TightLip: Keeping Applications from Spilling the Beans

Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox
{aydan, bam11, Ipcox} @cs.duke.edu
Duke University, Durham, NC

Abstract

Access control misconfigurations are widespread and can re-
sult in damaging breaches of confidentiality. This paper
presents TightLip, a privacy management system that helps
users define what data is sensitive and who is trusted to see
it rather than forcing them to understand or predict how the
interactions of their software packages can leak data.

The key mechanism used by TightLip to detect and prevent
breaches is the doppelganger process. Doppelgangers are
sandboxed copy processes that inherit most, but not all, of the
state of an original process. The operating system runs a dop-
pelganger and its original in parallel and uses divergent process
outputs to detect potential privacy leaks.

Support for doppelgangers is compatible with legacy-code,
requires minor modifications to existing operating systems,
and imposes negligible overhead for common workloads.
SpecWeb99 results show that Apache running on a TightLip
prototype exhibits a 5% slowdown in request rate and response
time compared to an unmodified server environment.

1 Introduction

Email, the web, and peer-to-peer file sharing have cre-
ated countless opportunities for users to exchange data
with each other. However, managing the permissions
of the shared spaces that these applications create is
challenging, even for highly skilled system administra-
tors [15]. For untrained PC users, access control er-
rors are routine and can lead to damaging privacy leaks.
A 2003 usability study of the Kazaa peer-to-peer file-
sharing network found that many users share their en-
tire hard drive with the rest of the Internet, including
email inboxes and credit card information [12]. Over
12 hours, the study found 156 distinct users who were
sharing their email inboxes. Not only were these files
available for download, but other users could be ob-
served downloading them. Examples of similar leaks
abound [16, 17, 22, 31].

Secure communication channels [3, 9] and intrusion
detection systems [7, 11] would not have prevented
these exposures. Furthermore, the impact of these leaks
extends beyond the negligent users themselves since
leaked sensitive data is often previous communication
and transaction records involving others. No matter how
careful any individual is, her privacy will only be as se-
cure as her least competent confidant. Prior approaches
to similar problems are either incompatible with legacy
code [10, 14, 19, 26], rely on expensive binary rewriting

and emulation [5, 20], or require changes to the under-
lying architecture [8, 28, 29].

We are exploring new approaches to preventing leaks
due to access control misconfigurations through a pri-
vacy management system called TightLip. TightLip’s
goal is to allow organizations and users to better man-
age their shared spaces by helping them define what
data is important and who is trusted, rather than re-
quiring an understanding of the complex dynamics of
how data flows among software components. Realizing
this goal requires addressing three challenges: 1) cre-
ating file and host meta-data to identify sensitive files
and trusted hosts, 2) tracking the propagation of sen-
sitive data through a system and identifying potential
leaks, and 3) developing policies for dealing with po-
tential leaks. This paper focuses a new operating system
object we have developed to deal with the second chal-
lenge: doppelganger processes.

Doppelgangers are sandboxed copy processes that in-
herit most, but not all, of the state of an original pro-
cess. In TightLip, doppelgangers are spawned when a
process tries to read sensitive data. The kernel returns
sensitive data to the original and scrubbed data to the
doppelganger. The doppelganger and original then run
in parallel while the operating system monitors the se-
quence and arguments of their system calls. As long
as the outputs for both processes are the same, then the
original’s output does not depend on the sensitive input
with very high probability. However, if the operating
system detects divergent outputs, then the original’s out-
put is likely descended from the sensitive input.

A breach arises when such an output is destined for
an endpoint that falls outside of TightLip’s control, such
as a socket connected to an untrusted host. When po-
tential breaches are detected, TightLip invokes a policy
module, which can direct the operating system to fail
the output, ignore the alert, or even swap in the doppel-
ganger for the original. Using doppelgangers to infer
the sensitivity of processes’ outputs is attractive because
it requires only minor changes to existing operating sys-
tems and no modifications to the underlying architecture
or legacy applications.

We have added support for doppelgangers to the
Linux kernel and currently support their use of the file
system, UNIX domain sockets, pipes, network sock-

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

159

ets, and GUIs. Early experience with this prototype
has shown that doppelgangers are useful for an impor-
tant subset of applications: servers which read files,
encode the files’ content, and then write the result-
ing data to the network. Micro-benchmarks of sev-
eral common file transfer applications as well as the
SpecWeb99 benchmark demonstrate that doppelgangers
impose negligible performance overhead under moder-
ate server workloads. For example, SpecWeb99 results
show that Apache running on TightLip exhibits only a
5% slowdown in request rate and response time com-
pared to an unmodified server environment.

2 Overview

Access control misconfigurations are common and po-
tentially damaging: peer-to-peer users often inadver-
tently share emails and credit card information [12],
computer science department faculty have been found
to set the permissions of their email files to all-
readable [31], professors have inadvertently left stu-
dents’ grade information in their public web space [22],
a database of 20,000 Hong Kong police complainants’
personal information was accidentally published on the
web and ended up in Google’s cache [16], and UK em-
ployees unintentionally copied sensitive internal doc-
uments to remote Google servers via Google Desk-
top [17]. Because these breaches were not the result
of buggy or malicious software, they present a different
threat model than is normally assumed by the privacy
and security literature.

TightLip addresses this problem in three phases: 1)
help users identify sensitive files, 2) track the propaga-
tion of sensitivity through a running system and detect
when sensitive data may leave the system, and 3) enable
policies for handling potential breaches. The focus of
this paper is on the mechanisms used in phase two, but
the rest of this section provides an overview of all three.

2.1 Identifying Sensitive Files

To identify sensitive data, TightLip periodically scans
each file in a file system and applies a series of diag-
nostics, each corresponding to a different sensitive data
type. These diagnostics use heuristics about a file’s path,
name, and content to infer whether or not it is of a par-
ticular sensitive type. For example, the email diagnos-
tic checks for a “.pst” file extension, placement below a
“mail” directory, and the ASCII string “Message-ID” in
the file.

This scanning process is similar to anti-virus software
that uses a periodically updated library of definitions to
scan for infected files. The difference is that rather than
prompting users when they find a positive match, diag-
nostics silently mark the file as sensitive and invoke the
type’s associated scrubber.

Scrubbers use a file’s content to produce a non-
sensitive shadow version of the file. For example, the
email scrubber outputs a properly formatted shadow
email file of the same size as the input file, but marks
out each message’s sender, recipient, subject, and body
fields. Attachments are handled by recursively invok-
ing other format-preserving, MIME-specific scrubbers.
When the system cannot determine a data source’s type
it reverts to the default scrubber, which replaces each
character from the sensitive data source with the “x”
character.

2.2 Sensitivity Tracking and Breach Detection

Once files have been labeled, TightLip must track how
sensitive information propagates through executing pro-
cesses and prevent it from being copied to an untrusted
destination. This problem is an instance of information-
flow tracking, which has most commonly been used to
protect systems from malicious exploits such as buffer
overflows and format string attacks. Unfortunately,
these solutions either suffer from incompatibly with
legacy applications [10, 14, 19, 26, 32], require expen-
sive binary rewriting [5, 6, 8, 20, 28], or rely on hardware
support [29].

