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Abstract
Partial packet recovery protocols attempt to repair cor-
rupted packets instead of retransmitting them in their en-
tirety. Recent approaches have used physical layer con-
fidence estimates or additional error detection codes em-
bedded in each transmission to identify corrupt bits, or
have applied forward error correction to repair without
such explicit knowledge. In contrast to these approaches,
our goal is a practical design that simultaneously: (a) re-
quires no extra bits in correct packets, (b) reduces recov-
ery latency, except in rare instances, (c) remains compat-
ible with existing 802.11 devices by obeying timing and
backoff standards, and (d) can be incrementally deployed
on widely available access points and wireless cards.

In this paper, we design, implement, and evaluate
Maranello, a novel partial packet recovery mechanism
for 802.11. In Maranello, the receiver computes check-
sums over blocks in corrupt packets and bundles these
checksums into a negative acknowledgment sent when
the sender expects to receive an acknowledgment. The
sender then retransmits only those blocks for which the
checksum is incorrect, and repeats this partial retrans-
mission until it receives an acknowledgment. Successful
transmissions are not burdened by additional bits and the
receiver needs not infer which bits were corrupted. We
implemented Maranello using OpenFWWF (open source
firmware for Broadcom wireless cards) and deployed it
in a small testbed. We compare Maranello to alterna-
tive recovery protocols using a trace-driven simulation
and to 802.11 using a live implementation under various
channel conditions. To our knowledge, Maranello is the
first partial packet recovery design to be implemented in
commonly available firmware.

1 Introduction
Partial packet recovery approaches attempt to repair cor-
rupt packets instead of retransmitting them. Packet re-
covery relies on the observation that packets with errors
may have only a few, localized errors, or at least some
salvageable, correct content. Various approaches have
been proposed: some rely on physical layer informa-
tion to identify likely corrupt symbols (related groups
of bits) to be retransmitted [12], while others embed

block checksums into oversized frames to allow the re-
ceiver to recognize partially correct transmissions [11].
Some avoid explicit knowledge and adaptively transmit
forward error correction information that is likely to be
sufficient to repair bit errors [14]. These approaches
have found substantial potential in partial packet recov-
ery, particularly when auto-rate selection mechanisms,
which dynamically change the transmission rate to max-
imize throughput without too many errors, may choose
too high a rate, thus creating errored packets to be recov-
ered.

Motivated by the potential of these recent approaches,
we set out to construct a partial packet recovery scheme
using commonly available 802.11 hardware and evalu-
ate it in live networks. The key challenge in working
within 802.11’s typical operation is timing, in particu-
lar, performing all acknowledgment-related computation
within one short inter-frame space (SIFS) interval (10 µs
for 802.11b/g or 16 µs for 802.11a). This requirement all
but precludes bus transfers to the driver and complex pro-
cessing on the network devices. To be deployable today,
partial packet recovery must exploit features available to
programmable firmware.

In this paper, we present Maranello, a block-based
partial packet recovery approach implemented (primar-
ily) in firmware for widely-available Broadcom cards.
Maranello takes the following design decisions. We use
block-based recovery, meaning that we identify incor-
rect blocks of consecutive bytes for retransmission, as
opposed to aggregating by symbol or estimating bit error
rate. We transmit independent repair packets that contain
only the blocks being retransmitted, in contrast to other
approaches that may bundle repair information with sub-
sequent transmissions to save on medium acquisition
time. Repair packets, by being shorter, are more likely
to arrive successfully than full size retransmissions and
take less time to transmit, improving performance over
802.11. Using immediate repair packets also limits the
amount of buffering (of out of order, incomplete pack-
ets) required at the receiver side. We use the Fletcher-32
checksum [5] to isolate errors to individual blocks; this
checksum is sufficient to find all single bit errors, burst
errors in a single 16-bit block, and two-bit errors sepa-
rated by at most 16 bits [25]. Fletcher-32 is also efficient
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enough to be computed block-by-block in software dur-
ing frame reception. Finally, we exploit the deference
stations give to acknowledgments of overheard packets:
because stations sending acknowledgments have priority
over the medium right after a transmission, there is time
for a receiver to grab the medium and send prompt feed-
back about received blocks. Through these decisions, we
construct a partial packet recovery scheme that (a) intro-
duces no additional bits in the common case of success-
ful transmissions, (b) decreases recovery time after failed
transmissions, (c) is compatible with unmodified 802.11
devices, and (d) can be implemented on typical off-the-
shelf hardware and deployed incrementally.

Our goal in constructing a practical partial packet re-
covery scheme was to permit evaluation both in simu-
lation and on live networks. We apply two strategies.
First, we construct a trace-driven simulation to evaluate
the performance Maranello would have when run with
various combinations of operating system, driver, and
chipset, as well as the performance Maranello would
have compared to idealized PPR [12] and ZipTx [14].
We study the retransmission behavior of 802.11 im-
plementations so that we might simulate Maranello on
each: performance improvement depends on how ag-
gressively the existing firmware retransmits, in particu-
lar, whether it performs proper exponential backoff and
how it reduces transmission rate. We survey retrans-
mission rate fallback selection schemes and show that
Maranello increases throughput regardless of retrans-
mission rate fallback: if the rate chosen is too high,
Maranello may increase the delivery probability with a
short repair packet [8]; if too low, Maranello decreases
the time to transmit relative to retransmission.

Our implementation permits us to evaluate Maranello
in terms of delivered throughput and latency in realistic
settings. We compare the link throughput of Maranello
and that of the original 802.11 in three different environ-
ments: an industrial research lab, a home, and a cam-
pus office building. We show that Maranello can sig-
nificantly improve the delivered link throughput. We
also verify that, even in the presence of bit corruption,
Maranello can maintain or reduce the link latency, in
terms of the time to deliver an individual packet and re-
ceive an acknowledgment. We also deploy Maranello
on programmable access points running OpenWRT to
ensure scalability and compatibility by associating both
Maranello-enabled and unmodified 802.11 devices. Sur-
prisingly, we find that ACK frames can be modified to
report the feedback information of received blocks, with-
out causing errors on coexisting unmodified 802.11 de-
vices.

