&
TO WHOM
IT MAY
CONCERN:

James Mickens specks the

TRUTH

Mugshot: Recording and
Replaying JavaScript Applications

: Jeremy Elson Jon Howell
James Mickens

Microsoft:

Research

| ALREADY LEARNED THIS TO YOU.

XOXO, JAMES

“Hard” errors
Unexpected exception
— Missing resource

“Soft” errors

— Layout glitch

— Broken event handler
— Poor performance

A

i

Code: 0
URL htt

indows Internet Explorer
- e avieat Nlled

.

Errors on this webpage might cause it to work incorrectly

To see this message in the future, double-click the warning icon on the status bar.

‘FB.Loader" is null or not an object m
FB.Share

p://static.ak.fbcdn.net/connect.php/js/FB.Share

-

[] Always show this message for webpage errors

[Copy error details]

@O ~,

‘FV

all these
buttons
cannot bejg

pressed

Applications | [§)

(s
mlssmg bar

=~ _
Lode N3
& tes ag \ment - Like - { Get a bonus fror

| (@ Hide details [Close |
- —
Gmail
Compose Mail RIN2 NRNND o
2 gre lobox Archive
% 10 Stared 3% Rego s3am
= Drafts (6) Deiete
: o frtens All Mail Mark as read
sponsored Spam (288) Move to nbox
so(:e Mos::e . Comgi S09 H‘:"" s‘C:‘
& o 9 6 ; @ Compi SO9 HWS More actons
5 v
k,,J 15 mocey o
Paddy afan of Sc
%1 Become a Fan

bar ﬂotwmngtlomng,

v
.~

“¢annot click

‘ i

When Things Go Wrong
4 ¢ Common post-mortems
— Core dump

The Microsol ft (R) Visual C#f 2005 Compiler has encountered an internal

llllll We are sonry for the inconvenience. /

Please tell Microsoft about this problem.
We have created an error report that you can send to help us improve Microsoft [R] Visual
C# 2005 Compiler. We will treat this report as confidential and anonymous. — Sta C k t ra C e

— Error log

* In event-driven systems...
— ... interleavings are key!

— Shouldn’t rely on user to
report nondeterministic

events

Our Solution: Mugshot

* Logs nondeterministic JavaScript events

— Ex: Mouse clicks, date requests, random number
generation

* On panic, upload event log to developer machine
* Developers replays the buggy program run
— Single step or (near) real-time playback
— Developer can leverage rich localhost debuggers . . .
— ... using buggy applications runs from the wild!

— Logging/replay code is just a JavaScript library

— Ship Mugshot infrastructure with the application:
<script src=“mugshot.js”></script>

— Don’t need special kernel/VM/browser!

* Logging is lightweight: run in common case
— Log size: Worst case 16 Kbps
— CPU: Worst case 7% reduction in frame rate

* Solves an important, practical problem

— Increasingly complex apps migrating to the
web

— Remote bug repro is very important!

Logging
Replay
Evaluation

Conclusion

Outline

Parent frame

[Parent Button]

Child frame 1 Child frame 2

[Child 1 Button] [Child 2 Button]

“Official” W3C Event Model

oD Gy

-

————————————————
aaaaa

’

</iframe> @

Phase 1: Capturing
Phase 2: Target
Phase 3: Bubbling

—
Ss

@ Child frame 2 g

Child 2 Button

Event Log

Parent frame

[Parent Button J

Child frame 1

[Child 1 Button J

N\

\\

Child frame 2

(putton.onclick
L Ctritdt ZButtona}rt(Datf-

Nondetermini
1) Click (mous

— 2) Return valu

— |l
x —h

D 7\
—

sm
eb
e O

unction(){

to log
utton, target)
f Date()

Logging Events on Firefox

* Logging Date() is straightforward . . .

— ... just enclose real Date() in logging wrapper

* Logging mouse click is “straightforward”4® "\ ¢

1) Capturing phase
(iframe)

2) Target phase
(button)

<iframe>onclick="mugshotCapturingLogger()” >
<script src="logger.js”></script> 5 == == ==y
<button type=“button” oncIick=’€ert(Date())">

~--_—

)
> 4

</iframe>
Event: Click
Event log ™ | . 1000 -
Value: Child 2 button
Left-click
X=312, Y=209

Event: Date
Time: 2000

Seems simple, right?

DOM 0 versus DOM 2 Handlers

d))))) d|]]
f.onclick = function(){alert(“DOM 0O handler”)}:

f.addEventListener(“click”,
function(){alert(“DOM 1 handler”),

true);

* For any DOM node/event name pair:
— At most one DOM 0 handler
— Arbitrary number of DOM 2 handlers

Life Is So Difficult

* Firefox calls DOM 0 handler before DOM 2 handlers
— DOM 2 handlers called in order of registration

* Mugshot must ensure that its handler runs before
any app-defined ones
— App handler can cancel event . ..
— ... but we still need to log it!

Life Is So Difficult

¢ v * \We'd like to run before the app and . . .
— Define DOM 2 logging handler for onclick
— Use JavaScript setter shim to interpose on
assignment to iframe.onclick
e This would let us:

— Use DOM 2 logging func if no app-defined
DOM 0 handler

— Wrap app-defined DOM 0 handler in logging
code

* The problem: Firefox setters are
partially broken
— Browser will not invoke DOM 0

handler for node with a shimmed
DOM 0 event property

Life Is So Difficult

* Fortunately, setters for DOM 0 handlers don’t
keep browser from firing DOM 2 handlers

— So, setter code registers DOM 0 app handler as
DOM 2 handler too

— Setter removes DOM 2 handler if “backing” DOM 0
handler is reset

Recap: Logging Events on Firefox

<iframe onclick=“"mugshotCapturingLogger()” >

<script src="logger.js”></script>

<button type=“button” onclick="alert(Date())”>
</iframe>

Strategery

o . o
THERE IS NO CAPTURE
|, PHASE ON IE!

