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Abstract– While today’s data centers are multiplexed
across many non-cooperating applications, they lack effec-
tive means to share their network. Relying on TCP’s con-
gestion control, as we show from experiments in produc-
tion data centers, opens up the network to denial of service
attacks and performance interference. We present Seawall,
a network bandwidth allocation scheme that divides net-
work capacity based on an administrator-specified policy.
Seawall computes and enforces allocations by tunneling
traffic through congestion controlled, point to multipoint,
edge to edge tunnels. The resulting allocations remain
stable regardless of the number of flows, protocols, or
destinations in the application’s traffic mix. Unlike alter-
nate proposals, Seawall easily supports dynamic policy
changes and scales to the number of applications and
churn of today’s data centers. Through evaluation of a
prototype, we show that Seawall adds little overhead and
achieves strong performance isolation.

1. INTRODUCTION
Data centers are crucial to provide the large volumes of

compute and storage resources needed by today’s Internet
businesses including web search, content distribution and
social networking. To achieve cost efficiencies and on-
demand scaling, cloud data centers [5, 28] are highly-
multiplexed shared environments, with VMs and tasks
from multiple tenants coexisting in the same cluster. Since
these applications come from unrelated customers, they
are largely uncoordinated and mutually untrusting. Thus,
the potential for network performance interference and
denial of service attacks is high, and so performance
predictability remains a key concern [8] for customers
evaluating a move to cloud datacenters.

While data centers provide many mechanisms to sched-
ule local compute, memory, and disk resources [10, 15],
existing mechanisms for apportioning network resources
fall short. End host mechanisms such as TCP congestion
control (or variants such as TFRC and DCCP) are widely
deployed, scale to existing traffic loads, and, to a large
extent, determine network sharing today via a notion of
flow-based fairness. However, TCP does little to isolate
tenants from one another: poorly-designed or malicious
applications can consume network capacity, to the detri-
ment of other applications, by opening more flows or us-
ing non-compliant protocol implementations that ignore
congestion control. Thus, while resource allocation using
TCP is scalable and achieves high network utilization, it

does not provide robust performance isolation.
Switch and router mechanisms (e.g., CoS tags,

Weighted Fair Queuing, reservations, QCN [29]) are bet-
ter decoupled from tenant misbehavior. However, these
features, inherited from enterprise networks and the In-
ternet, are of limited use when applied to the demanding
cloud data center environment, since they cannot keep up
with the scale and the churn observed in datacenters (e.g.,
numbers of tenants, arrival rate of new VMs), can only
obtain isolation at the cost of network utilization, or might
require new hardware.

For a better solution, we propose Seawall, an edge based
mechanism that lets administrators prescribe how their
network is shared. Seawall works irrespective of traffic
characteristics such as the number of flows, protocols or
participants. Seawall provides a simple abstraction: given
a network weight for each local entity that serves as a traf-
fic source (VM, process, etc.), Seawall ensures that along
all network links, the share of bandwidth obtained by the
entity is proportional to its weight. To achieve efficiency,
Seawall is work-conserving, proportionally redistributing
unused shares to currently active sources.

Beyond simply improving security by mitigating DoS
attacks from malicious tenants and generalizing exist-
ing use-what-you-pay-for provisioning models, per-entity
weights also enable better control over infrastructure ser-
vices. Data centers often mix latency- and throughput-
sensitive tasks with background infrastructure services.
For instance, customer-generated web traffic contends
with the demands of VM deployment and migration tasks.
Per-entity weights obviate the need to hand-craft every
individual service.

Further, per-entity weights also enable better control
over application-level goals. Network allocation deci-
sions can have significant impact on end-to-end metrics
such as completion time or throughput. For example, in
a map-reduce cluster, a reduce task with a high fan-in
can open up many more flows than map tasks sharing the
same bottleneck. Flow-based fairness prioritizes high fan-
in reduce tasks over other tasks, resulting in imbalanced
progress that leaves CPU resources idle and degrades clus-
ter throughput. By contrast, Seawall decouples network
allocation from communications patterns.

Seawall achieves scalable resource allocation by reduc-
ing the network sharing problem to an instance of dis-
tributed congestion control. The ubiquity of TCP shows



that such algorithms can scale to large numbers of partici-
pants, adapt quickly to change, and can be implemented
strictly at the edge. Though Seawall borrows from TCP,
Seawall’s architecture and control loop ensure robustness
against tenant misbehavior. Seawall uses a shim layer at
the sender that makes policy compliance mandatory by
forcing all traffic into congestion-controlled tunnels. To
prevent tenants from bypassing Seawall, the shim runs in
the virtualization or platform network stack, where it is
well-isolated from tenant code.

Simply enforcing a separate TCP-like tunnel to every
destination would permit each source to achieve higher
rate by communicating with more destinations. Since this
does not achieve the desired policy based on per-entity
weights, Seawall instead uses a novel control loop that
combines feedback from multiple destinations.

Overall, we make three contributions. First, we iden-
tify problems and missed opportunities caused by poor
network resource allocation. Second, we explore at length
the tradeoffs in building network allocation mechanisms
for cloud data centers. Finally, we design and implement
an architecture and control loop that are robust against ma-
licious, selfish, or buggy tenant behavior. We have built
a prototype of Seawall as a Windows NDIS filter. From
experiments in a large server cluster, we show that Sea-
wall achieves proportional sharing of the network while
remaining agnostic to tenant protocols and traffic patterns
and protects against UDP- and TCP-based DoS attacks.
Seawall provides these benefits while achieving line rate
with low CPU overhead.

2. PROBLEMS WITH NETWORK SHAR-
ING IN DATACENTERS

To understand the problems with existing network al-
location schemes, we examine two types of clusters that
consist of several thousands of servers and are used in
production. The first type is that of public infrastructure
cloud services that rent virtual machines along with other
shared services such as storage and load balancers. In
these datacenters, clients can submit arbitrary VM im-
ages and choose which applications to run, who to talk to,
how much traffic to send, when to send that traffic, and
what protocols to use to exchange that traffic (TCP, UDP,
# of flows). The second type is that of platform cloud
services that support map-reduce workloads. Consider
a map-reduce cluster that supports a search engine. It is
used to analyze logs and improve query and advertisement
relevance. Though this cluster is shared across many users
and business groups, the execution platform (i.e., the job
compiler and runtime) is proprietary code controlled by
the datacenter provider.

Through case studies on these datacenters we observe
how the network is shared today, the problems that arise
from such sharing and the requirements for an improved
sharing mechanism.

In all datacenters, the servers have multiple cores, mul-
tiple disks, and tens of GBs of RAM. The network is a
tree like topology [26] with 20–40 servers in a rack and
a small over-subscription factor on the upstream links of
the racks.

2.1 Performance interference in infrastructure
cloud services

Recent measurements demonstrate considerable varia-
tion in network performance metrics – medium instances
in EC2 experience throughput that can vary by 66% [25,
43]. We conjecture, based on anecdotal evidence, that a
primary reason for the variation is the inability to control
the network traffic share of a VM.

Unlike CPU and memory, network usage is harder to
control because it is a distributed resource. For exam-
ple, consider the straw man where each VM’s network
share is statically limited to a portion of the host’s NIC
rate (the equivalent of assigning the VM a fixed number
of cores or a static memory size). A tenant with many
VMs can cumulatively send enough traffic to overflow the
receiver, some network link en route to that host, or other
network bottlenecks. Some recent work [33] shows how
to co-locate a trojan VM with a target VM. Using this, a
malicious tenant can degrade the network performance of
targeted victims. Finally, a selfish client, by using vari-
able numbers of flows, or higher rate UDP flows, can hog
network bandwidth.

