SSLShader: Cheap SSL Acceleration with Commodity Processors

Keon Jang®, Sangjin Han*, Seungyeop Han", Sue Moon*, and KyoungSoo Park*

*KAIST

Abstract

Secure end-to-end communication is becoming increas-
ingly important as more private and sensitive data is
transferred on the Internet. Unfortunately, today’s SSL
deployment is largely limited to security or privacy-
critical domains. The low adoption rate is mainly at-
tributed to the heavy cryptographic computation over-
head on the server side, and the cost of good privacy on
the Internet is tightly bound to expensive hardware SSL
accelerators in practice.

In this paper we present high-performance SSL accel-
eration using commodity processors. First, we show that
modern graphics processing units (GPUs) can be easily
converted to general-purpose SSL accelerators. By ex-
ploiting the massive computing parallelism of GPUs, we
accelerate SSL cryptographic operations beyond what
state-of-the-art CPUs provide. Second, we build a trans-
parent SSL proxy, SSLShader, that carefully leverages
the trade-offs of recent hardware features such as AES-
NI and NUMA and achieves both high throughput and
low latency. In our evaluation, the GPU implementation
of RSA shows a factor of 22.6 to 31.7 improvement over
the fastest CPU implementation. SSLShader achieves
29K transactions per second for small files while it trans-
fers large files at 13 Gbps on a commodity server ma-
chine. These numbers are comparable to high-end com-
mercial SSL appliances at a fraction of their price.

1 Introduction

Secure Sockets Layer (SSL) and Transport Layer Secu-
rity (TLS) have served as de-facto standard protocols
for secure transport layer communication for over 15
years. With endpoint authentication and content encryp-
tion, SSL delivers confidential data securely and prevents
eavesdropping and tampering by random attackers. On-
line banking, e-commerce, and Web-based email sites
typically employ SSL to protect sensitive user data such
as passwords, credit card information, and private con-

*University of Washington

tent. Operating atop the transport layer, SSL is used for
various application protocols such as HTTP, SMTP, FTP,
XMPP, and SIP, just to name a few.

Despite its great success, today’s SSL deployment is
largely limited to security-critical domains or enterprise
applications. A recent survey shows that the total num-
ber of registered SSL certificates is slightly over one
million [[18]], reflecting less than 0.5% of active Internet
sites [19]. Even in the SSL-enabled sites, SSL is often
enforced only for a fraction of activities (e.g., password
submission or billing information). For example, Web-
based email sites such as Windows Live Hotmaill] and
Yahoo! Maiﬂ do not support SSL for the content, mak-
ing the private data vulnerable for sniffing in untrusted
wireless environments. Popular social networking sites
such as Facebookﬂ and Twittelﬂ allow SSL only when
users make explicit requests with a noticeable latency
penalty. In fact, few sites listed in Alexa top 500 [2]
enable SSL by default for the entire content.

The low SSL adoption is mainly attributed to its heavy
computation overhead on the server side. The typical
processing bottleneck lies in the key exchange phase
involving public key cryptography [22,29]]. For in-
stance, even the latest CPU core cannot handle more
than 2K SSL transactions per second (TPS) with 1024-
bit RSA while the same core can serve over 10K plain-
text HTTP requests per second. As a workaround, high-
performance SSL servers often distribute the load to a
cluster of machines [52] or offload cryptographic opera-
tions to dedicated hardware proxies [3}/41/6,/13]] or accel-
erators [9,|10,|14L/15]]. Consequently, user privacy in the
Internet still remains an expensive option even with the
modern processor innovation.

Our goal is to find a practical solution with commodity
processors to bring the benefits of SSL to all private In-

Uhttp://explore.live.com/windows-live-hotmail/
Zhttp://mail.yahoo.com/
3http://www.facebook.com/
“http://www.twitter.com/

ternet communication. In this paper, we present our ap-
proach in two steps. First, we exploit commodity graph-
ics processing units (GPUs) as high-performance crypto-
graphic function accelerators. With hundreds of stream-
ing processing cores, modern GPUs execute the code
in the single-instruction-multiple-data (SIMD) fashion,
providing ample computation cycles and high memory
bandwidth to massively parallel applications. Through
careful algorithm analysis and parallelization, we accel-
erate RSA, AES and SHA-1 cryptographic primitives
with GPUs. Compared with previous GPU approaches
that take hundreds of milliseconds to a few seconds to
reach the peak RS A performance [|37,56], our implemen-
tation produces the maximum throughput with one or
two orders of magnitude smaller latency, which is well-
suited for interactive Web environments.

Second, we build SSLShader, a GPU-accelerated SSL
proxy that transparently handles SSL transactions for
existing network servers. SSLShader selectively of-
floads cryptographic operations to GPUs to achieve high
throughput and low latency depending on the load level.
Moreover, SSLShader leverages the recent hardware fea-
tures such as multi-core CPUs, the non-uniform memory
access (NUMA) architecture, and the AES-NI instruc-
tion set.

Our contributions are summarized as follows:

(i) We provide detailed algorithm analysis and paral-
lelization techniques to scale the performance of RSA,
AES and SHA-1 in GPUs. To the best of our knowl-
edge, our GPU implementation of RSA shows the high-
est throughput reported so far. On a single NVIDIA
GTXS580 card, our implementation shows 92K RSA op-
erations/s for 1024-bit keys, a factor of 27 better perfor-
mance over the fastest CPU implementation with a single
2.66 GHz Intel Xeon core.

(if) We introduce opportunistic workload offloading
between CPU and GPU to achieve both low latency and
high throughput. When lightly loaded, SSLShader uti-
lizes low-latency cryptographic code execution by CPUs,
but at high load it batches and offloads multiple crypto-
graphic operations to GPUs.

(iii) We build and evaluate a complete SSL proxy sys-
tem that exploits GPUs as SSL accelerators. Unlike prior
GPU work that focuses on microbenchmarks of crypto-
graphic operations, we focus on systems interaction in
handling the SSL protocol. SSLShader achieves 13 Gbps
SSL large-file throughput handling 29K SSL TPS on a
single machine with two hexa-core Intel Xeon 5650’s.

The rest of the paper is organized as follows. In Sec-
tion [2] we provide a brief background on SSL, popular
cryptographic operations, and the modern GPU. In Sec-
tions [3and 4] we explain our optimization techniques for
RSA, AES and SHA-1 implementations in a GPU. In

Client TCP 3-way handshake Server

ClientHello

ServerHello

Encrypted pre-master secret

RSA encryption

A 4

RSA decryption

ServerFinished

Sender: Encrypted data Receiver:
HMAC + [€-""""""""-mmmmmmm- »| | AES decryption
AES encryption M + HMAC

v ° v

Figure 1: SSL handshake and data

Sections [5] and [6} we show the design and evaluation of
SSLShader. In Sections[7]and [8l we discuss related work
and conclude.

2 Background

In this section, we provide a brief introduction to
SSL and describe the cryptographic algorithms used in
TLS_RSA_WITH_AES_128_CBC_SHA, one of the most
popular SSL cipher suites. We also describe the ba-
sic architecture of modern GPUs and strategies to ex-
ploit them for cryptographic operations. In this paper
we use TLS_RSA_WITH_AES_128_CBC_SHA as a ref-
erence cipher suite, but we believe our techniques to be
easily applicable to other similar algorithms.

2.1 Secure Sockets Layer

SSL was developed by Netscape in 1994 and has been
widely used for secure transport layer communication.
SSL provides three important security properties in pri-
vate communication: data confidentiality, data integrity,
and end-point authentication. From SSL version 3.0, the
official name has changed to TLS and the protocol has
been standardized by IETF. SSL and TLS share the same
protocol structure, but they are incompatible, since they
use different key derivation functions to generate session
and message authentication code (MAC) keys.

Figure |1| describes how the SSL protocol works. A
client sends a ClientHello message to the target server
with a list of supported cipher suites and a nonce. The
server picks one (asymmetric cipher, symmetric cipher,
MAC algorithm) tuple in the supported cipher suites, and
responds with a ServerHello message with the chosen ci-
pher suite, its own certificate and a server-side nonce.
Upon receiving the ServerHello message, the client ver-
ifies the server’s certificate, generates a pre-master se-
cret and encrypts it with the server’s public key. The en-
crypted pre-master secret is delivered to the server, and
both parties independently generate two symmetric ci-
pher session keys and two MAC keys using a predefined
key derivation function with the pre-master key and the
two nonces as input. Each (session, MAC) key pair is

used for encryption and MAC generation for one direc-
tion (e.g., client to server or server to client).

In the Web environment where most objects are small,
the typical SSL bottleneck lies in decrypting the pre-
master secret with the server-side private key. The client-
side latency could increase significantly if the server is
overloaded with many SSL connections. When the size
of an object is large, the major computation overhead
shifts to symmetric cipher execution and MAC calcula-
tion.

