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MapReduce Programming Model

* Think data-centric

— Apply a two step transformation to data sets
 Map step: Map(k1, v1) -> list(k2, v2)

— Apply map function to input records

— Assign output records to groups

* Reduce step: Reduce(k2, list(v2)) -> list(v3)
— Consolidate groups from the map step
— Apply reduce function to each group



MapReduce System Model

* Shared-nothing architecture
— Tuned for massive data parallelism
— Many maps operate on portions of the input
— Many reduces, each assigned specific groups

® Batch-oriented computations over massive data

— Runtimes range in minutes to hours
— Execute on tens to thousands of machines
— Failures common (fault tolerance crucial)

* Fault tolerance via operator restart since ...

— Operators complete before producing any output
— Atomic data exchange between operators



Life Beyond Batch

 MapReduce often used for analytics on
streams of data that arrive continuously

— Click streams, network traffic, web crawl data, ...

e Batch approach: buffer, load, process
— High latency
— Hard to scale for real-time analysis

* Online approach: run MR jobs continuously
— Analyze data as it arrives



Online Query Processing

 Two domains of interest (at massive scale):
1. Online aggregation
* |Interactive data analysis (watch answer evolve)
2. Stream processing
e Continuous (real-time) analysis on data streams

* Blocking operators are a poor fit
— Final answers only
— No infinite streams

* Operators need to pipeline
— BUT we must retain fault tolerance



A Brave New MapReduce World

* Pipelined MapReduce
— Maps can operate on infinite data (Stream processing)

— Reduces can export early answers (Online aggregation)

 Hadoop Online Prototype (HOP)
— Preserves Hadoop interfaces and APIs

— Pipelining fault tolerance model
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Wordcount Job

* Map step
— Parse input into a series of words
— For each word, output <word, 1>
* Reduce step

— For each word, list of counts
— Sum counts and output <word, sum>

 Combine step (optional)
— Preaggregate map output
— Same as the reduce step in wordcount
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Map step

= Apply map function to the input block
= Assign a group id (color) to output records
= group id = hash(key) mod # reducers
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Group step (optional)

= Sort map output by group id and key

Workers



Combine step (optional)

= Apply combiner function to map output
O Usually reduces the output size

Workers



Commit step

" Final output stored on local file system
= Register file location with TaskTracker

Workers
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Shuffle step

= Reduce tasks pull data from map output locations
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Group step (required)

=" When all sorted runs are received
" merge-sort runs (optionally apply combiner)

Workers



Reduce step

= Call reduce function on each <key, list of values>
= Write final output to HDFS

3

Workers
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2. Hadoop Online Prototype (HOP)
— Implementation
— Online Aggregation
— Stream Processing (see paper)

3. Performance (blocking vs. pipelining)
4. Future Work



Hadoop Online Prototype (HOP)

* Pipelining between operators
— Data pushed from producers to consumers

— Data transfer scheduled concurrently with operator
computation

* HOP API

v No changes required to existing clients
* Pig, Hive, Jaql still work

+ Configuration for pipeline/block modes

+ JobTracker accepts a series of jobs
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Pipelining Data Unit

* |nitial design: pipeline eagerly (each record)
— Prevents map side group and combine step
— Map computation can block on network |/O

* Revised design: pipeline small sorted runs (spills)

— Task thread: apply (map/reduce) function, buffer
output

— Spill thread: sort & combine buffer, spill to a file

— TaskTracker: service consumer requests



Simple Adaptive Policy

* Halt pipeline when ...
1. Unserviced spill files backup OR
2. Effective combiner

* Resume pipeline by first ...

— merging & combining accumulated spill files
into a single file

» Map tasks adaptively take on more work



Pipelined shuffle step

= Fach map task can send multiple sorted runs

Workers



Pipelined shuffle step

= Fach map task can send multiple sorted runs

» Reducers perform early group + combine during shuffle
-> Also done in blocking but more so when pipelining

Merge and combine

e
Merge and combine

Workers



Pipelined Fault Tolerance (PFT)

 Simple PFT design:
— Reduce treats in-progress map output as tentative
— If map dies then throw away its output
— If map succeeds then accept its output

* Revised PFT design:

— Spill files have deterministic boundaries and are assigned a
sequence number

— Correctness: Reduce tasks ensure spill files are idempotent
— Optimization: Map tasks avoid sending redundant spill files



Online Aggregation
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Execute reduce task on intermediate data
— Intermediate results published to HDFS



Example Approximation Query

* The data:
— Wikipedia traffic statistics (1TB)
— Webpage clicks/hour
— 5066 compressed files (each file = 1 hour click logs)

* The query:
— group by language and hour
— count clicks and fraction of hoyr

* The approximation:
— Final answer = (intermediatejclick cwat * scale-up factor)
1. Job progress: 1.0 / fractionfof input recels reducers

2. Sample fractionytotal # of hour® L H# hours samplec




B Final answer & Sample fraction ™ Job progress

7.E+09
6.E+09
5.E+09
4.E+09
3.E+09
2.E+09 -
1.E+09 -
0.E+00 -

e Bar graph shows results for a single hour (1600)

— Taken less than 2 minutes into a ~2 hour job!