Instead, TightLip offers a new point in the design
space of information-flow secure systems based on dop-
pelganger processes. Doppelgangers are sandboxed
copy processes that inherit most, but not all, of the state
of an original process. Figure 1 shows a simple exam-
ple of how doppelgangers can be used to track sensi-
tive information. Initially, an original process runs with-
out touching sensitive data. At some point, the origi-
nal attempts to read a sensitive file, which prompts the
TightLip kernel to spawn a doppelganger. The kernel re-
turns the sensitive file’s content to the original and the
scrubbed content of the shadow file to the doppelganger.

Once the reads have been satisfied, the original and
doppelganger are both placed on the CPU ready queue
and, when scheduled, modify their private memory ob-
jects. The operating system subsequently tracks sensi-
tivity at the granularity of a system call. If the doppel-
ganger and original generate the same system call se-
quence with the same arguments, then these outputs do
not depend on either the sensitive or scrubbed input with
high probability and the operating system does nothing.
This might happen when an application such as a virus
scanner handles sensitive files, but does not act on their
content.

However, if the doppelganger and original make the
same system call with different arguments, then the orig-
inal’s output likely depends on sensitive data and the ob-
jects the call modifies are marked as sensitive. As long
as updated objects are within the operating system’s con-
trol, such as files and pipes, then they can be transitively

160

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

Original

Original

<

‘ A.
.
*e.
s

Doppelganger Original Doppelganger

@ /||O® /v @-A

s] =

si= | R

[

1. Original process reads a non-sensitive file.
copy doppelganger.

2. Original tries to read a sensitive file. Create

3. Return sensitive data to original, scrubbed
data to doppelganger.

Original

Doppelganger

Original

Doppelganger Doppelganger

%

N

S

. :-
0‘ ’f

=

4. Original, doppelganger run in parallel, taint

other objects. buffers to network.

5. Original, doppelganger try to write different

6. Swap doppelganger for original, allow

network write.

Figure 1: Using doppelgangers to avoid a breach.

labeled. However, if the system call modifies an object
that is outside the control of the system, such as a socket
connected to an untrusted host, then allowing the origi-
nal’s system call may compromise confidentiality.

By tracking information-flow at a relatively course
granularity, TightLip avoids many of the drawbacks of
previous approaches. First, because TightLip does not
depend on any language-level mechanisms, it is com-
patible with legacy applications. Second, comparing the
sequence and arguments of system calls does not require
hardware support and needs only minor changes to ex-
isting operating systems. Third, the performance penalty
of introducing doppelgangers is modest; the overhead of
scheduling an additional process is negligible for most
workloads.

Finally, an important limitation of existing
information-flow tracking solutions is that they
cannot gracefully transition a process from a tainted
(i.e., having accessed sensitive data) and to an untainted
state. A list of tainted memory locations or variables is
not enough to infer what a clean alternative would look
like. Bridging this semantic gap requires understanding
a process’s execution logic and data structure invariants.
Because of this, once a breach has been detected, prior
solutions require all tainted processes associated with
the breach to be rebooted. While rebooting purges

taint, it also wipes out untainted connections and data
structures.

Doppelgangers provide TightLip with an internally
consistent, clean alternative to the tainted process; as
long as shadow files are generated properly, doppel-
gangers will not contain any sensitive information. This
allows TightLip to swap doppelgangers in for their origi-
nal processes—preserving continuous execution without
compromising confidentiality.

2.3 Disclosure Policies

Once the operating system detects that sensitive data
is about to be copied onto a destination outside of
TightLip’s control, it invokes the disclosure policy mod-
ule. Module policies specify how the kernel should han-
dle attempts to copy sensitive data to untrusted destina-
tions. Our current prototype supports actions such as
disabling a process’s write permissions, terminating the
process, scrubbing output buffers, or swapping the dop-
pelganger in for the original.

TightLip provides default policies, but also notifies
users of potential breaches so that they can define their
own policies. Query answers can be delivered syn-
chronously or asynchronously (e.g. via pop-up windows
or emails). Answers can also be cached to minimize fu-
ture interactions with the user.

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

161

3 Limitations

Though TightLip is attractive for its low overhead, com-
patibility with legacy applications and hardware, and
support for continuous execution, it is not without its
limitations. First, in TightLip the operating system is
completely trusted. TightLip is helpless to stop the ker-
nel from maliciously or unintentionally compromising
confidentiality. For example, TightLip cannot prevent
an in-kernel NFS server from leaking sensitive data.

Second, TightLip relies on scrubbers to produce valid
data. An incorrectly formatted shadow file could crash
the doppelganger. In addition, swapping in a doppel-
ganger is only safe if scrubbers can remove all sensitive
information. While feasible for many data types, it may
not be possible to meet these requirements for all data
sources.

Third, scrubbed data can lead to false negatives in
some pathological cases. For example, an original pro-
cess may accept a network query asking whether a sen-
sitive variable is even or odd. TightLip could generate a
scrubbed value that is different from the sensitive vari-
able, but of the same parity. The output for the doppel-
ganger and original would be the same, despite the fact
that the original is leaking information. The problem is
that it is possible to generate “unlucky” scrubbed data
that can lead to a false negative. Such false negatives
are unlikely to arise in practice since the probability of
a collision decreases geometrically with the number of
bits required to encode a response.

Fourth, TightLip avoids the overhead of previous ap-
proaches by focusing on system calls, rather than indi-
vidual memory locations. Unfortunately, if a process
reads sensitive data from multiple sources, TightLip can-
not compute the exact provenance of a sensitive output.
While this loss of information makes more fine-grained
confidentiality policies impossible, it allows us to pro-
vide practical application performance.

Fifth, TightLip does not address the problem of covert
channels. An application can use a variety of covert
channels to transmit sensitive information [24, 29].
Since it is unlikely that systems can close all possible
covert channels [29], dealing with covert channels is be-
yond the scope of this paper.

Finally, TightLip relies on comparisons of process
outputs to track sensitivity and transitively label objects.
If the doppelganger generates a different system call
than its original, it has entered a different execution state
and may no longer provide information about the rela-
tionship between the sensitive input and the original’s
output. Such divergence might happen if scrubbed in-
put induced a different control flow in the doppelganger.
Without the doppelganger as a point of comparison, any
object subsequently modified by the original must be
marked sensitive; this can lead to incorrectly labeled ob-

jects and false positives.

This limitation of doppelgangers is similar to those
faced by taint-flow analysis of “implicit flow.” Con-
sider the following code fragment, in which variable x is
tainted: if(x) { y=1; } else { y=0; }. Vari-
able y should be flagged since its value depends on the
value of x. Tainting each variable written inside a condi-
tional block captures all dependencies, but can also im-
plicate innocent variables and raise false positives. In
practice, following dependencies across conditionals is
extremely difficult without carefully-placed programmer
annotations [32]. Every taint-checker for legacy code
that we are aware of ignores implicit flow to avoid false
positives.

Despite the challenges of conditionals, for an impor-
tant subset of applications, it is reasonable to assume
that scrubbed input will not affect control flow. Web
servers, peer-to-peer clients, distributed file systems, and
the sharing features of Google Desktop blindly copy data
into buffers without interpreting it. Early experience
with our prototype confirms such behavior and the rest
of this paper is focused on scenarios in which scrubbed
data does not affect control flow.