2.2 Cryptographic Operations

TLS_RSA_WITH_AES_128 CBC_SHA uses RSA, AES,
and a Secure Hash Algorithm (SHA) based HMAC. Be-
low we sketch out each cryptographic operation.

221 RSA

RSA [53]] is an asymmetric cipher algorithm widely used
for signing and encryption. To encrypt, a plaintext mes-
sage is first transformed into an integer M, then turned
into a ciphertext C with:

C:=M°modn €))

with a public key (n, e). Decryption with a private key
(n, d) can be done with

M :=C? mod n)

C, M, d, and n are k-bit large integers, typically 1,024,
2,048, or even 4,096 bits (or roughly 300, 600, or 1,200
decimal digits). Since e is chosen to be a small number
(common choices are 3, 17, and 65,537), public key en-
cryption is 20 to 60 times faster than private key decryp-
tion. RSA operations are compute-intensive, especially
for SSL servers. Because servers perform expensive pri-
vate key decryption for each SSL connection, handling
many concurrent connections from clients is a challenge.
In this paper we focus on private key RSA decryption,
the main computation bottleneck on the server side.

222 AES

Advanced Encryption Standard (AES) [32] is a popular
symmetric block cipher algorithm in SSL. AES divides
plaintext message into 128-bit fixed blocks and encrypts
each block into ciphertext with a 128, 192, or 256-bit
key. The encryption algorithm consists of 10, 12, or
14 rounds of transformations depending on the key size.
Each round uses a different round key generated from the
original key using Rijndael’s key schedule.

We implement AES encryption and decryption in
cipher-block chaining (CBC) mode. In CBC mode, each
plaintext block is XORed with a random block of the
same size before encryption. The i-th block’s random
block is simply the (i — 1)-th ciphertext block, and the
initial random block, called the Initialization Vector (IV),

is randomly generated and is sent in plaintext along with
the encrypted message for decryption.

2.2.3 HMAC

Hash-based Message Authentication Code (HMAC) is
used for message integrity and authentication. HMAC
is defined as

HMAC(k,m) = H((k® opad)||H((k®ipad)|m)) (3)

H is a hash function, k is a key, m is a message, and ipad
and opad are predefined constants. Any hash function
can be combined with HMAC and we use SHA-1 as it is
the most popular.

23 GPU

Modern GPUs have hundreds of processing cores that
can be used for general-purpose computing beyond
graphics rendering. Both NVIDIA and AMD provide
convenient programming libraries to use their GPUs for
computation or memory-intensive applications. We use
NVIDIA GPUs here, but our techniques are applicable to
AMD GPUs as well.

A GPU executes code in the SIMD fashion that shares
the same code path working on multiple data at the same
time. For this reason, a GPU is ideal for parallel appli-
cations requiring high memory bandwidth to access dif-
ferent sets of data. The code that the GPU executes is
called a kernel. To make full use of massive cores in a
GPU, many threads are launched and run concurrently
to execute the kernel code. This means more parallelism
generally produces better utilization of GPU resources.

GPU kernel execution takes the following four steps:
(i) the DMA controller transfers input data from host
memory to GPU (device) memory; (ii) a host program
instructs the GPU to launch the kernel,; (iii) the GPU ex-
ecutes threads in parallel; and (iv) the DMA controller
transfers the result data back to host memory from de-
vice memory.

The latest NVIDIA GPU is the GTX580, codenamed
Fermi [20]. It has 512 cores consisting of 16 Stream-
ing Multiprocessors (SMs), each of which has 32 Stream
Processors (SPs or CUDA cores). In each SM, 48 KB
shared memory (scratchpad RAM), 16 KB L1 cache,
and 32,768 4-byte registers allow high-performance pro-
cessing. To hide the hardware details, NVIDIA provides
Compute Unified Device Architecture (CUDA) libraries
to software programmers. CUDA libraries allow easy
programming for general-purpose applications. More
details about the architecture can be found in [47,48].

The fundamental difference between CPUs and GPUs
comes from how transistors are composed in the pro-
cessor. A GPU devotes most of its die area to a large
array of Arithmetic Logic Units (ALUs). In contrast,
most CPU resources serve a large cache hierarchy and

a control plane for sophisticated acceleration of a single
thread (e.g., out-of-order execution, speculative loads,
and branch prediction), which are not much effective
in cryptography. Our key insight of this work is that
compute-intensive cryptographic operations can benefit
from the abundant ALUs in a GPU, given enough paral-
lelism (intra- and inter-flow).

3 Optimizing RSA for GPU

For RSA implementation on GPUs, the main challenge
is to achieve high throughput while keeping the la-
tency low. Naive porting of CPU algorithms to a GPU
would cause severe performance degradation, wasting
most GPU computational resources. Since a single GPU
thread runs at 10x to 100x slower speed than a CPU
thread, the naive approach would yield unacceptable la-
tency.

In this section, we describe our approach and design
choices to maximize performance of RSA decryption on
GPUs. The key point in maximizing RSA performance
lies in high parallelism. We exploit parallelism in the
message level, in modular exponentiation, and finally in
the word-size modular multiplication. We show that our
parallel Multi-Precision (MP) algorithm obtains a signif-
icant gain in throughput and curbs latency increase to a
reasonable level.

3.1 How to Parallelize RSA Operations?

Our main parallelization idea is to batch multiple RSA
ciphertext messages and to split those messages into
thousands of threads so that we can keep all GPU cores
busy. Below we give a brief description of each level.

Independent Messages: At the coarsest level, we pro-
cess multiple messages in parallel. Each message is in-
herently independent of other messages; no coordination
between threads belonging to different messages is re-
quired.

Chinese Remainder Theorem (CRT): For each mes-
sage, can be broken into two independent modular
exponentiations with CRT [51]].

My = 4™ (P=1) mod p (4a)
My = 4™ (a-1) mod ¢ (4b)

where p and g are k/2-bit prime numbers chosen in pri-
vate key generation (n = p X g). All four parameters, p,
q,d mod (p—1), and d mod (g — 1), are part of the RSA
private key [38]].

With CRT, we perform the two k/2-bit modular expo-
nentiations in parallel. Each of which requires roughly
8 times less computation than k-bit modular exponenti-
ation. Obtaining M from M; and M, adds only small

overheads, compared to the gain from two k/2-bit mod-
ular exponentiations.

Large Integer Arithmetic: Since the word size of a
computer is usually 32 or 64-bit, large integers must
be broken into small multiple words. We can run mul-
tiple threads, each of which processes a word. How-
ever, we need carry-borrow processing or base extension
in order to coordinate the outcome of per-word opera-
tions between threads. We consider two algorithms, stan-
dard Multi-Precision (MP) and Residue Number System
(RNS), to represent and compute large integers. These
algorithms are commonly used in software and hardware
implementations of RSA.

3.2 Optimization Strategies

In our MP implementation we exploit the following two
optimization strategies: (i) reducing the number of mod-
ular multiplications with the Constant Length Nonzero
Windows (CLNW) partitioning algorithm; (ii) adopting
Montgomery’s reduction algorithm to improve the effi-
ciency of each modular multiplication routine performed
at each step of the exponentiation. These optimization
techniques are also helpful for both serial software and
hardware implementations, as well as for our GPU par-
allel implementations.

CLNW: With the binary square-and-multiply method,
the expected number of modular multiplications is 3k/2
for k-bit modular exponentiation [41]. For example, the
expected number of operations for 512-bit modular ex-
ponentiation (used for 1024-bit RSA with CRT) is 768.
The number can be reduced with sliding window tech-
niques that scan multiple bits, instead of individual bits
of the exponent.

We have implemented CLNW and reduced the number
of modular multiplications from 768 to 607, achieving a
21% improvement [28]]. One may instead use the Vari-
able Length Nonzero Window (VLNW) algorithm [26],
but it is known that VLNW does not give any perfor-
mance advantage over CLNW on average [50].

Montgomery Reduction: In a modular multiplication
¢ = a-b mod n, an explicit k-bit modulo operation fol-
lowing a naive multiplication should be avoided. Mod-
ulo operation requires a trial division by modulus » for
the quotient, in order to compute the remainder. Divi-
sion by a large divisor is very expensive in both software
and hardware implementations and is not easily paral-
lelizable, and thus inappropriate especially for GPUs.

Montgomery’s algorithm allows a modular multiplica-
tion without a trial division [45]. Let

a=a-Rmodn (®)]

be the montgomeritized form of a modulo n, where R and
n are coprime and n < R. Montgomery multiplication

Algorithm 1 MMUL: Montgomery multiplication

Input: a,b
Output: g-b-R~! mod n
Precomputation: R~! such that R-R~! =1 (mod n)
7' suchthat R-R~ ' —n-n' =1
T+«—ab
M < T -n' mod R
c U« (T+M-n)/R
. if U > n then
return U —n
else
return U
. end if

RN

is defined as in Algorithm If we set R to be 2%, the
division and modulo operations with R can be done very
efficiently with bit shifting and masking.