We note that out-of-band mechanisms to mitigate these
problems exist. Commercial cloud providers employ a
combination of such mechanisms. First, the provider
can account for the network usage of tenants (and VMs)
and quarantine or ban the misbehavers. Second, cloud
providers might provide even less visibility into their
clusters to make it harder for a malicious client to co-
locate with target VMs. However, neither approach is fool-
proof. Selfish or malicious traffic can mimic legitimate
traffic, making it hard to distinguish. Further, obfuscation
schemes may not stop a determined adversary.

Our position, instead, is to get at the root of the problem.
The reason existing solutions fail is that they primarily
rely on TCP flows. But VMs are free to choose their
number of flows, congestion control variant, and even
whether they respond to congestion, allowing a small
number of VMs to disproportionately impact the network.
Hence, we seek alternative ways to share the network
that are independent of the clients’ traffic matrices and
implementations.

2.2 Poorly-performing schedules in Cosmos
We shift focus to Cosmos [9], a dedicated internal

cluster that supports map-reduce workloads. We obtained
detailed logs over several days from a production cluster
with thousands of servers that supports the Bing search
engine. The logs document the begin and end times of
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Figure 1: Distribution of the
number of flows per task in Cos-
mos.

Task
Type

#flows
per
task

% of
net
tasks

Aggregate 56.1 94.9
Partition 1.2 3.7
Extract 8.8 .2
Combine 2.3 1.0
other 1.0 .2

Figure 2: Variation
in number of flows per
task is due to the role
of the task

jobs, tasks and flows in this cluster.
Performance interference happens here as well. In-

stances of high network load are common. A few enti-
ties (jobs, background services) contribute a substantial
share of the traffic [22]. Tasks that move data over con-
gested links suffer collateral damage – they are more
likely to experience failures and become stragglers at the
job level [6, 22].

Uniquely, however, we find that the de facto way of
sharing the network leads to poor schedules. This is
because schedulers for map-reduce platforms [27, 45]
explicitly allocate local resources such as compute slots
and memory. But, the underlying network primitives pre-
vent them from exerting control over how tasks share the
network. Map-reduce tasks naturally vary in the number
of flows and the volume of data moved – a map task may
have to read from just one location but a reduce task has
to read data from all the map tasks in the preceding stage.
Figure 1 shows that of the tasks that read data across
racks, 20% of the tasks use just one flow, another 70% of
the tasks vary between 30 and 100 flows, and 2% of the
tasks use more than 150 flows. Figure 2 shows that this
variation is due to the role of the task.

Because reduce tasks use a large number of flows, they
starve other tasks that share the same paths. Even if the
scheduler is tuned to assign a large number of compute
slots for map tasks, just a few reduce tasks will cause
these map tasks to be bottlenecked on the network. Thus,
the compute slots held by the maps make little progress.

In principle, such unexpectedly idle slots could be put
to better use on compute-heavy tasks or tasks that use
less loaded network paths. However, current map-reduce
schedulers do not support such load redistribution.1

A simple example illustrates this problem. Figure 3
examines different ways of scheduling six tasks, five maps
that each want to move 1 unit of data across a link of unit
capacity and one reduce that wants to move 10 units of
data from ten different locations over the same link. If
the reduce uses 10 flows and each map uses 1 flow, as
they do today, each of the flows obtains 1

15 ’th of the link
bandwidth and all six tasks finish at t = 15 (the schedule
shown in black). The total activity period, since each task
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Figure 3: Poor sharing of the network leads to poor per-
formance and wasted resources

use local resources that no one else can use during the
period it is active, is 6 ∗ 15 = 90.

If each task gets an even share of the link, it is easy to
see that the map tasks will finish at t = 6 and the reduce
task finishes at t = 15. In this case, the total activity
period is 5 ∗ 6 + 1 ∗ 15 = 45, or a 50% reduction in
resource usage (the green solid line in Fig. 3). These
spare resources can be used for other jobs or subsequent
tasks within the same job.

The preceding example shows how the inherent varia-
tion in the way applications use the network can lead to
poor schedules in the absence of control over how the net-
work is shared. Our goal is to design ways of sharing the
network that are efficient (no link goes idle if pent-up de-
mand exists) and are independent of the traffic mix (UDP,
#’s of TCP flows).

We note that prescribing the optimal bandwidth shares
is a non-goal for this paper. In fact, evenly allocating
bandwidth across tasks is not optimal for some metrics.
If the provider has perfect knowledge about demands,
scheduling the shortest remaining transfer first will mini-
mize the activity period [18]. Going back to the example,
this means that the five map tasks get exclusive access
to the link and finish one after the other resulting in an
activity period of 30 (the red dashed line in Fig. 3). How-
ever, this scheme has the side-effect of starving all the
waiting transfers and requires perfect knowledge about
client demands, which is hard to obtain in practice.

2.3 Magnitude of scale and churn

(a) Cosmos: Scale (b) Cosmos: Churn

Figure 4: Scale and churn seen in the observed datacenter.

We attempt to understand the nature of the sharing prob-
lem in production datacenters. We find that the number
of classes to share bandwidth among is large and varies



frequently. Figure 4(a) shows the distribution of the num-
ber of concurrent entities that share the examined Cosmos
cluster. Note that the x-axis is in log scale. We see that at
median, there are 500 stages (e.g., map, reduce, join), 104

tasks and 105 flows in the cluster. The number of traffic
classes required is at least two orders of magnitude larger
than is feasible with current CoS tags or the number of
WFQ/DRR queues that switches can handle per port.

Figure 4(b) shows the distribution of the number of
new arrivals in the observed cluster. Note that the x-axis
is again in log scale. At median, 10 new stages, 104 new
tasks and 5 ∗ 104 new flows arrive in the cluster every
minute. Anecdotal analysis of EC2, based on decoding
the instance identifiers, concluded that O(104) new VM
instances are requested each day [34]. Updating VLANs
or re-configuring switches whenever a VM arrives is sev-
eral orders of magnitude more frequent than is achievable
in today’s enterprise networks.

Each of the observed data centers is large, with up to
tens of thousands of servers, thousands of ToR switches,
several tens of aggregation switches, load balancers, etc.
Predicting traffic is easier in platform datacenters (e.g.,
Cosmos) wherein high level descriptions of the jobs are
available. However, the scale and churn numbers indi-
cate that obtaining up-to-date information (e.g., within a
minute) may be a practical challenge. In cloud datacen-
ters (e.g., EC2) traffic is even harder to predict because
customer’s traffic is unconstrained and privacy concerns
limit instrumentation.

3. REQUIREMENTS
From the above case studies and from interviews with

operators of production clusters, we identify these require-
ments for sharing the datacenter network.

An ideal network sharing solution for datacenters has
to scale, keep up with churn and retain high network
utilization. It must do so without assuming well-behaved
or TCP-compliant tenants. Since changes to the NICs and
switches are expensive, take some time to standardize and
deploy, and are hard to customize once deployed, edge-
and software- based solutions are preferable.
• Traffic Agnostic, Simple Service Interface: Tenants

cannot be expected to know or curtail the nature of their
traffic. It is good business sense to accommodate di-
verse applications. While it is tempting to design shar-
ing mechanisms that require tenants to specify a traffic
matrix, i.e., the pattern and volume of traffic between
the tenant’s VMs, we find this to be an unrealistic bur-
den. Changes in demands from the tenant’s customers
and dynamics of their workload (e.g., map-reduce) will
change the requirements. Hence, it is preferable to
keep a thin service interface, e.g., have tenants choose
a class of network service.
• Require no changes to network topology or hard-

ware: Recently, many data center network topologies

have been proposed [2, 3, 16, 21]. Cost benefit trade-
offs indicate that the choice of topology depends on the
intended usage. For example, EC2 recently introduced
a full bisection bandwidth network for high perfor-
mance computing (HPC); less expensive EC2 service
levels continue to use the over-subscribed tree topol-
ogy. To be widely applicable, mechanisms to share the
network should be agnostic to network topology.
• Scale to large numbers of tenants and high churn:

To have practical benefit, any network sharing mecha-
nism would need to scale to support the large workloads
seen in real datacenters.
• Enforce sharing without sacrificing efficiency: Stat-

ically apportioning fractions of the bandwidth improves
sharing at the cost of efficiency and can result in band-
width fragmentation that makes it harder to accommo-
date new tenants. At the same time, a tenant with pent
up demand can use no more than its reservation even if
the network is idle.

