
Centrifuge: Integrated Lease Management and Partitioning
for Cloud Services

Atul Adya†, John Dunagan∗, Alec Wolman∗
†Google, ∗Microsoft Research

Abstract: Making cloud services responsive is critical
to providing a compelling user experience. Many large-
scale sites, including LinkedIn, Digg and Facebook, ad-
dress this need by deploying pools of servers that oper-
ate purely on in-memory state. Unfortunately, current
technologies for partitioning requests across these in-
memory server pools, such as network load balancers,
lead to a frustrating programming model where requests
for the same state may arrive at different servers. Leases
are a well-known technique that can provide a better pro-
gramming model by assigning each piece of state to a
single server. However, in-memory server pools host an
extremely large number of items, and granting a lease
per item requires fine-grained leasing that is not sup-
ported in prior datacenter lease managers.

This paper presents Centrifuge, a datacenter lease
manager that solves this problem by integrating parti-
tioning and lease management. Centrifuge consists of a
set of libraries linked in by the in-memory servers and
a replicated state machine that assigns responsibility for
data items (including leases) to these servers. Centrifuge
has been implemented and deployed in production as
part of Microsoft’s Live Mesh, a large-scale commercial
cloud service in continuous operation since April 2008.
When cloud services within Mesh were built using Cen-
trifuge, they required fewer lines of code and did not need
to introduce their own subtle protocols for distributed
consistency. As cloud services become ever more com-
plicated, this kind of reduction in complexity is an in-
creasingly urgent need.

1 Introduction

Responsiveness is critical to delivering compelling
cloud services. Many large-scale sites, including
LinkedIn, Digg and Facebook, address the simultane-
ous needs of scale and low-latency by partitioning their
user data across pools of servers that operate purely on
in-memory state [36, 34, 35, 21, 23]. Processing most
operations directly out of memory yields low latency re-
sponses. These sites achieve reliability by using some

†adya@google.com. Work done while at Microsoft.
∗{jdunagan, alecw}@microsoft.com.

separate service (such as a replicated database) to reload
the data into the server pool in the event of a failure.

Unfortunately, current technologies for building in-
memory server pools lead to a frustrating programming
model. Many sites use load balancers to distribute re-
quests across such servers pools, but load balancers force
the programmer to handle difficult corner cases: requests
for the same state may arrive at different servers, lead-
ing to multiple potentially inconsistent versions. For ex-
ample, in a cloud-based video conferencing service, the
data items being partitioned might be metadata for in-
dividual video conferences, such as the address of that
conference’s rendezvous server. Inconsistencies can lead
to users selecting different rendezvous points, and thus
being unable to connect even when they are both online.
The need to deal with these inconsistencies drastically in-
creases the burden on service programmers. In our video
conferencing example, the developer could reduce the
chance that two nodes would fail to rendezvous by im-
plementing quorum reads and writes on the in-memory
servers. In other cases, programmers are faced with
supporting application-specific reconciliation, a problem
that is known to be difficult [39, 33, 17].

This paper describes Centrifuge, a system for building
in-memory server pools that eliminates most of the dis-
tributed systems complexity, allowing service program-
mers to focus on the logic particular to their service. Cen-
trifuge does this by implementing both lease manage-
ment and partitioning using a replicated state machine.
Leases are a well-known technique for ensuring that only
one server at a time is responsible for a given piece of
state [3]. Partitioning refers to assigning each piece of
state to an in-memory server; requests are then sent to the
appropriate server. To support partitioning, the replicated
state machine implements a membership service and dy-
namic load management. Partitioning for in-memory
servers additionally requires a mechanism to deal with
state loss. Centrifuge addresses this need with explicit
API support for recovery: it notifies the service indi-
cating which state has been lost and needs to be recov-
ered, e.g., because a machine crashed and lost its lease.
Centrifuge does not recover the state itself so that appli-
cations can use different strategies for state re-creation,

1

e.g., recovering from a variety of datacenter storage sys-
tems or even relying on clients to re-publish state into the
system. Relying on client republishing is the approach
taken by the Live Mesh services [22], and we describe
this in more detail in Section 4. This combination of
functionality allows Centrifuge to replace most datacen-
ter load balancers and simultaneously provide a simpler
programming model.

Providing both lease management and partitioning
is valuable to the application developer, but it leads
to a scalability challenge in implementing Centrifuge.
Each in-memory server may hold hundreds of millions
of items, and there may be hundreds of such servers.
Naively supporting fine-grained leases (one for each
item) allows flexible load management, but it could re-
quire a large number of servers dedicated solely to lease
traffic. In contrast, integrating leasing and partitioning
allows Centrifuge to provide the benefits of fine-grained
leases without their associated scalability costs.

In particular, integrating leasing and partitioning al-
lows Centrifuge to incorporate the following techniques:
leases on variable-length ranges, manager-directed leas-
ing, and conveying the partitioning assignment through
leases. Variable-length ranges specify contiguous por-
tions of a flat namespace that are assigned as a sin-
gle lease. Internally, Centrifuge’s partitioning algorithm
uses consistent hashing to determine the variable-length
ranges. Manager-directed leasing avoids the problem of
lease fragmentation. It allows the manager to change the
length of the ranges being leased so that load can be shed
at fine granularities, while simultaneously keeping the
number of leases small. This is in contrast to the tra-
ditional model where clients request leases from a man-
ager, which can potentially degenerate into requiring one
lease for each item. Manager-directed leasing also leads
to changes in the leasing API: instead of clients request-
ing individual leases, they simply ask which leases they
have been assigned. Finally, because the lease and par-
titioning assignments are both being performed by the
manager, there is no need for separate protocols for these
two tasks: the lease protocol implicitly conveys the re-
sults of the partitioning algorithm.

Centrifuge has been implemented and deployed in
production as part of Microsoft’s Live Mesh, a large-
scale commercial cloud service in continuous operation
since April 2008 [22]. As of March 2009, it is in active
use by five Live Mesh component services spanning hun-
dreds of servers. As we describe in Section 4, Centrifuge
successfully hid most of the distributed systems com-
plexity from the developers of these component services:
the services were built with fewer lines of code and with-
out needing to introduce their own subtle protocols for
distributed consistency or application-specific reconcili-
ation. As cloud services become ever more complicated,

reducing this kind of complexity is an increasingly ur-
gent need.

To summarize, this paper’s main contributions are:

• we demonstrate that integrating leasing and partition-
ing can provide the benefits of fine-grained leases to
in-memory server pools without their associated scal-
ability costs;

• we show that real-world cloud services written by
other developers are simplified by using Centrifuge;
and

• we provide performance results from Centrifuge in
production as well as a testbed evaluation.

The remainder of this paper is organized as follows:
In Section 2, we describe the design and implementation
of Centrifuge. In Section 3, we explain the Centrifuge
API through an example application. In Section 4, we
describe how three real-world cloud services were sim-
plified using Centrifuge. In Section 5, we report on the
behavior of Centrifuge in production and we evaluate
Centrifuge on a testbed. In Section 6, we describe re-
lated work. In Section 7, we conclude.

2 Design and Implementation
The design of Centrifuge is motivated by the needs of

in-memory server pools. Centrifuge is designed to sup-
port these servers executing arbitrary application logic on
any particular in-memory data item they hold, and Cen-
trifuge helps route requests to the server assigned a lease
for any given piece of data, enabling the computation and
data to be co-located. The nature of the in-memory data
covered by the lease is service-specific, e.g., it could be
the rendezvous information for the currently connected
participants in a video-conferencing session, or a queue
of messages waiting for a user who is currently offline.
Furthermore, Centrifuge does not store this data on be-
half of the application running on the in-memory server
(i.e., Centrifuge is not a distributed cache). Instead, the
application manages the relationship between the Cen-
trifuge lease and its own in-memory data. Centrifuge has
no knowledge of the application’s data; it only knows
about the lease.

