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New data-intensive networked
systems

Large hash tables (10s to 100s of GBs)
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New data-intensive networked
systems

e Other systems

— De-duplication in storage systems (e.g., Datadomain)
— CCN cache (Jacobson et al., CONEXT 2009)

— DONA directory lookup (Koponen et al., SIGCOMM
2006)

Cost-effective large hash tables
C L AMs



Candidate options
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* Derived from latencies on Intel M-18 SSD in experim

How to deal with slow writes of Flash SSD



Our CLAM design

e New data structure “BufferHash” + Flash

e Key features

— Avoid random writes, and perform sequential writes
in a batch

e Sequential writes are 2X faster than random writes (Intel
SSD)

* Batched writes reduce the number of writes going to Flash

— Bloom filters for optimizing lookups

BufferHash performs orders of magnitude better than
DRAM based traditional hash tables in ops/sec/S



Outline

e Background and motivation

* CLAM design

— Key operations (insert, lookup, update)

— Latency analysis and performance tuning

 Evaluation



Flash/SSD primer

e Random writes are expensive
Avoid random page writes

* Reads and writes happen at the granularity of
a flash page

1/0 smaller than page should be avoided, if
possible



Conventional hash table on Flash/SSD

Keys are likely to hash to random
locations

\ /
Flash Ran.dom
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SSDs: FTL handles random writes to some extent;

But garbage collection overhead is high
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~200 lookups/sec and ~200 inserts/sec with WAN
optimizer workload, << 10 K/s and 5 K/s




Conventional hash table on Flash/SSD

DRAM

Can’t assume locality in requests — DRAM as cache won'’t
work

Flash




Our approach: Buffering insertions

e Control the impact of random writes
 Maintain small hash table (buffer) in memory

* Asin-memory buffer gets full, write it to flash
— We call in-flash buffer, incarnation of buffer

DRAM

Buffer: In-memory
hash table

Flash SSD

Incarnation: In-flash
hash table



Two-level memory hierarchy

Flash

Incarnation

Incarnation table

Latest
incarnation
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Net hash table is: buffer + all incarnations



Lookups are impacted due to buffers
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Multiple in-flash lookups. Can we limit to only one?



Bloom filters for optimizing lookups

DRAM

Buffer

Lookup key —>
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False positive!

Configure carefully! n E H.

‘ Incarnation table
2 GB Bloom filters for 32 GB Flash for false positive rate < 0.01!

Bloom filters
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Lazy updates
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Eviction for streaming apps

Eviction policies may depend on application
— LRU, FIFO, Priority based eviction, etc.

Two BufferHash primitives

— Full Discard: evict all items
* Naturally implements FIFO

— Partial Discard: retain few items
* Priority based eviction by retaining high priority items

BufferHash best suited for FIFO

— Incarnations arranged by age
— Other useful policies at some additional cost

Details in paper



Issues with using one buffer

* Single buffer in DRAM
B
DRAM DR sufer
— All operations and @I Bloom filters

eviction policies
Flash

[T

Incarnation table

* High worst case
insert latency

— Few seconds for 1
GB buffer

— New lookups stall




Partitioning buffers

Partition buffers

— Based on first few bits
of key space
— Size > page
e Avoid i/o less than
page
— Size >= block

* Avoid random page
writes

Reduces worst case
latency

Eviction policies apply
per buffer
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BufferHash: Putting it all together

 Multiple buffers in memory
 Multiple incarnations per buffer in flash
* One in-memory bloom filter per incarnation

DRAM [TTTTT] ‘ LITTIT]
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Flash
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Net hash table = all buffers + all incarnations
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Latency analysis

* |nsertion latency
— Worst case o« size of buffer
— Average case is constant for buffer > block size

* Lookup latency
— Average case oc Number of incarnations
— Average case ¢ False positive rate of bloom filter



Parameter tuning: Total size of Buffers

Total size of buffers =B1 + B2 + ... + BN
Given fixed DRAM, how much allocated to buffers

Total bloom filter size = DRAM — total size of buffers

Flash

DRAM |B1 - BN -
[ ] [ ]

f

Lookupe #Incarnations * False positive rate

# Incarnations = (Flash size/Total buffer size)

False positive rate increases as the size of
bloom filters decrease

Too small is not optimal
Too large is not optimal either
Optimal = 2 * SSD/entry




Parameter tuning: Per-buffer size

What should be size of a partitioned buffer (e.g. B1) ?

Flash

DRAM |B1 - BN -
[ ] [ ]

f

Affects worst case insertion

Adjusted according to
application requirement
(128 KB — 1 block)
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Evaluation

Configuration
— 4 GB DRAM, 32 GB Intel SSD, Transcend SSD

— 2 GB buffers, 2 GB bloom filters, 0.01 false positive
rate

— FIFO eviction policy



BufferHash performance

* WAN optimizer workload
— Random key lookups followed by inserts
— Hit rate (40%)
— Used workload from real packet traces also

 Comparison with BerkeleyDB (traditional hash
table) on Intel SSD

Average latency |BufferHash BerkeleyDB

Look up (ms) @ Better lookups!

Better inserts!

Insert (ms)



Insert performance
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Buffering effect! Random writes are slow!
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Performance in Ops/sec/S

* 16K lookups/sec and 160K inserts/sec
e QOverall cost of S400

* 42 lookups/sec/S and 420 inserts/sec/S

— Orders of magnitude better than 2.5 ops/sec/S of
DRAM based hash tables



Other workloads

* Varying fractions of lookups
* Results on Trancend SSD

Average latency per operation
Lookup fraction |BufferHash BerkeleyDB
0

0.007 ms 18.4 ms
0.5 0.09 ms 10.3 ms
1 0.12 ms 0.3 ms

e BufferHash ideally suited for write intensive
workloads



Evaluation summary

e BufferHash performs orders of magnitude better in
ops/sec/S compared to traditional hashtables on
DRAM (and disks)

e BufferHash is best suited for FIFO eviction policy

— Other policies can be supported at additional cost, details
in paper

 WAN optimizer using Bufferhash can operate optimally
at 200 Mbps, much better than 10 Mbps with
BerkeleyDB

— Details in paper



Related Work

* FAWN (Vasudevan et al., SOSP 2009)
— Cluster of wimpy nodes with flash storage
— Each wimpy node has its hash table in DRAM

— We target...
* Hash table much bigger than DRAM
* Low latency as well as high throughput systems

 HashCache (Badam et al., NSDI 2009)
— In-memory hash table for objects stored on disk



Conclusion

We have designed a new data structure
BufferHash for building CLAMs

Our CLAM on Intel SSD achieves high ops/sec/S
for today’s data-intensive systems

Our CLAM can support useful eviction policies

Dramatically improves performance of WAN
optimizers
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