Note that the result of Montgomery multiplication of
aand bisstilla-b-R ! mod n=a-b mod n, the mont-
gomeritized form of a - b. For a modular exponentiation,
we convert a ciphertext C into C, get C? with successive
Montgomery multiplication operations, and invert it into
C? mod n. In this process, expensive divisions or mod-
ulo operations with n are eliminated.

The implementation of Montgomery multiplication
depends on data structures used to represent large inte-
gers. Below we introduce our MP implementation.

3.3 MP implementation

The standard Multi-Precision algorithm is the most
convenient way to represent large integers in a com-
puter [41]l. A k-bit integer A is broken into s = [k/w]
words of a;’s, where i = 1,...,s and w is typically set to
the bit-length of a machine word (e.g., 32 or 64). Here we
describe our MP implementation of Montgomery multi-
plication and various optimization techniques.

331

In Algorithm([I] the multiplication of two s-word integers
appear three times in lines 1, 2, and 3. The time complex-
ity of the serial multiplication algorithm that performs a
shift-and-add of partial products is O(s?) (also known
as the schoolbook multiplication). Implementation of
an O(s) parallel algorithm with linear scalability is not
trivial due to carry processing. We have implemented
an O(s) parallel algorithm on s processors (threads) that
works in two phases. In Figure |2} hiword and loword are
high and low w bits of a 2w-bit product respectively, and
gray cells represent updated words by s threads. This
parallelization scheme is commonly used for hardware
implementation.

In the first phase, we accumulate s x 1 partial products
in 2s steps (s steps for each loword and hiword), ignoring
any carries. Carries are accumulated in a separate array
through the processing. Each step is simple enough to be

Multiplication

Phase 1:
parallel accumulation

6(3:i2:5

hiword of a;-b; |3

Phase 2: deferred
carry processing

3] +ol0loi0folo]

Figure 2: Parallel multiplication example of 649 x 627 =
406,923. For simplicity, a word holds a decimal digit rather
than w-bit binary in the example.

translated into a small number of GPU instructions since
it does not involve cascading carry propagation.

The second phase repeatedly adds the carries to the
intermediate result and renews the carries. This phase
stops when all carries become 0, which can be checked
in one instruction with the __any () voting function in
CUDA [48]]. The number of iterations is s — 1 in the
worst case, but for most cases it takes one or two iter-
ations since small carries (less than 2s) rarely produce
additional carries.

Our simple O(s) algorithm is a significant improve-
ment over the prior RSA implementation on GPUs. Har-
rison and Waldron parallelize s X s multiplications as fol-
lows [37]]: Each of s threads independently performs
s x 1 multiplications in serial. Then s partial products are
summed up in additive reduction in logn steps, each of
which is done in serial as well. The resulting time com-
plexity is O(slogs), and most of the threads are under-
utilized during the final reduction phase.

We also implemented RNS-based Montgomery multi-
plications. We adopt Kawamura’s algorithm [40]]. Even
with extensive optimizations, the RNS implementation
performs significantly slower than MP, and we use only
the MP version in this paper. For future reference, we
point out two main problems that we have encountered.
First, CUDA does not support native integer division and
modulo operations, on which the RNS Montgomery mul-
tiplication heavily depends. We have found that the per-
formance of emulated operations is dependent on the size
of a divisor and degrades significantly if the length of a
divisor is longer than 14 bits. Second, since the num-
ber of threads is not a power of two, warps are not fully
utilized and array index calculation becomes slow.

(3) Warp
Naive (1) Utilization (5)

GTX580 [Eetyrs l I

conflicts

(6) 64-bit words

(7) Avoiding bank (8) Instruction-level
Optimization CLNW

(9) Post-exponentiation offloading

2 (4)

0 10,000 20,000 30,000

40,000 50,000 60,000 70,000 80,000

Throughput (operations/s)

Figure 3: 1024-bit RSA performance with various optimization techniques. Sub-bars are placed in the same order as the techniques

shown in Section[3.3.2] except for CLNW.

3.3.2 Optimizations

On top of CRT parallelization, CLNW, Montgomery
reduction, modular exponentiation, and square-and-
multiply optimization techniques, we conduct further op-
timizations as below. Figure [3] demonstrates how the
overall throughput of the system increases as each op-
timization technique is applied. The naive implementa-
tion includes CRT parallelization, basic implementation
of Montgomery multiplication, and square-and-multiply
modular exponentiation. For a 1024-bit ciphertext mes-
sage with CRT, each of two 512-bit numbers (a cipher-
text message) spans across 16 threads, each of which
holds a 32-bit word, and those 16 threads are grouped
as a CUDA block.

(1) Faster Calculation of M - n: In Algorithm the cal-
culation of M and M - n requires two s X s multiplication
operations. We reduce these into one s X 1 and one s X s
multiplication and interleave them in a single loop. This
technique was originally introduced in [45]], and we ap-
ply it for the parallel implementation.

(2) Interleaving T + M - n: We interleave the calculation
of T+ M -n in a single multiplication loop. This opti-
mization effectively reduces the overhead of loop con-
struction and carry processing. This technique was used
in the serial RSA implementation on a Digital Signal
Processor (DSP) [34], and we parallelize it.

(3) Warp Utilization: In CUDA, a warp (a group of 32
threads in a CUDA block), is the basic unit of schedul-
ing. Having only 16 threads in a block causes under-
utilization of warps, limiting the performance. We avoid
this behavior by having blocks be responsible for multi-
ple ciphertext messages, for full utilization of warps.

(4) Loop Unrolling: We unrolled the loop in Mont-
gomery multiplication, by using the #pragma unroll
feature supported in CUDA. Giving more optimization
chances to the compiler is more beneficial than in CPU
programming, due to the lack of out-of-order execution
capability in GPU cores.

(5) Elimination of Divergency: Since threads in a warp
execute the same instruction in lockstep, code-path di-
vergency in a warp is expensive (all divergent paths must
be taken in serial). For example, we minimize the diver-
gency in our code by replacing if statements with flat
arithmetic operations.

(6) Use of 64-bit Words: The native support for inte-
ger multiplication on GPUs, which is the basic building
block of large integer arithmetic, has recently been added
and is still evolving. GTX580 supports native single-
cycle instructions that calculate hiword or loword of the
product of two 32-bit integers.

Use of 64-bit words instead of 32-bit introduce a new
trade-off on GPUs. While the multiplication of two 64-
bit words takes four GPU cycles [48]], it can halve the
required number of threads and loop iterations depicted
in Figure [2 We find that this optimization is highly ef-
fective when applied.

(7) Avoiding Bank Conflicts: The 64-bit access pattern
to the intermediate results and carries in Figure [] causes
bank conflicts in shared memory between independent
ciphertext messages in the same warp. We avoid this
bank conflict by padding the arrays to adjust access pat-
tern in shared memory.

(8) Instruction-Level Optimization: We have manually
inspected and optimized the core code (about 10 lines)
inside the multiplication loop, which is the most time-
consuming part in our GPU code. We changed the code
order at the CUDA C source level, until we got the de-
sired assembly code. This includes the elimination of re-
dundant instructions and pipeline stalls caused by Read-
After-Write (RAW) register dependencies [47]].

(9) Post-Exponentiation Offloading: Fusion of two par-
tial modular exponentiation results from (@) is done on
the CPU with the Mixed-Radix Conversion (MRC) algo-
rithm as follows [27]]:

M:=M+[M —M) (g ' mod p)]-q (6)

Although this processing is much lighter than modular
exponentiation operations, the relative cost has become
significant as we optimize the modular exponentiation
process extensively. We have offloaded the above equa-
tion to the GPU, parallelizing at the message level. We
also offload other miscellaneous processing in decryp-
tion such as integer-to-octet-string conversion and PKCS
#1 depadding [38].

