Bazaar: Strengthening user reputations in online marketplaces

Ansley Post†* Vijit Shah‡ Alan Mislove‡

‡Northeastern University †MPI-SWS/Rice University *Now at Google

March 31, 2011, NSDI’11
Online marketplaces

Online marketplaces: Sites allowing users to buy/sell goods

Among most successful Web sites
E.g., eBay, Overstock, Amazon Marketplace
eBay alone: $60B in 2009

Allows buyers and sellers to connect
Regardless of location
Enable esoteric products to find a market
Democratized commerce

But, known to suffer from fraud
Identities and reputations

Sites support reputations for identities
 Feedback from others interacted with

Buyers use reputations
 Reputable sellers get better prices

Complicating detail:
 Accounts often “free” to create
 Requires only solving CAPTCHA
 Can be used to defraud...
Manipulating reputations for fraud

Can create identities to
- Whitewash (erase bad behavior)
- Collude (with other attackers)
- Sybil attacks (create multiple accounts)

Can observe fraud taking place
- Search for “positive feedback guaranteed”
- Undermines usefulness of marketplace

Significant monetary losses
- Recent arrest of malicious user
- Stole $717k from 5,000 users
- Used >250 accounts
Manipulating reputations for fraud

Can create identities to
 Whitewash (erase bad behavior)
 Collude (with other attackers)
 Sybil attacks (create multiple accounts)

Can observe fraud taking place
 Search for “positive feedback guaranteed”
 Undermines usefulness of marketplace

Significant monetary losses
 Recent arrest of malicious user
 Stole $717k from 5,000 users
 Used >250 accounts
Manipulating reputations for fraud

Can create identities to
 Whitewash (erase bad behavior)
 Collude (with other attackers)
 Sybil attacks (create multiple accounts)

Can observe fraud taking place
 Search for “positive feedback guaranteed”
 Undermines usefulness of marketplace

Significant monetary losses
 Recent arrest of malicious user
 Stole $717k from 5,000 users
 Used >250 accounts
Alternate approaches

- Make joining difficult
 - Limits applicability, usefulness

- Using brokers, escrow
 - Only feasible for expensive items

- Requiring in-person transaction
 - Restricts buyer/seller population

- Providing insurance
 - Spreads cost of fraud to all users

Others in paper...
Bazaar: A new approach

New approach to strengthening user reputations
 Provides strong bounds on fraud

Works in conjunction with existing marketplace
 Assumes same feedback system as today
 No additional monetary cost
 No strong identities

Insight: Successful transactions represent shared risk
 Buyer and seller more likely to enter into future transactions
Outline

1. Motivation
2. Bazaar design
3. Challenges faced
4. Evaluation
Risk network

Reputations calculated using risk network

Buyer satisfied \rightarrow two identities linked
 Weighted by amount of transaction
 Multiple transactions additive

Risk network automatically generated
 Users need not even know about it
 Site operator maintains risk network

Can be used to gauge risk between identities
 Model: Query Bazaar before purchase
Fraud detection with max-flow

Site operator queries Bazaar before purchase
Bazaar calculates max-flow between buyer and seller

If max-flow lower than potential transaction, flag as fraudulent
Otherwise, wait for feedback from buyer
Fraud detection with max-flow

Site operator queries Bazaar before purchase
Bazaar calculates max-flow between buyer and seller

If max-flow lower than potential transaction, flag as fraudulent
Otherwise, wait for feedback from buyer
Fraud detection with max-flow

Site operator queries Bazaar before purchase

Bazaar calculates max-flow between buyer and seller

If max-flow lower than potential transaction, flag as fraudulent

Otherwise, wait for feedback from buyer
Site operator queries Bazaar before purchase
Bazaar calculates max-flow between buyer and seller

If max-flow lower than potential transaction, flag as fraudulent
Otherwise, wait for feedback from buyer
Handling feedback

Modify risk network when buyer provides feedback
 Positive: Create new link
 Neutral: Make no changes
 Negative: Remove flow from network

Malicious sellers punished if they defraud
Handling feedback

Modify risk network when buyer provides feedback
- Positive: Create new link
- Neutral: Make no changes
- Negative: Remove flow from network