A common design pattern in industry for a datacenter
in-memory server pool is to spread hundreds of millions
of objects across hundreds of servers [36, 34, 35, 21, 23].
Additionally, these applications are designed so that even
the most heavily loaded object requires much less than
one machine’s worth of processing power. As a result,
each object can be fully handled by one machine holding
an exclusive lease, thereby eliminating the usefulness of
read-only leases. Because of this, Centrifuge only grants
exclusive leases, simplifying its API and internal design

2

2

…

…

“Here is the map of

lease assignments”

Caller

Lookup Library

In-Memory Server

Owner Library

“You have these leases”
Leader and

Standbys

Paxos

Group

Manager Service

In-Memory Server

Owner Library

Caller

Lookup Library

Caller

Lookup Library

In-Memory Server

Owner Library

Figure 1: Servers using Centrifuge link in libraries that
talk to a Centrifuge Manager service.

without compromising its usefulness in this application
domain.

Centrifuge’s architecture is shown in Figure 1.
Servers that want to send requests link in a Lookup li-
brary, while servers that want to receive leases and pro-
cess requests link in an Owner library. In our video con-
ferencing example, web server frontends would link in
the Lookup library and forward requests for a particular
conference’s rendezvous information to the appropriate
in-memory server linking in the Owner library. Both the
libraries communicate with a logically centralized Man-
ager service that is implemented using a replicated state
machine.

At a high level, the job of the Manager service is
to partition a flat namespace of “keys” among all the
servers linking in Owner libraries. The Manager service
does this by mapping the key space into variable-length
ranges using consistent hashing [6] with 64 virtual nodes
per Owner library. The Manager then conveys to each
Owner library its subset of the map (i.e., its partition-
ing assignment) using a lease protocol. We refer to this
technique as manager-directed leasing: the Centrifuge
manager controls how the key space is partitioned and
assigns leases directly on the variable-length ranges as-
sociated with these partitions. As a result, the manager
avoids the scalability problems traditionally associated
with fine-grained leasing.

When a new Owner library contacts the Manager ser-
vice, the Manager service recalls the needed leases from
other Owner libraries and grants them to the new Owner
library. Centrifuge also reassigns leases for adaptive load
management (described in more detail in Section 2.4).
Finally, Lookup libraries contact the Manager service to
learn the entire map, enabling them to route a request to
any Owner.

We briefly explain the usage of Centrifuge by walking
through its use in Live Mesh’s Publish-subscribe service,

1

Load balancer between Datacenter and Internet

Internal load balancer 1

Datacenter

… Service 1 Service 1 … Service 2 Service 2

… Frontend Frontend

… Client Client

Internal load balancer 2

Figure 2: Datacenter applications are often divided into
multiple component services, and servicing clients re-
quests frequently requires communicating with multiple
such services. Centrifuge is designed to replace only the
internal network load balancers used by the component
services.

described in more detail in Section 4. Servers that wish
to publish events to topics link in the Lookup library;
they lookup the server where a given topic is hosted us-
ing the hash of the topic name as the lookup key. The
servers hosting these topics link in the Owner library;
they receive leases on the topics based on the hash of the
topic name. When a server has an event to publish, it
makes a call to its Lookup library, gets the address of the
appropriate server hosting the topic, and then sends the
publish message to this server. When this server receives
the message, it checks with its Owner library that it holds
the lease on this particular topic, and then forwards the
event to all subscribed parties.

Centrifuge is designed for services that route requests
which both originate and terminate within the datacen-
ter. This is depicted in Figure 2. Datacenter applications
often include many such internal services: for example,
LinkedIn reports having divided their datacenter appli-
cation into a client-facing frontend and multiple internal
services, such as news, profiles, groups and communica-
tions [36]. In Section 4, we describe how the Live Mesh
application similarly contains multiple internal services
that use Centrifuge. If requests originate outside the dat-
acenter (e.g., from web browsers), using Centrifuge re-
quires an additional routing step: requests first traverse
a traditional network load balancer to arrive at frontends
(e.g., web servers) that link in the Lookup library, and
they are then forwarded to in-memory servers that link
in the Owner library.

2.1 Manager Service
To describe the Manager service, we first present the

high availability design. We then present the logic for
lease management, partitioning, and adaptive load man-
agement.

3

3

Lookups and

Owners

Leader

Leader and

Standbys
Paxos Group

“Yes.”

“Renew leader lease and

 commit state update.”

“Can I have the leader lease?”

“No.”

Standby

Standby

Manager Service

Figure 3: In the Manager service, one set of servers run
a Paxos group that provides a state store and a leader
election protocol, and another set of servers act as either
leader or standby. Only the current leader executes the
logic for partitioning, lease management, and communi-
cation with Lookups and Owners.

2.1.1 Leader Election and High Availability

The Manager service’s high availability design is de-
picted in Figure 3. At a high level, the Manager ser-
vice consists of two sets of servers: one set of servers
provides a Paxos group, and the other set of servers act
as either leader or standby. In detail, the Paxos group
is used to elect a current leader from the set of standby
servers, and to provide a highly-available store used by
the leader and standbys. The current leader executes
the logic around granting leases to Owner libraries, par-
titioning, and the protocols used to communicate with
the Owner and Lookup libraries (or simply, the Owners
and Lookups). Every time the leader receives a request
that requires it to update its internal state, it commits the
state change to the Paxos group before responding to the
caller. To deal with the case that the leader becomes un-
responsive, all the standby servers periodically ask the
Paxos group to become the leader; if a new standby be-
comes the leader, it reads in all the state from the Paxos
group, and then resumes processing where the previous
leader left off.

In this high availability design, Paxos is only used to
implement a leader election protocol and a highly avail-
able state store. Most of the complicated program logic
runs in the leader and can be non-deterministic. Thus,
this split minimizes the well-known difficulties of writ-
ing deterministic code within a Paxos group [37, 27].
A similar division of responsibility was also used in the
Chubby datacenter lease manager [3, 4].

At a logical level, all the Owners and Lookups can
simply send all requests to every leader and standby; they
will only ever get a response from the leader. For effi-
ciency, the Owners and Lookups only send requests to
the server they believe to be the leader unless that server

becomes unresponsive. If the leader has become un-
responsive, the Owners and Lookups start broadcasting
their messages to all the leader or standby servers until
one replies, and they then switch back to sending their
requests to the one leader. Owners and Lookups learn
of the Manager nodes through an external configuration
file which can be updated when new Manager nodes are
placed into service.

The configuration that we use in deployment is three
standby servers and five servers running Paxos. This al-
lows the service to continue operating in the event of
any two machine failures: the Paxos group requires three
of its five servers to be operational in order to form a
majority, while any one standby can become the leader
and take over communication with all the Owners and
Lookups. For simplicity, we will hereafter refer to the
current leader in the Manager service as just the Man-
ager.

2.1.2 Partitioning, Leasing and Load Management

To implement partitioning and lease management, the
Manager maintains a set of namespaces, one per pool of
in-memory servers it is managing. Each namespace con-
tains a table of all the consistent hashing ranges currently
leased to each Owner, and every leased range is associ-
ated with a lease generation number. When a new Owner
contacts the Manager, the Manager computes the new
desired assignment of ranges to Owners, recalls leases
on the ranges that are now destined for the new Owner,
and grants new 60 second leases on these ranges to the
new Owner as they become available (we show in Sec-
tion 5.1.1 that 60 second leases are a good fit for our
deployment environment). The removal of an Owner is
similar. To support an incremental protocol for convey-
ing changes to the assignment of leases, the Manager
also maintains a change log for the lease table. This
change log is periodically truncated to remove all entries
older than 5 minutes. We describe the communication
protocols between the Manager and the Lookup library
and between the Manager and the Owner library in Sec-
tions 2.2 and 2.3 respectively.

The Centrifuge implementation also includes two fea-
tures that are not yet present in the version running in
production: state migration and adaptive load manage-
ment. State migration refers to appropriately notifying
nodes when a lease is transferred so that they can mi-
grate the state along with the lease. Though load man-
agement is found in some network load balancers, we are
not aware of any that support leasing or state migration.
To support adaptive load management, Owners report
their incoming request rate as their load. The adaptive
load management algorithm uses these load measure-
ments to add or subtract virtual nodes from any Owner
that is more than 10% above or below the mean load

4

while maintaining a constant number of virtual nodes
overall. For example, if one Owner is more than 10%
above the mean load, a virtual node is subtracted from it
and added to the least-loaded Owner, even if that least-
loaded Owner is not 10% below the mean load. The par-
ticular load management algorithm is pluggable, allow-
ing other policies to be implemented if Centrifuge re-
quires them in the future.

