University of California

'/
Berkeley — YAFQQ:

MapReduce Online

Tyson Condie
UC Berkeley

Joint work with
Neil Conway, Peter Alvaro, and Joseph M. Hellerstein (UC Berkeley)
Khaled EImeleegy and Russell Sears (Yahoo! Research)

MapReduce Programming Model

* Think data-centric

— Apply a two step transformation to data sets
 Map step: Map(k1, v1) -> list(k2, v2)

— Apply map function to input records

— Assign output records to groups

* Reduce step: Reduce(k2, list(v2)) -> list(v3)
— Consolidate groups from the map step
— Apply reduce function to each group

MapReduce System Model

* Shared-nothing architecture
— Tuned for massive data parallelism
— Many maps operate on portions of the input
— Many reduces, each assigned specific groups

® Batch-oriented computations over massive data

— Runtimes range in minutes to hours
— Execute on tens to thousands of machines
— Failures common (fault tolerance crucial)

* Fault tolerance via operator restart since ...

— Operators complete before producing any output
— Atomic data exchange between operators

Life Beyond Batch

 MapReduce often used for analytics on
streams of data that arrive continuously

— Click streams, network traffic, web crawl data, ...

e Batch approach: buffer, load, process
— High latency
— Hard to scale for real-time analysis

* Online approach: run MR jobs continuously
— Analyze data as it arrives

Online Query Processing

 Two domains of interest (at massive scale):
1. Online aggregation
* |Interactive data analysis (watch answer evolve)
2. Stream processing
e Continuous (real-time) analysis on data streams

* Blocking operators are a poor fit
— Final answers only
— No infinite streams

* Operators need to pipeline
— BUT we must retain fault tolerance

A Brave New MapReduce World

* Pipelined MapReduce
— Maps can operate on infinite data (Stream processing)

— Reduces can export early answers (Online aggregation)

 Hadoop Online Prototype (HOP)
— Preserves Hadoop interfaces and APIs

— Pipelining fault tolerance model

Outline

Hadoop Background
Hadoop Online Prototype (HOP)

Performance (blocking vs. pipelining)

> W

Future Work

Wordcount Job

* Map step
— Parse input into a series of words
— For each word, output <word, 1>
* Reduce step

— For each word, list of counts
— Sum counts and output <word, sum>

 Combine step (optional)
— Preaggregate map output
— Same as the reduce step in wordcount

Client

Submit wordcount

-

schedule

Master

reduce

reduce

Workers

Map step

= Apply map function to the input block
= Assign a group id (color) to output records
= group id = hash(key) mod # reducers

Block 1

Cat

Rabbit
Dog

Turtle
Cat

Rabbit

[iiiiii} Workers

Group step (optional)

= Sort map output by group id and key

Workers

Combine step (optional)

= Apply combiner function to map output
O Usually reduces the output size

Workers

Commit step

" Final output stored on local file system
= Register file location with TaskTracker

Workers

Master

Map finished Map output location

reduce

reduce

Workers

Shuffle step

= Reduce tasks pull data from map output locations

reduce

reduce

Workers

Group step (required)

=" When all sorted runs are received
" merge-sort runs (optionally apply combiner)

Workers

Reduce step

= Call reduce function on each <key, list of values>
= Write final output to HDFS

3

Workers

Outline

2. Hadoop Online Prototype (HOP)
— Implementation
— Online Aggregation
— Stream Processing (see paper)

3. Performance (blocking vs. pipelining)
4. Future Work

Hadoop Online Prototype (HOP)

* Pipelining between operators
— Data pushed from producers to consumers

— Data transfer scheduled concurrently with operator
computation

* HOP API

v No changes required to existing clients
* Pig, Hive, Jaql still work

+ Configuration for pipeline/block modes

+ JobTracker accepts a series of jobs

Master

Schedule Schedule + Map location (ASAP)

reduce

reduce

Workers

Pipelining Data Unit

* |nitial design: pipeline eagerly (each record)
— Prevents map side group and combine step
— Map computation can block on network |/O

* Revised design: pipeline small sorted runs (spills)

— Task thread: apply (map/reduce) function, buffer
output

— Spill thread: sort & combine buffer, spill to a file

— TaskTracker: service consumer requests

Simple Adaptive Policy

* Halt pipeline when ...
1. Unserviced spill files backup OR
2. Effective combiner

* Resume pipeline by first ...