3.4 RSA Microbenchmarks

We compare our parallel RSA implementation to a se-
rial CPU implementation. We use Intel Integrated Per-

4| == GTX580 throughput
1| —0—GTX580 latency

CPU-throughput

Throughput (operations/s)
S
o
]
o
Latency (ms)

’ 1 2 4 8 16 32 64 128 256 512 1024'
Number of ciphertext messages

(a) 1024-bit

2000 1 g GTX580 throughput

0000 1 —o—GTX580 latency
8000 -

6000 -
4000 -
2000 -

= e

w
o
Latency (ms)

N
o

Throughput (operations/s)

\[CPU throughput

ol
0

+ 0
1 2 4 8 16 32 64 128 256 512
Number of ciphertext messages

(b) 2048-bit

Figure 4: RSA MP performance on a GTX580. A single core (Xeon X5650 2.66 GHz) is used for CPU performance.

| Processor | 512] 1024 | 2048 | 4096
Latency CPU core 0.07 0.3 2.3 14.9
(ms) GTX580, MP 1.1 3.8| 13.83| 5246
Throughput | CPU core 13,924 3,301 438 67
(ops/s) GTX580, MP 906 263 72 19
Peak CPU core 13,924 3,301 438 67
(ops/s) GTX580, MP | 322,167 | 74,732 | 12,044 | 1,661

Table 1: RSA performance with various key sizes

formance Primitives (IPP) [8]] as a CPU counterpart. IPP
is the fastest implementation we have tried, outperform-
ing other publicly available libraries for all key sizes. It
performs 3,301 RSA decryption operations/s for a 1024-
bit key on a 2.66 GHz CPU core. Since this number is
higher than what Kounavis et al. recently report (2,990
operations/s on a 3.00 GHz CPU core) in [43]], we believe
its CPU reference implementation is a fair comparison to
our GPU code.

Table [T] summarizes the performance of RSA on the
CPU (a single 2.66 GHz core) and GTX580. With only
one ciphertext message per launch, the GPU’s perfor-
mance shows an order of magnitude worse throughput
(operations per second) and latency (the execution time).
Given enough parallelism, however, the GPU produces
much higher throughput than the CPU. The MP imple-
mentation on the GTX580 shows 23.1x, 22.6x, 27.5x,
and 31.7x speedup compared with a single CPU core, for
512-bit, 1024-bit, 2048-bit, and 4096-bit RSA, respec-
tively. The performance gains are comparable to what
we expect from three hexa-core CPUs.

Figure [] shows the correlation between latency and
throughput of our MP implementation. The throughput
improves as the number of concurrent messages grows,
but reaches a plateau beyond 512 messages. The latency
increases very slowly, but grows linearly with the number
of messages beyond the point where the GPU is fully
utilized. Even at peak throughput the latency stays below
7 to 13.7 ms for more than 70, 000 operations/s for 1024-
bit RSA decryption on a GTX580 card.

Many cipher algorithms, such as DSA [5]], Diffie Hell-
man key exchange [33]], and Elliptic Curve Cryptography
(ECC) [42], depend on modular exponentiation as well

as RSA. Our optimization techniques presented in Sec-
tion [3|are applicable to those algorithms and can offer an
efficient platform for their GPU implementation.

We summarize our RSA implementation on GPUs.
First, the parallel RSA implementation on a GPU brings
significant throughput improvement over a CPU. Second,
we need many ciphertext messages in a batch for full
utilization of GPUs with enough parallelism, in order to
take a performance advantage over CPUs. In Section[5.4]
we introduce the concept of asynchronous concurrent
execution, which allows smaller batch sizes and thus
shorter queueing and processing latency, while yielding
even better throughput. Lastly, while the GPU imple-
mentation shows reasonable latency, it still imposes per-
ceptible delay for SSL clients. This problem is addressed
in Section with opportunistic offloading, which ex-
ploits the CPU for low latency when under-loaded and
offloads to the GPU for high throughput when a suffi-
cient number of operations are pending.

4 Accelerating AES and HMAC-SHA1
4.1 GPU-accelerated AES

Since CBC mode encryption has a dependency on the
previous block result, AES encryption in the same flow is
serialized. On the other hand, decryption can be run con-
currently as the previous block result is already known
at decryption time. Therefore, AES-CBC decryption in
a GPU runs much faster than AES-CBC encryption.

We have implemented AES for a GPU with the fol-
lowing optimizations. As shown in [36], on-chip shared
memory offers two orders of magnitude faster access
time than global memory on GPU. To exploit this fact,
at the beginning of the AES cipher function, each thread
copies part of the lookup table into shared memory. Ad-
ditionally, we have chosen to derive the round key at each
round, instead of using pre-expanded keys from global
memory. Though it incurs more computation overhead,
it avoids expensive global memory access and reduces
the total latency.

r 90 35000 +

140000 - - 24
N 20000 1 [‘==Throughput 80 30000 4 120000 | L o1
g = Throughput (w/o copy) 70 18
£ 16000 1 —o~1 atency(ms) 602 25000 100000 o
= 12000 1 L 50 < 20000 A 80000 4 r
2 g 15006 12
5 40 § 15000 60000
S 8000 4, CPU Throughput (AES-NI-on 30 = F9
£ soas v 5o 10000 40000 CPU Throughput L6
4000 4 pe—o—T
5000 20000 A L
1217 |-€PU Throughput 10 1351 3343 3
0 o 04 o 04)
32 64 128 256 512 1024 2048 4096 32 64 128 256 512 1024 2048 4096 32 64 128 256 512 1024 2048 4096

Number of flows

(a) 128-bit AES-CBC encryption

Number of flows

(b) 128-bit AES-CBC decryption

Number of flows

(c) HMAC-SHA1

Figure 5: AES and HMAC-SHA1 performance on GTX580. A single core (Xeon X5650 2.66 GHz) is used for CPU performance.

4.2 AES-NI

Intel has recently added the AES instruction set (AES-
NI) to the latest lineup of x86 processors. AES-NI runs
one round of AES encryption or decryption with a sin-
gle instruction (AESENC or AESDEC), and its perfor-
mances for AES-GCM and AES-CTR are 2.5 to 6 times
faster than a software implementation [[7,39]. AES-NI is
especially useful for handling large files since data trans-
fer overhead between host and device memory quickly
becomes the bottleneck for GPU-accelerated AES. How-
ever, GPU-based symmetric cipher offloading still pro-
vides a benefit, if (i) CPUs do not support AES-NI, (ii)
CPUs become the bottleneck handling the network stack
and other server code, or (iii) other cipher functions (such
as RC4 and 3DES) are needed.

4.3 GPU-accelerated HMAC-SHA1

The performance of HMAC-SHA1 depends on SHAI.
Thus, we focus on the SHA1 algorithm. SHA1 takes 512
bits at each round and generates a 20-byte digest. Each
round uses the previous round’s result; thus SHA1 can
not be run in parallel within a single message. Our SHA1
optimization in a GPU is divided into two parts: (i) re-
ducing memory access by processing data in the register,
and (ii) reducing required memory footprint to fit in the
GPU registers.

Each round of SHA-1 is divided into four different
steps, and at each step it processes 20 32-bit words; in
total, 80 intermediate 32-bit values are used. A typical
CPU implementation pre-calculates all 80 words before
processing, which requires a 320-byte buffer. However,
the algorithm only depends on the previous 16 words
at any time. We calculate each intermediate data on
demand, thus reducing the memory requirement to 64
bytes, which fits into the registersﬂ

To avoid global memory allocation, we unroll all loops
and hardcode the buffer access with constant indices.
This way the compiler register-allocates all the necessary

5The idea to reduce the memory footprint is from a Web post
in an NVIDIA forum: http://forums.nvidia.com/index.php?
showtopic=102349

16 words. With this approach we see about 100% perfor-
mance improvement over the naive implementation.

4.4 Microbenchmarks

Figure [5] compares the throughput and latency results of
AES and HMAC-SHA1 with one GTX580 card and one
2.66 GHz CPU core. For the CPU implementations,
we use Intel IPP, which shows the best performance of
AES and SHA-1 as of writing this paper. We fix the
flow length to 16 KB, the largest record size in SSL,
and vary the number of flows from 32 to 4,096. Our
AES-CBC implementation shows the peak performance
of 8.8 Gbps and 10.0 Gbps for encryption and decryption
respectively when we consider the data transfer cost, but
the numbers go up to 21.9 Gbps and 33.9 Gbps with-
out the copy cost. AES-NI shows 5 Gbps and 15 Gbps
even with a single CPU core and thus one or two cores
would exceed our GPU performance. Our GPU version
matches 6.5 and 7.4 CPU cores without AES-NI support
for encryption and decryption. For HMAC-SHA1, our
GPU implementation shows 31 Gbps with the data trans-
fer cost and 124 Gbps without, and matches the perfor-
mance of 9.4 CPU cores.

Our findings are summarized as follows. (i) AES-NI
shows the best performance per dollar, (ii) the data trans-
fer cost in GPU reduces the performance by a factor of
3.39 and 4 in AES and HMAC-SHAI, and (iii) the GPU
helps in offloading HMAC-SHA1 and AES workloads
when CPUs do not support AES-NI. Since a recent hard-
ware trend shows that the GPU cores are being integrated
into the CPU [16,|54], we expect the impact of the data
transfer overhead will decrease in the near future.