To meet these requirements, Seawall relies on congestion-
controlled tunnels implemented in the host but requires
no per-flow state within switches. In this way, Seawall is
independent of the physical data center network. Seawall
does benefit from measurements at switches, if they are
available. Seawall scales to large numbers of tenants and
handles high churn, because provisioning new VMs or
tasks is entirely transparent to the physical network. As
tenants, VMs, or tasks come and go, there is no change
to the physical network through signaling or configura-
tion. Seawall’s design exploits the homogeneity of the
data center environment, where end host software is easy
to change and topology is predictable. These properties
enable Seawall to use a system architecture and algorithms
that are impractical on the Internet yet well-suited for data
centers.

4. Seawall DESIGN
Seawall exposes the following abstraction. A network

weight is associated with each entity that is sharing the
network. The entity can be any traffic source that is con-
fined to a single node, such as a VM, process, or col-
lection of port numbers, but not a tenant or set of VMs.
On each link in the network, Seawall provides the en-
tity with a bandwidth share that is proportional to its
weight; i.e., an entity k with weight wk sending traffic
over link l obtains this share of the total capacity of that
link Share(k, l) = wk

Σi∈Active(l)wi
. Here, Active(l) is the

set of entities actively sending traffic across l. The alloca-
tion is end-to-end, i.e., traffic to a destination will be lim-
ited by the smallest Share(k, l) over links on the path to
that destination. The allocation is also work-conserving:
bandwidth that is unused because the entity needs less
than its share or because its traffic is bottlenecked else-
where is re-apportioned among other users of the link in
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Figure 5: Seawall’s division of functionality. (New compo-
nents are shaded gray.)

proportion to their weights. Here, we present a distributed
technique that holds entities to these allocations while
meeting our design requirements.

Weights can be adjusted dynamically and allocations re-
converge rapidly. The special case of assigning the same
weight to all entities divides bandwidth in a max-min fair
fashion. By specifying equal weights to VMs, a public
cloud provider can avoid performance interference from
misbehaving or selfish VMs (§2.1). We defer describing
further ways to configure weights and enforcing global
allocations, such as over a set of VMs belonging to the
same tenant, to §4.6.

4.1 Data path
To achieve the desired sharing of the network, Sea-

wall sends traffic through congestion-controlled logical
tunnels. As shown in Figure 5, these tunnels are imple-
mented within a shim layer that intercepts all packets
entering and leaving the server. At the sender, each tunnel
is associated with an allowed rate for traffic on that tunnel,
implemented as a rate limiter. The receive end of the tun-
nel monitors traffic and sends congestion feedback back
to the sender. A bandwidth allocator corresponding to
each entity uses feedback from all of the entity’s tunnels
to adapt the allowed rate on each tunnel. The bandwidth
allocators take the network weights as parameters, work
independently of each other, and together ensure that the
network allocations converge to their desired values.

The Seawall shim layer is deployed to all servers in the
data center by the management software that is respon-
sible for provisioning and monitoring these servers (e.g.,
Autopilot, Azure Fabric). To ensure that only traffic
controlled by Seawall enters the network, a provider can
use attestation-based 802.1x authentication to disallow
servers without the shim from connecting to the network.

The feedback to the control loop is returned at regular
intervals, spaced T apart. It includes both explicit control
signals from the receivers as well as congestion feedback
about the path. Using the former, a receiver can explicitly
block or rate-limit unwanted traffic. Using the latter, the
bandwidth allocators adapt allowed rate on the tunnels. To
help the receiver prepare congestion feedback, the shim at
the sender maintains a byte sequence number per tunnel
(i.e., per (sending entity, destination) pair). The sender
shim stamps outgoing packets with the corresponding
tunnel’s current sequence number. The receiver detects
losses in the same way as TCP, by looking for gaps in the

Seawall Sndr. Shim Id

Seawall Rcvr. Shim Id

Traffic Sender Id

Bytes Received
% bytes dropped

Last Sequence Num. Rcvd.

Tunnel control

0 4octets

% bytes marked

Figure 6: Content of Seawall’s feedback packet

received sequence number space. At the end of an interval,
the receiver issues feedback that reports the number of
bytes received and the percentage of bytes deemed to
be lost (Figure 6). Optionally, if ECN is enabled along
the network path, the feedback also relays the fraction of
packets received with congestion marks.

We show efficient ways of stamping packets without
adding a header and implementing queues and rate lim-
iters in §5. Here, we describe the bandwidth allocator.

1: .Begin (weight W )
2: { rate r ← I , weight w ←W } . Initialize
3: .TakeFeedback (feedback f , proportion p)
4: {
5: if feedback f indicates loss then
6: r ← r − r ∗ α ∗ p . Multiplicative Decrease
7: else
8: r ← r + w ∗ p . Weighted Additive Increase
9: end if

10: }
Class 1: A Strawman Bandwidth Allocator: an instance of
this class is associated with each (entity, tunnel) pair.

4.2 Strawman
Consider the strawman bandwidth allocator in Class 1.

Recall that the goal of the bandwidth allocator is to con-
trol the entity’s network allocation as per the entity’s net-
work weight. Apart from the proportion variable, which
we’ll ignore for now, Class 1 is akin to weighted addi-
tive increase, multiplicative decrease (AIMD). It works
as follows: when feedback indicates loss, it multiplica-
tively decreases the allowed rate by α. Otherwise, the rate
increases by an additive constant.

This simple strawman satisfies some of our require-
ments. By making the additive increase step size a func-
tion of the entity’s weight, the equilibrium rate achieved
by an entity will be proportional to its weight. Unused
shares are allocated to tunnels that have pent up demand,
favoring efficiency over strict reservations. Global co-
ordination is not needed. Further, when weights change,
rates re-converge quickly (within one sawtooth period).

We derive the distributed control loop in Class 1 from
TCP-Reno though any other flow-oriented protocol [4, 1,
29, 32] can be used, so long as it can extend to provide
weighted allocations, as in MulTCP or MPAT [11, 39].
Distributed control loops are sensitive to variation in RTT.
However, Seawall avoids this by using a constant feedback
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period T , chosen to be larger than the largest RTT of the
intra datacenter paths controlled by Seawall. Conserva-
tively, Seawall considers no feedback within a period of T
as if a feedback indicating loss was received.

Simply applying AIMD, or any other distributed con-
trol loop, on a per-tunnel basis does not achieve the de-
sired per-link bandwidth distribution. Suppose a tenant
has N VMs and opens flows between every pair of VMs.
This results in a tunnel between each VM; with one AIMD
loop per tunnel, thus each VM achieves O(N) times its
allocation at the bottleneck link. Large tenants can over-
whelm smaller tenants, as shown in Figure 7.

