
S4: Small State and Small Stretch Routing Protocol for
Large Wireless Sensor Networks

Yun Mao+ Feng Wang∗ Lili Qiu∗ Simon S. Lam∗ Jonathan M. Smith+

The University of Texas at Austin∗ University of Pennsylvania+

Abstract

Routing protocols for wireless sensor networks must
address the challenges of reliable packet delivery at in-
creasingly large scale and highly constrained node re-
sources. Attempts to limit node state can result in unde-
sirable worst-case routing performance, as measured by
stretch, which is the ratio of the hop count of the selected
path to that of the optimal path.

We present a new routing protocol, Small State and
Small Stretch (S4),which jointly minimizes the state and
stretch. S4 uses a combination of beacon distance-vector
based global routing state and scoped distance-vector
based local routing state to achieve a worst-case stretch
of 3 using O(

√
N) routing state per node in an N-node

network. Its average routing stretch is close to 1. S4
further incorporates local failure recovery to achieve re-
silience to dynamic topology changes. We use multiple
simulation environments to assess performance claims at
scale, and use experiments in a 42-node wireless sen-
sor network testbed to evaluate performance under real-
istic RF and failure dynamics. The results show that S4
achieves scalability, efficiency, and resilience in a wide
range of scenarios.

1 Introduction
Routing finds paths in a network along which to send
data. It is one of the basic network functionalities. The
effectiveness of routing protocols directly affects net-
work scalability, efficiency, and reliability. With con-
tinuing growth of wireless network sizes, it is increas-
ingly important to develop routing protocols that simul-
taneously achieve the following design goals.

• Small routing state: Using small amounts of rout-
ing state is essential to achieving network scalabil-
ity. Many wireless devices are resource constrained.
For example, mica2 sensor motes have only 4KB
RAM. Limiting routing state is necessary for such
devices to form large networks. Moreover, limiting
routing state also helps to reduce control traffic used
in route setup and maintenance, since the amount of
routing state and control traffic is often correlated.

• Small routing stretch: Routing stretch is defined as
the ratio between the cost of selected route and the
cost of optimal route. Small routing stretch means
that the selected route is efficient compared to the
optimal route. It is a key quantitative measure of

route quality, and affects global resource consump-
tion, delay, and reliability.

• Resilience: Wireless networks often experience fre-
quent topology changes arising from battery outage,
node failures, and environmental changes. Rout-
ing protocols should find efficient routes even in the
presence of such changes.

Existing routing protocols either achieve small worst-
case routing stretches with large routing state (e.g., short-
est path routing) or achieve small routing state at the cost
of large worst-case routing stretches (e.g., geographic
routing and hierarchical routing). In this paper, we
present the design and implementation of Small State and
Small Stretch (S4), a new addition to the routing proto-
col design space. S4 achieves a desirable balance among
these characteristics, and is well suited to the wireless
sensor network setting.

We make the following contributions.

1. S4 is the first routing protocol that achieves a worst-
case routing stretch of 3 in large wireless networks.
Its average routing stretch is close to 1.

2. S4’s distance guided local failure recovery scheme
significantly enhances network resilience, and is
portable to other settings.

3. S4’s scalability, effectiveness of resource use, and
resilience are validated using multiple simula-
tion environments and a 42-node sensor network
testbed.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the limitations of previous work. We
present the S4 routing protocol in Section 3. We evalu-
ate its performance using high-level simulation in Sec-
tion 4, to study the performance under ideal wireless
environment with no wireless medium losses or colli-
sions. In Section 5, we present evaluation results using
TOSSIM, a packet-level simulator that models wireless
medium and collisions, to study the performance in more
realistic large-scale wireless networks. In Section 6 we
describe testbed evaluation. We conclude in Section 7.

2 Related Work
Routing is a well-studied problem, but wireless sen-
sor networks have introduced new challenges. Short-
est path routing protocols (e.g., DSR [10], AODV [22],
DSDV [21]) can find good routes, but are limited in scale
by both control traffic and the amount of state required at

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 101



each node. Consequently, routing in large-scale wire-
less networks has focused on minimizing storage and
exchange of routing state, and can be divided into ge-
ographic routing and hierarchical routing approaches.