In the following section, we present an overview of
prior wireless error recovery mechanisms including par-
tial packet recovery schemes and those that rely on wire-

less communication diversity. In Section 3, we present
the high-level design of Maranello, show how wireless
errors cluster enough to support block-based recovery,
and justify the choice of Fletcher-32. In Section 4, we
evaluate these design choices in simulation, showing the
potential throughput gains by interpreting detailed packet
traces. In Section 5, we implement Maranello using
the OpenFWWF firmware and a slightly modified driver
within the Linux kernel. Section 6 presents performance
comparisons collected in our testbeds using this imple-
mentation. We offer a discussion in Section 7 and con-
clude in Section 8.

2 Related Work
In this section, we classify various wireless error recov-
ery protocols. Table 1 summarizes wireless error recov-
ery protocols. We categorize these protocols along two
dimensions: the main repair techniques that they employ
and the features they provide. The main repair tech-
niques include:

Block checksum (Section 2.1) When transmissions fail,
receivers can aid recovery by sending feedback
about corrupted blocks based on the per-block
checksums transmitted with data packets. Seda [6]
and FRJ [11] are protocols in this category.

Forward error correction (Section 2.2) Protocols like
ZipTx [14] avoid explicit knowledge about where
the error bits are and adaptively transmit error cor-
rection bits that are likely to be sufficient to repair
corrupted packets.

PHY layer hints (Section 2.3) The PHY layer of GNU
Radio systems can provide the confidence of each
symbol’s correctness. PPR [12] and SOFT [27] ben-
efit from this information to identify corrupt bits
without extra error detection codes.

Wireless communication diversity (Section 2.4) Wire-
less packet losses are path and location dependent.
A packet corrupted at its destination may be cor-
rectly received by other radios, due to the broad-
cast nature and diversity of wireless communica-
tion. Several protocols exploit this diversity to per-
form error recovery, such as MRD [20], SPaC [4],
and PRO [16].

These error recovery protocols provide the following
features:

No extra bits for correct packets Most of the proto-
cols introduce no additional bits for successful
transmissions, except Seda and FRJ, which trans-
mit block/segment checksums with all packets, and
ZipTx, which sends pilot bits in each transmission.
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No extra bits Maintain Compatible Incremental Partial Packet
Technique Protocol for correct packets link latency with 802.11 deployment Recovery

Maranello X X X X X
Checksum Seda [6] N/A X X

FRJ [11] X X
FEC ZipTx [14] X X

PHY layer PPR [12] X X N/A X
hints SOFT [27] X X N/A

MRD [20] X X X
Diversity SPaC [4] X N/A N/A X

PRO [16] X X X X

Table 1: Desired behavior and functionality of wireless error recovery protocols

Reduce recovery latency Seda, FRJ, and ZipTx may
increase the recovery latency by aggregating feed-
back for a group of corrupted packets. MRD and
SOFT may also increase the recovery latency for the
packets that cannot be repaired by frame combining.

Compatible with 802.11 Among the protocols de-
signed for 802.11 wireless networks, MRD, FRJ,
and ZipTx disable the retransmission protocol at the
MAC layer and thus do not interoperate with native
802.11.

Incremental deployment Most of the protocols are
implemented using commercial hardware, either
802.11 cards or MICA motes, and thus can be in-
crementally deployed on widely available wireless
devices. In contrast, PPR and SOFT use physical
layer information provided by GNU Radio systems.

Partial packet recovery Protocols like PRO and SOFT
always retransmit the entire packet when the origi-
nal cannot be recovered.

Table 1 shows that none of these protocols achieve all
these features simultaneously.

2.1 Block Checksum
Acknowledgment frames can be extended to include
feedback to help error recovery protocols. Seda [6] is
a recovery mechanism designed for data streaming in
wireless sensor networks. In Seda, a sender divides each
packet into blocks and encodes each block with a one-
byte sequence number and a (one-byte) CRC-8 for er-
ror detection. A receiver, after receiving several pack-
ets, will test the block-level CRC-8’s for packets that fail
the CRC-32 (if any) and request retransmission of those
blocks.

FRJ [11] uses jumbo frames to increase wireless link
capacity. Each jumbo frame comprises 30 segments and
each segment has its own CRC checksum. The receivers
can check these segment checksums to perform partial
retransmissions when the segments are corrupted. FRJ

uses both MAC-layer ACKs and its own ACKs. FRJ
sends its own ACKs after 100 ms or 64 received frames.

Unlike Seda and FRJ, Maranello introduces no extra
bits for correctly received frames and performs retrans-
mission immediately after corrupted frames are detected.

2.2 Forward Error Correction
Forward error correction codes are beneficial to error
recovery because they do not require explicit informa-
tion about error locations. ZipTx [14] uses a two-round
forward error correction mechanism to repair corrupted
packets. In the first round, the transmitter sends a small
number of Reed-Solomon bits for a corrupted packet,
based on the feedback provided by the receiver. If the
receiver still cannot recover the corrupted packets using
these parity bits, the transmitter sends more parity bits
in the second round. If both rounds fail, the receiver re-
quests a retransmission of the whole packet. To reduce
the number of feedback frames, ZipTx receivers accu-
mulate feedback information to be transmitted after re-
ceiving eight packets or after a timeout.

Although ZipTx increases throughput, it may also in-
crease recovery latency. This is because it disables MAC
layer retransmission and generates its own ACKs for a
group of packets in the driver. As a result, the delay
for the recovered packets may be significantly higher
than that of the retransmitted native 802.11 packets.
Maranello repairs corrupted packets immediately after
transmission fails and thus can reduce recovery latency.

2.3 PHY Layer Hints
Error recovery protocols can benefit from physical layer
information beyond the best guess at the received sym-
bol, although most commercial 802.11 cards do not ex-
pose such extra information. PPR [12] requests retrans-
missions of only those symbols that are likely corrupted.
PPR also provides a compact encoding of the ranges
of bits requested for retransmission and replicates the
preamble to a “postamble” so that receivers may recover
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correct bits at the end of packets that lack a good pream-
ble. PPR was implemented and evaluated on an 802.15.4
(ZigBee) protocol stack.

