Paxos Replicated State Machines as the Basis of a High-Performance Data Store

William J. Bolosky,
Dexter Bradshaw, Randolph B. Haagens,
Norbert P. Kusters and Peng Li

March 30, 2011
Q: How to build a fault-tolerant, high-performance data store from commodity parts?

A: Paxos replicated state machines
• Paxos Replicated State Machines
 – Sequentially consistent
 – Persistent
 – Fault tolerant
 – Don’t rely on clock sync for correctness
 – Thought to be too slow

• Conventional systems compromise on
 – Semantics (e.g. data consistency after failures)
 – Assumptions (e.g. clock sync for correctness)
 – API (e.g. append only)
 – Special hardware (e.g. FAB’s write timestamps)

• Paxos equaling the speed of a conventional system is a win
 – That we sometimes do better is a bonus
Take Away Point

• For datacenter-like systems that:
 – Value **Consistency** and **Availability** over **Partition**
 tolerance
 – Have operation latencies ≥ network latencies

• **Paxos** replicated state machines
 – Perform very well
 – While not compromising
Outline

• Background: Replicated State Machines and Paxos
• SMARTER and Gaios
• A new protocol for read-only operations
• Performance evaluation and comparison to primary-backup replication
Replicated State Machines

• For fault tolerance
 – Of any deterministic computation
 – Via replication
 – Replicas see the same sequence of inputs

• Paxos is a protocol for guaranteeing input ordering, even with:
 – Multiple clients
 – Unreliable networks
 – No synchronized clocks
 – Unlimited machine reboots
 – Some permanent stopping faults (i.e., disk losses)
 – But not Byzantine faults
Non Trade-Off

• RSMs’ one-at-a-time execution model seems to be at odds with disks’ need to reorder IO for efficiency. It’s not.

• Analogous to an out-of-order processor.
Paxos Basics

• Paxos binds client requests to sequentially numbered *slots*.
• In normal operation requires a write to persistent store to survive power loss.
• Has a dynamically selected and changeable *leader* that drives the protocol.
4K Write Latency Timeline
(One-at-a-Time Operations)
Outline

• Background: Replicated State Machines and Paxos

• SMARTER and Gaios

• A new protocol for read-only operations

• Performance evaluation and comparison to primary-backup replication
Getting Efficiency

• Mostly just lots of good engineering
 1. Pipelining
 2. Batched write behind
 3. Overlap fetching with logging
 4. Batching client requests
 5. Zero-copy data path

• Novel read-only operation protocol that allows consistent reads from any node
Outline

• Background: Replicated State Machines and Paxos
• SMARTER and Gaios
• **A new protocol for read-only operations**
• Performance evaluation and comparison to primary-backup replication
Read Consistency Property

Not-Before Constraint: When a read-only request R completes, it reflects any data known by any client to be written at the time R was sent.
Read-Only Operations

• Read-only operations only need to run in one place
• Using all disks is crucial
• Dynamically selecting location helps
 – Avoid nodes that are writing
Randomize Checkpoint timing across nodes
4K Read Latency Timeline
(One-at-a-Time Operations)
Outline

• Background: Replicated State Machines and Paxos
• SMARTER and Gaios
• A new protocol for read-only operations
• Performance evaluation and comparison to primary-backup replication
Primary-Backup Replication

• (Usually) Sends both read and write replies from the primary in order to achieve the read consistency property
• Uses leasing protocol for primary
 – No need for a quorum check on reads
 – Relies on clock sync for correctness, which in practice means it trades failover time for correctness
Read Distribution

• Primary-Backup forces reads to one node, while SMARTER spreads them across all, which can matter for random reads

• P-B can achieve spreading by striping data across many groups and locating the primaries on different nodes; this spreading is static

• Implemented two versions of P-B:
 – Worst-case PB1 where all reads come from one node
 – Best-case PBN which uses round-robin reads
8K Random Read Throughput
(Lots of outstanding operations)

![Graph showing 8K Random Read Throughput]
Transaction Processing

• Ran industry standard OLTP load over Microsoft SQL Server 2008.
• Critical factors: SQL log write latency, random read bandwidth.
• Even read/write ratio, mostly ~8K.
OLTP Performance
(3 nodes, 50% read workload)
Conclusion

• Paxos RSMs are fine for high-performance disk-based applications, it just takes careful engineering.
• In some cases, they outperform best-case P-B due to flexibility in directing reads.
• There is no need to compromise on semantics, buy special hardware, depend on clocks, etc.
Thank You!
Submit to FAST

Photo of Gaios, Paxos, Greece