— merging & combining accumulated spill files
into a single file

» Map tasks adaptively take on more work

Pipelined shuffle step

= Fach map task can send multiple sorted runs

Workers

Pipelined shuffle step

= Fach map task can send multiple sorted runs

» Reducers perform early group + combine during shuffle
-> Also done in blocking but more so when pipelining

Merge and combine

e
Merge and combine

Workers

Pipelined Fault Tolerance (PFT)

 Simple PFT design:
— Reduce treats in-progress map output as tentative
— If map dies then throw away its output
— If map succeeds then accept its output

* Revised PFT design:

— Spill files have deterministic boundaries and are assigned a
sequence number

— Correctness: Reduce tasks ensure spill files are idempotent
— Optimization: Map tasks avoid sending redundant spill files

Online Aggregation

master

.................................

Read
Input File

| Write Snapshot
__________________________________ Answer

Execute reduce task on intermediate data
— Intermediate results published to HDFS

Example Approximation Query

* The data:
— Wikipedia traffic statistics (1TB)
— Webpage clicks/hour
— 5066 compressed files (each file = 1 hour click logs)

* The query:
— group by language and hour
— count clicks and fraction of hoyr

* The approximation:
— Final answer = (intermediatejclick cwat * scale-up factor)
1. Job progress: 1.0 / fractionfof input recels reducers

2. Sample fractionytotal # of hour® L H# hours samplec

B Final answer & Sample fraction ™ Job progress

7.E+09
6.E+09
5.E+09
4.E+09
3.E+09
2.E+09 -
1.E+09 -
0.E+00 -

e Bar graph shows results for a single hour (1600)

— Taken less than 2 minutes into a ~2 hour job!

Job progress = = Sample fraction

0.8
0.7
S
5 0.6
=
w 0.5 -
©
|
s 0.4
2
S 03 7
&a
0.2
0.1
O_
O O O OO OO OO O 0O OO0 OO oo oo o o o
<t 00N O O < 60N O O < 0N O O <« 0N O <
N < N ON < O 0O d g OO0 1 n O 0 O Mm N M
I d 1 4 N N N AN O 0N NN ST N
Time (secs)

* Approximation error: |estimate — actual| / actual
— Job progress assumes hours are uniformly sampled
— Sample fraction = sample distribution of each hour

Outline

3. Performance (blocking vs. pipelining)
— Does block size matter?

4. Future Work

Large vs. Small Block Size

 Map input is a single block (Hadoop default)

— Increasing block size => fewer maps with longer runtimes

 Wordcount on 100GB randomly generated words
— 20 extra-large EC2 nodes: 4 cores, 15GB RAM
* Slot capacity: 80 maps (4 per node), 60 reduces (3 per node)

— Two jobs: large vs. small block size

* Job 1 (large): 512MB (240 maps/blocks)
* Job 2 (small): 32MB (3120 maps/blocks)

— Both jobs hard coded to use 60 reduce tasks

Job . romnlatinn

Reduce idle Reduce idle period
neriod) on final merge-sort
N —Mappn#\s ="="Reduce progress / - |V|appr®
1:21 } Reduce step (ZS%-lOO%) X //S . —
§ oo T ——— 49 T % v ~ 36 minutes -
£ = Shuffle step (0%-75%) | ™= “* | 7
4 minutes < 1 minute

* Poor CPU and I/O overlap

— Especially in blocking mode

* Pipelining + adaptive policy less sensitive to block sizes
— BUT incurs extra sorting between shuffle and reduce steps

c..~. Job completion
) Reduce idle time
periOd s) 1 ipelining (Small Blocks)
== Map progress = ce progress
T N S
2 con > ~ minutces . ~ minutes -
| AR N P
20% / 20% //
J"’l 5 10 15 20 25 30 35 40 Kl', 5 10 15 20 25 30 35 40
Time (minutes) Time (minutes)
< 1 minute << 1 minute

Improves CPU and I/O overlap

— BUT idle periods still exist in blocking mode shuffle step
— AND increases scheduler overhead (3120 maps)
— AND increases HDFS (NameNode) memory pressure

Adaptive policy finds the right degree of pipelined parallelism

— Based on runtime dynamics (reducer load, network capacity, etc.)

Future Work

1. Blocking vs. Pipelining
— Comprehensive performance study at scale
— Hadoop optimizer
2. Online Aggregation
— Random sampling of the input
— Better Ul for approximate results

3. Stream Processing
— Better interface for window management
— Support for high-level query languages

Thank you!