In geographic routing, each node is assigned a coor-
dinate reflecting its position in the network. Upon re-
ceiving a packet, a node selects a next hop closer to the
destination in the coordinate space. Some geographic
routing protocols use geographic locations as node co-
ordinates, while others use virtual coordinates based on
network proximity. As connectivity in the coordinate
spaces is not complete, these schemes must address get-
ting “stuck” in a local minimum, where no neighbor is
closer to the destination than the current node. Some
proposals such as GFG [1], GPSR [11], GOAFR+ [14],
GPVFR [17] and variants use face traversal schemes that
route packets on a planar graph derived from the original
connectivity graph. Their delivery guarantees [5] depend
on the assumption that the planarization algorithms (e.g.
GG [6] and RNG [27]) can successfully planarize any
network graph. These planarization algorithms typically
assume a unit disk or quasi-unit disk model. However,
these models can be inadequate for real wireless environ-
ments due to obstacles and multi-path fading. Kim, et.
al [13] have shown that model failures in real radio en-
vironments can cause routing pathologies and persistent
routing failures. CLDP [12] addresses the imperfect RF
propagation problem using a right-hand probing rule to
detect link-crossings and remove them to re-planarize the
graph. GDSTR [16] provides delivery guarantee with-
out requiring planarization by avoiding routing across the
face of planar graphs and instead routing packets through
a spanning tree.

The geographic coordinate-based routing schemes
have at least three difficulties for wireless sensor net-
works. First, accurate geolocation either requires care-
ful static setting or access to GPS, with consequences for
cost and need for line-of-sight to satellites. Second, geo-
graphic distances may lack predictive value for network
performance (e.g., loss rate). This may result in paths
with poor performance. Third, even with GPS and ideal
radios, the best routing stretch for geographic routing is
O(c2) in GOAFR+ [14] and ARF [15], where c is the
length of the optimal path, and example topologies exist
where this bound is tight [15].

Virtual coordinates reflecting underlying network con-
nectivity address the first two difficulties, but still face
the challenge of “dead ends”, for which a recovery
scheme is required. In addition, the overhead of com-
puting and storing virtual coordinates is not negligible.
For example, NoGeo [24] uses O(

√
N) perimeter nodes

to flood the N -node network so that every node can learn
its distances to all the perimeter nodes. Each node deter-
mines its virtual coordinate based on the distances to the

perimeter nodes. However, perimeter nodes need to store
O(N) pair-wise distance amongst them, which is not
scalable in large wireless networks with limited mem-
ory space per node. GEM [20] achieves greater scala-
bility by using triangulation from a root node and two
other reference nodes. However, the routing stretch is
larger than that typical of geographic routing algorithms,
and there is the additional cost of recomputing routing
labels resulting from network failures. Fonseca, et al. [4]
have proposed Beacon Vector Routing (BVR) which se-
lects a few beacon nodes, and uses flooding to construct
spanning trees from the beacons to all other nodes. A
node’s coordinate is a vector of distances from the node
to all beacons, and each node maintains the coordinates
of its neighbors. BVR defines a distance metric over
these beacon vectors, and a node routes packets to the
one that minimizes the distance. When greedy routing
stalls, it forwards the packet towards the beacon closest
to the destination. If the beacon still fails to make greedy
progress, scoped flooding is used. None of the virtual
coordinate-based routing algorithms provide worst-case
routing stretch guarantees.

Hierarchical routing is an alternative approach to
achieving scalability. Example protocols in this category
include landmark routing [28], LANMAR [7], ZRP [8]
and Safari [23]. Hierarchical routing protocols provide
no guarantee on the routing stretch due to boundary ef-
fects: two nodes that are physically close may belong to
different clusters or zones, and hence the route between
them has to go through cluster heads, which can be arbi-
trarily longer than their shortest path.