2.2 Lookup Library
Each Lookup maintains a complete (though poten-

tially stale) copy of the lease table: for every range, it
knows both its lease generation number and the Owner
node holding the lease. Due to the use of consistent
hashing, this only requires about 200KB in the current
Centrifuge deployment: 100 owners × 64 virtual nodes
× 32B per range. This is a tiny amount for the servers
linking in the Lookup libraries, and the small size is
one reason the Lookup library caches the complete table
rather than trying to only cache names that are frequently
looked up.

Lookups use the lease table for two purposes. First,
when the server linking in the Lookup library asks where
to send a request on a given piece of state, the Lookup
library reads the (potentially stale) answer out of its lo-
cal copy of the lease table. Second, when the lease gen-
eration number on a range changes, the Lookup library
signals a loss notification unless there is a flag set stat-
ing that the state was cleanly migrated to another Owner.
At a high level, loss notifications allow servers linking
in the Lookup library to republish data back in to the in-
memory server pool; Sections 3 and 4 describe the use of
loss notifications in more detail.

2.2.1 Lookup-Manager Protocol

To learn of incremental changes to the Manager’s
lease table, each Lookup contacts the Manager once ev-
ery 30 seconds. An example of this is depicted in Fig-
ure 4. In this example, the Manager has just recorded
a change, noted as LSN (log sequence number) 3, into
its change log. This change split the range [1-9] be-
tween the Owners B and C, and the lease generation
numbers (LGNs for short) have been modified as well.
The Lookup contacts the Manager with LSN 2, indicat-
ing that it does not know of this change, and the Manager
sends the change over. The Lookup then applies these
changes to its copy of the lease table. If the Lookup sends
over a sufficiently old LSN, and the Manager has trun-
cated its log of lease table changes such that it no longer
remembers this old LSN, the Manager replies with a
snapshot of the current lease table. The Manager also
sends over a snapshot of the entire lease table whenever
it is more efficient than sending over the complete change
list (in practice, we only observe this behavior when the

Lookup Manager

Change Log

LSN:23

[1-9:

 Owner=B, LGN=15]

[1-2:

 Owner=B, LGN=16]

[2-9:

 Owner=C, LGN=17]

Lease Table

Current LSN:3

[0-1:

 Owner=A, LGN=14]

[1-2:

 Owner=B, LGN=16]

[2-9:

 Owner=C, LGN=17]

Lease Table

Current LSN:2

[0-1:

 Owner=A, LGN=14]

[1-9:

 Owner=B, LGN=15]

“LSN:23

[1-9:

 Owner=B, LGN=15]

[1-2:

 Owner=B, LGN=16]

[2-9:

 Owner=C, LGN=17]”

“I am at LSN 2.”

Figure 4: Example of the protocol between the Lookup
and the Manager.

system is being brought online and many Owners are
rapidly joining). Because the total size of the lease ta-
ble is small, this limits the amount of additional data that
the manager needs to send to Lookups when the system
experiences rapid changes in Owner membership.

2.3 Owner Library

Each Owner only knows about the ranges that are cur-
rently leased to it. Owners send a message requesting
and renewing leases every 15 seconds to the Manager.
Because Manager leases are for 60 seconds, 3 consec-
utive lease requests have to be lost before a lease will
spuriously expire. A lease request signals Owner live-
ness and specifies the leases where the Owner wants re-
newals. The Manager sends back a response contain-
ing all the ranges it is renewing and all the new ranges
it has decided to grant to the Owner. Grants are distin-
guished from renewals so that if an Owner restarts, it will
not accept an extension on a lease it previously owned.
For example, if a just restarted Owner receives a renewal
on a lease “X”, it refuses the renewal, and the Manager
learns that the lease is free. This causes the Manager to
issue a new grant on the range, thus triggering a change
in the lease generation number. This change in lease gen-
eration number ensures that the Manager’s log of lease
changes reflects any Owner crashes, thus guaranteeing
that Lookups will appropriately trigger loss notifications.

Every message from the Manager contains the com-
plete set of ranges where the Owner should now hold a
lease. Although we considered an incremental protocol
that sent only changes, we found that sending the com-
plete set of ranges made the development and debugging
of the lease protocol significantly easier. For example,
we did not have to reconstruct a long series of message
exchanges from the Manager log file to piece together
how the Owner or Manager had gotten into a bad state.
Instead, because each message had the complete set of

5

Owner

“Request Leases”

Manager

“Lease on [0-1]

granted for 60 seconds.”

T seconds

Hold lease

for 60-T

seconds

Lease is unavailable to

other nodes (unless

recalled) for 65 seconds

from when Manager

granted lease.

Figure 5: How the lease protocol between the Owner and
the Manager guarantees the safety property that at most
one Owner holds the lease at any given point in time as-
suming only clock rate synchronization.

leased ranges, we could simply look at the previous mes-
sage and the current message to see if the implementation
was generating the correct messages. Furthermore, be-
cause of the use of consistent hashing, all messages were
still quite small: there are 64 leased ranges per Owner
(one per virtual node) and each range is represented us-
ing 32B, which adds up to only 2KB per lease message.

2.3.1 Dealing with Clocks

Even after including the complete set of ranges in ev-
ery lease message, there were still two subtle issues in
the lease protocol. The first subtlety is guaranteeing the
lease safety property: each key is owned by at most one
Owner at any given point in time. For Centrifuge, we
assume clock rate synchronization, but not clock syn-
chronization. In particular, we assume that the Man-
ager’s clock advances by no more than 65 seconds in the
time it takes the Owner’s clock to advance by 60 sec-
onds. This assumption allows Centrifuge to use the tech-
nique depicted in Figure 5, and previously described by
Liskov [20]. The Owner is guaranteed to believe it holds
the lease for a subset of the time that the Manager makes
the lease unavailable to others because: (1) the Owner
starts holding the lease only after receiving a message
from the Manager, and (2) the Owner’s 60-second timer
starts before the Manager’s 65-second timer, and 60 sec-
onds on the Owner’s clock is assumed to take less time
than 65 seconds on the Manager’s clock.

2.3.2 Dealing with Message Races

The second subtlety is dealing with message races.
We explain the benefits of not having to reason about
message races using an example involving lease recalls.
Lease recalls improve the ability of the Manager to
quickly make leases available to new Owners when they
join the system – new leases can be handed out after a
single message round trip instead of waiting up to 60

8

“Here is the lease.”

Owner Manager

“I don’t have

the lease.”

“Since you returned

the lease, I’ll give it

to someone else.”

“I have the

lease again!”

Figure 6: Without care, message races can lead to violat-
ing the lease safety property. Centrifuge prevents this by
including sequence numbers in the lease messages be-
tween the Manager and the Owner, and using the se-
quence numbers to filter out such message races.

9

Owner Manager

Owner SN: 10

Manager SN: 101

Owner SN: 11

Manager SN: 101

Owner SN: 10

Manager SN: 101

Owner SN: 11

Manager SN: 101

Owner SN: 12

Manager SN: 101

Owner SN: 11

Manager SN: 102

Drop! Drop!

Wait to

resend

Wait to

resend

Message

gets through

<11,101>

<12,101>
<11,102>

<13,102>

Owner SN: 12

Manager SN: 102
Owner SN: 12

Manager SN: 102

Figure 7: The Manager and Owner use sequence num-
bers to filter out messages races. When a message race
occurs, they wait for a random backoff, and then resend.

seconds for the earlier leases to expire. However, lease
recalls introduce the problem of lease recall acknowledg-
ments and lease grants passing in mid-flight. This prob-
lem is depicted in Figure 6: When an Owner receives a
lease recall request, it drops the lease, and then sends a
message acknowledging the lease recall to the Manager.
If the Manager has since changed its mind and sent out
a new lease grant, the Manager needs some way to know
that it is not safe to act on the lease recall acknowledg-
ment for the earlier lease grant.

