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New data-intensive networked 
systems

Large hash tables (10s to 100s of GBs)



New data-intensive networked 
systems
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New data-intensive networked 
systems

• Other systems 
– De-duplication in storage systems (e.g., Datadomain)

– CCN cache (Jacobson et al., CONEXT 2009)

– DONA directory lookup (Koponen et al., SIGCOMM 
2006)

Cost-effective large hash tables

Cheap Large cAMs



Candidate options

DRAM 300K $120K+

Disk 250 $30+

Random 
reads/sec

Cost
(128 GB)

Flash-SSD 10K* $225+

Random 
writes/sec

250

300K

5K*

Too 
slow Too 

expensive

* Derived from latencies  on Intel M-18 SSD in experiments

2.5 ops/sec/$

Slow  
writes

How to deal with slow writes of Flash SSD

+Price statistics from 2008-09



Our CLAM design

• New data structure “BufferHash” + Flash

• Key features

– Avoid random writes, and perform sequential writes 
in a batch

• Sequential writes are 2X faster than random writes (Intel 
SSD)

• Batched writes reduce the number of writes going to Flash

– Bloom filters for optimizing lookups

BufferHash performs orders of magnitude better than 
DRAM based traditional hash tables in ops/sec/$



Outline

• Background and motivation

• CLAM design

– Key operations (insert, lookup, update)

– Eviction

– Latency analysis and performance tuning

• Evaluation



Flash/SSD primer

• Random writes are expensive

Avoid random page writes

• Reads and writes happen at the granularity of 
a flash page

I/O smaller than page should be avoided, if 
possible



Conventional hash table on Flash/SSD

Flash

Keys are likely to hash to random 
locations 

Random 
writes

SSDs: FTL handles random writes to some extent;
But garbage collection overhead is high

~200 lookups/sec and ~200 inserts/sec with WAN 
optimizer workload,  << 10 K/s and 5 K/s 



Conventional hash table on Flash/SSD

DRAM

Flash

Can’t assume locality in requests – DRAM as cache won’t 
work 



Our approach: Buffering insertions

• Control the impact of random writes
• Maintain small hash table (buffer) in memory 
• As in-memory buffer gets full, write it to flash

– We call in-flash buffer, incarnation of buffer

Incarnation: In-flash 
hash table

Buffer: In-memory 
hash table

DRAM Flash SSD



Two-level memory hierarchy

DRAM

Flash

Buffer

Incarnation table

Incarnation

1234

Net hash table is: buffer + all incarnations

Oldest 
incarnation

Latest 
incarnation



Lookups are impacted due to buffers

DRAM

Flash

Buffer

Incarnation table

Lookup key

In-flash 
look ups

Multiple in-flash lookups. Can we limit to only one?

4 3 2 1



Bloom filters for optimizing lookups

DRAM

Flash

Buffer

Incarnation table

Lookup key

Bloom filters

In-memory 
look ups

False positive! 

Configure carefully! 
4 3 2 1

2 GB Bloom filters for 32 GB Flash for false positive rate < 0.01! 



Update: naïve approach

DRAM

Flash

Buffer

Incarnation table

Bloom filters

Update key

Update key
Expensive 
random writes

Discard this naïve approach

4 3 2 1



Lazy updates

DRAM

Flash

Buffer

Incarnation table

Bloom filters

Update key

Insert key

4 3 2 1

Lookups check latest incarnations first

Key, new 
value

Key, old 
value



Eviction for streaming apps

• Eviction policies may depend on application
– LRU, FIFO, Priority based eviction, etc.

• Two BufferHash primitives
– Full Discard: evict all items

• Naturally implements FIFO

– Partial Discard: retain few items
• Priority based eviction by retaining high priority items

• BufferHash best suited for FIFO
– Incarnations arranged by age
– Other useful policies at some additional cost

• Details in paper



Issues with using one buffer

• Single buffer in 
DRAM
– All operations and 

eviction policies

• High worst case 
insert latency
– Few seconds for  1 

GB buffer

– New lookups stall

DRAM

Flash

Buffer

Incarnation table

Bloom filters

4 3 2 1



Partitioning buffers

• Partition buffers
– Based on first few bits 

of key space
– Size > page

• Avoid i/o less than 
page

– Size >= block
• Avoid random page 

writes

• Reduces worst case 
latency

• Eviction policies apply 
per buffer

DRAM

Flash

Incarnation table

4 3 2 1

0  XXXXX 1 XXXXX



BufferHash: Putting it all together

• Multiple buffers in memory

• Multiple incarnations per buffer in flash

• One in-memory bloom filter per incarnation

DRAM

Flash

Buffer 1 Buffer K
. . 