Driven by per-bit confidence from the PHY Layer,
SOFT [27] combines several received versions of a cor-
rupted frame to produce a correct frame. To repair pack-
ets sent to an AP, several APs share bit confidence over
a wired link. To repair packets sent to a client, the client
combines per-bit confidence from a corrupted transmis-
sion and one or more retransmissions.

Due to performance limitations of software radio plat-
forms, these protocols are evaluated only at low bit
rates. In contrast, Maranello is implemented using read-
ily available commercial 802.11 hardware, and thus it
can be immediately realized at speed and deployed.
We also show that Maranello provides increased perfor-
mance even with the encodings used for high bit rates.

2.4 Wireless Communication Diversity

Correcting errors with wireless diversity complements
Maranello’s packet repair. Diversity approaches attempt
to correct packets by observing different copies of the
same packet, either as received at different stations or
as received in (corrupt) retransmissions. When failure
happens, MRD [20] combines many received versions of
a given packet at different APs, which may have error
bits at different locations, to recreate the original packet.
If the original packet cannot be recovered through frame
combining, a retransmission protocol, called Request For
Acknowledgment (RFA), is proposed to retransmit the
whole packet. SPaC [4] exploits the spatial diversity
of multihop wireless sensor networks to combine sev-
eral corrupted receptions of a packet at its destination.
These corrupted receptions may be retransmitted by dif-
ferent neighboring nodes to repair the original transmis-
sion. PRO [16] is an opportunistic retransmission pro-
tocol for 802.11 wireless LANs that allows overhearing
relay nodes to retransmit on behalf of the source node
after they know that a transmission failed.

Other protocols can benefit from wireless communi-
cation diversity, but these are typically evaluated only
by theoretical analysis or simulation study. For exam-
ple, MRQ [24] keeps all the erroneous receptions of a
given packet and recovers the original packet by com-
bining these receptions. Like PRO, HARBINGER [28]
improves the performance of Hybrid ARQ, by exploiting
retransmitted packets from relays that overhear the com-
munication. The approach of Choi et al. [3] uses the error
correction bits transmitted in data packets to recover cor-
rupted blocks. It retrieves uncorrected blocks from later
retransmissions of the packets and combines them with
previous blocks to recover the original packets.

Correct Time
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Figure 1: Maranello reacts to packet corruption by send-
ing a NACK when the sender awaits an ACK. The time
to repair should decrease relative to retransmission. (Di-
agram not to scale.)

3 Maranello Design
In this section, we present an overview of Maranello, de-
scribe how it achieves the key design goals of a practical
partial packet recovery scheme, and justify the choices
of block-based recovery and the Fletcher-32 checksum
computation. We analyze this design in isolation in the
following section (4) before presenting implementation
details (Section 5) and evaluating the implementation on
real hardware.

3.1 Overview
Figure 1 presents an overview of the Maranello proto-
col, compared to 802.11. When a Maranello-supporting
device receives a frame with errors, it divides the frame
into 64-byte blocks (the last block may be smaller) and
computes a separate checksum for each block. Then
it replies to the transmitter with a NACK that includes
these checksums. It saves the corrupted original packet
in a buffer, waiting for the sender to transmit correct
blocks. This negative acknowledgment is sent when
the transmitter expects to receive a positive acknowl-
edgment. A Maranello-supporting transmitter will then
match the receiver-supplied checksums to those of the
original transmission and send a repair packet with only
those blocks of the original transmission that were cor-
rupted. Once the repair packet is received correctly, the
receiver sends a normal 802.11 ACK.

Devices that do not support Maranello interoperate
easily. Unmodified senders will treat the negative ac-
knowledgment as garbage and retransmit as normal.
Unmodified receivers will fail to transmit a Maranello
NACK, and cause a Maranello sender to retransmit after
timeout.

At very low transmission rate, the NACK for a large
packet may be longer than other stations expect to defer
to the acknowledgment (i.e., it may extend beyond the
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Network Allocation Vector); if it does, we rely on carrier
sense to inhibit collisions with the end of the NACK.

The cases when a Maranello-specific packet are lost
are straightforward. If a NACK is lost, the transmitter
will retransmit the packet as in 802.11. If this retransmis-
sion has errors, the receiver will send another NACK. If a
repair packet is lost or received with errors, the receiver
will transmit nothing. One could alter the protocol to
send an abridged NACK to recover correct blocks from
errored repair packets, but we expect minimal gain from
the added complexity.

3.2 Design Goals
Maranello is a practical partial packet recovery design
with four primary goals, described below.
Require no extra bits in correct packets Maranello em-
braces systems design principles of optimizing the com-
mon case, successful transmission, and doing no harm
(not increase the size or delay of retransmissions). No
additional error checking information, beyond the exist-
ing CRC-32, is added to normal packets.
Reduce recovery latency Maranello ensures that recov-
ery latency is smaller than retransmission time by using
the time reserved for positive acknowledgments to, in the
event a positive acknowledgment is not warranted, send
negative acknowledgments.

(In the unlikely event that the entire packet is cor-
rupt, the longer NACK may require more time than an
ACK and the retransmission of entire packet may not be
avoided, leading to an overall increase in retransmission
time.)
Compatibility with existing 802.11 802.11 is widely
deployed, cheap, and useful. To extend it requires obe-
dience to key inter-frame spacing and backoff require-
ments. The receiver must be able to construct and send
a NACK before the transmitter decides to retransmit the
entire packet, ideally immediately after the SIFS (short
inter-frame space) interval when the transmitter expects
an ACK. That is, the implementation must support ex-
tremely quick computation of block checksums in order
to respond to the sender. At the same time, a Maranello
sender cannot send repair packets any more quickly than
802.11 sends retransmissions: collisions are a potential
cause of transmission error and must be addressed by
proper exponential backoff. These two features are nec-
essary for coexistence with 802.11 networks.
Incremental deployability on existing hardware Wire-
less networks are dynamic: Maranello should not require
negotiation or, worse, ubiquitous deployment within
a service area. By transmitting Maranello messages
such that unmodified 802.11 devices are not confused,
Maranello can coexist. In effect, the Maranello NACK
is a negotiation; a Maranello station may infer that the
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Figure 2: Shaded areas indicate bit errors. Within-packet
(horizontal) correlations are likely due to interference or
loss of clock synchronization; across-packet (vertical)
correlations may be caused by subcarrier fading.

receiver does not support Maranello if no NACKs are
sent. (Reserved bits in the capability-information field
of beacon and association-request frames are also avail-
able; it is possible to negotiate protocol features when
necessary.) Further, by implementing Maranello in the
firmware of existing wireless cards, this partial packet
recovery protocol can be deployed today for users just
by updating the firmware.