We solved this problem by implementing a protocol
that hides message races from the program logic at the
Manager and Owners. This protocol adds two sequence
numbers to all lease messages, as depicted in Figure 7.
The sender of a message includes both its own sequence
number and the most recent sequence number it heard
from the remote node. When the Manager receives a
message from the Owner that does not contain the Man-
ager’s most recent sequence number, the Manager knows
that the Owner sent this incoming message before the

6

Owner processed the previous message from the Man-
ager, and the Manager drops the racing message from the
Owner. The Owner does likewise. This prevents the kind
of message race depicted in Figure 6. After either party
drops a racing message, it waits for a random backoff,
and then resends its message. Forward progress resumes
when one node’s message is received on the other side
before its counterpart initiates its resend, as depicted in
the Figure.

After the Manager receives the new message from the
Owner, the Manager’s own state most likely changes.
The Manager may send a new message to the Owner,
but the earlier racing message from the Manager to the
Owner is permanently discarded. This is because there is
no guarantee that the previous message to the Owner is
still valid, e.g., the Manager may no longer want to grant
a lease to the Owner. Finally, the protocol also includes
a session nonce (not shown). This prevents an Owner
from sending a message, crashing and re-establishing a
connection with new sequence numbers, and then having
the previously sent message be received and interpreted
out of context.

2.4 Scalability
Centrifuge is designed to work within a datacenter

management paradigm where the incremental unit of ca-
pacity is a cluster of a thousand or fewer machines. The
current services using Centrifuge are all part of the Live
Mesh application, which does follow this paradigm; it
can be deployed into some number of clusters, and each
individual cluster is presumed to have good internal net-
work connectivity (e.g., no intra-cluster communication
crosses a WAN connection). The use of clusters deter-
mines our scalability goals for Centrifuge – it must be
able to support all the machines within a single clus-
ter. Also, this level of scalability is sufficient to meet
Centrifuge’s goal of replacing internal network load bal-
ancers, which in this management paradigm are never
shared across clusters. As we show in Section 5, Cen-
trifuge scales well beyond this point, and thus we did not
investigate further optimizing our implementation.

2.5 Loss Notification Rationale
One alternative to our design for loss notifications is

to replicate the in-memory state across multiple Owner
nodes. The primary benefit of this alternative design is
that applications could obtain higher availability during
node failures because there would be no need to wait for
clients to republish data lost when nodes fail or reboot.
However, the downsides would be significant. First, be-
cause replication cannot handle widespread or correlated
failures, there is no benefit in terms of simplifying appli-
cations: the loss notification mechanism is still needed.
Second, there is the additional cost of the RAM needed

// Lookup API
URL Lookup(Key key)
void LossNotificationUpcall(KeyRange[] lost)

// Owner API
bool CheckLeaseNow(Key key, out LeaseNum leaseNum)
bool CheckLeaseContinuous(Key key, LeaseNum leaseNum)
void OwnershipChangeUpcall(KeyRange[] grant,
KeyRange[] revoke)

Figure 8: The Centrifuge API divided into its Lookup and
Owner parts. We omit asynchronous versions of the calls
and calls related to dynamic load balancing and state mi-
gration. Upcalls are given as arguments to the relevant
constructors.

to hold multiple copies of the state at different nodes.
Given the infrequency of node failures and reboots in the
datacenter, it seems unlikely that the benefits of repli-
cation outweigh the significant costs of holding multi-
ple copies in RAM. Finally, the implementation would
be significantly more complex both in terms of the man-
ager logic around leasing and partitioning as well as the
Owner logic around performing the operations. This
would add the requirement that the Owner actions be-
come deterministic because Centrifuge has no notion of
what actions the application is performing at the Owner
nodes.

3 API

A simplified version of the Centrifuge API is shown
in Figure 8. The API is divided into the calls exported by
the Lookup library and the calls exported by the Owner
library. We explain this API using the Publish-subscribe
service, shown in Figure 9, as our running example.

3.1 Lookup

The servers that wish to make use of the Publish-
subscribe service must link in the Lookup library. When
the server in the example wishes to send a message sub-
scribing its URL to a particular topic (in the example,
the message is “Subscribe(1, http://A)”) the server calls
Lookup(“1”) and gets back the URL for the Publish-
subscribe server responsible for this subscription list.

The semantics of Lookup() are that it returns hints. If
it returns a stale address (e.g., the address of a Publish-
subscribe server that is no longer responsible for this sub-
scription list), the staleness will be caught (and the re-
quest rejected) at the Publish-subscribe server using the
Owner API. Because the Manager rapidly propagates up-
dated versions of the lease map to the Lookup library,
callers should retry after a short backoff on such rejected
requests. When the system is quiesced (i.e., no servers
are joining or leaving the system), all calls to Lookup()
return the correct address.

7

6

…
Server A that subscribes

to notifications.

Lookup Library

Publish-subscribe Server:

responsible for [1-2]

Owner Library …
“Subscribe(1,http://A)”

Server N that subscribes

to notifications.

Lookup Library

Publish-subscribe Server:

responsible for [4-5]

Owner Library

Figure 9: We explain the Centrifuge API using the
Publish-subscribe service’s Subscribe() operation.

If a node crashes, the servers linking in the Lookup
library may wish to learn of this crash so they can proac-
tively republish the data that was lost. In the example of
Figure 9, Server A can respond to a loss notification by
re-sending its earlier subscribe message. As mentioned
in Section 2.2, the Manager enables this by assigning
new lease generation numbers to all the ranges held by
the crashed node (even if they are assigned back to the
crashed node after it has recovered). All the Lookup
libraries learn of the lease generation number changes
from the Manager, and they then signal a LossNotifica-
tionUpcall() on the appropriate ranges.

3.2 Owner

The Owner part of the API allows a Publish-subscribe
server to perform an operation guarded by a lease. Be-
cause the Manager may not have assigned any particular
lease to this Owner, the Owner must be prepared to fail
this operation if it does not have the lease; there is no API
call that forces the Manager to give the lease for a given
key to the Owner.

The code for the Subscribe operation at the Publish-
subscribe servers is shown in Figure 10. This code uses
leases to guarantee that requests for a given subscription
list are only being served by a single node at a time, and
that this node is not operating on a stale subscription list
(i.e., a subscription list from some earlier time that the
node owned the lease, but where the node has not held
the lease continuously).

The general pattern to using the Owner API is shown
at the top of Figure 10. When a request arrives at
a Publish-subscribe server, step (1) is to call Check-
LeaseNow() to check whether it should serve the request.
If this call succeeds, step (2) is to validate any previously
stored state by comparing the current lease number with
the lease number from when the state was last modified.
If the Publish-subscribe server has held the lease con-
tinuously, this old lease number will equal the Owner li-
brary’s current lease number, and the check will succeed.
If the Publish-subscribe server has not held the lease con-

// General pattern:
// (1) Check that request has arrived at correct node
// (2) Check that existing state is not stale;
// discard state that turns out to be stale
// (3) Perform arbitrary operation on this state;
// store lease number with any created state
// (4) Check that lease has been continuously held;
// if so, return result

bool Subscribe(key, address) {
// (1) Check that this is the correct node
ok = CheckLeaseNow(key, out currentLeaseNum);
if (!ok) return false;
// (2) Check that existing state is not stale;
// discard state that turns out to be stale
storedLeaseNum = this.leases[key];
if (currentLeaseNum != storedLeaseNum)

this.subscriptionLists[key] = EmptyList();
// in this app, okay to reset to EmptyList()
// if prior state was stale

// (3) Perform arbitrary operation on this state;
// store lease number with any created state
// in this case, simply add subscription and
// store lease number
this.subscriptionLists[key].Add(address);
this.leases[key] = currentLeaseNum;
// (4) Check that lease has been continuously held;
// if so, return result
if (!CheckLeaseContinuous(key, currentLeaseNum))
return false;

return true;
}

Figure 10: How the Subscribe() operation uses the
Owner API.

tinuously, the old subscription list may be stale (i.e., it
may not reflect all operations executed on the list), and
therefore the old subscription list should be discarded.

Step (3) is to perform an arbitrary operation on this
state, and then to store any state modifications along with
the lease number. In the case of Subscribe(), the opera-
tion is adding the address to the list of subscriptions. The
newly stored lease number will be checked in future calls
to Subscribe().

Step (4) is to return a result to the caller, or more gen-
erally, to send a result to some other node. If the lease
was lost while the operation was in progress, the caller
can simply return false and does not need to proactively
clean up the state that is now invalid. Future calls to Sub-
scribe() will either fail at CheckLeaseNow() or will clear
the invalid state when they find the stored lease number
to be less than the current lease number.