Caesar et al. develop VRR [2], a scheme for layer-3
any-to-any routing based on distributed hash tables. To
route to its successors on the virtual ring, a node sets
up and maintains forwarding entries to its successors and
predecessors along multi-hop physical paths. As a result,
a node has both routing table entries towards its neigh-
bors in the ring and also entries for the nodes on the
paths in between. VRR greedily forwards a packet to-
ward the node in the routing table with the closest ID to
the destination ID. The routing state per node is roughly
O(

√
N). Unlike S4, VRR does not provide worst-case

routing stretch guarantee.
Theoretical work [3, 26] on achieving scalable and ef-

ficient routing has developed compact routing algorithms
that provide a worst-case routing stretch of 3 while using
at most O(

√
N log N) state in an N -node network. This

worst-case routing stretch is provably optimal when each
node uses less than linear routing state [3, 26]. While
compact routing seems to be a promising direction for
large-scale networks, it cannot be directly translated into
a routing protocol in a distributed network. In particular,
the proposed algorithms do not specify how each node
should build and maintain routing state for local clusters

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association102



and for beacon nodes. Moreover, the algorithm in [26]
requires choosing beacon nodes offline, considers only
initial route construction, and cannot cope with topology
changes, which precludes realization in our network set-
ting. The implications of compact routing for average
routing stretch also remain unclear.

3 S4 Routing Protocol
S4 uses the theoretical ideas of the compact routing al-
gorithm [26] as a basis, refined by the addition of new
techniques needed to obtain a practical routing protocol
for large-scale wireless networks. We first describe the
basic routing algorithm and note challenges for routing
protocol design, and then present the S4 routing proto-
col. Throughout this paper, our metric for the cost of a
route is the number of links traversed (i.e., hop count).

3.1 Basic Routing Algorithm
In S4, a random set of nodes, L, are chosen as beacons.
For a node d, let L(d) denote the beacon closest to node
d, and let δ(s, d) denote the shortest path distance from s
to d. Each node s constructs the following local cluster,
denoted as Ck(s).

Ck(s) = {c ∈ V |δ(c, s) ≤ k ∗ δ(c, L(c))}, k ≥ 1.

where V is the set of all nodes in the network. A local
cluster of node s consists of all nodes whose distances to
s are within k times their distances to their closest bea-
cons. Each node s then maintains a routing table for all
beacon nodes and nodes in its own cluster Ck(s).

Figure 1: S4 routing examples. Every node within the
circle of d has d in its local cluster. The route s′ → d is
the shortest path; the route s → d takes a shortcut at c
before reaching L(d); the route s → d′ is through L(d′)
without shortcut.

As shown in Figure 1, when routing from node s to
node d, if d ∈ Ck(s), we can directly use the short-
est path to route from s to d. Otherwise, s first takes
the shortest path towards L(d), and then use the short-
est path to route towards d. In the second case, the route
does not have to always reach L(d) before routing to d.
Whenever data reaches a node c whose cluster contains

d, c can directly route to d using the shortest path from c
to d. According to the triangle inequality, the “shortcut”
strictly improves routing stretch. We give the following
theorem as an extension to the proof in [3, 26], in which
a special case k = 1 is proved. Refer to our technical
report [19] for the proof.

Theorem 1 Let Ck(s) = {c ∈ V |δ(c, s) < k ∗
δ(c, L(c))}, where k ≥ 1. If each node s maintains next-
hop for the shortest path to every beacon and every node
in Ck(s), the worst-case routing stretch is 1 + 2

k
.

As a special case, when k = 1, a local cluster of node
s consists of all nodes whose distances to s are closer
than their distances to their closest beacons. This special
case is called compact routing [3, 26]. It is particularly
interesting, since it has low worst-case storage cost of
O(

√
N log N) and provides a worst-case routing stretch

of 3. In the remaining paper we consider k = 1, since it
gives small routing state.

Practical concerns dictate three changes to the TZ
compact routing scheme [26] to achieve S4. First, the
boundary conditions of the cluster definitions are slightly
different. In S4, C(s) = {c ∈ V |δ(c, s) ≤ δ(c, L(c))},
but in the TZ scheme, C(s) = {c ∈ V |δ(c, s) <
δ(c, L(c))}. That is, node c is in the cluster of s in S4
but not in the TZ scheme, if δ(c, s) = δ(c, L(c)). This
change does not affect the worst-case routing stretch, and
reduces average-case routing stretch at the cost of in-
creasing routing state.

