
Cheap and Large CAMs for High
Performance Data-Intensive

Networked Systems

Ashok Anand, Chitra Muthukrishnan, Steven Kappes, and
Aditya Akella

University of Wisconsin-Madison

Suman Nath
Microsoft Research

New data-intensive networked
systems

Large hash tables (10s to 100s of GBs)

New data-intensive networked
systems

Data center Branch office

WAN

WAN optimizers
Object

Object store (~4 TB)
Hashtable (~32GB)

Look up

Object

Chunks(4 KB)

Key
(20 B)

Chunk
pointer Large hash tables (32 GB)

High speed (~10 K/sec)
inserts and evictions

High speed (~10K/sec)
lookups for 500 Mbps link

New data-intensive networked
systems

• Other systems
– De-duplication in storage systems (e.g., Datadomain)

– CCN cache (Jacobson et al., CONEXT 2009)

– DONA directory lookup (Koponen et al., SIGCOMM
2006)

Cost-effective large hash tables

Cheap Large cAMs

Candidate options

DRAM 300K $120K+

Disk 250 $30+

Random
reads/sec

Cost
(128 GB)

Flash-SSD 10K* $225+

Random
writes/sec

250

300K

5K*

Too
slow Too

expensive

* Derived from latencies on Intel M-18 SSD in experiments

2.5 ops/sec/$

Slow
writes

How to deal with slow writes of Flash SSD

+Price statistics from 2008-09

Our CLAM design

• New data structure “BufferHash” + Flash

• Key features

– Avoid random writes, and perform sequential writes
in a batch

• Sequential writes are 2X faster than random writes (Intel
SSD)

• Batched writes reduce the number of writes going to Flash

– Bloom filters for optimizing lookups

BufferHash performs orders of magnitude better than
DRAM based traditional hash tables in ops/sec/$

Outline

• Background and motivation

• CLAM design

– Key operations (insert, lookup, update)

– Eviction

– Latency analysis and performance tuning

• Evaluation

Flash/SSD primer

• Random writes are expensive

Avoid random page writes

• Reads and writes happen at the granularity of
a flash page

I/O smaller than page should be avoided, if
possible

Conventional hash table on Flash/SSD

Flash

Keys are likely to hash to random
locations

Random
writes

SSDs: FTL handles random writes to some extent;
But garbage collection overhead is high

~200 lookups/sec and ~200 inserts/sec with WAN
optimizer workload, << 10 K/s and 5 K/s

Conventional hash table on Flash/SSD

DRAM

Flash

Can’t assume locality in requests – DRAM as cache won’t
work

Our approach: Buffering insertions

• Control the impact of random writes
• Maintain small hash table (buffer) in memory
• As in-memory buffer gets full, write it to flash

– We call in-flash buffer, incarnation of buffer

Incarnation: In-flash
hash table

Buffer: In-memory
hash table

DRAM Flash SSD

Two-level memory hierarchy

DRAM

Flash

Buffer

Incarnation table

Incarnation

1234

Net hash table is: buffer + all incarnations

Oldest
incarnation

Latest
incarnation

Lookups are impacted due to buffers

DRAM

Flash

Buffer

Incarnation table

Lookup key

In-flash
look ups

Multiple in-flash lookups. Can we limit to only one?

4 3 2 1

Bloom filters for optimizing lookups

DRAM

Flash

Buffer

Incarnation table

Lookup key

Bloom filters

In-memory
look ups

False positive!

Configure carefully!
4 3 2 1

2 GB Bloom filters for 32 GB Flash for false positive rate < 0.01!

Update: naïve approach

DRAM

Flash

Buffer

Incarnation table

Bloom filters

Update key

Update key
Expensive
random writes

Discard this naïve approach

4 3 2 1

Lazy updates

DRAM

Flash

Buffer

Incarnation table

Bloom filters

Update key

Insert key

4 3 2 1

Lookups check latest incarnations first

Key, new
value

Key, old
value

Eviction for streaming apps

• Eviction policies may depend on application
– LRU, FIFO, Priority based eviction, etc.

• Two BufferHash primitives
– Full Discard: evict all items

• Naturally implements FIFO

– Partial Discard: retain few items
• Priority based eviction by retaining high priority items

• BufferHash best suited for FIFO
– Incarnations arranged by age
– Other useful policies at some additional cost

• Details in paper

Issues with using one buffer

• Single buffer in
DRAM
– All operations and

eviction policies

• High worst case
insert latency
– Few seconds for 1

GB buffer

– New lookups stall

DRAM

Flash

Buffer

Incarnation table

Bloom filters

4 3 2 1

Partitioning buffers

• Partition buffers
– Based on first few bits

of key space
– Size > page

• Avoid i/o less than
page

– Size >= block
• Avoid random page

writes

• Reduces worst case
latency

• Eviction policies apply
per buffer

DRAM

Flash

Incarnation table

4 3 2 1

0 XXXXX 1 XXXXX

BufferHash: Putting it all together

• Multiple buffers in memory

• Multiple incarnations per buffer in flash

• One in-memory bloom filter per incarnation

DRAM

Flash

Buffer 1 Buffer K
. .