3.3 Block-Based Recovery
Broadly speaking, a partial packet recovery approach can
use various means for receivers to solicit retransmission
of parts of the packet and various means for transmit-
ters to correct those errors. Maranello sends negative ac-
knowledgments with checksums over blocks; transmit-
ters determine which blocks must be retransmitted and
send repair packets in place of retransmissions. (Alter-
nate approaches may report abstract bit error estimates,
request retransmission of individual symbols, or piggy-
back repair on subsequent transmissions, as described in
Section 2.)

Block-based recovery, however, relies on a key as-
sumption: that errors are clustered within a packet. In
Figures 2 and 3, we present two views of error cluster-
ing. Figure 2 shows the positions of bit errors in 100
packets chosen at random from the errored packets in a
larger trace of packets. For packets with few bit errors,
those errors are constrained within 64-byte blocks. For
packets with many bit errors, those errors are similarly
often bound within consecutive 64-byte blocks.

Figure 3 plots 17,961 packets by the number of 64-
byte blocks that would be needed to repair errors. The
x-axis represents the fraction of corrupt packets: each
packet occupies the same horizontal space along the axis,
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Figure 3: 64-bit blocks required to repair corrupt pack-
ets in a trace. Most packets having bit errors have few
corrupt blocks; even those with many bit errors typically
have a few correct blocks.

sorted in ascending order of the number of bit errors ob-
served in that packet. A stacked bar graph extends above,
showing the fraction of those packets required by differ-
ent numbers of blocks. At the left side of the graph, the
dominant color represents the single block’s ability to re-
pair all 1-bit errors (of course), 99.7% of two-bit errors,
96% of three-bit errors, etc. This is in contrast to a ran-
dom bit-error model in which two bit errors in a 1500-
byte packet would have only a 4% chance of corrupting
only one 64-byte block. At the right end of the graph,
relatively few packets require complete retransmission.
(This graph may underestimate the number of irrepara-
ble transmissions; those that the hardware cannot receive
at all would not appear.)

3.4 Fletcher-32
The block checksums a receiver puts into a NACK
must be completely computed before the SIFS expires.
One approach might be to reprogram the hardware-
accelerated CRC-32 engine used by the device to com-
pute whole-packet CRCs. Unfortunately, this engine
does not appear to be programmable. Instead, we com-
pute a different checksum, the Fletcher-32 [5] which is
more efficiently computed on the wireless card’s micro-
processor. Historically, the IETF considered Fletcher
checksums as an alternative for TCP checksums [30].

To verify the effectiveness of Fletcher-32 to detect bit
errors, we perform the following trace-driven simulation.
We take the 99,118 corrupted frames from a packet trace,
and identify error bit positions in each frame. Then, we
apply the error patterns to randomly generated packet
contents to construct 9,911,800 errored packets. Finally,
we apply CRC-32 and Fletcher-32 to detect corrupted

blocks with 64-byte size. All the corrupted blocks can
be detected by both CRC-32 and Fletcher-32.

Even with the efficient Fletcher-32 checksum, the mi-
croprocessor is still not powerful enough to compute
each of the block checksums during the SIFS interval:
A single checksum for a 64-byte block can take up to 4
µs. To solve this problem, we exploit an interesting fea-
ture of the chipset. The microprocessor, in fact, is idle
during the reception of a frame! Instead of allowing it to
sleep until the packet is completely received, we modify
the firmware to copy partially received packets and be-
gin computation of block checksums during reception of
the next block. This approach leaves enough time at the
end of a corrupted frame to compute the last checksum
(if needed) and to build the NACK.

4 Simulation
Before we describe and evaluate the implementation,
we evaluate the design of Maranello in simulation.
Maranello’s gains depend on the specified, but not
always followed, 802.11 backoff and the unspecified
retransmission rate fallback behavior implemented in
802.11 drivers and chipsets. We want to see if Maranello
improves throughput for cards (we consider both the
manufacturer’s driver and chipset) that behave unlike
Broadcom’s, which we implemented Maranello on.

Each card implements a different suite of error control
algorithms, including auto-rate selection, retransmission
rate fallback, and backoff. 802.11’s backoff behavior
is defined in the specification, however our observations
and those of Bianchi et al. [2] indicate that there are many
different interpretations of 802.11 backoff. Although the
802.11 specification dictates backoff behavior, it leaves
implementors to decide on auto-rate selection and re-
transmission rate fallback. 802.11 does not contain def-
initions for these algorithms because no algorithm will
work in all wireless environments. For example an op-
timistic auto-rate selection may yield higher throughput
on some links, but may also result in many errors on oth-
ers. Our simulated results indicate Maranello can help
increase the throughput from optimistic rate selection.

4.1 Maranello Increases Throughput for
Popular 802.11 Cards

To characterize a variety of 802.11 backoff and retrans-
mission rate fallback policies, we observed the retrans-
missions sent by three popular 802.11 cards. We ran
the cards on Windows XP to observe the behavior of the
most common driver. To analyze many instances of the
card retransmitting its maximum number of retransmis-
sions, we prevented the receiver from sending any ac-
knowledgments. For each card, Figure 4 depicts the me-
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Figure 4: Popular 802.11 cards exhibit different exponential backoff behavior (top) and retransmission rate fallback (x
labels show the rate, bottom bar shows transmission duration).

dian inter-retransmission delay and time to transmit for
the observed retransmission rate fallback. For backoff,
some cards appear to follow 802.11: Intel and Broad-
com’s median interval between retransmissions doubles
for each retransmission. We did not observe Atheros
doubling the backoff window after failed retransmis-
sions.