Seawall improves on this simple strawman in three ways.
First, it has a unique technique to combine feedback from
multiple destinations. By doing so, an entity’s share of
the network is governed by its network weight and is in-
dependent of the number of tunnels it uses (§4.3). The
resulting policy is consistent with how cloud providers
allocate other resources, such as compute and memory,
to a tenant, yet is a significant departure from prior ap-
proaches to network scheduling. Second, the sawtooth
behavior of AIMD leads to poor convergence on paths
with high bandwidth-delay product. To mitigate this, Sea-
wall modifies the adaptation logic to converge quickly and
stay at equilibrium longer (§4.4). Third, we show how to
nest traffic with different levels of responsiveness to con-
gestion signals (e.g., TCP vs. UDP) within Seawall (§4.5).

4.3 Seawall’s Bandwidth Allocator
The bandwidth allocator, associated with each entity,

takes as input the network weight of that entity, the con-
gestion feedback from all the receivers that the entity is
communicating with and generates the allowed rate on
each of the entity’s tunnels. It has two parts: a distributed
congestion control loop that computes the entity’s cumu-
lative share on each link and a local scheduler that divides
that share among the various tunnels.

Step 1: Use distributed control loops to determine
per-link, per-entity share. The ideal feedback would be
per-link. It would include the cumulative usage of the en-
tity across all the tunnels on this link, the total load on the
link, and the network weights of all the entities using that
link. Such feedback is possible if switches implement ex-
plicit feedback (e.g., XCP, QCN) or from programmable
switch sampling (e.g., SideCar [38]). Lacking these, the

baseline Seawall relies only on existing congestion signals
such as end-to-end losses or ECN marks. These signals
identify congested paths, rather than links.

To approximate link-level congestion information us-
ing path-level congestion signals, Seawall uses a heuristic
based on the observation that a congested link causes
losses in many tunnels using that link. The logic is de-
scribed in Class 2. One instance of this class is associated
with each entity and maintains separate per-link instances
of the distributed control loop (rcl). Assume for now that
rc is implemented as per the strawman Class 1, though
we will replace it with Class 3. The sender shim stores
the feedback from each destination, and once every pe-
riod T , applies all the feedback cumulatively (lines 8–10).
The heuristic scales the impact of feedback from a given
destination in proportion to the volume of traffic sent to
that destination by the shim in the last period (line 7, 10).

To understand how this helps, consider the example
in Figure 7. An instance of class 2, corresponding to
the orange entity, cumulatively applies the feedback from
all three destinations accessed via the bottleneck link to
the single distributed control loop object representing
that link. Since the proportions sum up to 1 across all
destinations, the share of the orange entity will increase
by only so much as that of the green entity.

A simplification follows because the shim at the re-
ceiver reports the fraction of bytes lost or marked. Hence,
rather than invoking the distributed control loop once per
destination, Class 2 computes just three numbers per link
– the proportions of total feedback indicating loss, ECN
marks, and neither, and invokes the distributed control
loop once with each.

1: .Begin (weight W )
2: { rcl.Begin(W ) ∀ links l used by sender } . Initialize
3: .TakeFeedback (feedback fdest)
4: { store feedback }
5: .Periodically ()
6: {
7: proportion of traffic to d, pd = fd.bytesRcvd∑

fi.bytesRcvd

8: for all destinations d do
9: for all links l ∈ PathTo(d) do

10: rcl.TakeFeedback(fd, pd)
11: end for
12: end for
13: . rcl now contains per-link share for this entity
14: nl ← count of dest with paths through link l
15: . rd is allowed rate to d
16: rd ← minl∈PathTo(d)

((
βpd + 1−β

nl

)
rcl.rate

)
17: }
Class 2: Seawall’s bandwidth allocator: A separate in-
stance of this class is associated with each entity. It com-
bines per-link distributed control loops (invoked in lines 2,
10) with a local scheduler (line 16).

Step 2: Convert per-link, per-entity shares to per-link,
per-tunnel shares. Next, Seawall runs a local allocator to



assign rate limits to each tunnel that respects the entity’s
per-link rate constraints. A naı̈ve approach divides each
link’s allowed rate evenly across all downstream desti-
nations. For the example in Fig. 7, this leads to a 1

3

′
rd

share of the bottleneck link to the three destinations of
the orange entity. This leads to wasted bandwidth if the
demands across destinations vary. For example, if the
orange entity has demands (2x, x, x) to the three desti-
nations and the bottleneck’s share for this entity is 4x,
dividing evenly causes the first destination to get no more
than 4x

3 while bandwidth goes wasted. Hence, Seawall ap-
portions link bandwidth to destinations as shown in line
16, Class 2. The intuition is to adapt the allocations to
match the demands. Seawall uses an exponential moving
average that allocates β fraction of the link bandwidth
proportional to current usage and the rest evenly across
destinations. By default, we use β = .9. Revisiting the
(2x, x, x) example, note that while the first destination
uses up all of its allowed share, the other two destinations
do not, causing the first to get a larger share in the next
period. In fact, the allowed share of the first destination
converges to within 20% of its demand in four iterations.

Finally, Seawall converts these per-link, per-destination
rate limits to a tunnel (i.e., per-path) rate limit by com-
puting the minimum of the allowed rate on each link on
the path. Note that Class 2 converges to a lower bound
on the per-link allowed rate. At bottleneck links, this is
tight. At other links, such as those used by the green
flow in Figure 7 that are not the bottleneck, Class 2 can
under-estimate their usable rate. Only when the green
entity uses these other links on paths that do not overlap
with the bottleneck, will the usable rate on those links
increase. This behavior is the best that can be done using
just path congestion signals and is harmless since the rate
along each tunnel, computed as the minimum along each
link on that path, is governed by the bottleneck.

4.4 Improving the Rate Adaptation Logic
Weighted AIMD suffers from inefficiencies as adap-

tation periods increase, especially for paths with high
bandwidth-delay product [23] such as those in datacen-
ters. Seawall uses control laws from CUBIC [32] to
achieve faster convergence, longer dwell time at the equi-
librium point, and higher utilization than AIMD. As with
weighted AIMD, Seawall modifies the control laws to sup-
port weights and to incorporate feedback from multiple
destinations. If switches support ECN, Seawall also in-
corporates the control laws from DCTCP [4] to further
smooth out the sawtooth and reduce queue utilization at
the bottleneck, resulting in reduced latency, less packet
loss, and improved resistance against incast collapse.

The resulting control loop is shown in Class 3; the sta-
bility follows from that of CUBIC and DCTCP. Though
we describe a rate-based variant, the equivalent window
based versions are feasible and we defer those to future

1: .Begin (weight W )
2: { rate r ← I , weight w ←W , c← 0, inc← 0 } . Init
3: .TakeFeedback (feedback f , proportion p)
4: {
5: c← c+ γ ∗ p ∗ (f.bytesMarked− c)
6: . maintain smoothed estimate of congestion
7: if f.bytesMarked > 0 then
8: rnew ← r − r ∗ α ∗ p ∗ c . Smoothed mult. decrease
9: inc← 0

10: tlastdrop ← now
11: rgoal ← (r > rgoal)?r : r+rnew

2
12: else . Increase rate
13: if r < rgoal then . Less than goal, concave increase

14: ∆t = min
(
now−tlastdrop

Ts
, .9

)
15: ∆r = δ ∗ (rgoal − r) ∗ (1−∆t)3

16: r ← r + w ∗ p ∗∆r
17: else . Above goal, convex increase
18: r ← r + p ∗ inc
19: inc← inc+ w ∗ p
20: end if
21: end if
22: }
Class 3: Seawall’s distributed control loop: an instance of
this class is associated with each (link, entity) pair. Note
that Class 2 invokes this loop (lines 2, 10).

work. We elaborate on parameter choices in §4.6. Lines
14-17 cause the rate to increase along a concave curve, i.e.,
quickly initially and then slower as rate nears rgoal. After
that, lines 18-19 implement convex increase to rapidly
probe for a new rate. Line 5 maintains a smoothed es-
timate of congestion, allowing multiplicative decreases
to be modulated accordingly (line 8) so that the average
queue size at the bottleneck stays small.