Second, to route towards node d, only L(d) should
be carried in the packet header as the location informa-
tion in S4. In comparison, the TZ scheme requires a
label(d) = (L(d), port(L(d), d)) for each packet, where
port(L(d), d) is the next hop at L(d) towards d. Only
with the label carried in the packet header, a beacon
node can forward a packet towards d using next hop
port(L(d), d). It is necessary in the TZ scheme because
the beacon nodes do not store routing state. However, in
S4, as a result of the boundary condition change, each
beacon node L stores routing state to all the nodes that
have L as its closest beacon node. Given that the to-
tal storage cost of the additional field port(L(d), d) in
the labels is the same as the total number of routing en-
tries at beacon nodes in S4 (i.e., both are N), we favor
storing routing state at beacon nodes since it reduces
packet header length and the frequency of updating la-
bels. The frequency of label updates is reduced because
labels are updated only when L(d) changes but not when
port(L(d), d) changes.

Finally, the TZ scheme proposes a centralized bea-
con node selection algorithm to meet expected worst
case storage bound O(

√
NlogN) in an N -node network.

Since practicality is our main design goal, in S4 we ran-
domly select beacon nodes in a distributed fashion. It is

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 103



proved that when O(
√

N) nodes are randomly selected
as beacon nodes, the average storage cost on each node
is still O(

√
N) [25]. As our evaluation results show, the

storage cost is still low even for the worst cases. Note
that the worst-case routing stretch of 3 still holds under
random beacon node selection.

3.2 Design Challenges
Designing a routing protocol to realize the algorithm pro-
posed in Section 3.1 poses the following challenges:

First, how to construct and maintain routing state for
a local cluster? Frequent topology changes in wireless
networks make it necessary to support incremental rout-
ing updates. Unlike traditional hierarchical routing, each
node has its own cluster in compact routing. Therefore
naive routing maintenance could incur significant over-
head.

Second, how to construct and maintain routing state
for beacon nodes? Knowledge of next-hops and shortest
path distances to beacon nodes is important to the perfor-
mance of S4. When beacon packets are lost, the routing
state could be inaccurate, which could substantially de-
grade the performance.

Third, how to provide resilience against node/link fail-
ures and environmental changes? Maintaining up-to-date
routing state could be expensive especially in a large net-
work. Moreover routing changes take time to propagate.
During the transient period (e.g., the period from the time
when failure occurs to the time when the routing tables
at all nodes are updated to account for the failure), many
packets could be lost without a failure recovery scheme.

To address the above challenges, S4 consists of the fol-
lowing three major components: (i) scoped distance vec-
tor for building and maintaining routing state to nodes
within a cluster, (ii) resilient beacon distance vector for
efficient routing towards beacon nodes and facilitating
inter-cluster routing, and (iii) distance guided local fail-
ure recovery for providing high quality routes even un-
der dynamic topology changes. Below we will describe
these three components in turn.

3.3 Intra-Cluster Routing: Scoped Dis-
tance Vector (SDV)

In S4, node s uses the shortest paths to route towards
nodes in the cluster of s. Unlike the traditional hierarchi-
cal routing, in S4 each node s has its own cluster, which
consists of nodes close to node s. This clustering is es-
sential for providing a routing stretch guarantee, since
it avoids boundary effects. In comparison, hierarchical
routing cannot provide routing stretch guarantee due to
boundary effects, where two nearby nodes belong to dif-
ferent clusters and the hierarchical route between them
could be much longer than their direct shortest path.

A natural approach to building a local routing table

is to use scoped flooding. That is, each node d floods
the network up to δ(d, L(d)) hops away from d, where
δ(d, L(d)) is the distance between d and its closest bea-
con L(d). Scoped flooding works fine when the network
is initialized, or when there are new nodes joining the
network. But it is costly to send frequent scoped flood-
ings to reflect constant topology changes, which often
arises in wireless networks due to battery outage, node
failures, and environmental changes.

Scoped distance vector: To provide cheap incremental
routing updates, we propose using scoped distance vec-
tor (SDV) for constructing routing tables for local clus-
ters. SDV is attractive because it is fully distributed,
asynchronous, and supports incremental routing updates.
SDV is more efficient than scoped flooding especially
under small changes in a network topology, because a
node in SDV propagates routing update only when its
distance vector changes while in scoped flooding a node
propagates a flooded packet regardless of whether its dis-
tance and next hop to a destination have changed.