Retransmission rate fallback also varies between
cards. Each card appears to attempt a different num-
ber of retransmission rates (Intel 4, Atheros 4, Broad-
com 2). Atheros does not experience much loss because
the card will eventually attempt to retransmit a packet
at the lowest possible rate defined in 802.11. Maranello
helps Atheros because it will increase the probability
that transmission is successful in the first few retransmis-
sions, eliminating or at least reducing the size of retrans-
missions sent at the lowest bit rate. Intel retransmits at
optimistic rates so it may need to retransmit more times
than a card that quickly lowers the retransmission rate.
For Intel, Maranello will help because it increases the
probability of receiving a retransmission correctly, re-
warding optimistic retransmission rate selection.

4.2 Trace-Driven Simulation

A trace-driven simulation of Maranello indicates that
successfully retransmitting earlier increases throughput
for several interpretations of 802.11. The simulator oper-
ates on a trace of packets with known payloads. Knowl-
edge of the payload provides several desirable properties:
(1) The simulator can determine the number of corrupted
blocks in a packet. (2) The simulator can determine if
the repair blocks fit inside a contiguous region of correct
bits at the beginning of a (potentially corrupted) retrans-
mission packet. (3) Resulting from (2) the simulator can
subtract excess retransmissions seen after a successful
repair. Table 2 shows the speedup obtained from simulat-
ing Maranello for the three popular cards. Intel appears
to achieve significant gain because Maranello mitigates

card avg throughput avg speedup avg ERR avg rate
Atheros 8.64 1.05 0.03 15.85

Broadcom 11.92 1.05 0.05 40.98
Intel 8.14 1.17 0.06 33.09

Table 2: In simulation Maranello increases throughput
for the Intel chipset by correcting errors caused by opti-
mistic behavior. ERR is the 64-byte block error rate.

the errors caused by retransmitting at an optimistic rate,
avoiding long, although standard, backoff times.

4.3 Repair Size
Compared to other partial packet recovery protocols,
Maranello does not need to send significantly larger re-
pair packets. We simulated each of the repair protocols
(Figure 5) with traces of data packets sent from a Broad-
com card. To vary the bit error rate of these traces, we
changed the distance between the sender and the receiver.
The symbol size (1–216 bits) for symbol based repair
(PPR) corresponds to the packet bit rate. We simulated
an ideal version of ZipTx that assumes the indexes of cor-
rupted bits are known, so it can pick the smallest number
of redundancy bytes for the repair.

To repair corrupted bits, all of the repair protocols
must send significantly more repair bits. For traces with a
low BER, Maranello requires marginally more bits than
the other repair protocols. ZipTx is able to retransmit
so few bits because Reed Solomon works well when
there are few bit errors. For corrupted packets with a
high average BER, PPR’s symbol-based repair needs to
transmit the least number of bits to repair the packets.
However, symbol based repair requires additional hard-
ware to measure the confidence of symbols. Although
Maranello needs more bits than symbol based repair, it
requires fewer bits than ZipTx. If the packet contains er-
rors clustered in one block, ZipTx’s Reed Solomon will
waste many repair bits for correct blocks because ZipTx
chooses its coding rate based on the BER of the most
corrupted block.
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5 Implementation
We implement Maranello using OpenFWWF [7] open
firmware and b43 Linux device driver [1] for Broadcom
chipsets. In the following, we first discuss why several
other potential platforms are not suitable for Maranello.
We then present the implementation details of Maranello.

5.1 Why Other Platforms Are Unsuitable
To use the airtime reserved for ACK frames, receivers
must construct and send NACK frames within SIFS,
which is the defined inter-frame space between data
packets and ACK frames [9]. Commercial 802.11
wireless NICs implement this time-critical operation in
firmware or hardware.

5.1.1 Driver space of 802.11 wireless NICs

Recently, several wireless research platforms, such as
FlexMAC [15] and SoftMAC [21], have been proposed
to develop new MAC protocols. They are extensions of
the MadWifi driver [18] for Atheros chipsets which runs
in Linux kernel space. To determine how fast an imple-
mentation in driver space can send back NACK frames
for corrupted frames, we perform the following exper-
iment. When the test receiver gets a corrupted packet,
it copies the first 100 bytes directly into a NACK frame,
and sends it out immediately without performing backoff
and using SIFS. From packets traced by a monitor node,
we found that the minimum gap between the data pack-
ets and NACK frames is higher than 70 µs. This delay is
mainly caused by bus transfer delay and interrupt latency
and is consistent with the measurement results in Lu et
al. [15]. This high latency makes the driver space unsuit-
able for the implementation of Maranello. Jitter due to
DMA transfers makes timing too variable.

5.1.2 GNU Radio
GNU Radio platforms are slow and expensive. However,
due to their flexibility, they have attracted increasing at-
tention from the wireless research community and there
are 802.11 implementations for them [22, 26]. In GNU
Radio, the wireless signal is decoded at the host machine
and the delay, depending on the length of the packets,
is usually higher than 1000 µs [22]. The decoder could
be put into the FPGA (Field-Programmable Gate Array)
on the Universal Software Radio Peripheral (USRP), but
the FPGA is much slower than the digital signal proces-
sor on the wireless NICs. Moreover, another challenge is
to generate NACK frames for corrupted packets within
SIFS, which is difficult to implement on these platforms.

5.2 Maranello Implementation
We first briefly introduce OpenFWWF and review the
architecture of wireless device drivers in Linux kernel.
Then we present the implementation of Maranello, fo-
cusing on NACK generation and repair packet construc-
tion, which are time-critical operations implemented in
the firmware. Finally, we describe other operations im-
plemented in the Linux driver.

