses of Linux kernels 2.4.20 and 2.4.23
free of user/kernel pointer bugs. and recorded the number of bugs G&Q found. We

also analyzed the warning reports to determine what

To begin, we annotated all the user pointer accessoPfogrammers can do to avoid false positives. Finally,
functions and the dereference operator, as shown in Figf_‘-‘/e made a subjective evaluation of our error reporting
ure 2. We also annotated the kernel memory manage?€uristics to determlng how effective they are at elimi-
ment routineskmalloc andkfree, to indicate they re- hating redundant warnings.

turn and accepternel pointers. These annotations were o .
not strictly necessary, but they are a good sanity check oNVe chose to analyze each kernel source file in |soI.at|(.)n
our results. Since CQAL ignores inline assembly code, Pecause programmers depend on separate compilation,



]Version Configuration Mode Raw Warnings Unique Warnings Exploitable Sugs

2.420 Full File 512 275

2.4.23  Full File 571 264 6
2.4.23  Default File 171 76 1
2.4.23  Default Whole 227 53 4

Table 2: Experimental results. A full configuration enables as many drivers and features as possible. The default
configuration is as shipped with kernels on kernel.org. A file-by-file analysis is unsound, but represents how pro-
grammers will actually use program auditing tools. A whole kernel analysis requires more resources, but is sound
and can be used for software verification. The raw warning count is the total number of warnings emitteddy. CQ

We discovered in our experiments that many of these warnings were redundant, so the unique warning count more
accurately represents the effort of investigatingu2@'s output.

so this model best approximates how programmers actuA/e had two goals with these whole-kernel experiments.
ally use static analysis tools in practice. As described inFirst, we wanted to verify that CGxL’s new type qual-
Section 3, analyzing one file at a time is not sound. Taifier inference algorithms scale to large programs, so we
partially compensate for this, we disabled the subtyp-measured the time and memory used while performing
ing relationkernel < user. In the context of single-file the analysis. We then used the output of @@ to mea-
analysis, disabling subtyping enables @< to detect sure how difficult it would be to develop a version of the
inconsistent use of pointers, which is likely to representLinux kernel provably free of user/kernel pointer bugs.
a programming error. The following example illustrates As we shall see, this study uncovered new research di-
a common coding mistake in the Linux kernel: rections in automated security analysis.

void dev_ioctl(int cmd, char *p)
{ 5 Experimental Results
char buf [10];
if (cmd == 0)
copy_from_user (buf, p, 10);
else
*p = 0;

All our experimental results are summarized in Table 2.

Error reporting. We quickly noticed that although

our error clustering algorithm substantially improved
The parameterp, is not explicitly annotated asaser ~ CQUAL’S output, it still reported many redundant warn-
pointer, but it almost certainly is intended to be used ad"d Messages. Each warning is accompanied by an er-
auser pointer, so dereferencing it in the “else” clause is "0 Path that explains the source of the user pointer and
probably a serious, exploitable bug. If we allow subtyp-th€ line of code that dereferences it, as shown in Fig-
ing, i.e. if we assumeernel pointers can be used where Uré 3. Based on our experience reviewing the warnings,
user pointers are expected, then O&L will just con- they can further be clustered by the line of code from
clude thatp must be akernél pointer. Since CQAL which the user pointer originates. In our experiments,
doesn’t see the entire kernel at once, it can't see thafe performed this add!tional clustering (according to the
dev_ioct1 is called with user pointers, so it can't detect SOUrce of the user pointer) manually. Table 2 presents
the error. With subtyping disabled, @@L will enforce both the raw and manually clustered warning counts. We
consistent usage @f either always as aser pointer or refer only to the clustered error counts throughout the
always as &ernel pointer. Thedev_ioctl functionwill ~ "€St Of this paper.
therefor fail to typecheck.

In addition, we separately performed a whole kernelBug finding with CQuUAL. Our first experiment an-
analysis on Linux kernel 2.4.23. We enabled subtyp-alyzed each source file separately in the full configu-
ing for this experiment since, for whole kernel analyses,ration of Linux kernel 2.4.20. CQaL generated 275
subtyping precisely captures the semantics of user andnique warnings in 117 of the 2312 source files in this
kernel pointers. version of the kernel. Seven warnings corresponded to



1: int i2cdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd,
2: unsigned long arg)

3: {

4:

5: case I2C_RDWR:

6: if (copy_from_user (&rdwr_arg,

7: (struct i2c_rdwr_ioctl_data *)arg,
8: sizeof (rdwr_arg)))

9: return -EFAULT;

10:

11: for( i=0; i<rdwr_arg.nmsgs; i++ )

12: {

13:

14: if (copy_from_user(rdwr_pali].buf,

15: rdwr_arg.msgs[i] .buf,

16: rdwr_pal[i].len))

[
~
A

18: res = -EFAULT;
19: break;

20: }

21: }

22:

Figure 4: An example bug we found in Linux 2.4.20. T parameter is aser pointer. The bug is subtle because
the expressiomdwr_arg.msgs [i] . buf on line 15 dereferences tlwger pointerrdwr_arg.msgs, but it looks safe
since it is an argument teopy_from_user. Kernel developers had recently audited this code for user/kernel bugs
when we found this error.

real bugs. Figure 4 shows one of the subtler bugs weonfiguration includes support for only a subset of the
found in 2.4.20. Kernel maintainers had fixed all but drivers, this comprises about 700 source files contain-
one of these bugs in Linux 2.4.22, and we confirmed théng 300KLOC. We ran the analysis on an 800MHz lIta-
remaining bug with kernel developers. Because of thisnium computer, and it required 10GB of RAM and 90
we repeated the experiment when Linux kernel 2.4.23ninutes to complete. Since Q@AL’s data-structures
became available. consist almost entirely of pointers, it uses nearly twice
as much memory on 64-bit computers as on 32-bit ma-
When we performed the same experiment on Linuxchines; also, 800MHz Itaniums are not very fast. There-
2.4.23, CQUAL generated 264 unigue warnings in 155 fore we expect that CQuL can analyze large programs
files. Six warnings were real bugs, and 258 were falseon typical developer workstations in use today.
positives. We have confirmed 4 of the bugs with kernel
developers. Figure 5 shows a simple user/kernel bug that
an adversary could easily exploit to gain root privileges

Software Verification. Finally, we took a first step to-
or crash the system.

wards developing an OS kernel that is provably free of

We also did a detailed analysis of the false positives genuser/kernel pointer bugs. We performed a brief review of
. ) . the warnings generated during our whole-kernel analy-
erated in this experiment and attempted to change th warnings g uring our w y

kernel source code to eliminate the causes of the spurgis of Linux 2.4.23. This review uncovered an additional
ous warnings; see Section 6 Your bugs and a toFaI of 49 unique false'posmves'. We can
' ' draw two conclusions from this experiment. First, our
error reporting algorithms may occasionally cause one
bug to be masked by another bug or false positive. This
Scalability of Type Qualifier Inference. To verify is obvious from the fact that the bug discovered in our
the scalability of CQAL’s type inference algorithms, file-by-file analysis is not reported in the whole-program
we performed a whole-kernel analysis on Linux kernelanalysis. On the other hand, a whole-kernel analysis
2.4.23 with the default configuration. Since the defaultwith CQUAL does not result in many more warnings



static int
1 w9968cf_do_ioctl(struct w9968cf_device* cam, unsigned cmd, void* arg)

{

case VIDIOCGFBUF:
{

struct video_buffer* buffer = (struct video_bufferx)arg;

© 00 N O d W N+~

memset (buffer, 0, sizeof(struct video_buffer));

Figure 5: A bug from Linux 2.4.23. Sincerg is auser pointer, an attacker could easily exploit this bug to gain root
privileges or crash the system.

than a file-by-file analysis. This suggests that we onlynumbers must be taken with a grain of salt, because the
need to reduce CQuL'’s false positive rate by an order sample size is very small.) This suggests that the core
of magnitude to be able to develop a kernel provably freekernel code is more carefully vetted than device driver
of user/kernel pointer bugs. code. On the other hand, the bugs we found are not
just in “obscure” device drivers: we found four bugs in
the core of the widely used PCMCIA driver subsystem.

Observations. We can draw several conclusions from Warnings are also more common in drivers. In our file-
these experiments. First, type qualifier inference is arfPY-file experiment with 2.4.23, 196 of the 264 unique
effective way of finding bugs in large software systems.Warnings were in driver files.

All total, we found 17 different user/kernel bugs, several _ ) o

of which were present in many different versions of theFinally, we discovered a significant amount of bug

Linux kernel and had presumably gone undiscovered fofUrnover. Between Linux kernels 2.4.20 and 2.4.23, 7
years. user/kernel security bugs were fixed and 5 more intro-

duced. This suggests that even stable, mature, slowly
Second, soundness matters. For example, Yang, et 41anging software systems may have large numbers of

used their unsound bug-finding tool, MECA, to searchundiscovered security holes waiting to be exploited.