4.5 Nesting Traffic Within Seawall

Nesting traffic of different types within Seawall’s
congestion-controlled tunnels leads to some special cases.
If a sender always sends less than the rate allowed by
Seawall, she may never see any loss causing her allowed
rate to increase to infinity. This can happen if her flows
are low rate (e.g., web traffic) or are limited by send or
receive windows (flow control). Such a sender can launch
a short overwhelming burst of traffic. Hence, Seawall
clamps the rate allowed to a sender to a multiple of the
largest rate she has used in the recent past. Clamping rates
is common in many control loops, such as XCP [23], for
similar reasons. The specific choice of clamp value does
not matter as long as it is larger than the largest possible
bandwidth increase during a Seawall change period.

UDP and TCP flows behave differently under Seawall.
While a full burst UDP flow immediately uses all the
rate that a Seawall tunnel allows, a set of TCP flows can
take several RTTs to ramp up; the more flows, the faster
the ramp-up. Slower ramp up results in lower shares on
average. Hence, Seawall modifies the network stack to
defer congestion control to Seawall’s shim layer. All other



TCP functionality, such as flow control, loss recovery and
in order delivery remain as before.

The mechanics of re-factoring are similar to Congestion
Manager (CM) [7]. Each TCP flow queries the appropri-
ate rate limiter in the shim (e.g., using shared memory) to
see whether a send is allowed. Flows that have a backlog
of packets register callbacks with the shim to be notified
when they can next send a packet. In virtualized settings,
the TCP stack defers congestion control to the shim by
expanding the paravirtualized NIC interface. Even for
tenants that bring their own OSes, the performance gain
from refactoring the stack incentivizes adoption. Some re-
cent advances in designing device drivers [36] reduce the
overhead of signaling across the VM boundary. However,
Seawall uses this simplification that requires less signaling:
using hypervisor IPCs, the shim periodically reports a
maximum congestion window to each VM to use for all
its flows. The max congestion window is chosen large
enough that each VM will pass packets to the shim yet
small enough to not overflow the queues in front of the
rate limiters in the shim.

We believe that deferring congestion control to the Sea-
wall shim is necessary in the datacenter context. Enforcing
network shares at the granularity of a flow no longer suf-
fices (see §2). Though similar in spirit to Congestion
Manager, Seawall refactors congestion control for differ-
ent purposes. While CM does so to share congestion
information among flows sharing a path, Seawall uses it to
ensure that the network allocation policy holds regardless
of the traffic mix. In addition, this approach allows for
transparent changes to the datacenter transport.

4.6 Discussion
Here, we discuss details deferred from the preceding

description of Seawall.

Handling WAN traffic: Traffic entering and leaving the
datacenter is subject to more stringent DoS scrubbing at
pre-defined chokepoints and, because WAN bandwidth is
a scarce resource, is carefully rate-limited, metered and
billed. We do not expect Seawall to be used for such traffic.
However, if required, edge elements in the datacenter,
such as load balancers or gateways, can funnel all incom-
ing traffic into Seawall tunnels; the traffic then traverses
a shim within the edge element. Traffic leaving the data
center is handled analogously.

Mapping paths to links: To run Seawall, each sender
requires path-to-link mapping for the paths that it is send-
ing traffic on (line 10, Class 2). A sender can acquire this
information independently, for example via a few tracer-
outes. In practice, however, this is much easier. Data
center networks are automatically managed by software
that monitors and pushes images, software and configura-
tion to every node [19, 28]. Topology changes (e.g., due
to failures and reconfiguration) are rare and can be dis-

seminated automatically by these systems. Many pieces
of today’s datacenter ecosystem use topology informa-
tion (e.g., Map-Reduce schedulers [27] and VM place-
ment algorithms). Note that Seawall does work with a
partial mapping (e.g., a high level mapping of each server
to its rack, container, VLAN and aggregation switch) and
does not need to identify bottleneck links. However, path-
to-link mapping is a key enabler; it lets Seawall run over
any datacenter network topology.

Choosing network weights: Seawall provides several
ways to define the sending entity and the corresponding
network weight. The precise choices depend on the dat-
acenter type and application. When VMs are spun up in
a cloud datacenter, the fabric sets the network weight of
that VM alongside weights for CPU and memory. The
fabric can change the VMs weight, if necessary, and Sea-
wall re-converges rapidly. However, a VM cannot change
its own weight. The administrator of a cloud datacenter
can assign equal weights to all VMs, thereby avoiding
performance interference, or assign weights in proportion
to the size or price of the VM.

In contrast, the administrator of a platform datacenter
can empower trusted applications to adjust their weights
at run-time (e.g., via setsockopt()). Here, Seawall can
also be used to specify weights per executable (e.g., back-
ground block replicator) or per process or per port ranges.
The choice of weights could be based on information that
the cluster schedulers have. For example, a map-reduce
scheduler can assign the weight of each sender feeding
a task in inverse proportion to the aggregation fan-in of
that task, which he knows before hand. This ensures that
each task obtains the same bandwidth (§2.2). Similarly,
the scheduler can boost the weight of outlier tasks that
are starved or are blocking many other tasks [6], thereby
improving job completion times.

Enforcing global allocations: Seawall has so far focused
on enforcing the network share of a local entity (VM, task
etc.). This is complementary to prior work on Distributed
Rate Limiters (DRL) [31] that controls the aggregate rate
achieved by a collection of entities. Controlling just the
aggregate rate is vulnerable to DoS: a tenant might focus
the traffic of all of its VMs on a shared service (such
as storage) or link (e.g., ToR containing victim tenant’s
servers), thereby interfering with the performance of other
tenants while remaining under its global bandwidth cap.
Combining Seawall with a global allocator such as DRL
is simple. The Seawall shim reports each entity’s usage to
the global controller in DRL, which employs its global
policy on the collection of entities and determines what
each entity is allowed to send. The shim then caps the rate
allowed to that entity to the minimum of the rate allowed
by Seawall and the rate allowed by DRL’s global policy.
Further, the combination lets DRL scale better, since with
Seawall, DRL need only track per-entity usage and not



              Root partitionvm0

Hypervisor

 

 

Rx seq #s

Queues & rate limiters
(per-tunnel) 

Add Seawall seq #
(bitsteal)

Rate controller
New ratelimitsvm0:1024

 => vm1:80

vm0:1026
 => vm2:80

vm0:1025
 => vm1:80

NDIS filter shim

Tunnel flow control

vsw
itch

N
IC

Feedback

Data

Figure 8: The Seawall prototype is split into an in-kernel
NDIS filter shim (shaded gray), which implements the rate
limiting datapath, and a userspace rate adapter, which im-
plements the control loop. Configuration shown is for in-
frastructure data centers.

per-flow state that it would otherwise have to.

Choosing parameters: Whenever we adapt past work,
we follow their guidance for parameters. Of the parame-
ters unique to Seawall, their specific values have the fol-
lowing impact. We defer a formal analysis to future work.
Reducing the feedback period T makes Seawall’s adapta-
tion logic more responsive at the cost of more overhead.
We recommend choosing T ∈ [10, 50] ms. The multi-
plicative factor α controls the decrease rate. With the
CUBIC/DCTCP control loop (see Class 3), Seawall is
less sensitive to α than the AIMD control loop, since the
former ramps back up more aggressively. In Class 2, β
controls how much link rate is apportioned evenly versus
based on current usage. With a larger β, the control loop
reacts more quickly to changing demands but delays ap-
portioning unused rate to destinations that need it. We
recommend β > .8.