Malicious sellers punished if they defraud
Handling feedback

Modify risk network when buyer provides feedback
 Positive: Create new link
 Neutral: Make no changes
 Negative: Remove flow from network

Malicious sellers punished if they defraud
Handling feedback

Modify risk network when buyer provides feedback
 Positive: Create new link
 Neutral: Make no changes
 Negative: Remove flow from network

Malicious sellers punished if they defraud
Guarantees

What is the **per-user bound** on defrauding?

\[\sum_{l \in L} w_l \]

Set of risk network links
Guarantees for groups

Analysis is same for any subgraph

Only way to defraud more: Participate in real transactions
Provides bound on fraud

Result: Collusion, Sybil attacks, white-washing doesn’t help
Guarantees for groups

Analysis is same for any subgraph

Only way to defraud more: Participate in real transactions
Provides bound on fraud

Result: Collusion, Sybil attacks, white-washing doesn’t help
Outline

1. Motivation
2. Bazaar design
3. Challenges faced
4. Evaluation
Challenge 1: Feedback delay

Buyer cannot immediately determine if fraudulent

Could be used as “window of vulnerability”
Malicious seller could defraud many users quickly

Address by putting credit “on hold”
Set of paths with flow equal to transaction amount
Cannot be used by any other transactions
Restore if positive/neutral feedback received
Challenge 1: Feedback delay

Transaction amount: $4

Buyer cannot immediately determine if fraudulent

Could be used as “window of vulnerability”
Malicious seller could defraud many users quickly

Address by putting credit “on hold”
Set of paths with flow equal to transaction amount
Cannot be used by any other transactions
Restore if positive/neutral feedback received
Challenge 2: Bootstrapping

New users have zero max-flow
How to securely bootstrap new users?

Option 1: Use social network
Users can “vouch” for friends, create links
Put their own links at risk

Option 2: Provide link escrow service
New user “escrows” for links
Can later ask for escrow back
Links removed; no money returned if lost
Challenge 2: Bootstrapping

New users have zero max-flow
How to securely bootstrap new users?

Option 1: Use social network
Users can “vouch” for friends, create links
Put their own links at risk

Option 2: Provide link escrow service
New user “escrows” for links
Can later ask for escrow back
Links removed; no money returned if lost
Challenge 2: Bootstrapping

New users have zero max-flow
How to securely bootstrap new users?

Option 1: Use social network
Users can “vouch” for friends, create links
Put their own links at risk

Option 2: Provide link escrow service
New user “escrows” for links
Can later ask for escrow back
Links removed; no money returned if lost
Challenge 2: Bootstrapping

New users have zero max-flow
How to securely bootstrap new users?

Option 1: Use social network
Users can “vouch” for friends, create links
Put their own links at risk

Option 2: Provide link escrow service
New user “escrows” for links
Can later ask for escrow back
Links removed; no money returned if lost
Challenge 3: Scaling max-flow

Computing max-flow is expensive
 Especially on large, dense graphs
 Standard approaches (Gomery-Hu, Goldman-Rao) are poor fit

But, can leverage two observations:
Challenge 3: Scaling max-flow

Computing max-flow is expensive
Especially on large, dense graphs
Standard approaches (Gomery-Hu, Goldman-Rao) are poor fit

But, can leverage two observations:

1. Risk networks tend to have a dense core
 High-weight links form mostly-connected subgraph
Challenge 3: Scaling max-flow

Computing max-flow is expensive
Especially on large, dense graphs
Standard approaches (Gomery-Hu, Goldman-Rao) are poor fit

But, can leverage two observations:

1. Risk networks tend to have a dense core
 High-weight links form mostly-connected subgraph

2. Don’t need actual max-flow value
 Only need to know if higher than potential transaction amount
Challenge 3: Scaling max-flow

Computing max-flow is expensive
Especially on large, dense graphs
Standard approaches (Gomery-Hu, Goldman-Rao) are poor fit

But, can leverage two observations:

1. Risk networks tend to have a dense core
 High-weight links form mostly-connected subgraph

2. Don’t need actual max-flow value
 Only need to know if higher than potential transaction amount

Leverage observations with multi-graphs
Multi-graph construction
Multi-graph construction
Multi-graph construction
Multi-graph construction

