WebProphet: Automating Performance
Prediction for Web Services

Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen
Albert Greenberg and Yi-min Wang
Lab of Internet and Security Technology (LIST)
Northwestern University
Microsoft Research

Microsoft

Research

Web Services Are Prevalent

* Almost everything is related to Web
— Web search
— Web mail
— Online shopping
— Online Social network
— Calendar

Performance Is Important

Revenue

Web
y Service A
Y

—8
Web Revenue

Service B /

 Amazon: 100ms extra delay =2 1% sale loss

* Google search results: 500 ms extra delay = reduce
display ads revenues by up to 20%

Web Services Are Complicated

 Example of Yahoo
Maps
— 110 embedded
objects

— Complex object
dependencies

— 6/70KB JavaScript [T
— Hosted by multiple
data-centers around
the world

Performance Optimization is Hard

User perceived PLT:
whole page or the portion
with most visual effects

Page Load Time

A large number of possible
optimization strategies

Limitations with Existing Techniques

* A/B test (controlled experiments)

— |dea: set up an experiment setting and try on a
group of users

— Problems with A/B test

* Hard to fully automated
* Expensive to set up
* Quite slow!

Limitations with Existing Techniques

e Service provider based techniques (WISE
SIGCOMM2008)

— Problems
* multiple data sources
* Object dependencies
* Client side delays, e.g. JavaScript execution time

* Regression based techniques (LinkGradient
INFOCOM2009)

— Usually require the independence assumption on
delay factors of each object. Problematic!

Our Contributions

e A tool for automated performance prediction

Optimization Performance
SeeRet : Gain???

— Fast prediction on the user perceived performance

— Timing perturbation based dependency discovery
— Dependency driven page load simulation

Outline

Motivation & Design
Dependency Extraction

Performance Prediction

mplementation
Evaluation

Conclusion

Why Are Dependency Discovery Difficult?

* Simple HTML parsing/DOM traversal is not
enough

— Object requests generated by JavaScript depend
on the corresponding .JS files

— Event triggers, such as when image B trigger
“onload” event, then image A will be load by
JavaScript

e Extensive browser instrumentation is heavy-
weight and browser dependent

Our Approach

* Goal:
— Light-weight black box based approach

— Browser independent

* Timing perturbation based technique
— Inject delay

— See how delay propagate.

Objects depend
O
Q. ®9 on X

Take Care HTML Objects

* Regular Objects

— Regular objects have to be fully loaded before
their descendants

X 5—mm
—mmY

* HTML Objects are special

— HTML is stream objects, allowing incremental

rendering y

E-——Y

Measure the Offset

Offset(Y) Offset(Z)

X
&Y &z

Outline

Motivation
Design
Dependency Extraction

Performance Prediction

mplementation
Evaluation

Conclusion

14

Performance Prediction Problem

 Evaluate different new scenarios

New Scenario
Spec 1

New Scenario

BaselLine

Performance Prediction Procedure

Packet Dep. New
Trace Graph Scenario

Extract Object Adjust each of
object according

to new scenario

Annotate
client delay

timing
information

Dep.
Graph

Simulate the
page load
process

Extract Object Timing information

* Extract Timing from packet traces
e Basic object timing info

DNS DNS lookup time
TCP TCP handshaking time

Response time
HTTP = 1
Request transfer time Reply transfer time

Annotate client delay

* Browser processing time after dependency
solved

Client delay

Adjust Object Timing Info

* Consider four delay factors: client delay, server
delay, RTT and DNS lookup time
e Adjust timing

— Adjust Client delay, DNS lookup time, and server
response time directly

— RTT: adjust ARTT * number of round trips

Factors Affected Object Loading

* Add DNS lookup time based on DNS cache

* Add TCP handshaking time for new
connections

* Add TCP waiting time when all connections
are not available

i : ' =F . [
I(Client)I(DNS)l(Tcp tim HTTP time

e
Delay time

Simulate Page Load Process

/°\

;

\
O

Object Queue

H—
A

- B— .

Simulate Page Load Process

/°\

:

\
O

Object Queue

I =
B C

Simulate Page Load Process

Object Queue

E I =
C D

- B— .

B =

/°\.

:

\
O

Simulate Page Load Process

Object Queue

D E
i — -
A C

B =

/°\.

:

\
O

Simulate Page Load Process

Object Queue /°\
O—
E g
\
. - — F

B = B ==
B D

Simulate Page Load Process

/°\.

;

\
@

Object Queue

Simulate Page Load Process

Object Queue

N e B -—dl

A C E

B = B ==
B D

New page load time

F

/°\.

\
@

Outline

Motivation
Design
Dependency Extraction

Performance Prediction

mplementation
Evaluation

Conclusion

28

WebProphet Framework

A

PP, 3

= | o Web robot Application
" A & . W Scripting API transaction
S 5 " \., Control script snippet
_ - 1 plug-in
A

Browser

Pcap trace logger

Agent network

Performance Predictor

New scenario

Trace Analyzer
input Y Web Web

Annotate object timing info Agent Proxy

Page simulator Dependency Extractor

29

Outline

Motivation
Design
Dependency Extraction

Performance Prediction

mplementation
Evaluation
Conclusion

30

Dependency Extraction Results

. Google and Yahoo Search

HTML

%%@

9 Images

Google

* Validation: manual code analysis

Dependency Extraction Results

'~—

* Google and Yahoo Maps

Yahoo

#HTML=1
#HTML=1 #JS=
1,AMG=17

(#IS=1#MG=28) [#IS=3
Google (#HTML=2 AMG=65)
#MG=1 (#MG=10)(#HTML=1) (#MG=1)

* Validation: create pages with the same dep.
graph and validate the crafted pages

Prediction Experiment Setup

* Reduce latency see the improvement on PLT

* Controlled experiments
— Baseline: high latency
— New Scenario: low latency
— Use control gateway to inject and remove delays

* Planetlab experiments
— Baseline: International nodes
— New scenario: US nodes

— Improve all delay factors to be the same as the US
node.

Controlled Experiment

* Setup: visit Yahoo Maps from Northwestern
* Baseline: inject 100ms RTT to one DC
* New Scenario: removing the 100ms RTT

injected
DC Err (median) | Err (P95)
Akamai 16.0% 11.8%
YDC1 6.5% 9.7%
YDC2 14.8% 6.0%

Planetlab Experiment

e Baseline: A International node with relative
poor performance

* New Scenario: a US node

Service |Baseline New |Err(median) | Err(P95)
Gsearch |Singapore |US 2.0% 10.7%
Ysearch [Japan US 6.1% 0.3%
Gmap Sweden US 1.2% 1.8%
Ymap Poland US 0.7% 1.3%

Usage Scenarios

* Analyze how to improve Yahoo Maps
— Only want to optimize a small number of objects
— Use a greedy based search

— Evaluate 2,176 hypothetical scenarios in 20 secs,
find that

* Move 5 objects to CDN: 14.8%

* Reduce client delays of 14 objects to half: 26.6%
 Combine both: 40.1% (4secs to 2.4secs)

Outline

Motivation
Design
Dependency Extraction

Performance Prediction

mplementation
Evaluation

Conclusion

37

Conclusions

 Web service performance prediction is hard
— Modern web services are complicated
— Object dependencies are very important

* Design an automated tool for performance
prediction
— Dependency discovery
— Dependency driven performance predication

— Evaluation on the accuracy and usefulness of our
tool

Q&A

Thanks!