5. Seawall PROTOTYPE
The shim layer of our prototype is built as an NDIS

packet filter (Figure 8). It interposes new code between
the TCP/IP stack and the NIC driver. In virtualized set-
tings, the shim augments the vswitch in the root partition.
Our prototype is compatible with deployments that use
the Windows 7 kernel as the server OS or as the root par-
tition of Hyper-V. The shim can be adapted to other OSes
and virtualization technologies, e.g., to support Linux and
Xen, one can reimplement it as a Linux network queuing
discipline module. For ease of experimentation, the logic
to adapt rates is built in user space whereas the filters on
the send side and the packet processing on the receive
side are implemented in kernel space.

Clocking rate limiters: The prototype uses software-
based token bucket filters to limit the rate of each tunnel.
Implementing software rate limiters that work correctly
and efficiently at high rates (e.g., 100s of Mbps) requires
high precision interrupts; which are not widely available

to drivers. Instead, we built a simple high precision clock.
One core, per rack of servers, stays in a busy loop, and
broadcasts a UDP heartbeat packet with the current time
to all the servers within that rack once every 0.1ms; the
shim layers use these packets to clock their rate limiters.
We built a roughly equivalent window-based version of
the Seawall shim as proof-of-concept. Windowing is easier
to engineer, since it is self-clocking and does not require
high precision timers, but incurs the expense of more
frequent feedback packets (e.g., once every 10 packets).

Bit-stealing and stateless offload compatibility: A
practical concern is the need to be compatible with NIC
offloads. In particular, adding an extra packet header to
support Seawall prevents the use of widely-used NIC of-
floads, such as large send offload (LSO) and receive side
coalescing (RSC) which only work for known packet for-
mats such as UDP or TCP. This leads to increased CPU
overhead and decreased throughput. On a quad core 2.66
Intel Core2 Duo with an Intel 82567LM NIC, sending at
the line rate of 1Gbps requires 20% more CPU without
LSO (net: 30% without vs 10% with LSO) [37].

NIC vendors have plans to improve offload support for
generic headers. To be immediately deployable without
performance degradation, Seawall steals bits from existing
packet headers, that is, it encodes information in parts
of the packet that are unused or predictable and hence
can be restored by the shim at the receiver. For both
UDP and TCP, Seawall uses up to 16 bits from the IP ID
field, reserving the lower order bits for the segmentation
hardware if needed. For TCP packets, Seawall repurposes
the timestamp option: it compresses the option Kind and
Length fields from 16 bits down to 1 bit, leaving the rest
for Seawall data. In virtualized environments, guest OSes
are para-virtualized to always include timestamp options.
The feedback is sent out-of-band in separate packets. We
also found bit-stealing easier to engineer than adding
extra headers, which could easily lead to performance
degradation unless buffers were managed carefully.

Offloading rate limiters and direct I/O: A few emerg-
ing standards to improve network I/O performance, such
as Direct I/O and SR-IOV, let guest VMs bypass the vir-
tual switch and exchange packets directly with the NIC.
But, this also bypasses the Seawall shim. Below, we pro-
pose a few ways to restore compatibility. However, we
note that the loss of the security and manageability fea-
tures provided by the software virtual switch has limited
the deployment of direct I/O NICs in public clouds. To
encourage deployment, vendors of such NICs plan to
support new features specific to datacenters.

By offloading token bucket- and window-based lim-
iters from the virtual switch to NIC or switch hardware,
tenant traffic can be controlled even if guest VMs di-
rectly send packets to the hardware. To support Seawall,
such offloaded rate limiters need to provide the same



granularity of flow classification (entity to entity tunnels)
as the shim and report usage and congestion statistics.
High end NICs that support stateful TCP, iSCSI, and
RDMA offloads already support tens of thousands to mil-
lions of window-control engines in hardware. Since most
such NICs are programmable, they can likely support the
changes needed to return statistics to Seawall. Switch po-
licers have similar scale and expressiveness properties. In
addition, low cost programmable switches can be used to
monitor the network for violations [38]. Given the diver-
sity of implementation options, we believe that the design
point occupied by Seawall, i.e., using rate- or window-
controllers at the network edge, is feasible now and as
data rates scale up.

6. EVALUATION
We ran a series of experiments using our prototype to

show that Seawall achieves line rate with minimal CPU
overhead, scales to typical data centers, converges to net-
work allocations that are agnostic to communications pat-
tern (i.e., number of flows and destinations) and protocol
mix (i.e., UDP and TCP), and provides performance isola-
tion. Through experiments with web workloads, we also
demonstrate how Seawall can protect cloud-hosted ser-
vices against DoS attacks, even those using UDP floods.

All experiments used the token bucket filter-based shim
(i.e., rate limiter), which is our best-performing prototype
and matches commonly-available hardware rate limiters.
The following hold unless otherwise stated: (1) Seawall
was configured with the default parameters specified in §4,
(2) all results were aggregated from 10 two minute runs,
with each datapoint a 15 second average and error bars
indicating the 95% confidence interval.
Testbed: For our experiments, we used a 60 server cluster
spread over three racks with 20 servers per rack. The
physical machines were equipped with Xeon L5520 2.27
GHz CPUs (quad core, two hyperthreads per core), Intel
82576 NICs, and 4GB of RAM. The NIC access links
were 1Gb/s and the links from the ToR switches up to
the aggregation switch were 10Gb/s. There was no over-
subscription within each rack. The ToR uplinks were 1:4
over-subscribed. We chose this topology because it is
representative of typical data centers.

For virtualization, we use Windows Server 2008R2
Hyper-V with Server 2008R2 VMs. This version of
Hyper-V exploits the Nehalem virtualization optimiza-
tions, but does not use the direct I/O functionality on the
NICs. Each guest VM was provisioned with 1.5 GB of
RAM and 4 virtual CPUs.

6.1 Microbenchmarks

6.1.1 Throughput and overhead
To evaluate the performance and overhead of Seawall,

we measured the throughput and CPU overhead of tunnel-
ing a TCP connection between two machines through the

Throughput CPU @ Sender CPU @ Receiver
(Mb/s) (%) (%)

Seawall 947± 9 20.7± 0.6 14.2± 0.4
NDIS 977± 4 18.7± 0.4 13.5± 1.1
Baseline 979± 6 16.9± 1.9 10.8± 0.8

Table 1: CPU overhead comparison of Seawall, a null
NDIS driver, and an unmodified network stack. Seawall
achieved line rate with low overhead.

shim. To minimize extraneous sources of noise, no other
traffic was present in the testbed during each experiment
and the sender and receiver transferred data from and to
memory.

Seawall achieved nearly line rate at steady state, with
negligible increase in CPU utilization, adding 3.8% at the
sender and 3.4% at the receiver (Table 1). Much of this
overhead was due to the overhead from installing a NDIS
filter driver: the null NDIS filter by itself added 1.8% and
2.7% overhead, respectively. The NDIS framework is
fairly light weight since it runs in the kernel and requires
no protection domain transfers.

Subtracting out the contributions from the NDIS filter
driver reveals the overheads due to Seawall: it incurred
slightly more overhead on the sender than the receiver.
This is expected since the sender does more work: on
receiving packets, a Seawall receiver need only buffer
congestion information and bounce it back to the sender,
while the sender incurs the overhead of rate limiting and
may have to merge congestion information from many
destinations.

Seawall easily scales to today’s data centers. The shim at
each node maintains a rate limiter, with a few KBs of state
each, for every pair of communicating entities terminating
at that node. The per-packet cost on the data path is fixed
regardless of data center size. A naive implementation of
the rate controller incurs O(DL) complexity per sending
entity (VM or task) whereD is the number of destinations
the VM communicates with and L is the number of links
on paths to those destinations. In typical data center
topologies, the diameter is small, and serves as an upper
bound for L. All network stacks on a given node have
collective state and processing overheads that grow at
least linearly with D; these dominate the corresponding
contributions from the rate controller and shim.