for user/kernel bugs in Linux 2.5.63. We can't make a

direct comparison between @AL and MECA since we

didn’'t analyze 2.5.63. However, of the 10 bugs we found

in Linux 2.4.23, 8 were still present in 2.5.63, so we can o

compare MECA and CQaL on these 8 bugs. MECA 6 False Positives

missed 6 of these bugs, so while MECA is a valuable

bug-finding tool, it cannot be trusted by security soft-

ware developers to find all bugs. We analyzed the false positives from our experiment
with Linux kernel 2.4.23. This investigation serves two

Our attempt to create a verified version of Linux 2.4.23purposes.

suggests future research directions. The main obstacles

to developing a verifiable kernel are false positives dueFirst, since it is impossible to build a program verifi-

to field unification and field updates, which are describedcation tool that is simultaneously sound and complete,

in the extended version of this paper. A sound methodany system for developing provably secure software

for analyzing these programming idioms would open themust depend on both program analysis tools and pro-

door to verifiably secure operating systems. grammer discipline. We propose two simple rules, based
on our false positive analysis, that will help software de-

Bugs and warnings are not distributed evenly through-velopers write verifiably secure code.

out the kernel. Of the eleven bugs we found in Linux

2.4.23, all but two are in device drivers. Since there areSecond, our false positive analysis can guide future

about 1500KLOC in drivers and 700KLOC in the rest reasearch in program verification tools. Our detailed

of the kernel, this represents a defect rate of about onelassification shows tool developers the programming

bug per 200KLOC for driver code and about one bugidioms that they will encounter in real code, and which

per 400KLOC for the rest of the kernel. (Caveat: Theseones are crucial for a precise and useful analysis.



Source Frequency Useful Fix \

User flag 50 Maybe Pass two pointers insteafirafn_user flag
Address of array 24 Yes Don't take address of arrays
Non-subtyping 20 No Enable subtyping

C type misuse 19 Yes Declare explicit, detailed types
Field unification 18 No None

Field update 15 No None

Open structure 5 Yes Use C99 open structure support
Temporary variable 4 Yes Don't re-use temporary variables
User-kernel assignment 3 Yes Sekr pointers to NULL instead
Device buffer access 2 Maybe None

FS Tricks 2 Maybe None

Table 3: The types of false positives ©&. generated and the number of times each false positive occurred. We
consider a false positive useful if it tends to indicate source code that could be simplified, clarified, or otherwise
improved. Where possible, we list a simple rule for preventing each kind of false positive.

Our methodology was as follows. To determine theperformance inthe past, but now it just makes code more

cause of each warning, we attempted to modify the kerconfusing and harder to verify automatically.

nel source code to eliminate the warning while pre-

serving the functionality of the code. We kept careful As an example of the second rule, if a variable is concep-

notes on the nature of our changes, and their effect otually a pointer, then declare it as a pointer, ndtoag

CQuUAL’s output. Table 3 shows the different false posi- or unsigned int. We actually saw code that declared

tive sources we identified, the frequency with which theya local variable as annsigned long, but castit to a

occurred, and whether each type of false positives tendepointerevery time the variable was usethis is an ex-

to indicate code that could be simplified or made moretreme example, but subtler applications of these rules are

robust. The total number of false positives here is lespresented in the extended version of this paper.

than 264 because fixing one false positive can eliminate

several others simultaneously. The extended version dfollowing these rules is easy and has almost no impact

this paper explains each type of false positive, and howon performance, but can dramatically reduce the num-

to avoid it, in detail. ber of false positives that program analysis tools like
CQuAL generate. From Table 3, kernel programmers

Based on our experiences analyzing these false positivespuld eliminate all but 37 of the false positives we saw

we have developed two simple rules that can help futurda factor of4 reduction) by making a few simple changes

programmers write verifiably secure code. These rulego their code.

are not specific to CQaL. Following these rules should

reduce the false positive rate of any data-flow oriented

program analysis tool.

7 Related Work
Rule 1 Give separate names to separate logical entities.

Rule 2 Declare objects with C types that closely reflect CQUAL has been used to check security properties in
their conceptual types. programs before. Shankar, et al., usedu@Q to find

format string bugs in security critical programs[11], and

Zhang, et al., used C@.L to verify the placement of
As an example of Rule 1, if a temporary variable some-authorization hooks in the Linux kernel[16]. Broadwell,
times holds auser pointer and sometimes holdtsrnel etal. used CQAL in their Scrash system for eliminating
pointer, then replace it with two temporary variables, sensitive private data from crash reports[2]. Elsman, et
one for each logical use of the original variable. Thisal. used C@AL to check many other non-security appli-
will make the code clearer to other programmers andgations, such as Y2K bugs[4] and Foster, et al. checked
with a recent compiler, will not use any additional mem- correct use of garbage collected fnit” data in the
ory. ¥ Reusing temporary variables may have improvedLinux kernel[6].