Much of the rest of our discussion of TightLip de-
scribes how to eliminate sources of divergence between
an original and doppelganger process so that differences
only emerge from the initial scrubbed input. If any other
input or interaction with the system causes a doppel-
ganger to enter an alternate execution state, TightLip
may generate additional false positives.

4 Design

There are two primary challenges in designing sup-
port for doppelganger processes. First, because doppel-
gangers may run for extended periods and compete with
other processes for CPU time and physical memory, they
must be as resource-efficient as possible. Second, since
TightLip relies on divergence to detect breaches, all dop-
pelganger inputs and outputs must be carefully regulated
to minimize false positives.

4.1 Reducing Doppelganger Overhead

Our first challenge was limiting the resources consumed
by doppelgangers. A doppelganger can be spawned at
any point in the original’s execution. One option is to
create the doppelganger concurrently with the original,
but doing so would incur the cost of monitoring in the
common case when taint is absent.

Instead, TightLip only creates a doppelganger when
a process attempts to read from a sensitive file. For the
vast majority of processes, reading sensitive files will oc-
cur rarely, if ever. However, some long-lived processes
that frequently handle sensitive data such as virus scan-
ners and file search tools may require a doppelganger

162

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

| Type | Example

|

Processing description]

Kernel update bind
Kernel read getuid
Non-kernel update send
Non-kernel read | gettimeofday

Apply original, return result to both.
Verify identical system call sequences.
Synchronize, compare buffers.
Buffer original results, return to both.

Table 1: Doppelganger-kernel interactions.

throughout their execution. For these applications, it is
important that doppelgangers be as resource-efficient as
possible.

Once created, doppelgangers are inserted into the
same CPU ready queue as other processes. This im-
poses a modest scheduling overhead and adds processor
load. However, unlike taint-checkers, the fact that dop-
pelgangers have a separate execution context enables a
degree of parallelization with other processes, including
the original. Though we assume a uni-processor envi-
ronment throughout this paper, TightLip should be able
to take advantage of emerging multi-core architectures.

To limit memory consumption, doppelgangers are
forked from the original with their memory marked
copy-on-write. In addition, nearly all of the doppel-
ganger’s kernel-maintained process state is shared read-
only with the original, including its file object table and
associated file descriptor namespace. The only sepa-
rate, writable objects maintained for the doppelganger
are its execution context, file offsets, and modified mem-

ory pages.
4.2 Doppelganger Inputs and Outputs

In TightLip the kernel must manage doppelganger in-
puts and outputs to perform three functions: prevent ex-
ternal effects, limit the sources of divergence to the ini-
tial scrubbed input, and contain sensitive data. To per-
form these functions, the kernel must regulate informa-
tion that passes between the doppelganger and kernel
through system calls, signals, and thread schedules.

Kernel-doppelganger interactions fall into one of the
following categories: kernel updates, kernel reads, non-
kernel updates, and non-kernel reads. Table 1 lists each
type, provides an example system call, and briefly de-
scribes how TightLip regulates the interaction.

4.2.1 Updates to Kernel State

As with speculative execution environments [4, 21],
TightLip must prevent doppelgangers from producing
any external effects so that it remains unintrusive. As
long as an application does not try to leak sensitive infor-
mation, it should behave no differently than in the case
when there is no doppelganger.

This is why original processes must share their ker-
nel state with the doppelganger read-only. If the doppel-
ganger were allowed to update the original’s objects, it

could alter its execution. Thus, system calls that modify
the shared kernel state must be strictly ordered so that
only the original process can apply updates.

System calls that update kernel state include, but are
not limited to, exit, fork, time, lseek, alarm, sigaction,
gettimeofday, settimeofday, select, poll, llseek, fentl,
bind, connect, listen, accept, shutdown, and setsockopt.

TightLip uses barriers and condition variables to im-
plement these system calls. A barrier is placed at the en-
try of each kernel modifying call. After both processes
have entered, TightLip checks their call arguments to
verify that they are the same. If the arguments match,
then the original process executes the update, while the
doppelganger waits. Once the original finishes, TightLip
notifies the doppelganger of the result before allowing it
to continue executing.

If the processes generate different updates and the
modified objects are under the kernel’s control, TightLip
applies the original’s update and records a transfer of
sensitivity. For example, the kernel transitively marks
as sensitive objects such as pipes, UNIX domain sock-
ets, and files. Subsequent reads of these objects by other
processes may spawn doppelgangers.

It is important to note that processes will never block
indefinitely. If one process times out waiting for the
other to reach the barrier, TightLip assumes that the pro-
cesses have diverged and discards the doppelganger. The
kernel will then have to either mark any subsequently
modified objects sensitive or invoke the policy module.

Signals are a special kernel-doppelganger interaction
since they involve two phases: signal handler registra-
tion, which modifies kernel data, and signal delivery,
which injects data into the process. Handler registra-
tion is managed using barriers and condition variables
as other kernel state updates are; only requests from the
original are actually registered. However, whenever sig-
nals are delivered, both processes must receive the same
signals in the same order at the same points in their exe-
cution. We discuss signal delivery in Section 4.2.2.

Of course, doppelgangers must also be prevented
from modifying non-kernel state such as writing to files
or network sockets. Because it may not be possible to
proceed with these writes without invoking a disclosure
policy and potentially involving the user, modifications
of non-kernel state are treated differently. We discuss
updates to non-kernel state in Section 4.2.3.

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

163

4.2.2 Doppelganger Inputs

To reduce the false positive rate TightLip must ensure
that sources of divergence are limited to the scrubbed
input. For example, both processes must receive the
same values for time-of-day requests, receive the same
network data, and experience the same signals. Ensur-
ing that reads from kernel state are the same is triv-
ial, given that updates are synchronized. However, pre-
venting non-kernel reads, signal delivery, and thread-
interleavings from generating divergence is more chal-
lenging.

Non-kernel reads

The values returned by non-kernel reads, such as from
a file, a network socket, and the processor’s clock, can
change over time. For example, consecutive calls to get-
timeofday or consecutive reads from a socket will each
return different data. TightLip must ensure that paired
accesses to non-kernel state return the same value to both
the original and doppelganger. This requirement is sim-
ilar to the Environment Instruction Assumption ensured
by hypervisor-based fault-tolerance [2].

To prevent the original from getting one input and
the doppelganger another, TightLip assigns a producer-
consumer buffer to each data source. For each buffer, the
original process is the producer and the doppelganger is
the consumer. System calls that use such queues include
read, readv, recv, recvfrom, and gettimeofday.

If the original (producer) makes a read request first, it
is satisfied by the external source and the result is copied
into the buffer. If the buffer is full, the original must
block until the doppelganger (consumer) performs a read
from the same non-kernel source and consumes the same
amount of data from the buffer. Similarly, if the doppel-
ganger attempts to read from a non-kernel source and the
buffer is empty, it must wait for the original to add data.

The mechanism is altered slightly if the read is from
another sensitive source. In this case, the kernel re-
turns scrubbed buffers to the doppelganger and updates
a list of sensitive inputs to the process. Otherwise, the
producer-consumer queue is handled exactly the same
as for a non-sensitive source. As before, neither process
will block indefinitely.