5 SSLShader

We build a scalable SSL reverse proxy, SSLShader, to
incorporate the high-performance cryptographic opera-
tions using a GPU into SSL processing. Though proxy-
ing generally incurs redundant I/O and data copy over-
heads, we choose transparent proxing because it pro-
vides the SSL acceleration benefit to existing TCP-based

http://forums.nvidia.com/index.php?showtopic=102349
http://forums.nvidia.com/index.php?showtopic=102349

—» Push —>] [] [=p> TTI I Pop —»>

TTTT—| Pop

—» Push —> T [| [=p> TIIT—» Pop —»

Input ~~ - oo Output ~-=--------
queue queues

GPU
— Single crypto queue

=—> Batched crypto > [[[=> GPU

Figure 6: Overview of SSLShader

servers without code modification. SSLShader interacts
directly with the SSL clients while communicating with
the back-end server in plaintext. We assume that the
SSLShader-to-server communication takes place in a se-
cure environment, but one can encrypt the back-end traf-
fic with a shared symmetric key in other cases.

The design goal of SSLShader is twofold. First, the
performance should scale well to the number of CPU and
GPU cores. Second, SSLShader should curb the latency
to support interactive environments while improving the
throughput at high load. In this section we outline the
key design features of SSLShader.

5.1 Basic Design

Figure [6] depicts the overall architecture of SSLShader.
SSLShader is implemented in event-driven threads. To
scale with multi-core CPUs, it spawns one worker thread
per CPU core and each thread accepts and processes
client-side SSL connections independently. Each con-
nection is accepted and processed by the same thread to
avoid cache bouncing between CPU cores. SSLShader
also creates one GPU-interfacing thread per GPU that
launches GPU kernel functions to offload cryptographic
operations.

Each cryptographic operation type (RSA, AES,
HMAC-SHAL1) has its own request input queue per
worker thread. Cryptographic operations of the same
type are inserted into the same queue, and are moved
to a queue in the GPU-interfacing thread when the in-
put queue size exceeds a certain threshold value. GPU-
interfacing threads simply offload the requested opera-
tions in a batch by launching GPU kernels. The results
are placed back on a per-worker thread output queue so
that the worker thread can resume the execution of the
next step in SSL processing.

5.2 Opportunistic Offloading

In order to fully exploit the parallelism, we should batch
multiple cryptographic operations and offload them to
the GPU. On the GTX580, the peak 1024-bit RSA per-
formance is achieved when batching 256-512 operations,
that is, handling 256-512 concurrent SSL connections.

Cryptographic operation l Minimum l Maximum

RSA (1024-bit) 16 512
AES128-CBC Decryption 32 (2,048) 2,048
AES128-CBC Encryption 128 (2,048) 2,048

HMAC-SHAL1 128 2,048

Table 2: Thresholds for GPU cryptographic operations per sin-
gle kernel launch. Numbers in parenthesis are thresholds when
AES-NI is used.

While batching generally improves the GPU throughput,
a naive approach of batching a fixed number of opera-
tions would increase processing latency when the load
level is low.

We propose a simple GPU offloading algorithm that
reduces response latency when lightly loaded and im-
proves the overall throughput at high load. When a
worker thread inserts a cryptographic request to an in-
put queue, it first checks the number of the same type of
requests in all workers’ queues, and its minimum batch-
ing threshold (the number of queued requests required
for GPU offloading). If the number of requests is above
the threshold, SSLShader moves all the requests in the
worker thread queue to a GPU-interfacing thread queue.
The batching thresholds are determined based on the
GPU’s throughput. The minimum threshold is set when
the GPU performs better than a single CPU core, and
the maximum is set when the maximum throughput is
achieved. We limit maximum batch size since pushing
too many requests into a queue in the GPU-interfacing
thread could result in long delay without throughput im-
provement. The thresholds can be drawn automatically
from benchmark tests at configuration time. For AES,
thresholds are different when AES-NI is enabled. If
AES-NI is available, we set the minimum threshold to
be the same as the maximum threshold, hoping to ben-
efit from extra processing power only when the CPU is
overloaded. Table [2] shows the thresholds we use with
the GTXS580.

For low latency and high parallelism, the worker
thread prioritizes /O events, and processes crypto-
graphic operations when it has no I/O event. Worker
threads handle cryptographic operations in the first-in
first-out (FIFO) manner. We put a timestamp on each
cryptographic request as it arrives, and use the times-
tamp to find the earliest arrived operation. The GPU also
uses FIFO scheduling for processing cryptographic op-
erations. The GPU-interfacing thread looks at the head
timestamp of requests by the type, and processes the ear-
liest request’s type in a batch. Sometimes it takes too
long for the worker thread to drain the cryptographic
operations in its queue and this can lead to I/O star-
vation. To prevent this, we have worker threads peri-
odically check for I/O events while processing crypto-
graphic operations.

We also tested priority-based scheduling by having the

)

[
o
=
=
o
S

= 12000 -

@

§ so000 {|2570C 7 10000

= BASYNC 16 streams s

< J

& 60000 - % 8000

< 2 6000 -

3 40000 - 5

£ 3 4000 -

S] IS

3 20000 £ 2000 4

=

= 0 - 0+
1 4 16 64 256 1024 32 64 128

Number of ciphertext messages

(a

=

1024-bit RSA decryption

Number of flows

(b) 128-bit AES-CBC encryption

40000 -
35000 -
30000 -
25000 -
20000 -
15000 -
10000 -
5000 -

Throughput (Mbps)

256 512 1024 2048 ’ 32 64 128 256 512 1024 2048

Number of flows
(c) HMAC-SHA1

Figure 7: Performance improvement from asynchronous concurrent execution with 16 streams, independent CUDA contexts of
commands that execute in order asynchronously. Each flow size is 16KB for (b) and (c).

CPU prioritize HMAC-SHAT1 and AES encryption, and
the GPU prioritize RSA and AES decryption. This strat-
egy often improves the peak throughput, but we reject
this idea because lower-priority cryptographic operations
could suffer from starvation, and we noticed unstable
throughput and longer latency in many cases.

5.3 NUMA-aware GPU Sharing

NUMA systems are becoming commonplace in server
machines. In NUMA systems, the communication cost
between CPU cores varies greatly, depending on the
number of NUMA hops. For high scalability, it is nec-
essary to reduce inter-core communication by careful
NUMA-aware data placement.

When we use a GPU, we should consider the follow-
ing issues: (i) GPUs are known to perform badly when
used by multiple threads simultaneously due to high
context switching overhead [48]]; (ii) gathering crypto-
graphic operations from multiple cores brings more par-
allelism and helps to exploit the full GPU capacity; and
(iii)) memory access or synchronization across NUMA
nodes is much more expensive than intra-NUMA node
operation. For these reasons, we limit the sharing of
GPU s to the threads in the same NUMA node.

For intra-NUMA node communication we choose
threads over processes for faster sharing of the queues as
offloading cryptographic operations requires data move-
ment between worker and GPU-interfacing threads. For
inter-NUMA node communication, we choose processes
for ease of connection handling without kernel lock con-
tention at socket creation and closure.

5.4 Asynchronous Concurrent Execution

The most recent CUDA device with Compute Capability
2.0 provides concurrent GPU kernel execution and data
copy for better utilization of the GPU. On the GTX580,
up to sixteen different kernels can run simultaneously
within a single GPU, and copies from device to host
and host to device can overlap with each other as well

as with kernel execution To benefit from concurrent ex-
ecution and copy, SSLShader launches all GPU trans-
actions asynchronously. With asynchronous concurrent
execution, we see up to 1,399%, 731%, and 890% per-
formance improvements over synchronous execution in
RSA, AES encryption and HMAC-SHAL1, respectively.
Figure [7] depicts the effect of asynchronous concurrent
execution by varying the batch size. When the batch size
is small, asynchronous concurrent execution improves
performance greatly as idle GPU cores can be better uti-
lized. But even for a large batch size such as 2,048,
we see 30 ~ 60% performance improvement in HMAC-
SHA1 and AES. The overlap of DMA data copy and
kernel execution improves the performance even when
all cores in the GPU are already utilized. In RSA, the
performance improvement in the batch size of 1024 is
fairly small compared to those of AES or HMAC-SHA1
because the data copy time in RSA is relatively smaller
than the execution time and the GPU is sufficiently uti-
lized with large batch sizes.

We believe our design and implementation strategies
in this section are not limited to only SSLShader, and can
be applied to any applications that want to exploit the
massive parallelism of GPUs. While none of the tech-
niques are ground-breaking, their combination brings a
drastic difference in the utilization of GPUs, latency re-
duction, and throughput improvement.

6 Evaluation

In this section we evaluate the effectiveness of
SSLShader using HTTPS, the most popular protocol that
uses SSL. We show that SSLShader achieves high perfor-
mance in connection handling and large-file data transfer
with small latency overhead.

