Bunker: A Privacy-Oriented Platform for Network Tracing

Andrew Miklas, Stefan Saroiu, Alec Wolman, Angela D. Brown
University of Toronto and Microsoft Research
Network Tracing Raises Privacy Concerns

- Network tracing is an indispensable tool
 - Traffic engineering, fault diagnosis and recovery
 - Research studies

- Customers’ privacy is vital concern to ISPs
 - ISPs view possessing raw traces as a liability
Threat Model for Raw Traces

- ISPs view raw data traces as a liability:
 - Accidental disclosure
 - Operational and remote attacks
 - Subpoenas

- **Implications:**
 1. Nobody can have access to raw data
 2. Trace anonymization can help mitigate privacy concerns
Two Approaches for Anon.

1. Offline anonymization
 - Trace anonymized after raw data is collected
 - **Problem**: high privacy risks

2. Online anonymization
 - Trace anonymized simultaneously with collection
 - **Problem**: high engineering costs

Both approaches have serious shortcomings
Simple Tasks can be Very Slow

- Regular expression for phishing:

```
" ((password) | (<form) | (<input) | (PIN) | (username) | (<script) |
  (user id) | (sign in) | (log in) | (login) | (signin) | (log on) |
  (sign on) | (signon) | (passcode) | (logon) | (account) | (activate) | (verify) |
  (payment) | (personal) | (address) | (card) | (credit) | (error) | (terminated) |
  (suspend))]^[^A-Za-z]"
```

- libpcre: 5.5 s for 30 M = 44 Mbps max
Our Solution: **Bunker**

- Combines the best of both worlds
 - Avoids privacy issues of offline anon.
 - Avoids SW engineering challenges of online

- **Idea:**
 - We can use buffer-on-disk (like in offline anon.)
 - if we can **lock-down** the trace data + software; only information exposed is anonymized trace
Outline

- Motivation
- Design of Bunker
- Security attacks
- System evaluation
- Conclusions
Main Idea: Lock-down Raw Data in Bunker

- “Closed-box” protects sensitive data
- Contains all raw trace data & processing code
- Restricted access to closed-box (e.g., no console)
Main Idea: Lock-down Raw Data in Bunker

- “Closed-box” protects sensitive data
 - Contains all raw trace data & processing code
 - Restricted access to closed-box (e.g., no console)

- “Safe-on-reboot”: erases data from closed-box
 - ECC RAM is cleared by BIOS upon reboot
 - Encryption protects on disk data
 - Randomly generated key held in RAM inside closed-box
 - Data on disk cannot be decrypted after reboot
Generic Tracing System

- anonymize
- parse
- TCP assembly

Online

- capture

Offline
Bunker’s Logical Design

Capture Hardware

One-Way Interface (anon. trace)

Anonymize

Parse

TCP assembly

Decrypt

Offline

Encrypt

Online

Capture

Encrypted Raw Data

Anon. Key

Enc. Key
VM-based Implementation

Closed-box VM
- anonymize
- parse
- TCP assembly
- decrypt

Encrypted Raw Data
- encrypt
- capture

One-Way Socket

Anon. Key

Offline

Online

Hypervisor

Enc. Key

Capture Hardware
VM-based Implementation

Open-box VM
- save trace
- logging
- maintenance

One-Way Socket

Closed-box VM
- anonymize
- parse
- TCP assembly
- decrypt
- encrypt
- capture

Anon. Key

Enc. Key

Hypervisor

Open-box NIC
Encrypted Raw Data
Capture Hardware
How We Implemented Closed-box?

- Eliminate all I/O + drivers from kernel except the ones needed
 - custom-made menuconfig

- Use firewalls to restrict network communication
 - e.g., standard iptables configuration
How to Use Bunker?