Signals

In Section 4.2.1, we explained that signals are a two-
phase interaction: a process registers a handler and the
kernel may later deliver a signal. We treat the first phase
as a kernel update. Since modifications to kernel state
are synchronized, any signal handler that the original
successfully registers is also registered for the doppel-
ganger.

The TightLip kernel delivers signals to a process as
it transitions into user mode. Any signals intended for

a process are added to its signal queue and then moved
from the queue to the process’s stack as it exits kernel
space. A process can exit kernel space either because
it has finished a system call or because it had been pre-
empted and is scheduled to start executing again.

To prevent divergence, any signals delivered to the
doppelganger and original must have the same content,
be delivered in the same order, and must be delivered to
the same point in their execution. If any of these condi-
tions are violated, the processes could stray. TightLip
ensures that signal content and order is identical by
copying any signal intended for the original to both the
original’s and doppelganger’s signal queue.

Before jumping back into user space, the kernel places
pending signals on the first process’s stack. Conceptu-
ally, when the process re-enters user space, it handles
the signals in order before returning from its system call.
The same is true when the second process (whether the
doppelganger or original) re-enters user space. For the
second process, a further check is needed to ensure that
only signals that were delivered to the first are delivered
to the second.

In previous sections, we have described how the orig-
inal and doppelganger must be synchronized when en-
tering system call code in the kernel so that TightLip
can detect divergence. Unfortunately, simply synchro-
nizing the entry to system calls between processes is in-
sufficient to ensure that signals are delivered to the same
execution state.

This is because some system calls can be interrupted
by a signal arriving while the kernel is blocked waiting
for an external event to complete the call. In such cases,
the kernel delivers the signal to the process and returns
an “interrupted” error code (e.g. EINTR in Linux). In-
terrupting the system call allows the kernel to deliver
signals without waiting (potentially forever) for the ex-
ternal event to occur.

Properly written user code that receives an interrupted
error code will retry the system call. If TightLip only
synchronizes on system call entry-points, retrying an in-
terrupted system call can lead to different system call
sequences. Consider the following example taken from
the execution of the SSH daemon, sshd, where Process
1 and 2 could be either the doppelganger or original:

e Process 1 (P1) calls write and waits for Process 2

(P2).

e P2 calls write, wakes up P1, completes write, re-
turns to user-mode, calls select, and waits for P1 to
call select.

e PI wakes up and begins to complete write.

e A signal arrives for the original process.

e The kernel puts the signal handler on P1’s stack and
sets the return value of P1’s write to EINTR.

164

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

Original Doppelganger

// context 1
£1() {
read(in, event);

// context 1

£1() {
read(in, event);
thread_lock (LOGLOCK) ;
// LOGLOCK acquired

DG's context 1 acquires
lock. Kernel receives
signal for original

Original handles signal,
schedules context 2.

c2=next_to_run(cl);

// signal handler
thread_yield() {
swapcontext(cl, c2);

i 4 £2() ¢
acquires lock before thread_lock(£0GLOCK)
context 1.

// LOGLOCK acquired

Original's context2 | l // context 2

Figure 2: Signaling that leads to divergence.

e P1 handles the signal, sees a return code of EINTR
for write, retries write, and waits for P2 to call
write.

In this example, divergence arose because P1’s and
P2’s calls to write generated different return values,
which led P1 to call write twice. To prevent this,
TightLip must ensure that paired system calls generate
the same return values. Thus, system call exit-points
must be synchronized as well as entry-points. In our
example, paired exit-points prevent P2’s write from re-
turning a different return value than P1’s: both P1 and
P2 are returned either EINTR or the number of written
bytes.

Parallel control flows as well as lock-step system call
entry and exit points make it likely that signals will be
delivered to the same point in processes’ execution, but
they are still not a guarantee. To see why, consider the
processes in Figure 2. In the example, a user-level thread
library uses an alarm signal to pre-empt an application’s
threads. When the signal is handled determines how
much progress the user-level thread makes. In this case,
it determines the order in which threads acquire a lock.
The problem is that the doppelganger and original have
been pre-empted at different instructions, which forces
them to handle the same signal in different states. Ide-
ally, the processor would provide a recovery register,
which can be decremented each time an instruction is
retired; the processor then generates an interrupt once it
becomes negative. Unfortunately, the x86 architecture
does not support such a register.

Even without a recovery register, TightLip can still
limit the likelihood of divergence by deferring signal de-
livery until the processes reach a synchronization point.
Most programs make system calls throughout their exe-
cution, providing many opportunities to handle signals.
However, for the rare program that does not make any
system calls, the kernel cannot wait indefinitely with-
out compromising program correctness. Thus, the ker-
nel can defer delivering signals on pre-emption re-entry
only a finite number of times. In our limited experience

with our prototype kernel, we have not seen process di-
vergence due to signal delivery.

Threads

Managing multi-threaded processes requires two addi-
tional mechanisms. First, the kernel must pair dop-
pelganger and original threads entering and exiting the
kernel. Second, the kernel must ensure that synchro-
nization resources are acquired in the same order for
both processes. Assuming parallel control flows, if con-
trol is transferred between threads along system calls
and thread primitives such as lock/unlock pairs, then
TightLip can guarantee that the original and doppel-
ganger threads will enter and exit the kernel at the same
points.

4.2.3 Updates to Non-kernel State

The last process interactions to be regulated are up-
dates to non-kernel state. As with other system calls,
these updates are synchronized between the processes
using barriers and condition variables. The difference
between these modifications and those to kernel state is
that TightLip does not automatically apply the original’s
update and return the result to both processes. TightLip’s
behavior depends on whether the original and the dop-
pelganger have generated the same updates.

Handling Potential Leaks

If both processes generate the same update, then
TightLip assumes that the update does not depend on the
sensitive input and that releasing it will not compromise
confidentiality. The kernel applies the update, returns
the result, and takes no further action.

If the updates differ and are to an object outside of the
kernel’s control, TightLip assumes that a breach is about
to occur and queries the disclosure policy module. Our
prototype currently supports several disclosure policies:
do nothing (allow the potentially sensitive data to pass),
disable writes to the network (the system call returns an
error), send the doppelganger output instead of the orig-
inal’s, terminate the process, and swap the doppelganger
for the original process.

Swapping

If the user chooses to swap in the doppelganger, the ker-
nel sets the original’s child processes’ parent to the dop-
pelganger, discards the original, and associates the orig-
inal’s process identifier with the doppelganger’s process
state. While the swap is in-progress, both processes must
be removed from the CPU ready queue. This allows re-
lated helper processes to make more progress than they
might have otherwise, which can affect the execution of
the swapped-in process in subtle but not incorrect ways.
We will describe an example of such behavior in Sec-
tion 6.1.

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

165

Swapped-in processes require an extra mechanism to
run the doppelganger efficiently and safely. For each
swapped-in process, TightLip maintains a fixed-size list
of open files inherited from the doppelganger. Anytime
the swapped-in process attempts to read from a sensi-
tive file, the kernel checks whether the file is on the list.
If it is, TightLip knows that the process had previously
received scrubbed data from the file and returns more
scrubbed data. If the file is not on the list and the file is
sensitive, TightLip spawns a new doppelganger.