Job progress = = Sample fraction
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* Approximation error: |estimate — actual| / actual
— Job progress assumes hours are uniformly sampled
— Sample fraction = sample distribution of each hour
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3. Performance (blocking vs. pipelining)
— Does block size matter?

4. Future Work



Large vs. Small Block Size

 Map input is a single block (Hadoop default)

— Increasing block size => fewer maps with longer runtimes

 Wordcount on 100GB randomly generated words
— 20 extra-large EC2 nodes: 4 cores, 15GB RAM
* Slot capacity: 80 maps (4 per node), 60 reduces (3 per node)

— Two jobs: large vs. small block size

* Job 1 (large): 512MB (240 maps/blocks)
* Job 2 (small): 32MB (3120 maps/blocks)

— Both jobs hard coded to use 60 reduce tasks
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* Poor CPU and I/O overlap

— Especially in blocking mode

* Pipelining + adaptive policy less sensitive to block sizes
— BUT incurs extra sorting between shuffle and reduce steps
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Improves CPU and I/O overlap

— BUT idle periods still exist in blocking mode shuffle step
— AND increases scheduler overhead (3120 maps)
— AND increases HDFS (NameNode) memory pressure

Adaptive policy finds the right degree of pipelined parallelism

— Based on runtime dynamics (reducer load, network capacity, etc.)



Future Work

1. Blocking vs. Pipelining
— Comprehensive performance study at scale
— Hadoop optimizer
2. Online Aggregation
— Random sampling of the input
— Better Ul for approximate results

3. Stream Processing
— Better interface for window management
— Support for high-level query languages



Thank you!

More information: http://boom.cs.berkeley.edu

HOP code: http://code.google.com/p/hop/
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e Simple wordcount on two (small) EC2 nodes

1. Map machine: 2 map slots
2. Reduce machine: 2 reduce slots

* Input 2GB data, 512MB block size

— So job contains 4 maps and (a hard-coded) 2 reduces
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e Simple wordcount on two (small) EC2 nodes

1. Map machine: 2 map slots
2. Reduce machine: 2 reduce slots

* Input 2GB data, 512MB block size
— So job contains 4 maps and (a hard-coded) 2 reduces



Recall in blocking mode ...

* Operators block
— Poor CPU and I/O overlap

— Reduce task idle periods
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Recall in blocking mode ...

* Only the final answer is fetched
— So more data is fetched at once resulting in...
— Network traffic spikes
— Especially when a group of maps finish
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Benefits of Pipelining

* Online aggregation
— An early view of the result from a running computation

— Interactive data analysis (you say when to stop)

e Stream processing
— Tasks operate on infinite data streams
— Real-time data analysis

* Performance? Pipelining can ...

— Improve CPU and I/O overlap
— Steady network traffic (fewer load spikes)

— Improve cluster utilization (reducers do more work)



Stream Processing

 Map and reduce tasks run continuously
— Scheduler: wait for required slot capacity

* Map tasks stream spill files

— Input taken from arbitrary source
 MapReduce job, TCP socket, log files, etc.

— Garbage collection handled by system
 Window management done at reducer

— Reduce output is an infinite series of windowed results
— Window boundary based on time, record counts, etc.



Real-time Monitoring System

* Use MapReduce to monitor MapReduce
— Economy of Mechanism

* Agents monitor machines
— Implemented as a continuous map task

— Record statistics of interest (/proc, log files, etc.)

* Aggregators group agent-local statistics
— Implemented as reduce tasks
— Aggregate statistics along machine, rack, datacenter
— Reduce windows: 1, 5, and 15 second load averages



Outlier Detection
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* Monitor /proc/vmstat for swapping
— Alert triggered after some threshold
e Alert reported around a second after passing threshold

— Faster than the (~5 second) TaskTracker reporting interval
? Feedback loop to the JobTracker for better scheduling



Pipelined shuffle step

= Fach map task can send multiple sorted runs

» Reducers perform early group + combine during shuffle
-> Also done in blocking but more so when pipelining

Workers



Hadoop Architecture

 Hadoop MapReduce

— Single master node (JobTracker), many worker nodes
(TaskTrackers)

— Client submits a job to the JobTracker
— JobTracker splits each job into tasks (map/reduce)
— Assigns tasks to TaskTrackers on demand

 Hadoop Distributed File System (HDFS)
— Single name node, many data nodes

— Data is stored as fixed-size (e.g., 64MB) blocks
— HDFS typically holds map input and reduce output



Performance

* Why block?
— Effective combiner
— Reduce step is a bottleneck

* Why pipeline?
— Improve cluster utilization

— Smooth out network traffic