6.1.2 Traffic-agnostic network allocation
Seawall seeks to control the network share obtained by a

sender, regardless of traffic. In particular, a sender should
not be able to attain bandwidth beyond that allowed by
the configured weight, no matter how it varies protocol
type, number of flows, and number of destinations.

To evaluate the effectiveness of Seawall in achieving this
goal, we set up the following experiment. Two physical
nodes, hosting one VM each, served as the sources, with
one VM dedicated to selfish traffic and the other to well-
behaved traffic. One physical node served as the sink for



TCP victim
throughput (Mb/s)

Seawall 429.76
No protection 1.49

(a) Full Burst UDP

(b) Many TCP Flows

Figure 9: Seawall ensures that despite using full burst
UDP flows or many TCP flows, the share of a selfish user is
held proportional to its weight. (In (b), the bars show total
throughput, with the fraction below the divider correspond-
ing to selfish traffic and the fraction above corresponding to
well-behaved traffic.)

all traffic; it was configured with two VMs, with one VM
serving as the sink for well-behaved traffic and the other
serving as the sink for selfish traffic.

Both well-behaved and selfish traffic used the same
number of source VMs, with all Seawall senders assigned
the same network weight. The well-behaved traffic con-
sisted of a single long-lived TCP flow from each source,
while the selfish traffic used one of three strategies to
achieve a higher bandwidth share: using full burst UDP
flow, using large numbers of TCP flows, and using many
destinations
Selfish traffic = Full-burst UDP: Figure 9(a) shows the
aggregate bandwidth achieved by the well-behaved traf-
fic (long-lived TCP) when the selfish traffic consisted
of full rate UDP flows. The sinks for well-behaved and
selfish traffic were colocated on a node with a single
1Gbps NIC. Because each sender had equal weight, Sea-
wall assigned half of this capacity to each sender. Without
Seawall, selfish traffic overwhelms well-behaved traffic,
leading to negligible throughput for well-behaved traffic.
By bundling the UDP traffic inside a tunnel that imposed
congestion control, Seawall ensured that well-behaved traf-
fic retained reasonable performance.
Selfish traffic = Many TCP flows: Figure 9(b) shows the
bandwidth shares achieved by selfish and well-behaved
traffic when selfish senders used many TCP flows. As
before, well-behaved traffic ideally should have achieved
1
2 of the bandwidth. When selfish senders used the same
number of flows as well-behaved traffic, bandwidth was
divided evenly (left pair of bars). In runs without Seawall,
selfish senders that used twice as many flows obtained
2
3 ’rds the bandwidth because TCP congestion control di-

Figure 10: By combining feedback from multiple desti-
nations, Seawall ensures that the share of a sender remains
independent of the number of destinations it communicates
with. (The fraction of the bar below the divider corresponds
to the fraction of bottleneck throughput achieved by selfish
traffic.)

vided bandwidth evenly across flows (middle pair of bars).
Runs with Seawall resulted in approximately even band-
width allocation. Note that Seawall achieved slightly lower
throughput in aggregate. This was due to slower recovery
after loss– the normal traffic had one sawtooth per TCP
flow whereas Seawall had one per source VM; we believe
this can be improved using techniques from §4. When
the selfish traffic used 66 times more flows, it achieved
a dominant share of bandwidth; the well-behaved traf-
fic was allocated almost no bandwidth (rightmost pair of
bars). We see that despite the wide disparity in number of
flows, Seawall divided bandwidth approximately evenly.
Again, Seawall improved the throughput of well-behaved
traffic (the portion above the divider) by several orders of
magnitude.
Selfish traffic = Arbitrarily many destinations: This
experiment evaluated Seawall’s effectiveness against self-
ish tenants that opened connections to many destinations.
The experiment used a topology similar to that in Figure 7.
A well-behaved sender VM and a selfish sender VM were
located on the same server. Each sink was a VM and ran
on a separate, dedicated machine. The well-behaved traf-
fic was assigned one sink machine and the selfish traffic
was assigned a variable number of sink machines. Both
well-behaved and selfish traffic consisted of one TCP flow
per sink. As before, the sending VMs were configured
with the same weight, so that well-behaved traffic would
achieve an even share of the bottleneck.

Figure 10 plots the fraction of bottleneck bandwidth
achieved by well-behaved traffic with and without Seawall.
We see that without Seawall, the share of the selfish traffic
was proportional to the number of destinations. With
Seawall, the share of the well-behaved traffic remained
constant at approximately half, independent of the number



Throughput (Mb/s) Latency (s)
Seawall 181 0.61
No protection 157 0.91

Figure 11: Despite bandwidth pressure, Seawall ensures
that the average HTTP request latency remains small with-
out losing throughput.

of destinations.

6.2 Performance isolation for web servers
To show that Seawall protects against performance in-

terference similar to that shown in §2, we evaluated the
achieved level of protection against a DoS attack on a
web server. Since cloud datacenters are often used to host
web-accessible services, this is a common use case.

In this experiment, an attacker targeted the HTTP re-
sponses sent from the web server to its clients. To launch
such attacks, an adversary places a source VM and a
sink VM such that traffic between these VMs crosses the
same bottleneck links as the web server. The source VM
is close to the server, say on the same rack or machine,
while the sink VM is typically on another rack. Depend-
ing on where the sink is placed, the attack can target the
ToR uplink or another link several hops away.

All machines were colocated on the same rack. The
web server VM, running Microsoft IIS 7, and attacker
source VM, generating UDP floods, resided in separate,
dedicated physical machines. A single web client VM
requested data from the server and shared a physical ma-
chine with an attacker sink VM. The web clients used
WcAsync to generate well-formed web sessions. Session
arrivals followed a Poisson process and were exponen-
tially sized with a mean of 10 requests. Requests followed
a WebStone distribution, varying in size from 500B re-
sponses to 5MB responses with smaller files being much
more popular.

As expected, a full-rate UDP attack flood caused con-
gestion on the access link of the web client, reducing
throughput to close to zero and substantially increasing
latency. With Seawall, the web server behaved as if there
were no attack. To explore data points where the access
link was not overwhelmed, we dialed down the UDP at-
tack rate to 700Mbps, enough to congest the link but not
to stomp out the web server’s traffic. While achieving
roughly the same throughput as in the case of no protec-
tion, Seawall improved the latency observed by web traffic
by almost 50% (Figure 11). This is because sending the
attack traffic through a congestion controlled tunnel en-
sured that the average queue size at the bottleneck stays
small, thereby reducing queuing delays.

7. DISCUSSION
Here, we discuss how Seawall can be used to imple-

ment rich cloud service models that provide bandwidth
guarantees to tenants, the implications of our architectural
decisions given trends in data centers and hardware, and

the benefits of jointly modifying senders and receivers to
achieve new functionality in data center networks.

7.1 Sharing policies
Virtual Data Centers (VDCs) have been proposed [20,

17, 40] as a way to specify tenant networking require-
ments in cloud data centers. VDCs seek to approximate,
in terms of security isolation and performance, a dedi-
cated data center for each tenant and allows tenants to
specify SLA constraints on network bandwidth at per-port
and per-source/dest-pair granularities. When allocating
tenant VMs to physical hardware, the data center fabric
simultaneously satisfies the specified constraints while
optimizing node and network utilization.