Note that throughout this sequence of steps, there is
no point where the Publish-subscribe server requests a
lease on a given item. Instead, the Publish-subscribe
server simply checks what leases it has been assigned.
As mentioned in Section 1, this is a departure from stan-
dard lease manager APIs, and the novel Centrifuge API
is critical to allowing Centrifuge to provide the benefits
of fine-grained leasing, while only granting leases on a
small number of ranges.

This example has focused on the use of leases within
a single service, but lease numbers can also be used in

8

communication between services. For example, a server
linking in the Owner library can include a lease number
in a request to another service. The other service can
then guard against stale messages by only processing a
request if the included lease number is greater than or
equal to any previously seen lease number. This tech-
nique has also been described in previous work on lease
managers; for example, it is one of the patterns for us-
ing Chubby’s lease numbers, which are called Chubby
sequencers [3].

The last part of the Owner API is the Owner-
shipChangeUpcall(). This upcall may be used to initial-
ize data structures when some new range of the key space
has been granted, or to garbage collect state associated
with a range of the key space that has been revoked. Be-
cause of thread scheduling and other effects, this upcall
may be delivered some short time after the lease change
occurs.

4 How Centrifuge Supports the Live Mesh
Services

Centrifuge is used by five component services that are
part of the Live Mesh application [22]. All these com-
ponent services were built by other developers. The Live
Mesh application provides a number of features, includ-
ing file sharing and synchronization across devices, noti-
fications of activity on these shared files, a virtual desk-
top that is hosted in the datacenter and allows manipulat-
ing these files through a web browser, and connectivity
to remote devices (including NAT traversal). In the re-
mainder of this Section, we describe how three of the
Live Mesh services use Centrifuge to enable a particular
scenario. We then explain how these services were sim-
plified by leveraging the lease semantics of Centrifuge.
Finally, we discuss some common characteristics of the
Live Mesh services and how these characteristics influ-
enced the design of Centrifuge.

4.1 Example of Three Live Mesh Services

The particular scenario we focus on is one where a
user has two PCs, one at home and one at work, and both
are running the Live Mesh client software. At some point
the user wants to connect directly from their work PC to
their home PC so as to retrieve an important file, but the
home PC has just been given a new IP address by the
user’s ISP. To enable the work PC to find the home PC,
the home PC needs to publish its new IP address into the
datacenter, and the work PC then needs to learn of the
change.

Figure 11 depicts how the component services enable
this scenario. First, the home PC sends its new IP ad-
dress in a “publish new IP” request to a Frontend server.
The Frontend server calls Lookup() using the home PC’s

7

… Device

Connectivity

Device

Connectivity

… Publish-

subscribe

Publish-

subscribe

… Frontend

Web Server

Frontend

Web Server

… Queue Queue

“publish new IP” “dequeue messages”

Home PC Work PC

Figure 11: How three Centrifuge-based services within
the Live Mesh application cooperate to enable a work
PC to connect to a home PC that has just acquired a new
IP address.

“DeviceID” as the key and routes this request to the in-
memory Device Connectivity server tracking the IP ad-
dress for this home PC. The Device Connectivity servers
use the Owner library with DeviceIDs as the keys, and
they store the IP address for a device under each key.

After updating the IP address, the Device Connectiv-
ity server sends a message with this new IP address to the
in-memory Publish-subscribe server tracking subscrip-
tions to the home PC’s device connectivity status; the De-
vice Connectivity server uses the home PC’s DeviceID
as the key for calling Lookup(). The Publish-subscribe
servers also use the Owner library with DeviceIDs as the
keys, but under each key, they store a subscription list
of all devices that want to receive connectivity status up-
dates from the home PC. Finally, the Publish-subscribe
server sends out a message containing the device con-
nectivity update to each subscribed client device.

Because some of the subscribed client devices (such
as the user’s work PC) may be offline, each message is
routed to an in-memory Queue server. If a subscribed
client device is online, it maintains a persistent connec-
tion to the appropriate Queue server, and the messages
are immediately pushed over the persistent connection.
If a subscribed client device is offline and later comes
online (the case depicted for the work PC in Figure 11),
it sends a “dequeue messages” request. This request
arrives at a Frontend and is routed to the appropriate
Queue server, which responds with the message contain-
ing the new IP address. The Publish-subscribe service is
the source for all the messages sent through the Queue
servers; all these messages describe changes for datacen-
ter objects that the client had previously subscribed to,
such as the device connectivity status in this example.

The Queue servers also use the Owner library with
DeviceIDs as the keys, and they store a message queue
under each key. The Queue servers also link in the
Lookup library so that they can receive a LossNotifi-

9

cationUpcall() if any Device Connectivity or Publish-
subscribe server crashes. If it receives a loss notification,
the Queue server puts the notification into the queue for
any client device that had state stored on the server that
crashed, allowing the client device to quickly learn that
it needs to re-publish its IP address, poll to re-read other
client devices’ IP addresses, and/or re-subscribe to learn
of future IP address changes.

Because these servers are all co-located within the
same datacenter, we assume that there are no persis-
tent intransitive connectivity failures between these ma-
chines, and therefore if the Device Connectivity, Publish-
subscribe and Queue servers can all talk to the Centrifuge
Manager and renew their leases, they will also be able to
eventually send messages to each other. If an initial mes-
sage send fails (perhaps because the Lookup library had
slightly stale information), the server should simply retry
after a short period of time.

Because of the in-memory nature of these server
pools, a crash always results in the crashed server los-
ing its copy of the data. All the services currently us-
ing Centrifuge rely on Centrifuge’s loss notifications for
two purposes: to trigger the client to re-create any lost
data within the in-memory server pool and to poll all
datacenter objects where a relevant change message may
have been lost. The client already knows the small set
of datacenter objects it needs to poll because it had pre-
viously subscribed to them using the Publish-subscribe
service, and the Queue service is only used to deliver
change messages from these subscriptions and loss no-
tifications. For these services, relying on the client for
state re-creation is sufficient because the state is only
useful if the client is online. To pick one example, if
a client is offline, its last published IP address is irrele-
vant. Furthermore, the reliance on clients to recreate the
state allows the service to forgo the expense of storing re-
dundant copies of this state on disk within the datacenter
(although Centrifuge itself is also compatible with recov-
ery from datacenter storage). Lastly, although the power
of leases to simplify distributed storage systems is well-
established [40, 13, 25, 3], the next several sections elab-
orate on how leases can also simplify services that are not
tightly integrated with storage (the Live Mesh services).

4.2 Simplifications to Device Connectivity
Service

The main simplification from using leases in the De-
vice Connectivity service is that all updates logically
occur at a single server. This means that there are
never multiple documents on multiple servers contain-
ing the IP address about a single device. Because there
are never multiple documents, there is no need to write
application-specific logic about reconciling the docu-
ments, and there is no need to add application-specific

metadata simply to aid in document reconciliation (e.g.,
the time at which the IP address was updated). Although
it may be feasible to design a good reconciliation heuris-
tic for device IP addresses, this is yet another tax on the
developer. Additionally, the Device Connectivity service
is also used to store other kinds of data besides IP ad-
dresses, and reconciliation becomes more difficult as the
data becomes more complex. The use of leases allows
the developer to avoid writing the application-specific
reconciliation routines for IP addresses and for all these
other kinds of data.

4.3 Simplifications to Queue Service

In the Queue service, the main simplification from us-
ing leases is that the service can provide a strong guar-
antee to all its callers: once a message has been success-
fully enqueued, either the client will receive it, or the
client will know it has lost some messages and must ap-
propriately poll. This allows the Publish-subscribe server
to consider itself “finished” with a message once it has
been given to the Queue service; the Publish-subscribe
server does not have to deal with the possibility that
the client device neither received the message nor even
learned that it lost a message. Such silent message loss
could be particularly frustrating; for example, the home
PC could publish its new IP address without the work PC
ever learning of the change, leading to a long-lived con-
nectivity failure. The Queue service’s guarantee prevents
this problem.

To provide this guarantee, the Queue service relies on
there being at most one copy of a queue at any given
point in time. In contrast, if there were multiple copies
of a queue, the Publish-subscribe server might believe it
successfully delivered a message, while the client device
only ever connected to another copy of the queue to read
its messages. While it may be feasible to build a proto-
col that addresses this issue in alternative ways (perhaps
using counters or version vectors), the Centrifuge lease
mechanism avoided the need for such an additional pro-
tocol.

