Crom: Faster Web Browsing
Using Speculative Execution

Microsoft:

Research






Prefetching:

Web 1.0

e Static objects connected by declarative links

* Find prefetchable objects by traversing graph

Welcome to Microsoft's World Wide Web
Server!

Where do you want to go today?

If your browser doesn't support images, we have a text menu as well

MICTOSOI

<TABLE WIDTH='100%">
<TR>
<TD VALIGN='TOP' HEIGHT=60>
@EF='/misc/winNews.@
Windows news
</A>
</TD>

WWW MICROSOFT.COM is running Microsoft's Windows NT Server 3.5 and EMWAC's
HTTPS




The Brave New World: Web 2.0

Aerial Bird's eye Labels Traffic
- -~

No business results were found in the current view.

Results contributed by other people

Microsoft Research Cambridge

Microsoft Research Cambridge was set up in July 1997
with three researchers. Today over 100 researchers,
mostly from Europe, are engaged in computer research at
the lab. The city of Cambridge, England, was the clear
choice for the location of the fac...

Open collection Cambridge

Directions - Addto collection - Send

m

Microsoft Research
Open collection Cambridge
Directions - Add to collection - Send

Microsoft Research Cambridge
Open collection Microsoft UK
Directions - Add to collection - Send

Microsoft Research, Cambridge
Open collection Microsoft UK Offices
Directions - Add to collection - Send

imgTile.ondblclick = function(){
map.centerTile = imgTile;
map.zoomLlevel++;
map.fetchAndDisplayNeighbors(imgTile, map.zoomLevel);



New Challenges to Prefetching

* Fetches triggered by imperative event handlers
— Can’t just “pre-execute” handlers to warm cache

imgTile.ondblclick = function(){ 2
map.centerTile = imgTile; 1“ RED‘B‘E T@“‘? Aﬁr
map.zoomLevel++; “‘AD‘-
map.fetchAndDisplayNeighbors(imgTile, Th\sbra“‘
brain {*5, % 4FA wants t0
map.zoomlevel); This Mo to /¥ \K\LL‘
} LOVE... i@ "3\ |

e Prefetcher must understand JavaScript
— Hide side effects of speculation until commit time



New Challenges to Prefetching

* Fetches often driven by user-generated inputs
— Binary: clicking a “download” button

— Unconstrained: typing into a search form

Deleted
Photo

* Infeasible to speculate on all possible user inputs!
— Only speculate on constrained set of reasonable inputs



Prior Solutions: Custom Code

* Advantage: Exploit app-specific
knowledge for. ..
— Tight code
— High performance

* Disadvantages:
— Often difficult to write

— Tightly integrated with application
code base (can’t be shared with
other apps)




Our Solution: Crom

* A generic speculation engine for JavaScript
— Implemented as regular JavaScript library

— Requires no modification to browsers

* Applications define their speculative intents

— Which event handlers shou
— At what point should specu

— Given an application state,

d be speculative?
ations occur?

now does Crom

generate speculative user inputs that are

reasonable?



Crom Handles The Rest ™

e Clones browser state

 Executes rewritten event
handlers

e Commits shadow state if
appropriate (fetch latency
masked!)

 Crom provides other
goodness:
— AJAX cache
— Speculative upload API

— Speculative r+w ops on
server-side




Outline

Speculative Execution

— Cloning the browser state

— Rewriting event handlers

— Committing speculative contexts
— Optimizations

Evaluation

Related Work

Conclusions



Adding Speculative Execution

<div id=“textDiv”>
Click here to increment counter!
</div>

<script>
var globalVar = 42;
var f1 = function(){globalVar++;};
var f2 = function(){globalVar++; f1();};

var t = document.getElementByld(“textDiv”);

t.onclick = f2;
</scfipgm.makeSpeculative(t, “onclick”);

Crom.speculate();
</script>




Cloning the Browser State

* Application heap

— All JavaScript objects reachable from the roots of
the global namespace

— Apps access global namespace through global
“window” variable (e.g., window.X)

 DOM tree

— JavaScript data structure representing page HTML
— Each HTML tag has corresponding DOM object
— App changes page visuals by modifying DOM tree



Cloning the Application Heap

 Walk object graph and deep-copy everything

var specWindow = {}; //Our shadow global namespace
for(var globalProp in window)
specWindow|[globalProp] = Crom.deepCopy(window|globalProp]);

* Objects, primitives copied in obvious way . . .