5.2.1 Background
A microprocessor executes a typically proprietary mi-
crocode (firmware), written in assembly language, that
handles various operations on wireless cards. Open-
FWWF [7] attempts to replace the proprietary firmware
with an open source firmware for Broadcom chipsets.
It can support almost all the 802.11 primitives in the
2.4GHz frequency band. By changing the standard
code path, it is possible to implement from scratch a
completely different channel access mechanism, subject
to a few basic hardware constraints, such as the PHY
layer carrier sensing, the CCK and OFDM modulation
schemes.

To better understand how the Maranello implementa-
tion works, we briefly review in the following the basic
building blocks that equip the Broadcom chipset. The in-
ternal microprocessor drives the data exchange between
different blocks using two main paths: transmit (TX)
and receive (RX). The firmware is built as a main loop
that reacts on external conditions such as a new frame’s
arrival from the air, a channel free indicator, and (pro-
grammable) timer expiration. The basic building blocks
include:

TX and RX FIFO queues – The microprocessor pulls
frames from the TX queue and moves them into the
serializer when a transmission opportunity comes.
On the opposite path, it moves a received frame
from a buffer into the RX queue and raises an IRQ
so that the host kernel can retrieve the frame.
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Internal shared memory (SHM) – The microproces-
sor maintains several state variables which can be
monitored or even changed by the host kernel.

Template RAM – The microprocessor can compose an
arbitrary frame in this memory and transmit the re-
sulting packet as if it came from the TX FIFO.

Internal registers and external conditions (EC) –
The microprocessor sets these hardware registers in
response to changes in the EC to program the radio
interface and set up timers.

The current Linux kernel uses mac80211 [17] for de-
vice driver development. mac80211 is an abstraction
layer that bridges between the kernel’s networking stack
and almost all the low-level wireless device drivers. For
example, the rate control algorithms are usually imple-
mented in mac80211 and shared by all the drivers. These
drivers then act as stage-two bridge since all the 802.11
low level operations, such as retransmissions, acknowl-
edgments, and virtual carrier sense, must be performed
by either firmware or hardware, due to hard timing con-
straints that can not be met by a host-controlled ap-
proach.

5.2.2 NACK generation

As we mentioned in Section 3, to compose the NACK,
the receiver computes block checksums for corrupted
frames in the firmware. Due to hardware limitations, the
Maranello block size should be a multiple of 32 bytes.
We use 64 bytes as the block size. Longer blocks in-
crease computation efficiency and shorten NACKs, while
shorter blocks are parsimonious with repair bytes. In our
experience, the 64-byte block represents a good compro-
mise at typical rates, though we discuss possibilities for
dynamic adjustment in Section 7.

For some transmission rates, a Maranello NACK uses
more airtime than a MAC ACK, which may cause prob-
lems in the presence of hidden terminals. The size of an
ACK frame is only 14 bytes. A Maranello NACK frame,
based on 64-byte blocks, is at most 96 bytes longer than
an ACK frame (4-byte checksum for each block, 24
blocks maximum). For a Maranello link, a hidden termi-
nal of the receiver may hear from the transmitter the net-
work allocation vector (NAV) and the earliest time it can
start its own transmission is DIFS, 50 µs for 802.11b/g,
after the end of NAV (suppose its backoff time is 0).
There will be no collision when NACK’s bit rate is higher
than 12 Mbps. Otherwise, a transmission from the hid-
den terminal may collide with our NACK frames, which
causes the retransmission of the whole packet. Prelim-
inary experiments on a hidden terminal topology, indi-
cate that even in this scenario, enabling Maranello can
increase overall throughput.

5.2.3 Repair packet construction
Maranello transmitters must handle both ACK and
NACK frames.

• Like 802.11, after a transmitter sends an original
data packet or a recovery packet, it will set up an
ACK timer.

• If the transmitter gets an ACK frame from the re-
ceiver, it will release the resource allocated for the
original or recovery packets.

• If the transmitter gets a NACK frame from the re-
ceiver, it divides the original packets into blocks,
computes the checksums for these blocks, and only
retransmits the blocks whose checksums do not
match those in the NACK. In practice, the block
checksums are precomputed in the driver on the
host processor.

• After the transmitter’s ACK timer expires, and it
does not receive a frame, but it previously attempted
to repair the packet, it retransmits the repair packet.
Otherwise it retransmits the whole packet

After a transmitter gets a NACK, it compares the
received block checksums with the locally computed
checksums and decides which block to retransmit inside
a repair packet. We always retransmit the first block of
a packet, which contains the important headers of vari-
ous layers. For a repair packet, we reuse the 8-byte LLC
header, only for data frames, by (1) changing the first
byte to distinguish repair packets from other packets; (2)
using the following 3 bytes as a bitmap of retransmitted
blocks; and (3) appending an extra checksum (CRC-32
or Fletcher-32) in the last four bytes. The receiver uses
this checksum, as an extra measure of safety, to verify
that the recovered packet is correct.

Maranello uses the same 802.11 retry limit; each re-
pair packet will increase the retry counter by one. Also
before transmitting repair packets, it doubles the con-
tention window.

5.2.4 Driver functionality
We implement non-time-critical operations in the driver,
including the pre-computation of block checksums at
the transmitter, and the reconstruction of frames at the
receiver. We compute the block checksums for data
packets in the driver, because the CPU on the host ma-
chine is much more powerful than the microprocessor of
the wireless card. Checksums are sent to the firmware
with each data packet. After the transmitter receives a
NACK frame, its firmware can use these checksums di-
rectly, without recomputation. Checksums computed at
the transmitter are used only to match those in the NACK
frames and they are not transmitted. The receiver’s driver
combines a buffered corrupt packet with a correct recov-
ery packet to reconstruct the original. Recovered packets
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that cannot pass the extra Fletcher-32 checksum test are
discarded.

6 Evaluation
In this section, we evaluate the throughput and latency
performance of Maranello in implementation, isolate the
factors that reduce recovery time, and run Maranello
alongside unmodified 802.11 senders to ensure cooper-
ative interaction.