4.4 Simplifications to Publish-subscribe Ser-
vice

The simplifications from using leases in the Publish-
subscribe service are similar to the simplifications in the
Queue service. The Publish-subscribe service uses leases
to provide the following strong guarantee to its callers:
once a message has been accepted by the Publish-
subscribe service, each subscriber will either receive the
message or know that they missed some messages. The
details of how leases enable this guarantee in the Publish-
subscribe service are essentially the same as those de-
scribed in Section 4.3 for the Queue service.

10

4.5 Live Mesh Service Characteristics

We now briefly discuss how the common character-
istics of the Live Mesh services influenced the design
choices we made for Centrifuge.

All of the Live Mesh services that use Centrifuge store
a relatively large number of small objects in memory on
each server, and the operations performed on these ob-
jects are relatively lightweight. As a result, we designed
Centrifuge to rely on statistical multiplexing over these
many small objects. This allows Centrifuge to operate on
variable length ranges of the keyspace, rather than pro-
viding a directory service optimized for moving individ-
ual items. None of the current Live Mesh services need
to support data items where the processing load on an
individual object is near the capacity of an entire server.
Services with such a workload would find statistical mul-
tiplexing much less effective. To enable such workloads,
one might consider modifications to Centrifuge such as:
a load balancing algorithm with different dynamics; a
different partitioning algorithm; and support for replicat-
ing objects across multiple owners.

Another aspect of the Centrifuge design motivated by
the needs of Live Mesh services is the capability of re-
covering state from clients, rather than just from storage
servers within the datacenter. Most of the state stored at
the Owner nodes for the Live Mesh services is cached
data where the original copy is known at the client (e.g.,
the client’s IP address for the Device Connectivity ser-
vice). The need to recover state from clients led to our
design for loss notifications, where these notifications are
delivered to the Lookup nodes, rather than building re-
covery functionality directly into the Owner nodes.

Finally, as we will show in Section 5, reboots and
machine failures in the Live Mesh production environ-
ment are infrequent. This observation, combined with
the fact that large quantities of RAM are still reason-
ably expensive, led to our decision to recover state from
the clients rather than replicating state across multiple
Owner nodes.

5 Evaluation

As we mentioned in the Introduction, Centrifuge has
been deployed in production as part of Microsoft’s Live
Mesh application since April of 2008 [22]. In Section 5.1
we examine the behavior of Centrifuge in production
over an interval of 2.5 months, stretching from early De-
cember 2008 to early March 2009. During this time,
there were approximately 130 Centrifuge Owners and
approximately 1,000 Centrifuge Lookups. Previewing
our results, we find that Centrifuge easily scaled to meet
the demands of this deployment. In Section 5.2, we use
a testbed to examine Centrifuge’s ability to scale beyond
the current production environment.

Figure 12: CPU and network load measurements from
the leader and standbys in the Centrifuge Manager ser-
vice deployed in production over 2.5 months, as well as
messages dropped due to races.

5.1 Production Environment

Because the Centrifuge Manager is the scalability bot-
tleneck in our system, we focus our observation on the
behavior of this component. We first examine the steady-
state behavior of the Manager over 2.5 months, and then
focus on the behavior of the Manager during the hours
surrounding the rollout of a security patch.

5.1.1 Steady State Behavior

Figures 12(a) and (b) show measurements from each
leader and standby server at the granularity of an hour
from 12/11/2008 to 3/2/2009. We observe that both the
CPU and network utilization is very low on all these
servers, though it is slightly higher on the current leader
at any given point in time, and there are bursts of network
utilization when a standby takes over as the new leader,
as on 12/16/2008 and 1/15/2009. The low steady-state
CPU and network utilization we observe provides evi-
dence that our implementation easily meets our current
scalability needs.

In both cases where the leader changed, the relevant
administrative logs show that a security patch was rolled
out, requiring restarts for all servers in the cluster. The
patch rollout on 12/16/2008 at 06:30 led to the leader
changing from Server 2 to Server 3, while the patch roll-
out on 1/15/2009 at 21:20 led to the servers rotating the
leader role in quick succession, with Server 3 resuming

11

the leader role at the end of this event. Because the sec-
ond security patch rollout led to multiple changes in the
leader, we examine the dynamics of this rollout in more
detail in Section 5.1.2.

Because there were no security patch rollouts between
1/16/2009 and 3/2/2009, we examined this 1.5 month pe-
riod to see how frequently Owners lost their leases due
to crashing, network disconnect, or any other unplanned
event. An Owner crash can make the portion of the
key space assigned to that Owner unavailable until the
Owner’s lease has expired, and we use 60-second leases
(as mentioned in Section 2.1.2) because we expect un-
planned Owner failures to be quite rare. We observed
a total of 10 lease losses from the 130 Owners over the
entire 1.5 months. This corresponds to each individual
Owner having a mean time to unplanned lease loss (i.e.,
not due to action by the system administrator) of 19.5
months. This validates our expectation that unplanned
Owner failures are quite rare. Finally, the number of
Owners returned to 130 in less than 10 minutes follow-
ing 7 of the lease losses, and in about an hour for the
other 3 lease losses; this shows that Owner recovery or
replacement by the cluster management system [16] is
reasonably rapid.

We also examine one aspect of the Manager-Owner
lease protocol in detail over this same 2.5 month inter-
val. As described in Section 2.3.2, our lease protocol in-
corporates a simple mechanism for preventing message
races from compromising the lease safety invariant dur-
ing lease recalls: detecting such races and dropping the
messages. We do not expect message races to be com-
mon, but if they were, repeated message drops might
lead to one of the Owners losing its lease. This moti-
vates us to examine the number of messages dropped due
to race detection, as shown in Figure 12(c). We first ob-
serve that message races do occur in bursts when a new
standby takes the leader role. However, during the 1.5
months from 1/16/2009 to 3/2/2009 where Server 3 con-
tinuously held the leader role, only 12 messages were
dropped. This observation validates our expectation that
message races are very rare in steady state.

5.1.2 Rollout of Security Patch

Figure 13 examines a 2.5 hour window at a 30 second
granularity where all 3 standby servers rotated through
the leader role. Servers 1 and 3 were restarted at approxi-
mately 21:20. Server 2 then took over as the leader, lead-
ing to slightly higher CPU utilization and significantly
higher network utilization at this server. Network uti-
lization peaks at almost 500 KB/sec, significantly more
than the steady state of around 10 KB/sec. At approx-
imately 21:45, Server 2 was similarly restarted, leading
to Server 1 taking over as the leader. Finally, at approx-
imately 22:20, Server 3 took the leader role from Server

Figure 13: Measurements from the evening of 1/15/2009
for the leader and standby servers in the Manager ser-
vice deployed in production, capturing CPU, network
load, and Owner restarts.

2. We do not know why this last change in leader role
occurred, as Server 2 was not restarted at this point. In
all cases, restarts were preceded by a spike in CPU uti-
lization, likely due to applying the patch.

Figure 13(c) shows the number of live Owners seen by
each leader. The number of live Owners dips at approx-
imately the same time as the change in leader, reflecting
how the patch is applied to one group of servers, and then
applied to another group of servers after a modest inter-
val.

Figure 13(b) also shows that network utilization con-
tinued to experience bursts well after a new standby had
taken the leader role. From additionally examining the
Manager logs, we find that 76% of this network traffic is
due to the Lookup libraries, likely because after restart-
ing they need to get the entire lease table from the leader.

Figure 13 show that even during a period of abnor-
mally high churn in both Owners, Lookups and Man-
agers, the observed load at the leader and standbys in
the Manager service is small. This offers further evi-
dence that the Centrifuge implementation meets its cur-
rent scalability demands.

