



#### MapReduce Online

Tyson Condie
UC Berkeley

Joint work with

Neil Conway, Peter Alvaro, and Joseph M. Hellerstein (UC Berkeley) Khaled Elmeleegy and Russell Sears (Yahoo! Research)

### MapReduce Programming Model

- Think data-centric
  - Apply a two step transformation to data sets
- Map step: Map(k1, v1) -> list(k2, v2)
  - Apply map function to input records
  - Assign output records to groups
- Reduce step: Reduce(k2, list(v2)) -> list(v3)
  - Consolidate groups from the map step
  - Apply reduce function to each group

## MapReduce System Model

- Shared-nothing architecture
  - Tuned for massive data parallelism
  - Many maps operate on portions of the input
  - Many reduces, each assigned specific groups
- Batch-oriented computations over massive data
  - Runtimes range in minutes to hours
  - Execute on tens to thousands of machines
  - Failures common (fault tolerance crucial)
- Fault tolerance via operator restart since ...
  - Operators complete before producing any output
  - Atomic data exchange between operators

## Life Beyond Batch

- MapReduce often used for analytics on streams of data that arrive continuously
  - Click streams, network traffic, web crawl data, ...
- Batch approach: buffer, load, process
  - High latency
  - Hard to scale for real-time analysis
- Online approach: run MR jobs continuously
  - Analyze data as it arrives

## Online Query Processing

- Two domains of interest (at massive scale):
  - 1. Online aggregation
    - Interactive data analysis (watch answer evolve)
  - 2. Stream processing
    - Continuous (real-time) analysis on data streams
- Blocking operators are a poor fit
  - Final answers only
  - No infinite streams
- Operators need to pipeline
  - BUT we must retain fault tolerance

#### A Brave New MapReduce World

- Pipelined MapReduce
  - Maps can operate on <u>infinite</u> data (Stream processing)
  - Reduces can export <u>early</u> answers (Online aggregation)
- Hadoop Online Prototype (HOP)
  - Preserves Hadoop interfaces and APIs
  - Pipelining fault tolerance model

#### Outline

- 1. Hadoop Background
- 2. Hadoop Online Prototype (HOP)
- 3. Performance (blocking vs. pipelining)
- 4. Future Work

#### Wordcount Job

- Map step
  - Parse input into a series of words
  - For each word, output <word, 1>
- Reduce step
  - For each word, list of counts
  - Sum counts and output <word, sum>
- Combine step (optional)
  - Preaggregate map output
  - Same as the reduce step in wordcount



## Map step

- Apply map function to the input block
- Assign a group id (color) to output records
- group id = hash(key) mod # reducers



# Group step (optional)

Sort map output by group id and key



# Combine step (optional)

 Apply combiner function to map output o Usually reduces the output size



## Commit step

- Final output stored on local file system
- Register file location with TaskTracker





# Shuffle step

Reduce tasks pull data from map output locations



# Group step (required)

- When <u>all sorted</u> runs are received
- merge-sort runs (optionally apply combiner)



# Reduce step

- Call reduce function on each <key, list of values>
- Write final output to HDFS



#### **Outline**

- 1. Hadoop MR Background
- 2. Hadoop Online Prototype (HOP)
  - Implementation
  - Online Aggregation
  - Stream Processing (see paper)
- 3. Performance (blocking vs. pipelining)
- 4. Future Work

### Hadoop Online Prototype (HOP)

- Pipelining between operators
  - Data pushed from producers to consumers
  - Data transfer scheduled concurrently with operator computation

#### HOP API

- ✓ No changes required to existing clients
  - Pig, Hive, Jaql <u>still work</u>
- + Configuration for pipeline/block modes
- + JobTracker accepts a series of jobs



## Pipelining Data Unit

- Initial design: pipeline eagerly (each record)
  - Prevents map side group and combine step
  - Map computation can block on network I/O
- Revised design: pipeline small sorted runs (spills)
  - Task thread: apply (map/reduce) function, buffer output
  - Spill thread: sort & combine buffer, spill to a file
  - TaskTracker: service consumer requests

## Simple Adaptive Policy

- Halt pipeline when ...
  - 1. Unserviced spill files backup **OR**
  - 2. Effective combiner

- **Resume** pipeline by first ...
  - merging & combining accumulated spill files into a single file
  - > Map tasks adaptively take on more work

# Pipelined shuffle step

Each map task can send multiple sorted runs



# Pipelined shuffle step

- Each map task can send multiple sorted runs
- Reducers perform early group + combine during shuffle
  - → Also done in blocking but more so when pipelining



## Pipelined Fault Tolerance (PFT)

#### Simple PFT design:

- Reduce treats in-progress map output as tentative
- If map dies then throw away its output
- If map succeeds then accept its output

#### Revised PFT design:

- Spill files have <u>deterministic boundaries</u> and are assigned a <u>sequence number</u>
- Correctness: Reduce tasks ensure spill files are idempotent
- Optimization: Map tasks avoid sending redundant spill files

## Online Aggregation



- Execute reduce task on intermediate data
  - Intermediate results published to HDFS

## **Example Approximation Query**

#### The data:

- Wikipedia traffic statistics (1TB)
- Webpage clicks/hour
- 5066 compressed files (each file = 1 hour click logs)

#### The query:

- group by language and hour
- count clicks and fraction of hour

#### The approximation:

- Final answer ≈ (intermediate click count \* scale-up factor)
- 1. Job progress: 1.0 / fraction of input received by reducers
- 2. Sample fraction: total # of hours / # hours sampled



- Bar graph shows results for a single hour (1600)
  - Taken less than 2 minutes into a ~2 hour job!



