Cheap and Large CAMs for High
Performance Data-Intensive
Networked Systems

Ashok Anand, Chitra Muthukrishnan, Steven Kappes, and
Aditya Akella

University of Wisconsin-Madison

Suman Nath
Microsoft Research

New data-intensive networked
systems

Large hash tables (10s to 100s of GBs)

New data-intensive networked
systems

WAN optimizers

Data center Key Chunk Branch office

(20B) pointer |Large hash tables (32 GB) ‘

Object

High speed (~10K/sec)

hunks(4 KB
Chunks(4 KB) lookups for 500 Mbps link

Look u
p<

_ ashtable (~32GB) A High speed (~10 K/sec)
Object store (~4 TB) inserts and evictions

New data-intensive networked
systems

e Other systems

— De-duplication in storage systems (e.g., Datadomain)
— CCN cache (Jacobson et al., CONEXT 2009)

— DONA directory lookup (Koponen et al., SIGCOMM
2006)

Cost-effective large hash tables
C L AMs

Candidate options

Too *Price statistics from 2008-09
slow Too
Random Random Cost)
eads/sec | writes/sec SAR'VE
Disk
DRAM 2.5 ops/sec/S
Flash-SSD

* Derived from latencies on Intel M-18 SSD in experim

How to deal with slow writes of Flash SSD

Our CLAM design

e New data structure “BufferHash” + Flash

e Key features

— Avoid random writes, and perform sequential writes
in a batch

e Sequential writes are 2X faster than random writes (Intel
SSD)

* Batched writes reduce the number of writes going to Flash

— Bloom filters for optimizing lookups

BufferHash performs orders of magnitude better than
DRAM based traditional hash tables in ops/sec/S

Outline

e Background and motivation

* CLAM design

— Key operations (insert, lookup, update)

— Latency analysis and performance tuning

 Evaluation

Flash/SSD primer

e Random writes are expensive
Avoid random page writes

* Reads and writes happen at the granularity of
a flash page

1/0 smaller than page should be avoided, if
possible

Conventional hash table on Flash/SSD

Keys are likely to hash to random
locations

\ /
Flash Ran.dom
writes

SSDs: FTL handles random writes to some extent;

But garbage collection overhead is high
| 1 1 1 1 I 1 [1 1 11| |

~200 lookups/sec and ~200 inserts/sec with WAN
optimizer workload, << 10 K/s and 5 K/s

Conventional hash table on Flash/SSD

DRAM

Can’t assume locality in requests — DRAM as cache won'’t
work

Flash

Our approach: Buffering insertions

e Control the impact of random writes
 Maintain small hash table (buffer) in memory

* Asin-memory buffer gets full, write it to flash
— We call in-flash buffer, incarnation of buffer

DRAM

Buffer: In-memory
hash table

Flash SSD

Incarnation: In-flash
hash table

Two-level memory hierarchy

Flash

Incarnation

Incarnation table

Latest
incarnation

Oldest
incarnation

Net hash table is: buffer + all incarnations

Lookups are impacted due to buffers

Lookup key —> * drer

Flash

=

Incarnation table

Multiple in-flash lookups. Can we limit to only one?

Bloom filters for optimizing lookups

DRAM

Buffer

Lookup key —>

In-memory)/ .
look ups Flash

False positive!

Configure carefully! n E H.

‘ Incarnation table
2 GB Bloom filters for 32 GB Flash for false positive rate < 0.01!

Bloom filters

Update: na'l'\”pproach

Update key —

@I Bloom filters

A opensive

Xpensive

random writes
\ /

Flash update key

a1

Incarnation table

Discard this naive approac

N

Lazy updates

DRAM
Update key —> - Butter
m Bloom filters
Insert key /

ey, new Flash Key, old
value i!i value

Incarnation table

Lookups check latest incarnations first

Eviction for streaming apps

Eviction policies may depend on application
— LRU, FIFO, Priority based eviction, etc.