Normal graph

Multi-graph
Multi-graph construction

Normal graph

Multi-graph
Multi-graph construction

Normal graph

Multi-graph

Level 0
Multi-graph construction

Normal graph

Multi-graph

Level 0

Level 1

\(w_e \geq 2^1 \)
Multi-graph construction

Normal graph

Multi-graph

Level 0

Level 1

Level 2

$w_e \geq 2^2$

$w_e \geq 2^1$

Level 0

31.03.2011 NSDI'11

Alan Mislove
Max-flow with multi-graphs

Check for sufficient flow in each level
Starting with the highest

Sufficient flow found \rightarrow success
Since each level is a subset of the next

Insufficient flow found in all levels \rightarrow failure
Since Level 0 is entire graph

Possibility of ending quickly
Higher levels have bigger links
Higher levels are smaller networks
Outline

1. Motivation
2. Bazaar design
3. Challenges faced
4. Evaluation
Evaluating Bazaar

Goal: Determine how Bazaar would work in practice
 Does it prevent fraud?
 How much does it “cost”?
 Does it incorrectly flag honest transactions?

Implemented Bazaar in C
 Use multi-graph representation to store risk network
 Run simulations on single processor

How to simulate?
 Need real-world data
Data from eBay

<table>
<thead>
<tr>
<th>Category</th>
<th>Purchases</th>
<th>Users</th>
<th>Avg. Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothes</td>
<td>3,311,878</td>
<td>1,436,059</td>
<td>9.74</td>
</tr>
<tr>
<td>Collectibles</td>
<td>940,815</td>
<td>454,773</td>
<td>8.90</td>
</tr>
<tr>
<td>Computing</td>
<td>964,925</td>
<td>661,285</td>
<td>21.31</td>
</tr>
<tr>
<td>Electronics</td>
<td>861,108</td>
<td>652,350</td>
<td>20.67</td>
</tr>
<tr>
<td>Home/Garden</td>
<td>2,795,795</td>
<td>1,426,785</td>
<td>16.57</td>
</tr>
</tbody>
</table>

Crawled eBay UK site
Collected 90-day trace
Focused on five of the most popular categories

Total: Over 8M pieces of feedback
Does Bazaar prevent fraud?

Simulated Bazaar on each eBay category
80% of data creates risk network, remaining is simulated
Random "malicious" users conduct as much fraud as possible

Bazaar bounds malicious users as expected
How expensive is Bazaar?

<table>
<thead>
<tr>
<th>Category</th>
<th>Time (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Multi-graph</td>
</tr>
<tr>
<td>Clothes</td>
<td>18.0</td>
<td>6.29</td>
</tr>
<tr>
<td>Collectibles</td>
<td>2.53</td>
<td>1.18</td>
</tr>
<tr>
<td>Computing</td>
<td>3.78</td>
<td>1.66</td>
</tr>
<tr>
<td>Electronics</td>
<td>2.71</td>
<td>1.41</td>
</tr>
<tr>
<td>Home/Garden</td>
<td>11.6</td>
<td>5.34</td>
</tr>
</tbody>
</table>

What is the **time taken to run max-flow**?

Practical with a few servers provided by site
Can use additional tricks to lower average time
What is the impact on good users?

<table>
<thead>
<tr>
<th>Category</th>
<th>Fraction of honest transactions incorrectly flagged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothes</td>
<td>1.11%</td>
</tr>
<tr>
<td>Collectibles</td>
<td>1.12%</td>
</tr>
<tr>
<td>Computing</td>
<td>3.23%</td>
</tr>
<tr>
<td>Electronics</td>
<td>4.68%</td>
</tr>
<tr>
<td>Home/Garden</td>
<td>2.43%</td>
</tr>
</tbody>
</table>

What is Bazaar’s false positive rate?
Assumes mechanism for “bootstrapping” new users
Less than 5% false positive rate
Summary

Online marketplaces very successful
 Democratized commerce, many billions $ per year

But, known to have significant fraud
 Partially due to “free” nature of accounts, reputation manipulation

Bazaar: A new approach to strengthening reputations
 Leverages risk network between participants
 Deployable on sites of today

Were Bazaar deployed during trace
 Would have prevented £164k of negative feedback
Questions?