6.1 System Configuration

Our server platform is equipped with two Intel Xeon
X5650 (hexa-core 2.66 GHz) CPUs, 24 GB memory,
and two NVIDIA GTX580 cards (512 cores, 1.5 GHz,

29,056

1024 bits

27,752

@ lighttpd
® SSLShader

of concurrent clients

2048 bits

16000

21,819

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000
HTTPS transactions per second

Figure 8: Transactions per second

1.5 GB RAM). We install Ubuntu Linux 10.04, NVIDIA
CUDA Diriver v256.40, and Intel ixgbeﬁ driver v2.1.4
on the server. As back-end web server software, we run
lighttpcﬂ v1.4.28 with 12 worker processes to match
the number of CPU cores. In all experiments, we run
lighttpd and SSLShader on the same machine.

We compare SSLShader against lighttpd with
OpenSSL. For fair comparison, we spent a fair amount
of time to patch OpenSSL 1.0.0 to use IPP 7.0 which
has AES-NI support as well as the latest RSA and
SHA-1 optimizations. We find that IPP 7.0 improves
the RSA, AES, and HMAC performance by 55%, 10%,
and 22% respectively from the OpenSSL 1.0.0 default
implementation. As our goal is to offload SSL compu-
tation overhead, we focus on static content to prevent
the back-end web server from becoming a bottleneck.
To generate HTTP requests, we run the Apache HTTP
server benchmark tool (ab) [[1]] on seven 2.66 GHz Intel
Nehalem quad-core client machines. We modified ab
to support rate-limiting and to report latency for each
connection.

6.2 SSL Handshake Performance

To evaluate the performance of connection handshake,
we measure the number of SSL transactions per second
(TPS) for a small HTTP object (43 bytes including HTTP
headers). Figure[8|shows the maximum TPS achieved by
varying the number of concurrent connections. For 1024-
bit RSA keys, SSLShader achieves 29K TPS, which
is 2.5 times faster than 11.2K TPS for 1ighttpd with
OpenSSL. SSLShader achieves 21.8K TPS, for 2048-
bit RSA, which is 6 times higher than 3.6K TPS of
lighttpd. Given that 768-bit RSA was cracked early
in 2010 [12] and that NIST recommends 2048-bit RSA
for secure operations as of 2011 [46], the large perfor-
mance improvement with 2048-bit RSA is significant.
In SSLShader, the throughput increases as the concur-
rency increases because the GPU can exploit more par-
allelism. In 2048-bit RSA, 21.8K is close to the peak

Shttp://sourceforge.net/projects/e 1000/files/ixgbe%20stable/
http://www.lighttpd.net/

Image Name | CPU Usage (%)
Kernel NIC device driver 2.32
Kernel (including TCP/IP stack) 60.35
SSLShader 5.31
libc (memory copy and others) 9.88
IPP + libcrypto (cryptographic operations) 12.89
lighttpd (back-end web server) 4.90
others 4.35

Table 3: CPU usage breakdown using oprofile

throughput of 24.1K msg/s with two GTX580s, mean-
ing that the GPUs are almost fully utilized. However,
the performance of RSA 1024-bit is much less than the
peak throughput of a single GPU, which implies that the
GPUs have idle computing capacity.

We run oprofile to analyze the bottleneck for the
RSA 1024-bit case with 16,000 concurrent clients. Ta-
ble [3] summarizes where the CPU cycles are spent. We
see that more than 60% of CPU time is spent in the ker-
nel for accepting connections and networking I/O; 13%
of the CPU cycles are spent for cryptographic operations,
mostly for the Pseudo Random Function (PRF) used for
generating session keys from the master secret in the
handshake step. We chose not to offload PRF to GPUs
because it is run only once in the handshake step and
its computation overhead is less than 1/10th of the RSA
decryption overhead. We conclude that the performance
bottleneck is in the Linux kernel that does not scale to
multi-core CPUs for connection acceptance, as is also
observed in [57].

6.3 Response Time Distribution

Naively using a GPU for cryptographic operations could
lead to high latency when the load level is low. Oppor-
tunistic offloading guards against this problem, minimiz-
ing the latency when the load is light and maximizing
the throughput when the load is high. To evaluate the ef-
fectiveness of our opportunistic offloading algorithm, we
measure the response time for both heavy and light load
cases. We control the load by rate-limiting the clients.
For lighttpd, we set the limits to 1K TPS for light
load and 11K TPS for heavy load. For SSLShader, we
further increase the heavy load limit to 29K TPS. For
heavy load experiments, we vary the maximum number
of clients from 1K to 4K. Clients repeatedly request the
small HTTP objects as in the handshake experiment.
Figure [9] shows the cumulative distribution functions
(CDFs) of response times. When the load level is low,
both 1ighttpd and SSLShader handle most of the con-
nections in a few milliseconds (ms), which shows that the
opportunistic offloading algorithm intentionally uses the
CPU to benefit from its low latency. SSLShader shows
a slight increase in response time (2 ms vs. 3 ms on
median) due to the proxying overhead. At heavy load

10—t S RS
LT 7 e deeeeed

o | I

o] | F ¢ | = lighttpd(1K,1K)

< gg] |4 ¢ |- lighttpd(11K 1K)

Y 4 N .

ff 50 1 243 394 74‘7@ 167| "+ lighttpd(11K 4K)

8 40 | 4 & |—e—SSLShader(1K 1K)
30 A JInE —e— SSLShader(29K,1K)
20 -] [. « « @<« SS|_Shader(29K,4K)
10 A / £ v

0 I a8 a0 | | |
1 10 100 1000 10000

latency (ms)

Figure 9: Latency distribution in the overloaded case. Num-
bers in parenthesis represent the maximum requests rate and
the maximum concurrency.

18000 ~

16000 -{ Olighttpd

14000 -| @SSLShader

12000 4| ®mlighttpd w/ AES-NI

10000 - | ®SSLShader w/ AES-NI

8000 -

6000 -

4000 -

2000 -
0 4

Throughput (Mbps)

4 16 64 256
Content size (KB)

1024 4096 16384 65536

Figure 10: Bulk transfer throughput

with 1K concurrent connections, SSLShader’s latency is
lower than that of 1ighttpd because CPUs are over-
loaded and lighttpd produces longer response times.
In contrast, SSLShader reduces the CPU overhead by
offloading the majority of cryptographic operations to
GPUs. SSLShader shows 39 ms and 64 ms for 50" and
99" percentiles while 1ighttpd shows 76 ms and 260
ms each even at the much lower TPS load level. Even
if we increase the load with 4K concurrent clients, 70%
of SSLShader response times remain similar to those of
lighttpd with 1K clients at the 11K TPS level.

6.4 Bulk Data Encryption Performance

We measure bulk data encryption performance by vary-
ing the file size from 4 KB to 64 MB with and with-
out AES-NI support, and show the results in Figure [10]
When AES-NI is enabled, the SSLShader throughput
peaks at 13 Gbps while 1ighttpd peaks at 16.0 Gbps.
We note that increasing the content size above 64 MB
does not increase 1ighttpd’s throughput. For contents
smaller than 4 MB, SSLShader performs 1.3 to 2.2x bet-
ter than 1ighttpd while 1ighttpd shows 1.1x to 1.2x
better performance for contents larger than 4 MB. As the
content size grows and throughput increases, the proxy-
ing overhead increases accordingly, and eventually be-
comes the performance bottleneck. With oprofile, we
find that 30% of CPU time is spent on data copying,
and 20% is spent on handling interrupts for SSLShader,

leaving only 50% for use in cryptographic operation and
other processing. Without AES-NI, SSLShader achieves
8.9 Gbps, while 1ighttpd achieves 9.6 Gbps. The peak
throughput of SSLShader is slightly lower due to the
copying overhead as well.

Considering typical Web objects and email contents
are smaller than 100 KB [21}23]], we believe that the
performance gain in small content size and the benefit
of transparent proxying outweigh the small performance
loss in large files in many real-world scenarios. Also,
the GPU is starting to be integrated into the CPU as in
AMD’s Fusion [[16], and we expect that such technology
will mitigate the performance problem by eliminating the
data transfer between GPU and CPU.

7 Discussion & Related Work

SSL Performance: SSL performance analysis and ac-
celeration have drawn much attention in the context of
secure Web server performance. Earlier, Apostolopou-
los et al. analyzed the SSL performance of Web servers
using the SpecWeb96 benchmark tool [22]]. They ob-
serve that the SSL-enabled Web servers are up to two
orders of magnitude slower than plaintext Web servers.
For small HTTP transactions, the main bottleneck lies
in SSL handshaking while data encryption takes up sig-
nificant CPU cycles when the content gets larger. Later,
Coarfa et al. reported similar results and estimated the
upper bound in the performance improvement with each
SSL operation optimization [29]. To improve the SSL
handshake performance, Boneh et al. proposed client-
side caching of server certificates to reduce the SSL
round-trip overhead [25[]. Another approach is to pro-
cess multiple RSA decryptions in a batch using Fiat’s
batch RSA [55]]. They report a 2.5x speedup on their Web
server experiments by batching four RSA operations.