Finally, we investigated one of the Owners to double
check that the stability we observe in the Manager was
also reflected in the Owner API success rate. We arbitrar-
ily chose the approximately 5-day time period 1/8/2009
22:00 to 1/13/2009 17:00, a period when the Manager
service did not observe any churn. During this time pe-

12

Role # Servers Instances/ Total
Server Instances

Manager 5 1 5
Paxos group

Manager 3 1 3
leader/standby

Device 8 25 200
Connectivity

Frontend 24 84 2,016

Table 1: Centrifuge testbed configuration.

riod, this particular Owner experienced 0 failed calls to
CheckLeaseNow() and CheckLeaseContinuous() out of
over 53 million invocations. This is consistent with the
intuition that the stability observed at the Manager results
in calls to the Owner API always succeeding.

5.2 Testbed
In this subsection, we evaluate Centrifuge’s ability

to scale beyond the current production deployment. In
particular, we use more Lookups and Owners than are
present in the production setting, and we evaluate the
Manager load when these Lookups and Owners are
restarted more rapidly than in a production patch rollout.
Previewing our results, we find that the Manager easily
scales to this larger number of Owners and Lookups and
this more rapid rate of restarts.

Our testbed consists of 40 servers, each running a 2.26
GHz Core2 Duo processor with 4GB RAM and the Win-
dows Server 2008 SP2 operating system. Table 1 shows
our testbed configuration. The approximately 10:1 ra-
tio between Device Connectivity servers (Owners) and
Frontends (Lookups) was chosen based on the ratio de-
ployed in production. We made minor modifications to
the performance counter implementation on the Device
Connectivity Servers and Frontends in order to run this
many instances on each server.

To examine the ability of Centrifuge to support a more
rapid patch rollout rate across this larger number of Own-
ers and Lookups, we conducted two separate experi-
ments. In the first experiment, we restarted all the Own-
ers over the course of 32 minutes, and in the second ex-
periment, we restarted all the Lookups over the same in-
terval. Compared to the production patch rollout of Sec-
tion 5.1.2, this is restarting approximately twice as many
nodes (2,200) in half as much time (1 hour). In both ex-
periments, we measure CPU and network usage at the
leader in the Manager service. Figures 14 shows the re-
sults: even when the Owners were restarting, the leader
CPU averaged only light utilization, and network usage
only went up to 5 MB/sec. Based on this, we conclude
that the Centrifuge implementation supports the current
deployment by a comfortable margin.

0

2000

4000

6000

8000

K
B

/s
e

c

No restarts
Lookup restarts
Owner restarts

0

5

10

15

20

C
P

U
 %

No restarts
Lookup restarts
Owner restarts

Figure 14: The CPU and network load on the Manager
leader under rapid restarts for a large number of Owners
and Lookups.

6 Related Work

Centrifuge integrates lease management and partition-
ing into a system that makes it easier to build certain
datacenter services. Accordingly, we divide our discus-
sion of related work into lease managers, partitioning
systems, and other software infrastructure for building
datacenter services.

6.1 Lease Managers

The technique of using leases to provide consistency
dates back over two decades to Gray and Cheriton’s work
on the V file system [13]. In this section we survey the
three leasing systems most closely related to Centrifuge:
Frangipani’s lease manager [40] because of its approach
to scalability; Chubby [3] because of its use to support
datacenter applications; and Volume Leases [42, 41] be-
cause of how it grants leases on many objects at a time.

Frangipani implements a scalable lease management
service by running multiple lease managers, and hav-
ing each of these lease managers handle a different sub-
set of the total set of leases. Centrifuge scales using a
very different technique: exposing a novel API so that
lease recipients receive all or none of the leases within a
range. Centrifuge’s design allows a pool of in-memory
servers needing a large number of leases to be supported
by a single lease manager. However, the techniques in
Centrifuge and Frangipani are composable: one could
imagine applying Frangipani’s technique to further scale
Centrifuge by creating multiple Centrifuge managers and
having each of them handle a different subset of the lease
namespace.

Like Centrifuge, Chubby implements a lease manager
that funnels all clients through a single machine and re-
lies on a Paxos layer for high availability. Chubby is de-
signed to be used primarily for leader election in a dat-
acenter, and in practice it typically maintains around a
thousand locks to support tens of thousands of clients [3].
In contrast, Centrifuge directly provides both partition-
ing and leases on ranges from a partitioned namespace,
enabling Centrifuge to replace internal network load bal-
ancers.

13

Supporting Centrifuge’s functionality using Chubby
would require modifying Chubby to incorporate ele-
ments from Centrifuge, including the partitioning func-
tionality. Alternatively, one could imagine extracting the
partitioning functionality out of an existing system such
as BigTable [5], modifying it to support Centrifuge’s par-
titioning algorithm, and then deploying this additional
service alongside Chubby.

Volume Leases [42, 41] is a protocol for granting
leases on groups of objects, such as all the files and di-
rectories in a file system volume or all the web pages
served by a single server. Centrifuge differs from Vol-
ume Leases in at least two major ways. First, Centrifuge
can dynamically create new object groupings by send-
ing out new ranges, while none of the work on Vol-
ume Leases investigated dynamically creating volumes.
In Centrifuge, dynamically splitting and merging ranges
underlies the majority of the logic around partitioning
(the policy for modifying ranges) and leasing (the mech-
anism for conveying the modified ranges). Secondly, the
work on Volume Leases did not include high-availability
for the lease manager; Volume Leases are designed to be
the cache coherency protocol for a system that might or
might not incorporate high availability, not a stand alone
lease manager.

6.2 Partitioning Systems

The three most closely related pieces of prior re-
search in partitioning are the partitioning subsystem of
BigTable [5], network load balancers [9, 28], and other
software partitioning systems such as DHTs [32, 38, 31,
30] and the LARD system [29]. We already compared
Centrifuge to the partitioning subsystem of BigTable as
part of our comparison to Chubby.

The main contrast between Centrifuge and network
load balancers is that network load balancers do not in-
clude lease management. Attempting to add lease man-
agement (and the requisite high availability) would con-
stitute a major addition to these systems, possibly mir-
roring the work done to build Centrifuge.

Centrifuge implements partitioning using client li-
braries, an approach previously taken by many DHTs
and the LARD system. Compared to this prior work,
the contribution of Centrifuge is demonstrating that com-
bining such partitioning with lease management simpli-
fies the development of datacenter services running on
in-memory server pools. Though there has been a great
deal of work on DHTs, we are not aware of any DHT-
based system that explores this integration, most likely
because DHTs often focus on scaling to billions of peers
and providing leases on the DHT key space is viewed
as incompatible with this scalability goal. In contrast,
Centrifuge does incorporate a lease manager to provide a
better programming model for in-memory server pools,

and Centrifuge only aims to scale to hundreds of such
servers.

6.3 Other Infrastructure for Datacenter
Services

There is great interest within both industry and the re-
search community in providing better infrastructure for
datacenter services [2, 12, 15, 11]. Much of this inter-
est has been directed at datacenter storage: BigTable [5],
Dynamo [8], Sinfonia [1] and DDS [14] form a repre-
sentative sample. Centrifuge is designed to support in-
memory server pools. These server pools may want to
leverage such a datacenter storage system to support re-
loading data in the event of a crash, but they also ben-
efit from partitioning and leasing within the in-memory
server pool itself.

Distributed caching has been widely studied, often in
the context of remote file systems [7, 10, 19, 18, 24, 6],
and it is commonly used today in datacenter applications
(e.g., memcached [26]). Centrifuge differs from such
systems in that Centrifuge is not a cache; Centrifuge
is infrastructure that makes it easier to build other ser-
vices that run on pools of in-memory servers. Because
Centrifuge is a lower-level component than a distributed
cache, it can serve a wider class of applications. For ex-
ample, the Publish-subscribe Service described in Sec-
tion 4 devotes significant logic to state management (e.g.,
deciding what state to expire, what state to lock, evalu-
ating access control rules, etc.). This logic is service-
specific, and it is not something that the service de-
veloper would want to abdicate to a generic distributed
cache. In contrast, the Publish-subscribe Service can
leverage Centrifuge because it only provides the lower-
level services of leasing and partitioning.

7 Conclusion
Datacenter services are of enormous commercial im-

portance. Centrifuge provides a better programming
model for in-memory server pools, and other developers
have validated this by using Centrifuge to build multi-
ple component services within Microsoft’s Live Mesh, a
large-scale commercial cloud service. As datacenter ser-
vices continue to increase in complexity, such improve-
ments in programmability are increasingly vital.