These lists are an optimization to avoid spawning dop-
pelgangers unnecessarily. Particularly for large files that
require multiple reads, spawning a new doppelganger for
every sensitive read can lead to poor performance. Im-
portantly, leaving files off of the list can only hurt perfor-
mance and will never affect correctness or compromise
confidentiality. Because of this guarantee, TightLip can
remove any write restrictions on the swapped-in process
since its internal state is guaranteed to be untainted.

Unfortunately, swapping is not without risk. In some
cases, writing the doppelganger’s buffer to the network
and keeping the doppelganger around to monitor the
original may be the best option. For example, the user
may want the original to write sensitive data to a local
file even if it should not write it to the network. How-
ever, maintaining both processes incurs some overhead
and non-sensitive writes would still be identical for both
the original and the swapped-in process with very high
probability.

Furthermore, the doppelganger can stray from the
original in unpredictable ways. This is similar to the un-
certainty generated by failure-oblivious computing [23].
To reduce this risk, TightLip can monitor internal diver-
gence in addition to external divergence. External symp-
toms of straying are obvious—when the doppelganger
generates different sequences of system calls or uses dif-
ferent arguments. Less obvious may be if the scrubbed
data or some other input silently shifts the process’s con-
trol flow. Straying of this form may not generate exter-
nal symptoms, but can still leave the doppelganger in a
different execution state than the original.

We believe that this kind of divergence will be rare for
applications such as file servers, web servers, and peer-
to-peer clients; these processes will read a sensitive file,
encode its contents, and write the result to the network.
Afterward, the doppelganger and original will return to
the same state after the network write. In other cases,
divergence will likely manifest itself as a different se-
quence of system calls or a crash [18].

For additional safety, TightLip can take advantage of
common processor performance counters, such as those
offered by the Pentium4 [27] to detect internal diver-
gence. If the number of instructions, number of branches
taken and mix of loads and stores are sufficiently simi-

lar, then it is unlikely that the scrubbed input affected the
doppelganger’s control flow. TightLip can use these val-
ues to measure the likelihood that the doppelganger and
original are in the same execution state and relay this
information to the user.

4.3 Example: Secure Copy (scp)

To demonstrate the design of the TightLip kernel, it is
useful to step through an example of copying a sensitive
file from a TightLip-enabled remote host via the secure
copy utility, scp.

Secure copy requests are accepted by an SSH dae-
mon, sshd, running on the remote host. After authen-
ticating the requester, sshd forks a child process, shell,
which runs under the uid of the authenticated user and
will transfer encrypted file data directly to the requester
via a network socket, nsock. shell creates a child process
of its own, worker, which reads the requested data from
the file system and writes it to a UNIX domain socket,
dsock, connecting shell and worker.

As soon as worker attempts to read a sensitive file,
the kernel spawns a doppelganger, D(worker). Once
worker and D(worker) have returned from their respec-
tive reads, they both try to write to dsock. Since dsock
is under the kernel’s control, the actual file data from
worker is buffered and dsock is transitively marked sen-
sitive. shell, meanwhile, selects on dsock and is woken
up when there is data available for reading.

When shell attempts to read from dsock (which is
now sensitive), the kernel forks another doppelganger,
D(shell), and returns the actual buffer content (sensitive
file data) to shell and scrubbed data to D(shell). shell
and D(shell) both encrypt their data and attempt to write
the result to nsock. Since their output buffers are dif-
ferent, the breach is detected. By default, the kernel
writes D(shell)’s encrypted scrubbed data to nsock, sets
the parent process of worker and D(worker) to D(shell),
and swaps in D(shell) for shell.

4.4 Future Work

Though TightLip supports most interactions between
doppelgangers and the operating system, there is still
some work to be done. For example, we currently do not
support communication over shared memory. TightLip
could interpose on individual loads and stores to shared
memory by setting the page permissions to read-only.
Though this prevents sensitive data from passing freely,
it also generate a page fault on every access of the shared
pages.

In addition, TightLip currently lacks a mechanism to
prevent a misconfigured process from overwriting sen-
sitive data. Our design targets data confidentiality, but
does not address data integrity. However, it is easy to
imagine integrating integrity checks with our current de-

166

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

sign. For example, anytime a process attempts to write
to a sensitive file, TightLip could invoke the policy mod-
ule, as it currently does for network socket writes.

Finally, we believe that it will be possible to reduce
the memory consumed by a long-lived doppelganger by
periodically comparing its memory pages to the origi-
nal’s. This would make using the doppelganger solely to
generate untainted network traffic—as opposed to swap-
ping it in for the original—more attractive.

Though doppelgangers will copy-on-write memory
pages as they execute, many of those pages may still be
identical to the original’s. This would be true for pages
that only receive updates that are independent of the
scrubbed input. These pages could be remarked copy-
on-write and shared anew by the two processes.

Furthermore, even if a page initially contained bytes
that depended on the scrubbed input, over time those
bytes may be overwritten with non-sensitive values.
These pages could also be recovered. Carried to its log-
ical conclusion, if all memory pages of the original and
doppelganger converged, then the doppelganger could
be discarded altogether. We may be able to apply the
memory consolidation techniques used in the VMware
hypervisor [30] to this problem and intend to explore
these mechanisms and others in our future work.

S Implementation

Our TightLip prototype consists of several hundred lines
of C code scattered throughout the Linux 2.6.13 kernel.
We currently support signals, inter-process communica-
tion via pipes, UNIX domain sockets, and graphical user
interfaces. Most of the code deals with monitoring dop-
pelganger execution, but we also made minor modifica-
tions to the ext 3 file system to store persistent sensitiv-
ity labels.

5.1 File Systems

Sensitivity is currently represented as a single bit co-
located on-disk with file objects. If more complex clas-
sifications become necessary, using one bit could be ex-
tended to multiple bits. To query sensitivity, we added a
predicate to the kernel file object that returns the sensi-
tivity status of any file, socket, and pipe. TightLip cur-
rently only supports sensitivity in the ext 3 file system,
though this implementation is backwards-compatible
with existing ext 3 partitions. Adding sensitivity to fu-
ture file systems should be straightforward since manip-
ulating the sensitivity bit in on-disk ext3 inodes only
required an extra three lines of code.

Our prototype also provides a new privileged system
call to manage sensitivity from user-space. The system
call can be used to read, set, or clear the sensitivity of a
given file. This is used by TightLip diagnostics and by a
utility for setting sensitivity by hand.

5.2 Data Structures

Our prototype augments several existing Linux data
structures and adds one new one, called a completion
structure. Completion structures buffer the results of an
invoked kernel function. This allows TightLip to apply
an update or receive a value from a non-kernel source
once, but pass on the result to both the original and dop-
pelganger. Minimally, completion structures consist of
arguments to a function and its return value. They may
also contain instructions for the receiving process, such
as a divergence notification or instructions to terminate.

TightLip also required several modifications to the
Linux task structure. These additions allow the kernel
to map doppelgangers to and from originals, synchro-
nize their actions, and pass messages between them. The
task structure of the original process also stores a list of
buffers corresponding to kernel function calls such as
bind, accept, and read. Finally, all process structures
contain a list of at most 10 open sensitive files from
which scrubbed data should be returned. Once a sen-
sitive file is closed, it is removed from this list.