More information: http://boom.cs.berkeley.edu

HOP code: http://code.google.com/p/hop/

Task progress

Final map finishes, sorts palining

>m andsends to reduce

SO ends Pipelining

Map progress

Reduce progress

100%

80%
60%
40%
20%

0%

80%

60%

40%

Task progress

20%

0

0%
100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900

Time (seconds) Time (seconds)

e Simple wordcount on two (small) EC2 nodes

1. Map machine: 2 map slots
2. Reduce machine: 2 reduce slots

* Input 2GB data, 512MB block size

— So job contains 4 maps and (a hard-coded) 2 reduces

Bloc

4th m

recelv

N we1?

0 100 200 300 400 500 600 700 800 9S00 0

Time (seconds)

d
2 4 re periods during the

k- Job completion when |4
” vadiicaan fniclaA
- . S » task
No significant idle 45rming final
rt ess

shuffle phase

~ 9 minutes

0%
100 200 300 400 500 600 700 800 900

Time (seconds)

e Simple wordcount on two (small) EC2 nodes

1. Map machine: 2 map slots
2. Reduce machine: 2 reduce slots

* Input 2GB data, 512MB block size
— So job contains 4 maps and (a hard-coded) 2 reduces

Recall in blocking mode ...

* Operators block
— Poor CPU and I/O overlap

— Reduce task idle periods

Map step more

CPU Utlll /O bound

" Maptasks | o iy
loading 2GB

\

Mapper CPUV of data

Pipelining reduce tasks
start working

>k (presorting) early
Reducer CPU R mlnufE\ru\TOS
| }

L~ .

Amazon Cloudwatch Blocking Pipelining
Job Start Job Start

Recall in blocking mode ...

* Only the final answer is fetched
— So more data is fetched at once resulting in...
— Network traffic spikes
— Especially when a group of maps finish

Network OQut (Bytes

Last map
finishes and

o

Amazon Cloudwatch

Bloéking
Job Stant

Steady network
traffic

s. sends output -
e NGl e

Pipelining
Job Start

.......

Benefits of Pipelining

* Online aggregation
— An early view of the result from a running computation

— Interactive data analysis (you say when to stop)

e Stream processing
— Tasks operate on infinite data streams
— Real-time data analysis

* Performance? Pipelining can ...

— Improve CPU and I/O overlap
— Steady network traffic (fewer load spikes)

— Improve cluster utilization (reducers do more work)

Stream Processing

 Map and reduce tasks run continuously
— Scheduler: wait for required slot capacity

* Map tasks stream spill files

— Input taken from arbitrary source
 MapReduce job, TCP socket, log files, etc.

— Garbage collection handled by system
 Window management done at reducer

— Reduce output is an infinite series of windowed results
— Window boundary based on time, record counts, etc.

Real-time Monitoring System

* Use MapReduce to monitor MapReduce
— Economy of Mechanism

* Agents monitor machines
— Implemented as a continuous map task

— Record statistics of interest (/proc, log files, etc.)

* Aggregators group agent-local statistics
— Implemented as reduce tasks
— Aggregate statistics along machine, rack, datacenter
— Reduce windows: 1, 5, and 15 second load averages

Outlier Detection

100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

0

Pages swapped

0 5 10 15 20 25 30

Time (seconds)

* Monitor /proc/vmstat for swapping
— Alert triggered after some threshold
e Alert reported around a second after passing threshold

— Faster than the (~5 second) TaskTracker reporting interval
? Feedback loop to the JobTracker for better scheduling

Pipelined shuffle step

= Fach map task can send multiple sorted runs

» Reducers perform early group + combine during shuffle
-> Also done in blocking but more so when pipelining

Workers

Hadoop Architecture

 Hadoop MapReduce

— Single master node (JobTracker), many worker nodes
(TaskTrackers)

— Client submits a job to the JobTracker
— JobTracker splits each job into tasks (map/reduce)
— Assigns tasks to TaskTrackers on demand

 Hadoop Distributed File System (HDFS)
— Single name node, many data nodes

— Data is stored as fixed-size (e.g., 64MB) blocks
— HDFS typically holds map input and reduce output

Performance

* Why block?
— Effective combiner
— Reduce step is a bottleneck

* Why pipeline?
— Improve cluster utilization

— Smooth out network traffic