Recently, Kounavis ef al. improve the SSL perfor-
mance with general-purpose CPUs [43]. They opti-
mize the schoolbook big number multiplication and ben-
efit from AES-NI for symmetric cipher. To reduce the
CPU overhead for MAC algorithms, they use the Ga-
lois Counter Mode (GCM) which combines the AES en-
cryption with the authentication. In comparison, we ar-
gue that GPUs bring extra computing power in a cost-
effective manner, especially for RSA and HMAC-SHAL.
By parallelizing the schoolbook multiplication and vari-
ous optimizations, our 1024-bit RSA implementation on
a GPU shows 30x improvement over their 3.0 GHz CPU
core. Further, we focus on TLS 1.0 which is widely used
in practice, whereas GCM is only supported in TLS 1.2,
which is not popular yet.

AES Implementations on GPU: Modern GPUs are at-
tractive for computation-intensive AES operations [30,
31,/36.,/44,49,58[]. Most GPU-based implementations ex-

ploit shared memory and on-demand round key calcula-
tion to reduce the global memory access. However, we
find few references that evaluate the AES performance in
the CBC mode. Unlike electronic codebook (ECB) mode
or counter (CTR) mode, the CBC mode is hard to paral-
lelize but is most widely used. Also, most of them report
the numbers without data copy overhead, but we find the
copy overhead severely impairs the AES performance.

Manavski et al. report 8.28 Gbps AES performance on
GTX 280 (240 cores, 1.296 GHz) [44], while Osvik et
al. report 30.9 Gbps on half of a GTX 295 (2 x 240
cores, 1.242 GHz) [49]. Both of them use the ECB mode
without data copy overhead. In the same setting, our im-
plementation shows 32.8 Gbps on GTX 285 (240 cores,
1.476 GHz). Direct comparison is hard due to differ-
ent GPUs, but our number is comparable to these results
(3.48x that of Manavski’s, 0.89x that of Osvik’s) by the
cycles per byte metric.

RSA Implementations on GPU: Szerwinski and
Giineysu made the first implementation of RSA on
the general-purpose GPU computation framework [56].
They reported two orders of magnitude lower perfor-
mance than ours, but it should not be directly compared
because they used a relatively old NVIDIA 8800GTS
card with a different GPU architecture.

Harrison and Waldron report on 1024-bit key RSA
implementation on an NVIDIA GPU [37], and to the
best of our knowledge theirs is the fastest implemen-
tation before our work. They compare serial and MP
parallel approaches in Montgomery multiplication and
conclude that the parallel implementation shows worse
performance at scale due to GPU thread synchronization
overhead. We have run their serial code on an NVIDIA
GTX580 card, and found that their peak throughput
reaches 31,220 operations/s at a latency of 131 ms
with 4,096 messages per batch. Our throughput on the
same card shows 74,733 operations/s at a latency of
13.7 ms with 512 messages per batch, 2.3x improvement
in throughput and 9.6x latency reduction.

Comparison with H/W Acceleration Cards: Many
SSL cards support OpenSSL engine API [11]] so that
their hardware can easily accelerate existing software.
Current hardware accelerators support 7K to 200K RSA
operations/s with 1024-bit keys [10,|/14]. Our GPU im-
plementation is comparable with these high-end hard-
ware accelerators, running at up to 92K RSA opera-
tions/s at much lower cost. Moreover, GPUs are flexible
for adoption of new cryptographic algorithms.

Other Protocols for Secure Communication: Bittau et
al. propose fcpcrypt as an extension of TCP for secure
communication [24]]. Tcpcrypt is essentially a clean-slate
redesign of SSL that shifts the decryption overhead by
private key to clients and that allows a range of authen-
tication mechanisms. Their evaluation reports 25x better

connection handling performance when compared with
SSL. Moreover, fcpcrypt provides forward secrecy by
default while SSL leaves that as an option. While fix-
ing the SSL protocol is desirable, we focus on improv-
ing the current practice of SSL in this work. IPsec [[17]]
provides secure communication at the IP layer, which is
widely used for VPN. IPsec can be more easily paral-
lelized compared to SSL since many packets can be pro-
cessed in parallel [35].

Performance per $ Comparison: In Table 4, we show
the price and relative performance to price for two CPUs,
GTX580, and a popular SSL accelerator card. Intel Xeon
X5650 and GTXS580 are choices for our experiments.
i7 920 has four CPU cores with the same clock speed
as the X5650 without AES-NI support. We choose the
CN1620F| because it is one of the most cost-effective ac-
celerators that we have found. Though it is difficult to
compare the performance per dollar directly (e.g., GPU
cannot be used without CPU), we present the informa-
tion here to get the sense of cost effectiveness for each
hardware.

Price RSA | AES-ENC | AES-DEC SHA1

($) | (ops/sec/$) | (Mbps/$) | (Mbps/$) | (Mbps/$)

X5650 996 19.9 30.6 92.2 20.2
i7 920 288 45.8 189 19.0 46.5
GTX580 499 185.3 21.3 25.1 62.3
CN1620 | 2,129 30.5 2.8 2.8 2.8

Table 4: Performance per $ comparison (price as of Feb. 2011)

GTXS580 shows the best performance per dollar for
RSA and HMAC-SHA1. For AES operations, X5650 is
the best with its AES-NI capability, and GTX580 shows
a slightly better number compared to i7 920. CN1620
is inefficient in terms of performance per dollar for all
operations. SSL accelerators typically have much bet-
ter power efficiency compared to general purpose proces-
sors and it is mainly used in high-end network equipment
rather than on server machines.

8 Conclusions

We have enjoyed the security of SSL for over a decade
and it is high time that we used it for every private In-
ternet communication. As a cheap way to scale the per-
formance of SSL, we propose using graphics cards as
high-performance SSL accelerators. We have presented
a number of novel techniques to accelerate the crypto-
graphic operations on GPUs. On top of that, we have
built SSLShader, an SSL reverse proxy, that opportunis-
tically offloads cryptographic operations to GPUs and
achieves high throughput and low response latency.

8 Model name is CN1620-400-NHB4-E-G and more details are on
http://www.scantec-shop.com/cnl1620-400-nhbd-e-g-375.html

Our evaluation shows that we can scale 1024-bit RSA
up to 92K operations/s with a single GPU card by care-
ful workload pipelining. SSLShader handles 29K SSL
TPS and achieves 13 Gbps bulk encryption throughput
on commodity hardware. We hope our work pushes SSL
to a wider adoption than today.

We report that inefficiency in the Linux TCP/IP stack
is keeping performance lower than what SSLShader can
potentially offer. Most of the inefficiency in the Linux
TCP/IP stack comes from mangled flow affinity and seri-
alization problems in multi-core systems. We leave these
issues to future work.

9 Acknowledgment

We thank Geoff Voelker, anonymous reviewers, and
our shepherd David Mazieres for their help and invalu-
able comments. This research was funded by NAP
of Korea Research Council of Fundamental Science &
Technology, MKE (Ministry of Knowledge Economy
of Repbulic of Korea, project no. 10035231-2010-01),
KAIST ICC, and KAIST High Risk High Return Project
(HRHRP).

References

[1] ab - Apache HTTP Server Benchmarking Tool. http://httpd.apache.
org/docs/2.2/en/programs/ab.html}

[2] Alexa Top 500 Global Sites. http://www.alexa.com/topsites,

[3] Application Delivery Controllers, Array Networks. http://www.
arraynetworks.net/?pageid=365.

[4] Content Services Switches, Cisco.
css115001

[5] Digital Signature Standard. http://csrc.nist.gov/fips|

[6] F5 BIG-IP SSL Accelerator. http://www.f5.com/products/big-ip/
feature-modules/ssl-acceleration.html}

[7] Intel ~ Advanced Encryption Standard Instructions (AES-
NI). http://software.intel.com/en-us/articles/
intel-advanced-encryption-standard-instructions-aes-ni/\

[8] Intel Integrated Performance Primitives. http://software.intel.com/
en-us/intel-1ipp/l

[9] nFast Series, Thales. http://iss.thalesgroup.com/Products/.