Though Seawall policies could be seen as a simpler-
to-specify alternative to VDCs that closely matches the
provisioning knobs (e.g., disk, CPU, and memory size) of
current infrastructure clouds, Seawall’s weight-based poli-
cies can enhance VDCs in several ways. Some customers,
through analysis or operational experience, understand
the traffic requirements of their VMs; VDCs are attrac-
tive since they can exploit such detailed knowledge to
achieve predictable performance. To improve VDCs with
Seawall, the fabric uses weights to implement the hard
bandwidth guarantees specified in the SLA: with appro-
priate weights, statically chosen during node- and path-
placement, Seawall will converge to the desired allocation.
Unlike implementations based on static reservations [17],
the Seawall implementation is work-conserving, max-min
fair, and achieves higher utilization through statistical
multiplexing.

Seawall also improves a tenant’s control of its own VDC.
Since Seawall readily accepts dynamic weight changes,
each tenant can adjust its allocation policy at a fine gran-
ularity in response to changing application needs. The
fabric permits tenants to reallocate weights between differ-
ent tunnels so long as the resulting weight does not exceed
the SLA; this prevents tenants from stealing service and
avoids having to rerun the VM placement optimizer.

7.2 System architecture
Topology assumptions: The type of topology and avail-
able bandwidth affects the complexity requirements of
network sharing systems. In full bisection bandwidth
topologies, congestion can only occur at the core. System
design is simplified [44, 40, 30], since fair shares can be
computed solely from information about edge congestion,
without any topology information or congestion feedback
from the core.

Seawall supports general topologies, allowing it to pro-
vide benefits even in legacy or cost-constrained data cen-
ters networks. Such topologies are typically bandwidth-
constrained in the core; all nodes using a given core link
need to be accounted for to achieve fair sharing, band-
width reservations, and congestion control. Seawall ex-



plicitly uses topology information in its control layer to
prevent link over-utilization.
Rate limiters and control loops: Using more rate lim-
iters enables a network allocation system to support richer,
more granular policies. Not having enough rate limiters
can result in aliasing. For instance, VM misbehavior can
cause Gatekeeper [40] to penalize unrelated VMs sending
to the same destination. Using more complex rate lim-
iters can improve system performance. For instance, rate
limiters based on multi-queue schedulers such as DWRR
or Linux’s hierarchical queuing classes can utilize the
network more efficiently when rate limiter parameters
and demand do not match, and the self-clocking nature
of window-based limiters can reduce switch buffering re-
quirements as compared to rate-based limiters. However,
having a large number of complex limiters can constrain
how a network sharing architecture can be realized, since
NICs and switches do not currently support such rate
limiters at scale.

To maximize performance and policy expressiveness,
a network allocation system should support a large num-
ber of limiters of varying capability. The current Seawall
architecture can support rate- and window-based limiters
based in hardware and software. As future work, we are
investigating ways to map topology information onto hi-
erarchical limiters; to compile policies given a limited
number of available hardware limiters; and to tradeoff
rate limiter complexity with controller complexity, us-
ing longer adaptation intervals when more capable rate
limiters are available.

7.3 Partitioning sender/receiver functionality
Control loops can benefit from receiver-side informa-

tion and coordination, since the receiver is aware of the
current traffic demand from all sources and can send feed-
back to each with lower overhead. Seawall currently uses
a receiver-driven approach customized for map-reduce to
achieve better network scheduling; as future work we are
building a general solution at the shim layer.

In principal, a purely receiver-directed approach to im-
plementing a new network allocation policy, such as that
used in [44, 40], might reduce system complexity since
the sender TCP stack does not need to be modified. How-
ever, virtualization stack complexity does not decrease
substantially, since the rate controller simply moves from
the sender to the receiver. Moreover, limiting changes to
one endpoint in data centers provides little of the adoption
cost advantages found in the heterogeneous Internet envi-
ronment. Modifying the VMs to defer congestion control
to other layers can help researchers and practitioners to
identify and deploy new network sharing policies and
transport protocols for the data center.

A receiver-only approach can also add complexity.
While some allocation policies are easy to attain by
treating the sender as a black box, others are not. For

instance, eliminating fatesharing from Gatekeeper and
adding weighted, fair work-conserving scheduling ap-
pears non-trivial. Moreover, protecting a receiver-only
approach from attack requires adding a detector for non-
conformant senders. While such detectors have been stud-
ied for WAN traffic [13], it is unclear whether they are
feasible in the data center. Such detectors might also per-
mit harmful traffic that running new, trusted sender-side
code can trivially exclude.

8. RELATED WORK
Proportional allocation of shared resources has been

a recurring theme in the architecture and virtualization
communities [42, 15]. To the best of our knowledge,
Seawall is the first to extend this to the data center network
and support generic sending entities (VMs, applications,
tasks, processes, etc.).

Multicast congestion control [14], while similar at first
blush, targets a very different problem since they have to
allow for any participant to send traffic to the group while
ensuring TCP-friendliness. It is unclear how to adapt
these schemes to proportionally divide the network.

Recent work in hypervisor, network stack, and soft-
ware routers have shown that software-based network
processing, like that used in Seawall for monitoring and
rate limiting, can be more flexible than hardware-based
approaches yet achieve high performance. [35] presents
an optimized virtualization stack that achieves compara-
ble performance to direct I/O. The Sun Crossbow network
stack provides an arbitrary number of bandwidth-limited
virtual NICs [41]. Crossbow provides identical semantics
regardless of underlying physical NIC and transparently
leverages offloads to improve performance. Seawall’s us-
age of rate limiters can benefit from these ideas.

QCN is an emerging Ethernet standard for congestion
control in datacenter networks [29]. In QCN, upon de-
tecting a congested link, the switch sends feedback to the
heavy senders. The feedback packet uniquely identifies
the flow and congestion location, enabling senders that
receive feedback to rate limit specific flows. QCN uses
explicit feedback to drive a more aggressive control loop
than TCP. While QCN can throttle the heavy senders, it
is not designed to provide fairness guarantees, tunable
or otherwise. Further, QCN requires changes to switch
hardware and can only cover purely Layer 2 topologies.

Much work has gone into fair queuing mechanisms in
switches [12]. Link local sharing mechanisms, such as
Weighted Fair Queuing and Deficit Round Robin, sepa-
rate traffic into multiple queues at each switch port and
arbitrate service between the queues in some priority or
proportion. NetShare [24] builds on top of WFQ support
in switches. This approach is useful to share the network
between a small number of large sending entities (e.g.,
a whole service type, such as “Search” or “Distributed
storage” in a platform data center). The number of queues



available in today’s switches, however, is several orders
of magnitude smaller than the numbers of VMs and tasks
in today’s datacenters. More fundamentally, since link
local mechanisms lack end-to-end information they can
let significant traffic through only to be dropped at some
later bottleneck on the path. Seawall can achieve better
scalability by mapping many VMs onto a small, fixed
number of queues and achieves better efficiency by using
end-to-end congestion control.

9. FINAL REMARKS
Economies of scale are pushing distributed applica-

tions to co-exist with each other on shared infrastructure.
The lack of mechanisms to apportion network bandwidth
across these entities leads to a host of problems, from re-
duced security to unpredictable performance and to poor
ability to improve high level objectives such as job com-
pletion time. Seawall is a first step towards providing data
center administrators with tools to divide their network
across the sharing entities without requiring any coopera-
tion from the entities. It is novel in its ability to scale to
massive numbers of sharing entities and uniquely adapts
ideas from congestion control to the problem of enforcing
network share agnostic to traffic type. The design space
that Seawall occupies – push functionality to software at
the network edge – appears well-suited to emerging hard-
ware trends in data center and virtualization hardware.
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Notes
1Perhaps because it is hard to predict such events and find

appropriate tasks at short notice. Also, running more tasks
requires spare memory and has initialization overhead.
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