* Functions
— clonedF = eval(f.toString())
— Deep copy any object properties




Cloning the DOM Tree

1) body.cloneNode()
(Native code: FAST)
2) Crom fix-up traversal

<body>

N\

<div>

Style attributes

(Non-native code: SLOW)

<body>

Y\

Style attributes

<p>

<div> Event handlers <div> <div> Event handlers
i App properties i i App properties
<p> <p> <p>

Style attributes

Event handlers

App properties

Style attributes

Event handlers

App properties




Putting It All Together

//Create a new DOM tree
var specFrame = document.createElement(“IFRAME”);
specFrame.document.body = Crom.cloneDOM();

//Create a new global JavaScript namespace

var specWindow = {};

for(var globalProp in window)
specWindow/[globalProp] = Crom.deepCopy(window[globalProp]);

specWindow.window = specWindow;

specWindow.document = specFrame.document;

Congratulations!



Rewriting Event Handlers

e JavaScript is lexically scoped
— Activation records are objects (varName—->varValue)
— Resolve refs by following chain of scope objects

Top-level code global_scope = {“globalVar”: 42,

“f1”: function(){...},

var globalVar = 42; “f2”: function(){...}}

var f1 = function(){globalVar++;}
var f2 = function(){globalVar++; f1();} Lews el Elela iy
SUCCEED
Call 2() f2_scope = {};

Get value of globalVar

Look for globalVar
FAIL



Rewriting Event Handlers

e “with(obj)” inserts obj to front of scope chain

Crom.rewrite = function(f, specWindow){
var newSrc = “function f(){“ +
“with(specWindow){“ +
f.toString() + “}}”;
return eval(newSrc);

5

var globalVar = 42;

var f1 = function(){globalVar++;}

var f2 = function(){globalVar++; f1();}
var f2’ = Crom.rewrite(f2);

Call f2'()
Access globalVar

specWindow = {“globalVar”: 42,
“f1”: function(){...},
“f2”: function(){...}}

Look for globalVar ?reve”ts(j’?e-culation
SUCCEED rom moditying non-

spec global state!



Rewriting Event Handlers

* Various details (see the paper)
— Lazily rewriting inner function calls
— Addition/deletion of global variables
— Rewriting closures
— Local variables that shadow global ones

var f2 = function(){
globalVar++;
f1();

I

—)

specWindow = Crom.newContext();
var f2’ = function(){
with(specWindow){
var f1’ = Crom.rewrite(f1, specWindow);
globalVar++;
f1°();
}
5




Adding Speculative Execution

<div id="“textDiv”’>
Click here to increment counter!
</div>
<script>
var globalVar = 42;
var f1 = function(){globalVar++;}
var f2 = function(){globalVar++; f1();}
var t = document.getElementByld(“textDiv”);

t.onclick = f2 1) Clone browser state
Crom.makeSpeculative(t, “onclick”); ‘ 2) Rewrite t.onclick()

Crom.speculate(); - ————————)> ) ;" t onclick’()

</script>



Outline

Speculative Execution

— Cloning the browser state

— Rewriting event handlers

— Committing speculative contexts
— Optimizations

Evaluation

Related Work

Conclusions



Committing Speculative Contexts

e Suppose you know which one to commit. ..

//Commit the speculative DOM tree
document.body = specWindow.document.body;

//Commit the application heap by committing global heap roots
for(var propName in specWindow)
window[propName] = specWindow[propName];

//Clean-up globals deleted by committing speculation
for(var propName in window){
if(!(propName in specWindow))
delete window[propName];

}

e ...but how doyou know?



Start-state Equivalence

* When is it safe to commit a speculative context?

— |ts start state must have been equivalent to application’s
current state

— The speculative input that mutated it must be equivalent
to the current (real) input

e Application defines equivalence function
— Hash function over global namespace (real or speculative)

— Speculative context can only commit if its hash matches
that of current (real) namespace

* Application defines mutator function

— Tells Crom how to change a new speculative context
before running speculative event handler



O

Mutator: function(sg
i,

Ty ,‘

A

SearchText = speclnput

~h
} B, .
State hash: fun®jon(glo spl Ao ) s
r'ek n glo a% Space searchText

Crom.makeSpe




S “uyn

S (s

l

S (“y

S

“housing”

—>

Crom Crom Crom speculates,
clones mutates warms cache
Crom finds shadow
— :
Sun S”housing” state w/matching haph,

User types
“housing”

commits it



Start-state Equivalence

 What if app doesn’t specify SSE data?

— Crom throws away all speculations whenever any
event handler executes, respeculates on everything

e Guarantees correctness for commits. ..
— ... but may lead to wasteful respeculation



Outline

Speculative Execution

— Cloning the browser state

— Rewriting event handlers

— Committing speculative contexts
— Optimizations

Evaluation

Related Work

Conclusions



* Don’t need to copy entire heap
forest!

— Only clone trees touched by
speculation

— Lazily clone them at rewrite time

2) Speculative event
handler touches Y.Z

3) Commit
Stale!



Tracking Parent References

3) Speculation
4) Commit: roots updated
Committed ids: 1,2
Ids of their parents: 0,1
X wasn’t committed!
Warning: stale child ref!