_4

Logging Events on IE

* Logging Date() is straightforward . ..

. just enclose real Date() in logging wrapper

* Logging GUI events is tricky in IE!
— There is no capture phase!

2) Bubbling phase .
(iframe) <ifram

1) Target phase

</iframe>

Doesn’t log the

already logged
event

nclick=* mugshotBubemgLogger()”
<script’src=
<button type= button onclick="alert(Date())”>

pt>

(button)

)

Event log =

Event: Date
Time: 1000

Is there an unlogged
GUIl event?

=

Event: Click

Time: 1000

Value: Child 2 button
Left-click
X=312, Y=209

Sources of Nondeterminism

Category Event Type Example
DOM Events Mouse click, mouseover
Key keydown, keyup
Loads load
Form focus, blur, select
Body scroll, resize
Asynchronous callbacks Set timer setTimeout(f, 100)

AJAX state change

reqg.onchange = f

Nondeterministic functions

Get current time
Get random number

(new Date()).getTime()
Math.random()

Text selection

IE: document.selection

FF: window.getSelection()

Highlight text w/mouse
Highlight text w/mouse

How Do We Log “setTimeout(f, 50)”?

* |Interpose on setTimeout()

var oldSetTimeout = setTimeout;
setTimeout = function(f, waitMs){
f.callbackld = Mugshot.nextCallbackld++;
var wrappedF = function(){
logCallbackExecution(f.callbackld);
f();
5
oldSetTimeout(wrappedF, waitMs);

};
e Easy, right?

e
N
- : \:‘/\’
up
e
gaod
@Idse YE pod Qo
setTimeout Ffunction(f,w P shibbir |
f.callbackl ;, Mug ‘b'. IZlId++3_:
nedE = agfl \
var wra H o {ﬁ g 3 a0
log Qack tion fcaIIb o),31]']
f(); A) o C B gen/pod
iy / AR SgndD DJ‘”
- O
oldSe ' ;,QE d
b

age-collects
171

etTimeout()

indefined

| Hate Myself And | Want To Die

e Solution: Create an invisible iframe!
— Save its reference to setTimeout() . . .

—...and call it inside the wrapped callback
* Have to do this nonsense at replay time too

 Mugshot uses a variety of
additional hacks

— See the paper for details

Logging the Value of Loads

Web server

@
———
———

Replay

———

———

Cache
N~

Replay prox User
- é browser

2)

3)

4)

—

Original content served

Replay proxy caches data before
sending to client, instruments
HTML with log.js

User interacts with page, log.js
records local events

On failure, log.js uploads event
trace

Logging
Replay
Evaluation

Conclusion

Outline

Using the Replay Proxy

Replay progby

@ =0

Developer

browser %

1) Proxy changes log.js=2>replay.js,
serves cached HTML page

2) replay.js prevents browser from
autonomously generating events

3) replay.js fetches event log

4) replay.js replays events, fetching
external content from replay proxy

On The Developer Machine: replay.js

7\ ,1) Put transparent <iframe> on top of
Next piece page

+«—2) Interpose on Date(), Math.random(),
setTimeout()...

3) Fetch log and display VCR control

4) To replay, step through log . . .

— Dispatch fake GUI events using
fireEvent()/dispatchEvent()

ogical clock: 408/408
Wall clock: 29844

S T-_mse‘:"?] — Execute timer functions as they
Olnterval-spaced e appear in log

— As app code executes, pull
return values of Date() and
Math.random() from the log

— When load arrives, signal replay
proxy to release the data

Logging
Replay
Evaluation

Conclusion

Outline

Log Growth

Firefox Log Growth (Kbps)

100

75

50

25

0

[1Verbose

B Compact

s

Tetris

Pacman Spacius

1

BASIC Painter NicEdit

I
Shell

Timer Callback Rates

Spacius: CBs per second

100

80

60

40

20

[1Baseline
O Logging
M Replay

Firefox |E

Reproducing Bugs

L-og',ical clock: 408/408 Next piece | L.og,ical clock: 408/408 Next piece |

[Wall clock: 29844 |Wall clock: 29844

© Real time © Real time
© Single step © Single step
© Interval-spaced © Interval-spaced

HTMLHtmlElement Level: 1 |

Level: 1 |

Lines: 0 |
Score: 0 I

DOMTRIS

Lines: 0 |

Score: 0 |

DOMTRIS

A tetris clone
made with DOM &
Javascript by

A tetris clone
made with DOM &
Javascript by

Visit the blog

Visit the blog
More games

More games

Conclusion

FAILURE

While there is no | in team, there ia a U in failure.

Conclusion

 Mugshot: trace+replay for JavaScript apps
— Easy to deploy: run a script inside unmodified browser
— Lightweight: 7% CPU overhead, 16 Kbps log growth

* Design is straightforward . ..
— ... but implementation is not!
— Take my learnings, make them your own

My Codes Are Perfect

FAILURE

While there is no | in team, there ia a U in failure.