We used 802.11b/g channels 1, 6, and 11 in environ-
ments with active APs and stations. This experimental
approach has the advantage of injecting real-world in-
terference and collisions as sources of packet error, but
has the disadvantage of reducing the repeatability of ex-
periments since contention varies. We enable auto rate
feedback for all of the experiments and use Linux “min-
strel” [19] as the rate control algorithm, which supports
multiple rate retries and is the only rate control algo-
rithm enabled in the Linux kernel 2.6.28 and above. (Our
driver implementation is in 2.6.29-rc2.)

6.1 Maranello Increases Link Throughput
In the following, we show that Maranello can increase
throughput for UDP traffic. We construct testbeds in
three different environments: an industry research lab,
a home, and a university building. We run Iperf [10] on
randomly selected links from these testbeds to generate
a CBR UDP stream to saturate the wireless channel. We
focus on UDP to isolate link capacity from TCP dynam-
ics.

We compare the throughput of Maranello and unmod-
ified 802.11 in Figure 6. In these plots, the x-axis rep-
resents the throughput of 802.11 and the y-axis is the
throughput of Maranello. Each point represents a pair
of one-minute executions of Iperf, typically separated by
less than 15 seconds. This separation is needed because
we reload the firmware and driver, set up wireless inter-
faces, and initialize minstrel’s bit rate table. Each point
belongs to a group of ten points collected from randomly
selected sender and receiver locations. In other words,
we collected ten points, moved the receiver or sender sta-
tion to another location, collected ten points again, and
repeated. These figures include 370 (industry research
lab), 390 (home), and 1000 (university building) points.
The position of a point indicates the apparent through-
put gain. For example, if a point is on the line marked
“2X”, the throughput gain is 2. We divide the points into
5 regions based on their throughput gain and show the
percentage of points in each region in these figures. A
point on a line is counted in the region above that line.

Figure 6 shows that Maranello can increase the
throughput for UDP traffic; often by 30% or more. The

university building environment shows higher through-
put gain, because of increased contention and poorer
channel conditions, than those observed in the other en-
vironments. There are more than 10 access points de-
ployed for each of the 802.11b/g channels, 1, 6, and 11,
and they are used by many people. For the other environ-
ments, each channel usually has fewer than four access
points and relatively few users. To estimate the variabil-
ity in the measurement of throughput over adjacent inter-
vals, we also compare the throughput of 802.11 with it-
self. We pair the throughput of two consecutive runs with
802.11 into a point. Figure 6(d) shows the results for ex-
periments done in our office building. The uncertainty in
the throughput of adjacent measurements of unmodified
802.11 appears comparable to those of measurements be-
tween 802.11 and Maranello. Put simply, Maranello does
not appear to increase the variability in throughput per-
formance.

6.2 Maranello Reduces Recovery Latency
We define latency in this context to be the interval be-
tween when the firmware fetches the pending packet
from the head of the TX FIFO to when an ACK is re-
ceived. This includes the time spent inhibited by car-
rier sense, waiting for a transmission opportunity, and
represents the time that the device is occupied with the
transmission of an individual frame. We randomly select
a link, then run Iperf for one minute for Maranello and
802.11 separately to get the per-packet latency. We use
the firmware to record the measured time directly using
the internal board clock: a 64-bit counter incremented
every microsecond.

One might consider alternate definitions of latency.
One might ignore contention and backoff time required
by CSMA/CA; even though the card is occupied in the
process of transmitting a packet, no signal is yet being
transmitted. Such would be appropriate for measuring
peak performance. Alternately, one might consider the
time to successful delivery and ignore cases when the
ACK is lost; the transmitter, of course, is still occupied.

We plot the CDF of latency for packets that need re-
transmissions in Figure 7. To make the comparison clear,
we omit the latency for packets without retransmission,
and we plot the latency of only one configuration of
sender and receiver locations (other configurations are
qualitatively similar but not composable). Maranello
can deliver 90% of the packets that need retransmission
within a latency of 4.16 ms. In contrast, 10% of 802.11
recovery latencies are above 17.1 ms. The small modes
near 16 and 32 ms for 802.11 represent low-rate retrans-
missions: The minstrel default retransmission rate fall-
back attempts retransmissions at the original rate twice,
followed by 1 Mbit/s up to four times if need.
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Figure 6: Maranello has a higher throughput than 802.11. Each figure compares 802.11 with Maranello in a different
environment, or to show the uncertainty of the comparison, with 802.11 itself. Each point represents the performance
of back-to-back one-minute UDP throughput measurements; ten points were collected for each configuration of sender
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Figure 7: With block-based repair, Maranello recovers
packets faster than 802.11’s retransmissions.

6.3 The Sources of Throughput Gain and
Latency Reduction

To break down the sources of performance improvement,
we enhance the transmission status report for each packet
with the following information: (1) whether a repair

packet was used, (2) if used, at which attempt, and (3)
the number of retransmitted blocks in the repair packet.
The original report also includes (1) whether the packet
is successfully delivered, (2) the number of attempts, (3)
the bit rate used for the packet. With this information,
we can calculate the delivery probability at each attempt,
the transmission airtime and the number of transmitted
bytes for each attempt. We run Iperf for one minute for
10 randomly selected links and plot in Figure 8 the prob-
ability of successful attempt for two retransmission rate
fallback schemes: Linux “minstrel” fallback which al-
ways uses 1 Mbps as fallback rate, and 2-step fallback
which drops the bit rate selected by minstrel for the ini-
tial transmissions by 2 steps (if possible) and uses it as
fallback rate. The two-step fallback selection emulates
the Broadcom driver for Windows XP (Section 4.1). In
this figure, the x-axis is transmission attempt. The retry
limit of Broadcom cards is 7, 1 initial transmission, and
at most 6 retransmissions. The y-axis is the probability
that an attempt can succeed.