- Upon bootup Bunker offers two configurations
 1. **Debugging**: all drivers enabled
 2. **Tracing**: most I/O + drivers disabled

- Upon choosing **tracing** configuration
 - Display and keyboard freeze (no drivers)
 - Kernel’s init runs a script to start trace
 - Operator can log in open-box VM via its NIC
Benefits

- **Strong privacy properties**
 - Raw trace and other sensitive data cannot be leaked

- **Trace processing done offline**
 - Can use your favorite language! (e.g., Python)
 - Parsing can be done with off-the-shelf components
Outline

- Motivation
- Design of Bunker
- Security attacks
- System evaluation
- Conclusions
Why is Bunker secure?

- Bunker has large TCB but narrow interfaces
 - Bunker remains secure as long as vulnerability cannot be exploited through the narrow interfaces

- Three classes of attacks:
 - Attacking the closed-box’s interfaces
 - Hardware attacks
 - Trace injection attacks
Three Classes of Attacks

1. Attacking the closed-box’s interfaces
2. Hardware attacks
3. Trace injection attacks
Three Classes of Attacks

1. Attacking the closed-box’s interfaces
2. Hardware attacks
3. Trace injection attacks
Three Classes of Attacks

1. Attacking the closed-box’s interfaces
2. Hardware attacks
3. Trace injection attacks
Attacking the Interfaces

Open-box VM

- save trace
- logging
- maintenance

One-Way Socket

Closed-box VM

- anonymize
- parse
- assemble
- decrypt

Anon. Key

Capture

Enc. Key

encrypt

capture

Encrypted Raw Data

Hypervisor

Open-box NIC

Encrypted Raw Data

Capture Hardware
Attacking the Interfaces

Open-box VM
- One-Way Socket
- save trace
- logging
- maintenance

Closed-box VM
- anonymize
- parse
- assemble
- decrypt
- capture

Hypervisor
- Open-box NIC
- Encrypted Raw Data
- Capture Hardware
Attacking the Interfaces

Open-box VM
- save trace
- logging
- maintenance

Closed-box VM
- anonymize
- parse
- assemble
- decrypt
- encrypt
- capture

Hypervisor

Encrypted Raw Data
- Open-box NIC
- Capture Hardware
Attacking the Interfaces

Open-box VM
- save trace
- logging
- maintenance

Closed-box VM
- anonymize
- parse
- assemble
- decrypt
- Online
- Offline

Hypervisor

Open-box NIC
Encrypted Raw Data
Capture Hardware
Attacking the Interfaces

Open-box VM
- save trace
- logging
- maintenance

One-Way Socket

Closed-box VM
- anonymize
- parse
- assemble
- decrypt
- encrypt
- capture

Anon. Key

Hypervisor

Open-box NIC
Encrypted Raw Data
Capture Hardware
Attacking the Interfaces

Open-box VM
- One-Way Socket
- save trace
- logging
- maintenance

Closed-box VM
- anonymize
- parse
- assemble
- decrypt
- encrypt
- capture

Hypervisor

Open-box NIC

Encrypted Raw Data

Capture Hardware
Three Classes of Attacks

1. Attacking the closed-box’s interfaces
2. Hardware attacks
3. Trace injection attacks
Attacker Tampers with Hardware

- Safe-on-reboot eliminates most H/W attacks
- Attack left: extracting keys from RAM while system is running
 - Cold-boot attacks
 - Attaching bus monitor
 - Specialized device to dump RAM without OS support

- Need hardware support
 - Secure co-processors could thwart such attacks
 - TPMs are not useful!
Outline

- Motivation
- Design of Bunker
- Security attacks
- System evaluation
- Conclusions
Software Engineering Benefits

Develop. time: 2 months (Bunker) vs. years (UW/Toronto)
Software Engineering Benefits

Develop. time: 2 months (Bunker) vs. years (UW/Toronto)
Software Engineering Benefits

Develop. time: 2 months (Bunker) vs. years (UW/Toronto)
Conclusions

- Today’s network tracing requires privacy properties
 - Operators + researchers look “deep” into the packets

- Offline anon. does not offer privacy properties
- Online anon. requires serious engineering

- Bunker provides
 - the privacy of online anonymization
 - the simplicity of offline anonymization
Questions?

Code available at:
http://www.cs.toronto.edu/~stefan/bunker