Two BufferHash primitives

— Full Discard: evict all items
* Naturally implements FIFO

— Partial Discard: retain few items
* Priority based eviction by retaining high priority items

BufferHash best suited for FIFO

— Incarnations arranged by age
— Other useful policies at some additional cost

Details in paper

Issues with using one buffer

* Single buffer in DRAM
B
DRAM DR sufer
— All operations and @I Bloom filters

eviction policies
Flash

[T

Incarnation table

* High worst case
insert latency

— Few seconds for 1
GB buffer

— New lookups stall

Partitioning buffers

Partition buffers

— Based on first few bits
of key space
— Size > page
e Avoid i/o less than
page
— Size >= block

* Avoid random page
writes

Reduces worst case
latency

Eviction policies apply
per buffer

(@) XXXXX_ | (DXXXXX

DRAM

@—

Flash

[T

Incarnation table

BufferHash: Putting it all together

 Multiple buffers in memory
 Multiple incarnations per buffer in flash
* One in-memory bloom filter per incarnation

DRAM [TTTTT] ‘ LITTIT]
NI Buffer N Buffer K

Flash
(D) (D D

Net hash table = all buffers + all incarnations

Outline

e Background and motivation

* Our CLAM design

— Key operations (insert, lookup, update)

— Latency analysis and performance tuning

 Evaluation

Latency analysis

* |nsertion latency
— Worst case o« size of buffer
— Average case is constant for buffer > block size

* Lookup latency
— Average case oc Number of incarnations
— Average case ¢ False positive rate of bloom filter

Parameter tuning: Total size of Buffers

Total size of buffers =B1 + B2 + ... + BN
Given fixed DRAM, how much allocated to buffers

Total bloom filter size = DRAM — total size of buffers

Flash

DRAM |B1 - BN -
[] []

f

Lookupe #Incarnations * False positive rate

Incarnations = (Flash size/Total buffer size)

False positive rate increases as the size of
bloom filters decrease

Too small is not optimal
Too large is not optimal either
Optimal = 2 * SSD/entry

Parameter tuning: Per-buffer size

What should be size of a partitioned buffer (e.g. B1) ?

Flash

DRAM |B1 - BN -
[] []

f

Affects worst case insertion

Adjusted according to
application requirement
(128 KB — 1 block)

Outline

e Background and motivation

* Our CLAM design

— Key operations (insert, lookup, update)

— Latency analysis and performance tuning

 Evaluation

Evaluation

Configuration
— 4 GB DRAM, 32 GB Intel SSD, Transcend SSD

— 2 GB buffers, 2 GB bloom filters, 0.01 false positive
rate

— FIFO eviction policy

BufferHash performance

* WAN optimizer workload
— Random key lookups followed by inserts
— Hit rate (40%)
— Used workload from real packet traces also

 Comparison with BerkeleyDB (traditional hash
table) on Intel SSD

Average latency |BufferHash BerkeleyDB

Look up (ms) @ Better lookups!

Better inserts!

Insert (ms)

Insert performance

CDE —-Bufferhash —~BerkeleyDB

S A a—

99% inserts < 0.1 ms

0.6
0.4

0.2

40% of
inserts >5 ms |

i\

0.001 0.01 0.1 1 10 100
Insert latency (ms) on Intel SSD

Buffering effect! Random writes are slow!

CDF

1.0
0.8

0.6
0.4

0.2

Lookup performance

—--Bufferhash —--BerkeleyDB

E 99% of lookups < 0.2ms
40% of

lookups > 5 ms

Garbage collection
overhead due to writes!

0.001 0.01 0.1 1 10 100

Lookup latency (ms) for 40% hit workload

0.15 ms Intel SSD latency

Performance in Ops/sec/S

* 16K lookups/sec and 160K inserts/sec
e QOverall cost of S400

* 42 lookups/sec/S and 420 inserts/sec/S

— Orders of magnitude better than 2.5 ops/sec/S of
DRAM based hash tables

Other workloads

* Varying fractions of lookups
* Results on Trancend SSD

Average latency per operation
Lookup fraction |BufferHash BerkeleyDB
0

0.007 ms 18.4 ms
0.5 0.09 ms 10.3 ms
1 0.12 ms 0.3 ms

e BufferHash ideally suited for write intensive
workloads

Evaluation summary

e BufferHash performs orders of magnitude better in
ops/sec/S compared to traditional hashtables on
DRAM (and disks)

e BufferHash is best suited for FIFO eviction policy

— Other policies can be supported at additional cost, details
in paper

 WAN optimizer using Bufferhash can operate optimally
at 200 Mbps, much better than 10 Mbps with
BerkeleyDB

— Details in paper

Related Work

* FAWN (Vasudevan et al., SOSP 2009)
— Cluster of wimpy nodes with flash storage
— Each wimpy node has its hash table in DRAM

— We target...
* Hash table much bigger than DRAM
* Low latency as well as high throughput systems

 HashCache (Badam et al., NSDI 2009)
— In-memory hash table for objects stored on disk

Conclusion

We have designed a new data structure
BufferHash for building CLAMs

Our CLAM on Intel SSD achieves high ops/sec/S
for today’s data-intensive systems

Our CLAM can support useful eviction policies

Dramatically improves performance of WAN
optimizers

Thank you