Figure 8 shows that the probability of successful re-
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Figure 8: Maranello can successfully retransmit a packet earlier than 802.11. Each line represents a link measured
either with 802.11 or Maranello; the probability that Maranello’s recovery packets are delivered is typically higher.
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Figure 9: Maranello can use airtime more effectively for packet transmissions. Each line represents a link measured
either with 802.11 or Maranello; Maranello spends more time transmitting bits not yet correctly received.

transmission for Maranello is usually higher than that of
802.11. Because the retransmission rate fallback does
not budge for the first two retransmissions, the proba-
bility of successful retransmission can be thought of as
the conditional probability that, given a packet (or two)
recently failed to be delivered at the chosen rate, this
next transmission at the same rate will be delivered. Not
surprisingly, for 802.11, this probability descends more
steeply than for Maranello. Maranello, in contrast, can
send shorter repair packets, which are less likely to be
corrupted [8], even at the original bit rate.

The delivery probability increases at the fourth attempt
because the firmware reduces the bit rate for the last
four attempts. The successful attempt probabilities for
the first three attempts are more important, because most
packets can succeed at the first two retransmissions. The
estimate of the delivery probability for the seventh at-
tempt (after three previous attempts at 1 Mbit/s) is un-
certain due to the dearth of data. For example, the 7th

attempt that had 0.0 delivery probability of Maranello,
only one packet was transmitted seven times. For the
7th attempt with 1.0 delivery probability of 802.11, there
were 5 packets transmitted 7 times and all succeeded at
this last attempt.

We also plot the fraction of effective time for each
transmission attempt in Figure 9. Effective time
represents the time spent transmitting correct blocks;
Maranello can use airtime more effectively, because the
correct bits in corrupted packets may be combined with
recovery packets to reconstruct the original packets and
the transmission time of these correct bits is effective.

6.4 Deployment on Access Points
To show that Maranello can increase overall network per-
formance and does not interact poorly with unmodified
802.11 devices, we deploy Maranello on Linksys wire-
less routers running OpenWRT [23]. We associate two
desktop stations, A and B, with the Maranello AP. We
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put. Error bars indicate min and max for five one minute
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run four types of experiments: A and B both running
Maranello, both running 802.11, A running Maranello
and B running 802.11, and vice versa. We connect a
third station, C, to the AP using Ethernet, to act as an
Iperf server. We do not run the Iperf server on the AP
directly due to its limited CPU power. During a single
one-minute experiment, A and B send UDP packets to C
as fast as they can. Although experimenting with down-
link traffic might be more typical of access point use, in
that situation, that AP would be the only transmitter and
would not show how Maranello transmitters interact with
unmodified 802.11 transmitters.

Figure 10 plots the throughput of these two stations us-
ing a stacked bar graph. There are two key notes. First,
running Maranello does not decrease the performance of
the unmodified 802.11 station. That is, Maranello does
not “cheat” the existing station of throughput. Second,
when both stations run Maranello, the throughput is sig-
nificantly increased for both stations. An interesting ob-
servation is that it appears not to help A or B to indi-
vidually run Maranello when in contention. (The results
in Section 6.1 imply that each station gains individually
when running Maranello without a persistently compet-
ing station.) We plan to investigate this surprising result
that Maranello is more social than selfish when compet-
ing with an unmodified station.

7 Discussion

In this section, we discuss how Maranello can be com-
plementary with frame aggregation, which is used in
802.11n, and how the block size affects the performance
of Maranello.

7.1 Frame Aggregation and Maranello are
Complementary

To increase throughput, 802.11n reduces the 802.11 pro-
tocol overheads, such as interframe spacing, PHY layer
headers and acknowledgment frames, by aggregating
data packets into jumbo frames. Aggregated packets that
are received incorrectly are indicated in a block acknowl-
edgment which is sent back to the transmitter. The trans-
mitter can then send a new chunk that contains only the
corrupt packets. Even though only part of a packet may
have errors in it, 802.11n frame aggregation must retrans-
mit whole packets: correctly received bits are wasted.

Frame combining can improve throughput, but it also
significantly increases latency, as senders must wait to
aggregate enough frames to fill a jumbo frame. Block
acknowledgments provide a complementary aggregation
of feedback for 802.11n, where ACKs may be buffered
together and sent as a group, similarly increasing per-
packet latency. Maranello is complementary with these
frame aggregation techniques because by repairing cor-
rupted aggregated packets, Maranello can further in-
crease link throughput.

7.2 Optimal Block Size
The Maranello block size is 64 bytes, primarily because
it is the smallest multiple of 32 that can be supported
by hardware (Section 5.2.2). A larger block size would
increase computation efficiency somewhat and shorten
NACKs, which may be useful at low bit rates. When the
error rate is low, however, larger blocks may lead to re-
pair packets with unnecessary extra bytes, wasting chan-
nel time.

We consider an interesting future direction of research
to be dynamically adjusting the block size. The ideal
block size may vary based on an estimate of wireless
channel conditions and the bit rate chosen by the trans-
mitter, which determines the bit rate of the acknowledg-
ment and thus the transmission time of the NACK. When
the NACK is transmitted at a low rate, it may be better
for global throughput to keep NACK transmissions short
than to be precise about the blocks in error. A similar
tradeoff exists in the FEC systems between the coding
rate of error correction bits and recovery efficiency. An-
other approach to determine the optimal block size that
we intend to explore is to use theoretical models of wire-
less communication errors [13, 29].

8 Conclusion
In this paper, we design, implement, and evaluate
Maranello, a practical partial packet recovery protocol
for 802.11 wireless networks. Maranello has the follow-
ing features simultaneously: (a) it introduces no extra
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bits in correct transmissions, (b) it reduces recovery la-
tency, except in rare cases, (c) it is compatible with the
802.11 protocol, and (d) it can be incrementally deployed
on widely available 802.11 devices.

We implemented Maranello using OpenFWWF open
source firmware. This implementation, and Maranello’s
compatibility with 802.11, allowed us to test in three dif-
ferent, live environments over heavily used 802.11b/g
channels where contention and interference are realis-
tic. We found significant throughput gains when running
Maranello over 802.11 in consecutive intervals. We also
installed Maranello on access points running OpenWRT
to demonstrate that Maranello does not compete unfairly
with unmodified 802.11 devices and that the processing
requirements of Maranello do not preclude performance
improvement. Moreover, we evaluate Maranello’s per-
formance compared to recently-proposed recovery pro-
tocols using a trace-driven simulation.
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