Linus Torvalds’ program checker, Sparse, also usesike CQUAL and MOPS complement each other.

type qualifiers to find user/kernel pointer bugs[12].

Sparse doesn'’t support polymorphism or type inferenceThere are several other ad-hoc bug-finding tools that use
though, so programmers have to write hundreds or eversimple lexical and/or local analysis techniques. Exam-
thousands of annotations. Since Sparse requires prgles include RATS[9], ITS4[13], and LCLint[5]. These
grammers to write so many annotations before yieldingools are unsound, since they don't deal with pointer
any payoff, it has seen little use in the Linux kernel. aliasing or any other deep structure of the program.
As of kernel 2.6.0-test6, only 181 files contain SparseAlso, they tend to produce many false positives, since
user/kernel pointer annotations. Sparse also requires exdey don’t support polymorphism, flow-sensitivity, or
tensive use of type qualifier casts that render its resultsther advanced program analysis features.

completely unsound. Before Sparse, programmers had

to be careful to ensure their code was correct. After

Sparse, programmers have to be careful that their casts

are also correct. This is an improvement, but as we savyg  Conclusion

in Section 5, bugs can easily slip through.

Yang, et al. developed MECA[15], a program Check'We have shown that type qualifier inference is an effec-

ing tool carefully designed to have a low false positive ;e tochnique for finding user/kernel bugs, but it has the
rate. They showed how to use MECA to find dozens of e ntia| to do much more. Because type qualifier in-
user-kernel pointer bugs in the Linux kernel. The essentgrance is sound, it may lead to techniques for formally
tial difference between MECA and QL is their per- qrifving the security properties of security critical soft-
spective on false positives: MECA aims for a very Iow ware. We have also described several refinements to the
false positive, even at the cost of missing bugs, while,aqjc type inference methodology. These refinements
CQUA.L aims to detect_gll bugs, even at the CO.St of In'dramatically reduce the number of false positives gen-
creasing the false positive rate. Thus, the designers of ;- by our type inference engine, GQ, enabling
MECA ignored any C features they felt cause too many; 1, analyze complex software systems like the Linux
false positives, and conseque.ntly MECA IS Lfnsmmd:kernel. We have also described a heuristic that improves
it makes no attempt to deal with pointer aliasing, andy ., reports from CQAL. All of our enhancements
completely ignores multiply-indirected pointers. MECA can be applied to other data-flow oriented program anal-

uses many advanced program analysis features, Such @sis 1ol We have shown that formal software analysis
flow-sensitivity and a limited form of predicated types. methods can scale to large software systems. Finally, we
MECA can also be used for other kinds of security a”a"have analyzed the false positives generated byQQ

yS(les _and is not rest?cte_d to u.Ter/kerneI bugs. This "®and developed simple rules programmers can follow to
sul'ts ina greatfpug- 'ITd'ng tool, but MECA can not be e verifiable code. These rules also apply to other
relied upon to find all bugs. In comparison, O&. program analysis tools.

uses principled, semantic-based analysis techniques that

are_;oupd and that may prove a first step towards formabur research suggests many directions for future re-
verification of the entire kernel, though CQL's false search. First, our false positive analysis highlights

alarm rate is noticeably higher. several shortcomings in current program analysis tech-
, ) nigues. Advances in structure-handling would have a
CQUAL only considers the data-flow in the program .. matic effect on the usability of current program anal-
being analyzed, completely ignoring the control-flow yqis 1o51s, and could enable the development of veri-
aspects of the program. There are many other tool ed security software. Several of the classes of false
that are good at analyzing control-flow, but because,,gjives derive from the flow-insensitive analysis we
the user/kernel property is primarily about data-flow, ,se -~ Adding flow-sensitivity may further reduce the
control-flow oriented tools are not a good match for ¢5\50_hositive rate, although no theory of simultaneously
f_mdmg user/kernel bugs. For instance, model f:heckerﬁow_, field- and context-sensitive type qualifiers cur-
like MOPS[3], SLAM[1], and BLASTI[8] look primar- o nyy exists. Alternatively, researchers could investigate
ily at the control-flow structure of the program being alternative programming idioms that enable program-
analyzed and thus are excellent tools for verifying thatyors 1o write clear code that is easy to verify correct.
security critical operations are performed in the right Or'CurrentIy, annotating the source code requires domain-

der, but they are incapable of reasoning about data valsoeific knowledge, so some annotations may acciden-

ues ri]n ”I:e p(;ogram. Convgrsely,hit would bﬁ impOS‘ISibletally be omitted. Methods for checking or automatically
to check ordering properties with Q@L. Thus tools deriving annotations could improve analysis results.
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