. .

Net hash table = all buffers + all incarnations

Outline

• Background and motivation

• Our CLAM design

– Key operations (insert, lookup, update)

– Eviction

– Latency analysis and performance tuning

• Evaluation

Latency analysis

• Insertion latency

– Worst case size of buffer

– Average case is constant for buffer > block size

• Lookup latency

– Average case Number of incarnations

– Average case False positive rate of bloom filter

Parameter tuning: Total size of Buffers

.

. .

.

Total size of buffers = B1 + B2 + … + BN

Too small is not optimal
Too large is not optimal either
Optimal = 2 * SSD/entry

DRAM

Flash

Given fixed DRAM, how much allocated to buffers

B1 BN

Incarnations = (Flash size/Total buffer size)

Lookup #Incarnations * False positive rate

False positive rate increases as the size of
bloom filters decrease

Total bloom filter size = DRAM – total size of buffers

Parameter tuning: Per-buffer size

Affects worst case insertion

What should be size of a partitioned buffer (e.g. B1) ?

.

. .

.

DRAM

Flash

B1 BN

Adjusted according to
application requirement
(128 KB – 1 block)

Outline

• Background and motivation

• Our CLAM design

– Key operations (insert, lookup, update)

– Eviction

– Latency analysis and performance tuning

• Evaluation

Evaluation

• Configuration

– 4 GB DRAM, 32 GB Intel SSD, Transcend SSD

– 2 GB buffers, 2 GB bloom filters, 0.01 false positive
rate

– FIFO eviction policy

BufferHash performance

• WAN optimizer workload
– Random key lookups followed by inserts

– Hit rate (40%)

– Used workload from real packet traces also

• Comparison with BerkeleyDB (traditional hash
table) on Intel SSD

Average latency BufferHash BerkeleyDB

Look up (ms) 0.06 4.6

Insert (ms) 0.006 4.8

Better lookups!

Better inserts!

Insert performance

0.001 0.01 0.1 1 10 100

BerkeleyDB

0.001 0.01 0.1 1 10 100

Bufferhash

0.2

0.4

0.6

0.8

1.0

CDF

Insert latency (ms) on Intel SSD

99% inserts < 0.1 ms

40% of
inserts > 5 ms !

Random writes are slow! Buffering effect!

Lookup performance

0.001 0.01 0.1 1 10 100

Bufferhash

0.001 0.01 0.1 1 10 100

BerkeleyDB

0.2

0.4
0.6

0.8
1.0

CDF

99% of lookups < 0.2ms

40% of
lookups > 5 ms

Garbage collection
overhead due to writes!

60% lookups don’t go to Flash 0.15 ms Intel SSD latency

Lookup latency (ms) for 40% hit workload

Performance in Ops/sec/$

• 16K lookups/sec and 160K inserts/sec

• Overall cost of $400

• 42 lookups/sec/$ and 420 inserts/sec/$

– Orders of magnitude better than 2.5 ops/sec/$ of
DRAM based hash tables

Other workloads

• Varying fractions of lookups

• Results on Trancend SSD

Lookup fraction BufferHash BerkeleyDB

0 0.007 ms 18.4 ms

0.5 0.09 ms 10.3 ms

1 0.12 ms 0.3 ms

• BufferHash ideally suited for write intensive
workloads

Average latency per operation

Evaluation summary

• BufferHash performs orders of magnitude better in
ops/sec/$ compared to traditional hashtables on
DRAM (and disks)

• BufferHash is best suited for FIFO eviction policy
– Other policies can be supported at additional cost, details

in paper

• WAN optimizer using Bufferhash can operate optimally
at 200 Mbps, much better than 10 Mbps with
BerkeleyDB
– Details in paper

Related Work

• FAWN (Vasudevan et al., SOSP 2009)

– Cluster of wimpy nodes with flash storage

– Each wimpy node has its hash table in DRAM

– We target…

• Hash table much bigger than DRAM

• Low latency as well as high throughput systems

• HashCache (Badam et al., NSDI 2009)

– In-memory hash table for objects stored on disk

Conclusion

• We have designed a new data structure
BufferHash for building CLAMs

• Our CLAM on Intel SSD achieves high ops/sec/$
for today’s data-intensive systems

• Our CLAM can support useful eviction policies

• Dramatically improves performance of WAN
optimizers

Thank you