. . 

Net hash table = all buffers + all incarnations
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Latency analysis

• Insertion latency 

– Worst case        size of buffer 

– Average case is constant for buffer > block size

• Lookup latency

– Average  case       Number of incarnations 

– Average case      False positive rate of bloom filter



Parameter tuning: Total size of Buffers

. 

. . 

. 

Total size of buffers = B1 + B2 + … + BN

Too small is not optimal
Too large is not optimal either
Optimal = 2 * SSD/entry

DRAM

Flash

Given fixed DRAM, how much allocated to buffers

B1 BN

# Incarnations = (Flash size/Total buffer size)

Lookup      #Incarnations *  False positive rate

False positive rate increases as the size of 
bloom filters decrease

Total bloom filter size = DRAM – total size of buffers



Parameter tuning: Per-buffer size

Affects worst case insertion

What should be size of a partitioned buffer (e.g. B1) ?

. 

. . 

. 

DRAM

Flash

B1 BN

Adjusted according to 
application requirement 
(128 KB – 1 block)
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Evaluation

• Configuration

– 4 GB DRAM, 32 GB Intel SSD, Transcend SSD

– 2 GB buffers, 2 GB bloom filters, 0.01 false positive 
rate

– FIFO eviction policy



BufferHash performance

• WAN optimizer workload
– Random key lookups followed by inserts

– Hit rate (40%)

– Used workload from real packet traces also

• Comparison with BerkeleyDB (traditional hash 
table)  on Intel SSD

Average latency BufferHash BerkeleyDB

Look up (ms) 0.06 4.6 

Insert (ms) 0.006 4.8

Better lookups! 

Better inserts! 



Insert performance
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BerkeleyDB

0.001 0.01 0.1 1 10 100
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Insert latency (ms) on Intel SSD 

99% inserts < 0.1 ms

40% of
inserts > 5 ms ! 

Random writes are slow! Buffering effect! 



Lookup performance

0.001 0.01 0.1 1 10 100

Bufferhash

0.001 0.01 0.1 1 10 100

BerkeleyDB

0.2

0.4
0.6

0.8
1.0

CDF

99% of lookups < 0.2ms

40% of
lookups > 5 ms 

Garbage collection 
overhead due to writes!

60% lookups don’t go to Flash 0.15 ms Intel SSD latency

Lookup latency (ms) for 40% hit workload



Performance in Ops/sec/$

• 16K lookups/sec and 160K inserts/sec

• Overall cost of $400

• 42 lookups/sec/$ and 420 inserts/sec/$

– Orders of magnitude better than 2.5 ops/sec/$ of 
DRAM based hash tables



Other workloads

• Varying fractions of lookups

• Results on Trancend SSD

Lookup fraction BufferHash BerkeleyDB

0 0.007 ms 18.4 ms

0.5 0.09 ms 10.3 ms

1 0.12 ms 0.3 ms

• BufferHash ideally suited for write intensive 
workloads

Average latency per operation



Evaluation summary

• BufferHash performs orders of magnitude better in 
ops/sec/$ compared to traditional hashtables on 
DRAM (and disks)

• BufferHash is best suited for FIFO eviction policy
– Other policies can be supported at additional cost, details 

in paper

• WAN optimizer using Bufferhash can operate optimally 
at 200 Mbps, much better than 10 Mbps with 
BerkeleyDB
– Details in paper



Related Work

• FAWN (Vasudevan et al., SOSP 2009)

– Cluster of wimpy nodes with flash storage

– Each wimpy node has its hash table in DRAM

– We target…

• Hash table much bigger than DRAM 

• Low latency as well as high throughput systems

• HashCache (Badam et al., NSDI 2009)

– In-memory hash table  for objects stored on disk



Conclusion

• We have designed a new data structure 
BufferHash for building CLAMs

• Our CLAM on Intel SSD achieves high ops/sec/$ 
for today’s data-intensive systems

• Our CLAM can support useful eviction policies

• Dramatically improves performance of WAN 
optimizers



Thank you