5.3 System Calls

System call entry and exit barriers are crucial for de-
tecting and preventing divergence. For example, cor-
rectly implementing the exit system call requires that
peers synchronize in the kernel to atomically remove
any mutual dependencies between them. We have in-
serted barriers in almost all implemented system calls.
In the future, we may be able to relax these constraints
and eliminate some unnecessary barriers.

We began implementing TightLip by modifying read
system calls for files and network sockets. Next, we
modified the write system call to compare the outputs of
the original and the doppelganger. The prototype allows
invocation of a custom policy module when TightLip
determines that a process is attempting to write sensi-
tive data. Supported policies include allowing the sen-
sitive data to be written, killing the process, closing the
file/socket, writing the output of the doppelganger, and
swapping the doppelganger for the original process.

After read and write calls, we added support for reads
and modifications of kernel state, including all of the
socket system calls. We have instrumented most, but not
all relevant system calls. Linux currently offers more
than 290 system calls, of which we have modified 28.

5.4 Process Swapping

TightLip implements process swapping in several
stages. First, it synchronizes the processes using a bar-
rier. Then the original process notifies the doppelganger
that swapping should take place. The doppelganger re-
ceives the message and exchanges its process identifier
with the original’s. To do this requires unregistering

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

167

both processes from the global process table and then
re-registering them under the exchanged identifiers. The
doppelganger must then purge any pointers to the origi-
nal process’s task structure.

Once the doppelganger has finished cleaning up, it
acknowledges the original’s notification. After receiv-
ing this acknowledgment, the original removes any of its
state that depends on the doppelganger and sets its par-
ent to the init process. This avoids a child death signal
from being delivered to its actual parent. The original
also re-parents all of its children to the swapped-in dop-
pelganger. Once these updates are in place, the original
safely exits.

5.5 Future Implementation Work

There are still several features of our design that remain
unimplemented. The major goal of the current prototype
has been to evaluate our design by running several key
applications such as a web server, NFS server, and sshd
server. We are currently working on support for multi-
threaded applications. Our focus on single-threaded
applications, pipes, UNIX domain sockets, files, and
network sockets has given us valuable experience with
many of the core mechanisms of TightLip and we look
forward to a complete environment in the very near fu-
ture.

6 Evaluation

In this section we describe an evaluation of our TightLip
prototype using a set of data transfer micro-benchmarks
and SpecWeb99. Our goal was to examine how TightLip
affects data transfer time, resource requirements, and ap-
plication saturation throughput.

We used several unmodified server applications:
Apache-1.3.34, NFS server 2.2beta47-20, and sshd-3.8.
Each of these applications is structured differently, lead-
ing to unique interactions with the kernel. Apache runs
as a collective of worker processes that are created on
demand and destroyed when idle for a given period. The
NEFS server is a single-threaded, event-driven process
that uses signals to handle concurrent requests.

sshd forks a shell process to represent the user re-
questing a connection. The shell process serves data
transfer requests by forking a worker process to fetch
files from the file system. The worker sends the data to
the shell process using a UNIX domain socket, and the
shell process encrypts the data and sends it over the net-
work to the client. All sshd forked processes belonging
to the same session are destroyed when the client closes
the connection.

All experiments ran on a Dell Precision 8300 work-
station with a single 3.0 GHz Pentium IV processor and
1GB RAM. We ran all client applications on an identi-
cal machine connected to the TightLip host via a closed

100Mbs LAN. All graphs report averages together with
a 95% confidence interval obtained from 10 runs of each
experiment. It should be noted that we did not detect
any divergence prior to the network write for any appli-
cations during our experiments.

6.1 Application Micro-benchmarks

In this set of experiments we examined TightLip’s im-
pact on several data transfer applications. We chose
these applications because they are typical of those
likely to inadvertently leak data, as exemplified by the
motivating Kazaa, web server, and distributed file sys-
tem misconfigurations [12, 16, 22, 31]. Our methodol-
ogy was simple; each experiment consisted of a single
client making 100 consecutive requests for 100 differ-
ent files, all of the same size. As soon as one request
finished, the client immediately made another.

For each trial, we examined four TightLip configura-
tions. To capture baseline performance, each server ini-
tially ran with no sensitive files. The server simply read
from the file system, encoded the files’ contents, and re-
turned the results over the network.

Next, we ran the servers with all files marked sensitive
and applied three more policies. The continuous policy
created a doppelganger for each process that read sensi-
tive data and ran the doppelganger alongside the original
until the original exited. Subsequent requests to the orig-
inal process were also processed by the doppelganger.

The swap policy followed the continuous policy, but
swapped in the doppelganger for the original after each
network write. If the swapped-in process accessed sen-
sitive data again, a new doppelganger was created and
swapped in after the next write.

The optimized swap policy remembered if a process
had been swapped in. This allowed TightLip to avoid
creating doppelgangers when the swapped process at-
tempted to further read from the same sensitive source;
the system could return scrubbed data without creating a
new doppelganger.

Figure 3, Figure 4, and Figure 5 show the relative
transfer times for the above applications when clients
fetched sensitive files of varying sizes.

Note that the cost of the additional context switches
TightLip requires to synchronize the original and dop-
pelganger may be high relative to the baseline transfer
time for smaller files. This phenomenon is most no-
ticeable for the NFS server in Figure 4, where fetching
files of size 1K and 4K was 30% and 25% more ex-
pensive, respectively, than fetching non-sensitive files.
As file size increases, data transfer began to dominate
the context switch overhead induced by TightLip; the
NEFS server running under all policies transferred 256KB
within 10% of the baseline time.

168

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

\DCominuous B Swap O Swap (optimized)\

]

1024K
File Size (bytes)

Relatve Transfer Time
o o o - =
B (o) © - N e

o
[N}

o

256K

Figure 3: Apache relative transfer time.

\DConlinuous W Swap OSwap (optimized)\

[

1024K
File Size (bytes)

1.4

1.24
14
0.8 4
0.6
0.4
0+ T
1K

Figure 4: NFS relative transfer time.

elatve Transfer Time

R
o
N

256K

Figure 3 shows that our Apache web server was the
least affected by the TightLip. The overhead under all
three policies was within 5% of the baseline, with con-
tinuous execution being slightly more expensive than the
other two. This result can be explained by the fact that
fetching static files from the web server was I/O bound
and required little CPU time. Continuous execution was
slightly more expensive, since the original and the dop-
pelganger both parsed every client request.

Figure 5 shows that the overhead of using doppel-
gangers for sshd was within 10% of the baseline for most
cases. This was initially surprising, since the original
and doppelganger performed encryption on the output
concurrently. However, the overhead of performing ex-
tra symmetric encryption was low and masked by the
more dominant cost of I/O.

The swap policy performed better than the continuous
execution policy for Apache and NFS. This result was
expected since process swapping reduces the overhead
of running a doppelganger. The benefit from process
swapping was application-dependent though, as the time
spent swapping the doppelganger for the original some-
times outweighed the overhead incurred by running the
doppelganger—while swapping took place, the process
was blocked and could not make any progress. Transfer-
ring 4K size files from sshd illustrated this point: sshd
was almost done transferring all of its data after the first
write to the network. Swapping the doppelganger for the

\DCominuous W Swap O Swap (optimized)\

1.4
1.2

0.8
0.6
0.4 q

elatve Transfer Time

R
=}
N

1K 4K 16K 64K 1024K

File Size (bytes)

256K

Figure 5: SSH relative transfer time.

| Server | Continuous | Swap | Optimized |

apache 852 76634 5389
sshd 76277 166055 38085
nfsd 58 233017 42395

Table 2: Average total number of additional pages cre-
ated during a run of the data transfer micro-benchmarks.
Each run transfers 600 files for a total of 133MB.

original only delayed completion of the request.

