Check out the new USENIX Web site.

Home About USENIX Events Membership Publications Students
12th USENIX Security Symposium — Abstract

Pp. 29-44 of the Proceedings

Denial of Service via Algorithmic Complexity Attacks

Scott A. Crosby and Dan S. Wallach, Rice University


We present a new class of low-bandwidth denial of service attacks that exploit algorithmic deficiencies in many common applications' data structures. Frequently used data structures have "average-case" expected running time that's far more efficient than the worst case. For example, both binary trees and hash tables can degenerate to linked lists with carefully chosen input. We show how an attacker can effectively compute such input, and we demonstrate attacks against the hash table implementations in two versions of Perl, the Squid web proxy, and the Bro intrusion detection system. Using bandwidth less than a typical dialup modem, we can bring a dedicated Bro server to its knees; after six minutes of carefully chosen packets, our Bro server was dropping as much as 71% of its traffic and consuming all of its CPU. We show how modern universal hashing techniques can yield performance comparable to commonplace hash functions while being provably secure against these attacks.
  • View the full text of this paper in HTML and PDF.
    Click here if you have forgotten your password Until August 2004, you will need your USENIX membership identification in order to access the full papers. The Proceedings are published as a collective work, © 2003 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 7 Nov. 2003 jel
Technical Program
Security '03 Home