[10] NITROX security processor, Cavium Networks. http://www.
caviumnetworks.com/processor_security_nitrox-III.html|

[11] OpenSSL Engine. http://www.openssl.org/docs/crypto/engine.
htmll

[12] Researchers crack 768-bit RSA. |http://www.bit-tech.net/news/
bits/2010/01/13/researchers-crack-768-bit-rsa/1}

[13] Serverlron ADX Series, Brocade. http://www.brocade.
com/products-solutions/products/application-delivery/
serveriron-adx-series/index.page}

[14] Silicom Protocol Processor Adapter. http://www.silicom-usa.com/
default.asp?contentID=676/

[15] SSL Acceleration Cards, CAI Networks.
products/ssl/rsa7000.htm

[16] The AMD Fusion Family of APUs.
fusion/APU/Pages/fusion.aspx)

[17] Security Architecture for the Internet Protocol. RFC 4301, 2005.

[18] Netcraft SSL Survey. http://news.netcraft.com/SSL-survey, 2009.

[19] Netcraft Web Server Survey. http://news.netcraft.com/archives/
2010/04/15/april_2010_web_server_survey.html, 2009.

[20] NVIDIA’s Next Generation CUDA™Compute Architecture: Fermi™.
http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA Fermi_Compute_Architecture_Whitepaper.pdf} 2009.

[21] S. Agarwal, V. N. Padmanabhan, and D. A. Joseph. Addressing email loss
with suremail: Measurement, design, and evaluation. In USENIX ATC,
2007.

[22] G. Apostolopoulos, V. Peris, and D. Saha. Transport Layer Security: How
much does it really cost? In IEEE Infocom, 1999.

http://www.cisco.com/web/go/

http://cainetworks.com/

http://sites.amd.com/us/

[23

[24]

[25]
[26]

[27]
[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]
[36]

[37]

[38]
[39]

[40]

[41]
[42]

[43]

[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

A. Badam, K. Park, V. Pai, and L. Peterson. Hashcache: Cache storage for
the next billion. In NSDI, 2009.

A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and D. Boneh. The case
for ubiquitous transport-level encryption. In USENIX Security Symposium,
2010.

D. Boneh, H. Shacham, and E. Rescrola. Client side caching for TLS. In
Network and Distributed System Security Symposium (NDSS), 2002.

J. Bos and M. Coster. Addition chain heuristics. In Advances in Cryptology
(CRYPTO), 1989.

C. K. Kog. High-speed RSA implementation. Technical Report, 1994.

C. K. Kog. Analysis of sliding window techniques for exponentiation. Com-
puter and Mathematics with Applications, 30(10):17-24, 1995.

C. Coarfa, P. Druschel, and D. S. Wallach. Performance Analysis of TLS
Web Servers. In Network and Distributed System Security Symposium
(NDSS), 2002.

D. L. Cook, J. Ioannidis, A. D. Keromytisl, and J. Luck. CryptoGraph-
ics: Secret Key Cryptography Using Graphics Cards . In RSA Conference,
Cryptographers Track (CT-RSA), 2005.

N. Costigan and M. Scott. Accelerating SSL using the Vector processors
in IBMs Cell Broadband Engine for Sonys Playstation 3. In Cryptology
ePrint Archive, Report, 2007.

J. Daemen and V. Rijmen. AES Proposal: Rijndael.
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf, 1999.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644-654, 1976.

S. Dussé and B. Kaliski. A cryptographic library for the Motorola
DSP56000. In Advances in Cryptology—EUROCRYPT 1990.

S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a gpu-accelerated
software router. In ACM SIGCOMM, 2010.

O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on
Modern Graphics Hardware. In USENIX Security Symposium, 2008.

O. Harrison and J. Waldron. Efficient Acceleration of Asymmetric Cryp-
tography on Graphics Hardware. In International Conference on Cryptol-
ogy in Africa, 2009.

J. Jonsson and B. Kaliski. Public-key cryptography standards (PKCS) #1:
RSA cryptography specifications version 2.1, 2003.

E. Kasper and P. Schwabe. Faster and timing-attack resistant aes-gcm. In
Cryptographic Hardware and Embedded Systems (CHES). 2009.

S. Kawamura, M. Koike, F. Sano, and A. Shimbo. Cox-rower architecture
for fast parallel montgomery multiplication. In Advances in Cryptology—
EUROCRYPT 2000, pages 523-538. Springer, 2000.

D. E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, 3th edition, 1997.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203-209, 1987.

M. E. Kounavis, X. Kang, K. Grewal, M. Eszenyi, S. Gueron, and
D. Durham. Encrypting the internet. SIGCOMM Comput. Commun. Rev.,
40(4):135-146, 2010.

S. A. Manavski. CUDA compatible gpu as an efficient hardware accelerator
for aes cryptography.

P. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519-521, 1985.

National Institute of Standards and Technology (NIST). Recommendation
for Key Management Part 1: General (Revised). 2007.

NVIDIA Corp. NVIDIA CUDA: Best Practices Guide, Version 3.1. 2010.
NVIDIA Corp. NVIDIA CUDA: Programming Guide, Version 3.1. 2010.
D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright. Fast software aes
encryption. In Foundations of Software Engineering (FSE), 2010.

H. Park, K. Park, and Y. Cho. Analysis of the variable length nonzero
window method for exponentiation. Computers & Mathematics with Ap-
plications, 37(7):21-29, 1999.

J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA
public-key cryptosystem. Electronics Letters, 18(21):905-907, 1982.

E. Rescorla, A. Cain, and B. Korver. SSLACC: A Clustered SSL Acceler-
ator. In USENIX Security Symposium, 2002.

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for vi-
sual computing. ACM Transactions on Graphics (TOG), 27(3):1-15, 2008.
H. Shacham and D. Boneh. Improving SSL Handshake Performance via
Batching. In RSA Conference, 2001.

R. Szerwinski and T. Gneysu. Exploiting the Power of GPUs for Asymmet-
ric Cryptography. In International Workshop on Cryptographic Hardware
and Embedded Systems, 2008.

S. B. Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey:
An operating system for many cores. In USENIX OSDI, 2008.

J. Yang and J. Goodman. Symmetric Key Cryptography on Modern Graph-
ics Hardware. In ASIACRYPT, 2007.

http://httpd.apache.org/docs/2.2/en/programs/ab.html
http://httpd.apache.org/docs/2.2/en/programs/ab.html
http://www.alexa.com/topsites
http://www.arraynetworks.net/?pageid=365
http://www.arraynetworks.net/?pageid=365
http://www.cisco.com/web/go/css11500
http://www.cisco.com/web/go/css11500
http://csrc.nist.gov/fips
http://www.f5.com/products/big-ip/feature-modules/ssl-acceleration.html
http://www.f5.com/products/big-ip/feature-modules/ssl-acceleration.html
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/intel-ipp/
http://software.intel.com/en-us/intel-ipp/
http://iss.thalesgroup.com/Products/
http://www.caviumnetworks.com/processor_security_nitrox-III.html
http://www.caviumnetworks.com/processor_security_nitrox-III.html
http://www.openssl.org/docs/crypto/engine.html
http://www.openssl.org/docs/crypto/engine.html
http://www.bit-tech.net/news/bits/2010/01/13/researchers-crack-768-bit-rsa/1
http://www.bit-tech.net/news/bits/2010/01/13/researchers-crack-768-bit-rsa/1
http://www.brocade.com/products-solutions/products/application-delivery/serveriron-adx-series/index.page
http://www.brocade.com/products-solutions/products/application-delivery/serveriron-adx-series/index.page
http://www.brocade.com/products-solutions/products/application-delivery/serveriron-adx-series/index.page
http://www.silicom-usa.com/default.asp?contentID=676
http://www.silicom-usa.com/default.asp?contentID=676
http://cainetworks.com/products/ssl/rsa7000.htm
http://cainetworks.com/products/ssl/rsa7000.htm
http://sites.amd.com/us/fusion/APU/Pages/fusion.aspx
http://sites.amd.com/us/fusion/APU/Pages/fusion.aspx
http://news.netcraft.com/SSL-survey
http://news.netcraft.com/archives/2010/04/15/april_2010_web_server_survey.html
http://news.netcraft.com/archives/2010/04/15/april_2010_web_server_survey.html
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

	Introduction
	Background
	Secure Sockets Layer
	Cryptographic Operations
	RSA
	AES
	HMAC

	GPU

	Optimizing RSA for GPU
	How to Parallelize RSA Operations?
	Optimization Strategies
	MP implementation
	Multiplication
	Optimizations

	RSA Microbenchmarks

	Accelerating AES and HMAC-SHA1
	GPU-accelerated AES
	AES-NI
	GPU-accelerated HMAC-SHA1
	Microbenchmarks

	SSLShader
	Basic Design
	Opportunistic Offloading
	NUMA-aware GPU Sharing
	Asynchronous Concurrent Execution

	Evaluation
	System Configuration
	SSL Handshake Performance
	Response Time Distribution
	Bulk Data Encryption Performance

	Discussion & Related Work
	Conclusions
	Acknowledgment