To our surprise, the swapping policy applied to sshd
actually reduced transfer times for 16K and 64K files.
The reason for this behavior was that during swapping,
the sshd shell process blocked and could not consume
data from the UNIX domain socket. However, the
worker process continued to feed data to the socket,
which increased the amount of data the shell process
found on its next read.

Since the shell process had a larger read buffer than
the worker process, swapping caused the shell process
to perform larger reads and, as a result, fewer network
writes relative to not swapping. Performing fewer sys-
tem calls improved the transfer time observed by the
client. The impact of swapping decreased as file size in-
creased since the fixed-size buffer of the UNIX domain
socket forced worker processes to block if the socket was
full.

The optimized swap policy had the best overall per-
formance among all three policies. Since all servers per-
form repeated reads from the same sensitive source, cre-
ating doppelgangers after every read was unnecessary.
Even though this policy often improved performance, it
did not apply in all cases. The policy assumed that sen-
sitive writes depended on all sensitive sources that a pro-
cess had opened. Thus, future reads from these sensitive
sources always produced scrubbed data.

Doppelgangers affected memory usage as well as re-
sponse time. Table 2 shows the average total number
of extra memory pages allocated while running the en-
tire benchmark. Each cell represents the additional num-
ber of pages created during the transfer of all 600 files
(133MB).

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

169

O no sensitive files Mall sensitive, continuous

500

400 -

300

200

Throughput (requests/s)

100 ~

30 50 70 90 110 130 150 170 190 210 230 250
Clients

Figure 6: SpecWeb99 throughput.

We observed that the server applications behave dif-
ferently under our policies. The best memory policy
for Apache and nfsd was continuous execution since for
both servers’ process executes until the end of the bench-
mark. For these two servers any other policy increased
the number of doppelgangers created and required more
page allocations. Since an sshd process only executes
for the duration of a single file transfer, continuous ex-
ecution was not as good as swap-optimized execution.
For all three servers, the swap policy produced the most
page allocations, since it created more doppelgangers.

Overall, our micro-benchmark results suggest that
TightLip has low impact on data transfer applications.
The overhead depends on the policy used to deal with
sensitive writes. In most cases the overhead was within
5%, and it never exceeded 30%. Even with doppel-
gangers running continuously, TightLip outperformed
prior taint-checking approaches by many orders of mag-
nitude. For example, Apache running under TaintCheck
and serving 10KB files is nearly 15 times slower than
an unmodified server. For 1KB files, it is 25 times
slower [20]. Thus, even in the worst case, using dop-
pelgangers provides a significant performance improve-
ment for data transfer applications.

6.2 Web Server Performance

Our final set of experiments used the SpecWeb99
benchmark on an Apache web server running on a
TightLip machine. We used two configurations for these
experiments—no sensitive files and continuous execu-
tion with all files marked sensitive. Since the bench-
mark verified the integrity of every file, we configured
TightLip to return the data supplied by the original in-
stead of the scrubbed data supplied by the doppelganger.
This modification was only for test purposes, so that we
could run the benchmark over our kernel. Even with
this modification it was impossible to use SpecWeb99
on Apache with process swapping, since we could not
completely eliminate the effect of data scrubbing; the
swapped-in doppelgangers still had some scrubbed data
in their buffers.

Ono sensitive files Mall sensitive, continuous

Response Time (ms)
b n W B o
o o o o o
o o o o o

| | | | |

o
I

30 50 70 90 110 130 150 170 190 210 230 250
Clients

Figure 7: SpecWeb99 response time.

We configured SpecWeb99 to request static content of
varying sizes. Figure 6 shows the server throughput as
a function of the number of clients, and Figure 7 shows
the response time. Our results show that the overhead
of handling sensitive files was within 5%. The above
graphs show that the saturation point for both configura-
tions was in the range of 110-130 clients. These results
further demonstrate that doppelgangers can provide pri-
vacy protection at negligible performance cost.

7 Related Work

Several recent system designs have observed the trouble
that users and organizations have managing their sensi-
tive data [3, 25, 29]. RIFLE [29] and InfoShield [25]
both propose new hardware support for information-
flow analysis and enforcement; SANE [3] enforces capa-
bilities in-network. All of these approaches are orthog-
onal to TightLip. An interesting direction for our future
work will be to design interfaces for exporting sensitiv-
ity between these layers and TightLip.

A simple way to prevent leaks of sensitive data is to
revoke the network write permissions of any process that
reads a sensitive file. The problem is that this policy can
needlessly punish processes that use the network legiti-
mately after reading sensitive data. For example, virus
scanners often read sensitive files and later contact a
server for new anti-virus definitions while Google Desk-
top and other file indexing tools may aggregate local and
remote search results.

A number of systems perform information-flow anal-
ysis to transitively label memory objects by restrict-
ing or modifying application source code. Static so-
lutions compute information-flow at compile time and
force programmers to use new programming languages
or annotation schemes [19, 26]. Dynamic solutions rely
on programming tools or new operating system abstrac-
tions [10, 14, 32]. Unlike TightLip, both approaches re-
quire modifying or completely rewriting applications.

It is also possible to track sensitivity without access to
source code by moving information flow functionality
into hardware [6, 8, 28, 29]. The main drawback of this

170

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

work is the lack of such support in commodity machines.
An alternative to hardware-level tracking is software em-
ulation through binary rewriting [5, 7, 20]. The main
drawback of this approach is poor performance. Because
these systems must interpose on each memory access,
applications can run orders of magnitude more slowly.
In comparison, TightLip’s use of doppelgangers runs
on today’s commodity hardware and introduces modest
overhead.

A recent taint checker built into the Xen hypervi-
sor [13] can avoid emulation overhead as long as there
are no tainted resident memory pages. The hypervisor
tracks taint at a hardware byte granularity and can dy-
namically switch a virtual machine to emulation mode
from virtualized mode once it requires tainted memory
to execute. This allows untainted systems to run at nor-
mal virtual machine speeds.

While promising, tracking taint at a hardware byte
granularity has its own drawbacks. In particular, it forces
guest kernels to run in emulation mode whenever they
handle tainted kernel memory. The system designers
have modified a Linux guest OS to prevent taint from in-
advertently infecting the kernel stack, but this does not
address taint spread through system calls. For example,
if email files were marked sensitive, the system would
remain in emulation mode as long as a user’s email re-
mained in the kernel’s buffer cache. This would im-
pose a significant global performance penalty, harming
tainted and untainted processes alike. Furthermore, the
tainted data could remain in the buffer cache long after
the tainted process that placed it there had exited.