5) Commit: child refs patched



Three Speculation Modes

* Full copy: clone entire heap for each speculation
— Always safe
— May be slow
— Non-amortizable costs

* Checked lazy mode: lazy copying+parent tracking
— Always safe
— Parent mapping costs amortizable across speculations
— May be slow

* Unchecked lazy mode

— Fast
— Often safe in practice, but strictly speaking . . .
— ... unsafe without checked mode refactoring



Outline

Speculative Execution

— Cloning the browser state

— Rewriting event handlers

— Committing speculative contexts
— Optimizations

Evaluation

Related Work

Conclusions



Evaluation Application

Menus EBHAboutus Bl

Menu scripts ] Calendar £

This is the content of the first tab
m The tabs are created by a javascrif
content of the first tab. This is ju!
are created by a javascript functig

the first tab. Thisis just a plain <DIV>. The tabs 3
function.

dhtmigoodies.com

Create new tab dynamically
Remove this tab

e DHTMLGoodies Tab Manager
— Speculate on creating new tab (AJAX www.cnn.com)
— Embed manager code within ESPN front page

e Can we hide Crom’s overhead in user think time?




Speculation Costs
(Unchecked Lazy Mode)

25

<24 ms
I _—
\;a\\\\ ‘
\C\O(\‘\“g \)\a,(\
corn™

77ms—>




Speculation Costs

(Checked Lazy Mode)

100 158 ms

N\

~J
U

Execution time (ms)
(g
o

25
0 - I ==
e 0 0 ) xS) 0 ce £S5
o ke a“d\), o X e\fé\\. e« et e oW A (e“\(e
‘{0 ?'Y\ (e S\ 0o 0 \! ‘\\0 2
co? c,oQ\‘ ge\N O \ Aot e .‘(,ﬁ R \a
Ca ° od\e(\ C o™ o
< e
«e 209 gen™
WO
e

Pre-commit overhead: 182 ms
Commit overhead: 5 ms




Speculation Costs: Autocompletor

<114 ms 67ms—>

100

~
U

25

Execution time (ms)
(@2
o

ee 0 ) ) !
DON\ v gne 8V we © e At val) n e Qe onte
coo¥ copV eWt™ el \o u\a
Jles Lexic? pale! o P
e e
o 1O W
e




Speculation Costs: Autocompletor

100 379\:15
)
E
w
E
pet 50
0
S 25
Q
x
wl

Pre-speculation overhead: 493 ms
Commit overhead: 7 ms



User-perceived Latency Reduction

8 —<-No speculation

O Crom speculation

=
.('_U 6
Q.
()]
(a'
£ 4
Ll
<)
5
c 2
S
3 399 ms
O O O
0
0 100 200 300 400 500

Artificially Induced Fetch Latency (ms)




Copying the Full Heap

800 11,037 ms

600

400

200 I
0.__l_ll

\e.,0®0$ﬁ$$ee<\

Time to Copy Entire App Heap (ms)




Copying the Full DOM Tree

400
O Copying event handlers
m and user-defined objects
£ 300
= M Copying DOM tree (done
8 by native code) ]
g 200
I
3
a 100
S
Ll
e /o) N 2 O N RN Q Q Q
F XN Y EEE PSS S F P
o0 2 AV REIASIEIEN & OR 3
Y (9(0 66\ B \\O\} @\{') VSQ




Building the Parent Map

400
O Application heap
g B DOM tree
— 300
]
=
= _
g’ 200
o —_
o
£
- 100
c
5 i IR
©
(2 /o) N 2 O N RN Q e
F XN ¥ EES PSS LS
(o) > N AN S R v
° (9(0 66\ @ N « \\O\} @\{') VSQ




Committing the Entire DOM Tree

150

(75}

£

)

Q

- 100

=

o

(]

o

=

S 50

oo

=

: i

o 2 0 D L O N A AN 2 &
F XN ¥ EES PSS LS
O > AN S CRY A\
© (9(0 (9(0 Y ) < \\00 @\{.)Q VSQ%




Outline

Speculative Execution

— Cloning the browser state

— Rewriting event handlers

— Committing speculative contexts
— Optimizations

Evaluation

Related Work

Conclusions



The Shoulders of Giants

e Speculation is a well-known
optimization
— File systems: Chang et al, Speculator

— Static web data: Fasterfox, HTML 5
prefetch attribute

* Crom’s contributions

— Exploit language introspection to
have apps self-modify

— Explicitly reason about user inputs
— Handle dynamically-named content




Conclusions

* Prefetching non-trivial in RIA

— Must reason about JavaScript to
get fetch targets!

— Current speculative solutions
use custom code

W - Crom: generic JS speculation engine

- . — Applications express speculative
intents

— Crom automates low-level tasks

— Can reduce user-perceived latency
by order of magnitude