Acknowledgements
We greatly appreciate the contributions to the Cen-

trifuge design from Bruce Copeland, Abolade Gbade-
gesin, Alex Mallet, Tom Kleinpeter, and Mike Zintel.
We particularly wish to thank Jeremy Dewey for his
work implementing leader election and state reliability in
Paxos, and Greg Prier for his work improving the quality
of Centrifuge.

14

Thanks to Dennis Crain for helping us with the MSR
shared computing cluster. Finally, we thank Marcos
Aguilera, Dahlia Malkhi, Dave Maltz, Rodrigo Ro-
drigues (our shepherd), Stefan Saroiu, Alex Snoeren, and
the anonymous reviewers for their insightful feedback on
earlier drafts of this paper.

References
[1] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alis-

tair Veitch, and Christos Karamanolis. Sinfonia: A New
Paradigm for Building Scalable Distributed Systems. In
SOSP ’07: Proceedings of the Twenty-first ACM Sympo-
sium on Operating Systems Principles, 2007.

[2] Amazon Web Services. http://aws.amazon.com.
[3] Mike Burrows. The Chubby lock service for loosely-

coupled distributed systems. In OSDI ’06: Proceedings
of the 7th Symposium on Operating Systems Design and
Implementation, 2006.

[4] Tushar D. Chandra, Robert Griesemer, and Joshua Red-
stone. Paxos Made Live: An Engineering Perspective. In
PODC ’07: Proceedings of the Twenty-sixth ACM Sym-
posium on Principles of Distributed Computing, 2007.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
Distributed Storage System for Structured Data. In OSDI
’06: Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, 2006.

[6] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area cooperative storage
with CFS. In SOSP ’01: Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, 2001.

[7] Michael Dahlin, Randolph Y. Wang, Thomas E. Ander-
son, and David A. Patterson. Cooperative Caching: Us-
ing Remote Client Memory to Improve File System Per-
formance. In OSDI ’94: Proceedings of the 1st USENIX
Conference on Operating Systems Design and Implemen-
tation, 1994.

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. In SOSP ’07: Proceedings of the
Twenty-first ACM Symposium on Operating Systems Prin-
ciples, 2007.

[9] F5. http://www.f5.com.
[10] Michael J. Feeley, William E. Morgan, Frederic H.

Pighin, Anna R. Karlin, Henry M. Levy, and Chandramo-
han A. Thekkath. Implementing Global Memory Man-
agement in a Workstation Cluster. In SOSP ’95: Pro-
ceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, 1995.

[11] Armando Fox, Steven D. Gribble, Yatin Chawathe,
Eric A. Brewer, and Paul Gauthier. Cluster-Based Scal-
able Network Services. In SOSP ’97: Proceedings of the
Sixteenth ACM Symposium on Operating Systems Princi-
ples, 1997.

[12] Google App Engine. http://appengine.google.com.

[13] Cary G. Gray and David R. Cheriton. Leases: An
Efficient Fault-Tolerant Mechanism for Distributed File
Cache Consistency. In SOSP ’89: Proceedings of the
Twelfth ACM Symposium on Operating Systems Princi-
ples, 1989.

[14] Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein,
and David Culler. Scalable, Distributed Data Structures
for Internet Service Construction. In OSDI ’00: Proceed-
ings of the 4th Symposium on Operating Systems Design
and Implementation, 2000.

[15] Steven D. Gribble, Matt Welsh, Rob von Behren,
Eric A. Brewer, David Culler, N. Borisov, S. Czerwin-
ski, R. Gummadi, J. Hill, A. Joseph, R. H. Katz, Z. M.
Mao, S. Ross, and B. Zhao. The Ninja Architecture for
Robust Internet-Scale Systems and Services. Computer
Networks, 35(4):473–497, 2001.

[16] Michael Isard. Autopilot: Automatic Data Center Man-
agement. SIGOPS Operating Systems Review, 41(2):60–
67, 2007.

[17] Anne-Marie Kermarrec, Antony Rowstron, Marc
Shapiro, and Peter Druschel. The IceCube approach
to the reconciliation of divergent replicas. In PODC
’01: Proceedings of the Twentieth ACM Symposium on
Principles of Distributed Computing, 2001.

[18] Benjamin C. Ling and Armando Fox. The Case for a Ses-
sion State Storage Layer. In HOTOS IX: Proceedings of
the 9th Workshop on Hot Topics in Operating Systems,
2003.

[19] Benjamin C. Ling, Emre Kiciman, and Armando Fox.
Session State: Beyond Soft State. In NSDI ’04: Pro-
ceedings of the First Symposium on Networked Systems
Design and Implementation, 2004.

[20] Barbara Liskov. Practical Uses of Synchronized Clocks in
Distributed Systems. Distributed Computing, 6(4):211–
219, 1993.

[21] Live Meeting. http://office.microsoft.com/livemeeting.
[22] Live Mesh. http://www.mesh.com.
[23] Live Messenger. http://messenger.live.com.
[24] Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pi-

rahesh, Honguk Woo, Bruce G. Lindsay, and Jeffrey F.
Naughton. Middle-tier Database Caching for e-Business.
In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, 2002.

[25] John MacCormick, Nick Murphy, Marc Najork, Chan-
dramohan A. Thekkath, and Lidong Zhou. Boxwood:
Abstractions as the Foundation for Storage Infrastruc-
ture. In OSDI’04: Proceedings of the 6th Symposium on
Opearting Systems Design and Implementation, 2004.

[26] Memcached. http://www.danga.com/memcached.
[27] Jeff Napper, Lorenzo Alvisi, and Harrick Vin. A Fault-

Tolerant Java Virtual Machine. In DSN 2003: Proceed-
ings of the International Conference on Dependable Sys-
tems and Networks, 2003.

[28] NetScaler. http://www.citrix.com/netscaler.
[29] Vivek S. Pai, Mohit Aron, Gaurov Banga, Michael

Svendsen, Peter Druschel, Willy Zwaenepoel, and Erich
Nahum. Locality-aware Request Distribution in Cluster-
based Network Servers. In ASPLOS-VIII: Proceedings
of the Eighth International Conference on Architectural

15

Support for Programming Languages and Operating Sys-
tems, 1998.

[30] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Schenker. A Scalable Content-
Addressable Network. In SIGCOMM ’01: Proceedings
of ACM SIGCOMM, 2001.

[31] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Ku-
biatowicz. Handling churn in a DHT. In USENIX ’04:
Proceedings of the USENIX Annual Technical Confer-
ence, 2004.

[32] Antony I. T. Rowstron and Peter Druschel. Pastry:
Scalable, Decentralized Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In Middleware ’01:
Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms, 2001.

[33] Yasushi Saito and Marc Shapiro. Optimistic Replication.
ACM Computing Surveys, 37(1):42–81, 2005.

[34] Scaling Digg. http://highscalability.com/scaling-digg-
and-other-web-applications.

[35] Scaling Facebook.
http://www.facebook.com/note.php?note id=39391378919.

[36] Scaling LinkedIn. http://hurvitz.org/blog/2008/06/linkedin-
architecture.

[37] Joseph G. Slember and Priya Narasimhan. Static Anal-
ysis Meets Distributed Fault-Tolerance: Enabling State-
Machine Replication with Nondeterminism. In HOTDEP
’06: Proceedings of the 2nd Workshop on Hot Topics in
System Dependability, 2006.

[38] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In
SIGCOMM ’01: Proceedings of ACM SIGCOMM, 2001.

[39] Douglas B. Terry, Marvin M. Theimer, Karin Petersen,
Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser.
Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. In SOSP ’95: Pro-
ceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, 1995.

[40] Chandramohan A. Thekkath, Timothy Mann, and Ed-
ward K. Lee. Frangipani: A Scalable Distributed File
System. In SOSP ’97: Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, 1997.

[41] Jian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin
Lin. Using Leases to Support Server-Driven Consistency
in Large-Scale Systems. In ICDCS ’98: Proceedings of
the 18th International Conference on Distributed Com-
puting Systems, 1998.

[42] Jian Yin, Lorenzo Alvisi, Michael Dahlin, and Calvin
Lin. Volume Leases for Consistency in Large-scale Sys-
tems. IEEE Transactions on Knowledge and Data Engi-
neering Special Issue on Web Technologies, 11(4):563–
576, 1999.

16