TightLip’s need to limit the sources of divergence
after scrubbed data has been delivered to the doppel-
ganger is similar to the state synchronization problems
of primary/backup fault tolerance [1]. In the seminal
primary/backup paper, Alsberg describes a distributed
system in which multiple processes run in parallel and
must be kept consistent. The primary process answers
client requests, but any of the backup processes can
be swapped in if the primary fails or to balance load
across replicas. Later, Bressoud and Schneider ap-
plied this model to a hypervisor running multiple vir-
tual machines [2]. The main difference between dop-
pelgangers and primary/backup fault tolerance is that
TightLip deliberately induces a different state and then
tries to eliminate any future sources of divergence. In
primary/backup fault tolerance, the goal is to eliminate
all sources of divergence.

Doppelgangers also share some characteristics with
speculative execution [4, 21]. Both involve “best-effort”
processes that can be thrown away if they stray. The
key difference is that speculative processes run while the
original is blocked, while doppelgangers run in parallel
with the original.

8 Conclusions

Access control configuration is tedious and error-prone.
TightLip helps users define what data is sensitive and
who is trusted to see it rather than forcing them to un-
derstand or predict how the interactions of their software
packages can leak data. TightLip introduces new oper-
ating system objects called doppelganger processes to
track sensitivity through a system. Doppelgangers are
spawned from and run in parallel with an original pro-
cess that has handled sensitive data. Careful monitoring
of doppelganger inputs and outputs allows TightLip to
alert users of potential privacy breaches.

Evaluation of the TightLip prototype shows that the
overhead of doppelganger processes is modest. Data
transfer micro-benchmarks show an order of magnitude
better performance than similar taint-flow analysis tech-
niques. SpecWeb99 results show that Apache running
on TightLip exhibits a negligible 5% slowdown in re-
quest rate and response time compared to an unmodified
server environment.

Acknowledgements

We would like to thank the anonymous reviewers and
our shepherd, Alex Snoeren, for their valuable insight.
We would also like to thank Jason Flinn, Sam King,
Brian Noble, and Niraj Tolia for their early input on this
work.

References

[1] P. A. Alsberg and J. D. Day. A Principle for Resilient
Sharing of Distributed Resources. In Proceedings of the
Second International Conference on Software Engineer-
ing (ICSE), October 1976.

[2] T. C. Bressoud and F. B. Schneider. Hypervisor-Based
Fault-Tolerance. ACM Transactions on Computer Sys-
tems (TOCS), February 1996.

[3] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker. SANE: A Pro-
tection Architecture for Enterprise Networks. In Pro-
ceedings of the 15th USENIX Security Symposium, July
2006.

[4] F. Chang and G. A. Gibson. Automatic I/O Hint Gener-
ation Through Speculative Execution. In Proceedings of
the Third Symposium on Operating Systems Design and
Implementation (OSDI), Feburary 1999.

[5S] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace:
Efficient Flow Tracing with Dynamic Binary Rewriting.
In Proceedings of the 11th IEEE International Sympo-
sium on Computers and Communications (ISCC), June
2006.

[6] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime via Whole
System Simulation. In Proceedings of the 13th USENIX
Security Symposium, August 2004.

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

171

(7]

(8]

(9]

(10]

(11]

(12]

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-End Con-
tainment of Internet Worms. In Proceedings of the
20th ACM Symposium on Operating Systems Principles
(SOSP), October 2005.

J. R. Crandall and F. T. Chong. Minos: Control Data
Attack Prevention Orthogonal to Memory Model. In
Proceedings of the 37th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Micro), Decem-
ber 2004.

T. Dierks. The TLS protocol. Internet RFC 2246, January
1999.

P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Maziéres, F. Kaashoek, and
R. Morris. Labels and Event Processes in the Asbestos
Operating System. In Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles, October
2005.

J. T. Giffin, S. Jha, and B. P. Miller. Efficient Context-
sensitive Intrusion Detection. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS), February 2004.

N. S. Good and A. Krekelberg. Usability and Privacy:
a Study of Kazaa P2P File-sharing. In Proceedings of
the Conference On Human Factors in Computing Sys-

(22]

(23]

[24]

[25]

(26]

(27]

(28]

A. Press. Miami University Warns Students of Privacy
Breach. Akron Beacon Journal, September 16, 2005.

M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu,
and W. S. Beebee. Enhancing Server Availability and
Security Through Failure-Oblivious Computing. In Pro-
ceedings of the 6th Symposium on Operating Systems De-
sign and Implementation (OSDI), December 2004.

A. Sabelfeld and A. C. Myers. Language-based
Information-flow Security. Selected Areas in Communi-
cations, IEEE Journal on, 21(1), January 2003.

W. Shi, J. B. Fryman, G. Gu, H. H. S. Lee, Y. Zhang, and
J. Yang. InfoShield: A Security Architecture for Protect-
ing Information Usage in Memory. In Proceedings of
the 12th International Symposium on High-Performance
Computer Architecture (HPCA), February 2006.

V. Simonet. Flow Caml in a Nutshell. In Proceedings of
the First APPSEM-II Workshop, March 2003.

B. Sprunt. Pentium 4 Performance Monitoring Features.
IEEE Micro, July-August 2002.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Se-
cure Program Execution via Dynamic Information Flow
Tracking. In Proceedings of the 11th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), October 2004.

. [29] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
tems (HCI), April 2003. G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and

[13] A.Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. D. I. August. RIFLE: An Architectural Framework for
Practical Taint-based Protection using Demand Emula- User-Centric Information-Flow Security. In Proceedings
tion. In Proceedings of the First EuroSys Conference, of the 37th Annual IEEE/ACM International Symposium
April 2006. on Microarchitecture (Micro), December 2004.

[14] L. C. Lam and T. Chiueh. A General Dynamic Infor- [30] C. A. Waldspurger. Memory Resource Management in
mation Flow Tracking Framework for Security Applica- VMware ESX Server. In Proceedings of the 5th Sympo-
tions. In Proceedings of the 22nd Annual Computer Se- sium on Operating Systems Design and Implementation
curity Applications Conference, December 2006. (0SDI), December 2004.

[15] J. Leyden. ChoicePoint Fined $15m Over Data Security [31] A. Yumerefendi, B. Mickle, and L. P. Cox. TightLip:
Breach. The Register, January 27, 2006. Keeping Applications from Spilling the Beans. Technical

[16] J. Leyden. HK Police Complaints Data Leak Puts City Report CS-2006-7, Computer Science Department, Duke
on Edge. The Register, March 28, 2006. University, April 2006.

[17] A. McCue. CIO Jury: IT Bosses Ban Google Desktop [32] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. My-
Over Security Fears. silicon.com, March 2, 2006. ers. Untrusted Hosts and Confidentiality: Secure Pro-

[18] B. P. Miller, L. Fredriksen, and B. So. An Empirical gram Partitioning. In Proceedings of the 18th ACM Sym-
Study of the Rreliability of UNIX Utilities. Communi- posium on Operating Systems Principles (SOSP), Banff,
cations of the ACM, 33(12), 1990. Canada, October 2001.

[19] A. C. Myers. JFlow: Practical Mostly-static Informa-
tion Flow Control. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), 1999.

[20] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Genera-
tion of Exploits on Commodity Software. In Proceedings
of the Network and Distributed System Security Sympo-
sium (NDSS), February 2005.

[21] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative
Execution in a Distributed File System. In Proceedings
of the 20th ACM Symposium on Operating Systems Prin-
ciples (SOSP), October 2005.

172 NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association

