

Max
Planck
Institute
for
Software Systems

Glasnost: Enabling End Users to Detect Traffic Differentiation

Marcel Dischinger, Massimiliano Marcon, Saikat Guha,

Krishna P. Gummadi, Ratul Mahajan, Stefan Saroiu

Networks are not transparent today

- ISPs are deploying traffic shapers widely
- But ISPs often do not inform their customers about this
 - Can we enable users to detect traffic shaping?

Why transparency is important

- End users can make an informed choice
- Developers can adapt applications to ISP policies
- Regulators can monitor ISPs and hold them accountable
 - Today, regulators rely on information provided by ISPs for their investigations

Glasnost user base

- Since March 2008, more than 500,000 users world-wide
- Glasnost results are used by telecom regulators

Rest of this talk

- The Glasnost system design
 - Challenges
 - Design choices
- Glasnost deployment
- Conclusion

Challenges

1. Tests must be easy to use

2. Tests must be short

3. Tests must be accurate

Challenges

- 1. Tests must be easy to use
 - No complex software installation
 - Simple and intuitive interface
- 2. Tests must be short

3. Tests must be accurate

Glasnost from a user's perspective

Users can easily test their own broadband links

Glasnost from a user's perspective

Users can easily test their own broadband links

Glasnost from a user's perspective

Users can easily test their own broadband links

Planck

Institute

Software Systems

Challenges

1. Tests must be easy to use

2. Tests must be short

3. Tests must be accurate

Users are impatient

- > 50% of users abort tests longer than 10 minutes
- Consequence: In Glasnost, we use shorter tests to avoid incomplete tests

Users are impatient

- > 50% of users abort tests longer than 10 minutes
- Consequence: In Glasnost, we use shorter tests to avoid incomplete tests
 - But, short tests decrease the amount of data we can collect

Challenges

1. Tests must be easy to use

2. Tests must be short

3. Tests must be accurate

Glasnost tests must be accurate

- Tests must be designed to avoid confounding factors
 - Heterogeneous hardware / software configurations
 - Differences in the natural traffic patterns of applications
 - Transient noise from background network traffic

Test data limited to a single user's access link

Glasnost test construction

- We perform active measurements in a controlled fashion
 - 1. Glasnost sends a flow that emulates realistic application traffic
 - 2. Glasnost sends a second flow that varies the payload of the first flow, but keeps everything else the same
 - We check for differences in the performance of the two flows

Detecting BitTorrent traffic shaping

Glasnost compares the performance of a pair of flows

Detecting BitTorrent traffic shaping

Glasnost compares the performance of a pair of flows

Glasnost tests must be accurate

- Tests must be designed to avoid confounding factors
 - Heterogeneous hardware / software configurations 🧹
 - Differences in the natural traffic patterns of applications
 - Transient noise from background network traffic

Identifying noisy tests

We repeat the flow pairs several times over a few minutes

Comparing throughputs of repeated flows reveals 4 noise

patterns

> 80% of all tests have low noise or occasional high noise

Detecting traffic shaping

 Compare the maximum throughput achieved by the 2 flow types

- Declare traffic shaping when difference is more than a threshold
 - High threshold: more false negatives and fewer false positives
 - Low threshold: fewer false negatives and more false positives

Outline

- The Glasnost system design
- Glasnost deployment
 - BitTorrent rate-limiting
- Conclusion

Glasnost deployment

- Glasnost currently runs on 20 servers on 9 sites world-wide
 - 3 servers at MPI-SWS, 17 servers hosted by contributors

- Glasnost is part of Measurement Lab
 - An open platform for Internet measurement tools for more transparency
 - Provides measurement server locations around the planet
 - Founded in collaboration with Google, PlanetLab, and other academic researchers

Results on BitTorrent rate-limiting

- How prevalent is BitTorrent rate-limiting?
- Which ISPs rate-limit BitTorrent traffic?
- Are all users of an ISP affected by rate-limiting?
- Do ISPs rate-limit only at peak hours?
- Is rate-limiting based on ports or application protocol messages?
- Do ISPs rate-limit downloads more often than uploads?

1. How prevalent is BitTorrent rate-limiting?

 Roughly 10% of our BitTorrent tests indicate rate-limiting over our 18 month deployment

2. Which ISPs' customers are affected?

- For Jan and Feb 2009 we analyzed measurements from 100,000 users for evidence of rate-limiting
- We found users of major ISPs world-wide to be affected by BitTorrent rate-limit

ISP	Tech.	Country
Bell Canada	DSL	Canada
BT	DSL	UK
City Telecom	FTTH	Hong Kong
Clearwire	WiMax	USA
Cogeco	Cable	Canada
Free	DSL	France
Kabel D	Cable	Germany
ONO	Cable	Spain
Rogers	Cable	Canada
Tiscali	DSL	UK
TM Net	DSL	Malaysia
TVCabo	Cable	Portugal
UPC	Cable	Netherlands

Other results

- Rate-limiting is more common in the upstream direction
- Rate-limiting is usually based on both packet content and ports
- Not all tests from traffic shaping ISPs suffer rate-limiting
 - Probably caused by selective deployment of traffic shaping
- Half of all rate-limiting ISPs do so only at peak hours
 - Confirms announcements by BT, Bell Canada, Kabel Deutschland
- More details in the paper

Constructing Glasnost tests for other applications

- ISPs' policies evolve over time
 - Target new applications, use different policies / shaping mechanisms
- Users are interested in testing for many different policies
- Initially, manual test construction
 - Required full understanding of the application protocol and protocol implementation
 - Laborious and error-prone task

Creating additional Glasnost tests

- Automatic test construction with trace-emulate
- To construct new tests, users need to
 - Capture a trace of application traffic
 - Feed it to our trace-emulate tool
 - Upload the resulting test configuration to Glasnost servers
- Trace-emulate extracts key features from input trace for replay

Summary

- Glasnost enables end users to detect traffic shaping
- Glasnost was used by more than 500,000 users world-wide
- Currently 8 tests, including BitTorrent and Flash video
 - Interface to create your own Glasnost tests
- First large-scale study on the prevalence of BitTorrent blocking and rate-limiting

Thank you!

• Questions?

Check out the Glasnost project at

http://broadband.mpi-sws.org/transparency/