- Approximation error: | estimate actual | / actual
  - Job progress assumes hours are uniformly sampled
  - Sample fraction ≈ sample distribution of each hour

#### **Outline**

- 1. Hadoop MR Background
- 2. Hadoop Online Prototype (HOP)
- 3. Performance (blocking vs. pipelining)
  - Does block size matter?
- 4. Future Work

#### Large vs. Small Block Size

- Map input is a single block (Hadoop default)
  - Increasing block size => fewer maps with longer runtimes
- Wordcount on 100GB randomly generated words
  - 20 extra-large EC2 nodes: 4 cores, 15GB RAM
    - Slot capacity: 80 maps (4 per node), 60 reduces (3 per node)
  - Two jobs: large vs. small block size
    - Job 1 (large): 512MB (240 maps/blocks)
    - Job 2 (small): 32MB (3120 maps/blocks)
  - Both jobs hard coded to use 60 reduce tasks



- Poor CPU and I/O overlap
  - Especially in blocking mode
- Pipelining + adaptive policy less sensitive to block sizes
  - BUT incurs extra sorting between shuffle and reduce steps



- Improves CPU and I/O overlap
  - BUT idle periods still exist in blocking mode shuffle step
  - AND increases scheduler overhead (3120 maps)
  - AND increases HDFS (NameNode) memory pressure
- Adaptive policy finds the right degree of pipelined parallelism
  - Based on runtime dynamics (reducer load, network capacity, etc.)

#### **Future Work**

- 1. Blocking vs. Pipelining
  - Comprehensive performance study at scale
  - Hadoop optimizer
- 2. Online Aggregation
  - Random sampling of the input
  - Better UI for approximate results
- 3. Stream Processing
  - Better interface for window management
  - Support for high-level query languages

## Thank you!

More information: <a href="http://boom.cs.berkeley.edu">http://boom.cs.berkeley.edu</a>

HOP code: <a href="http://code.google.com/p/hop/">http://code.google.com/p/hop/</a>



- Simple wordcount on two (small) EC2 nodes
  - 1. Map machine: 2 map slots
  - 2. Reduce machine: 2 reduce slots
- Input 2GB data, 512MB block size
  - So job contains 4 maps and (a hard-coded) 2 reduces



- Simple wordcount on two (small) EC2 nodes
  - 1. Map machine: 2 map slots
  - 2. Reduce machine: 2 reduce slots
- Input 2GB data, 512MB block size
  - So job contains 4 maps and (a hard-coded) 2 reduces

#### Recall in blocking mode ...

- Operators block
  - Poor CPU and I/O overlap
  - Reduce task idle periods
- Only the final answer is fetched
  - So more data is fetched resulting in...
  - Network traffic spikes
  - Especially when a group of maps finish



#### Recall in blocking mode ...

- Operators block
  - Poor CPU and I/O overlap
  - Reduce task idle periods
- Only the final answer is fetched
  - So more data is fetched at once resulting in...
  - Network traffic spikes
  - Especially when a group of maps finish



## Benefits of Pipelining

- Online aggregation
  - An <u>early view</u> of the result from a running computation
  - Interactive data analysis (you say when to stop)
- Stream processing
  - Tasks operate on <u>infinite</u> data streams
  - Real-time data analysis
- Performance? Pipelining can ...
  - Improve CPU and I/O overlap
  - Steady network traffic (fewer load spikes)
  - Improve cluster utilization (reducers do more work)

#### Stream Processing

- Map and reduce tasks run continuously
  - Scheduler: wait for required slot capacity
- Map tasks stream spill files
  - Input taken from arbitrary source
    - MapReduce job, TCP socket, log files, etc.
  - Garbage collection handled by system
- Window management done at reducer
  - Reduce output is an infinite series of windowed results
  - Window boundary based on time, record counts, etc.

#### Real-time Monitoring System

- Use MapReduce to monitor MapReduce
  - Economy of Mechanism
- Agents monitor machines
  - Implemented as a continuous map task
  - Record statistics of interest (/proc, log files, etc.)
- Aggregators group agent-local statistics
  - Implemented as reduce tasks
  - Aggregate statistics along machine, rack, datacenter
  - Reduce windows: 1, 5, and 15 second load averages



- Monitor /proc/vmstat for swapping
  - Alert triggered after some threshold
- Alert reported around a second after passing threshold
  - Faster than the (~5 second) TaskTracker reporting interval
  - ? Feedback loop to the JobTracker for better scheduling

# Pipelined shuffle step

- Each map task can send multiple sorted runs
- Reducers perform early group + combine during shuffle
  - → Also done in blocking but more so when pipelining



### Hadoop Architecture

- Hadoop MapReduce
  - Single master node (JobTracker), many worker nodes (TaskTrackers)
  - Client submits a job to the JobTracker
  - JobTracker splits each job into tasks (map/reduce)
  - Assigns tasks to TaskTrackers on demand
- Hadoop Distributed File System (HDFS)
  - Single name node, many data nodes
  - Data is stored as fixed-size (e.g., 64MB) blocks
  - HDFS typically holds map input and reduce output

#### Performance

- Why block?
  - Effective combiner
  - Reduce step is a bottleneck
- Why pipeline?
  - Improve cluster utilization
  - Smooth out network traffic