In S4, each node s stores a distance vector for each
destination d in its cluster as the following tuple:

< d, nexthop(s, d), δ(s, d), seqno(d), scope(d), updated >

where d and nexthop(s, d) are both node IDs, seqno
is the latest sequence number for destination d, and
scope(d) is the distance between d and d’s closest bea-
con, and updated is whether the distance vector has been
updated since the last routing update.

A node s exchanges its distance vectors with its neigh-
bors either synchronously or asynchronously. Node s
initializes δ(s, c) = 1 for only c ∈ neighbor(s), and
∞ otherwise. Upon receiving a distance vector, a node
c uses the newly received distance vectors to update its
routing state. Node c further propagates the update for s
only when its current distance from s is below scope(s)
and its distance vector to s has changed.

Benefits of SDV: SDV supports incremental routing up-
dates. This allows a wireless network to dynamically
adapt to routing changes. Moreover, unlike traditional
distance vector protocols, SDV does not suffer from the
count-to-infinity problem,1 because the scope is typically
small (e.g., We evaluate a 1000-node network with 32
beacons, and its average scope is 3.35 and maximum
scope is 13. This implies routing loops can be detected
within 13 hops).

3.4 Inter-Cluster Routing: Resilient Bea-
con Distance Vector (RBDV)

To support routing across clusters, each node is required
to know its distances to all beacons. This can be achieved

1The count-to-infinity problem is that when a link fails, it may take a long
time (on the order of network diameter) before the protocol detects the failure.
During the interim routing loops may exist.

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association104



by constructing a spanning tree rooted from each bea-
con nodes to every other node in the network. Flooding
beacon packets reliably is important to the routing per-
formance, because loss of beacon packets may introduce
errors in estimating the closest beacon and its distance,
and degrade the performance of S4. We develop a sim-
ple approach to enhance resilience of beacon packets.

Routing state construction and maintenance: To con-
struct routing state for beacon nodes, every beacon pe-
riodically broadcasts beacon packets, which are flooded
throughout the network. Every node then keeps track of
the shortest hop count and next-hop towards each bea-
con.

Since beacon packets are broadcast and typical MAC
protocols (e.g., CC1000 used in sensor motes) do not
provide reliability for broadcast packets, it is essential
to enhance the resilience of beacon packets at the net-
work layer. Our idea is to have a sender retransmit the
broadcast packet P until T neighbors have forwarded P
or until the maximum retry count Retrymax is reached.
T and Retrymax provide a tradeoff between overhead
and reliability. In our evaluation, we use Retrymax = 3,
T = 100% for beacon nodes, and T = 1/3 for non-
beacon nodes. T = 100% for a beacon node is used be-
cause all neighbors of the beacon nodes should forward
the beacon packet. In comparison, for a non-beacon node
c, only a subset of c’s neighbors are farther away from
the beacon than c and need to forward the beacon packet
received from c. Therefore we use a smaller T for non-
beacon nodes.

3.5 Distance Guided Local Failure Recov-
ery (DLF)

Wireless networks are subject to bursty packet losses and
frequent topology changes. To provide high routing suc-
cess rate and low routing stretch even in the presence of
frequent topology changes and node/link failures, we de-
velop a simple and effective local failure recovery based
on distance vectors.

Overview: A node s retransmits a packet when it does
not receive an ACK within a retransmission timeout.
When R retransmissions fail, s broadcasts a failure re-
covery request, which contains (i) the next hop s used,
(ii) whether destination d is included in s’s local cluster,
and (iii) the distance to d if s’s cluster includes d, or the
distance to d’s beacon otherwise. Upon hearing the fail-
ure requests, s’s neighbors attempt to recover the packet
locally. Our goal is to select the neighbor that is the clos-
est to the destination as s’s new next-hop; meanwhile the
selection process should be cheap and easily distributed.

S4 uses distance guided local failure recovery to prior-
itize neighbors’ responses based on their scoped distance
vectors. Each node uses its priority to determine the time
it needs to wait before sending failure recovery response.

We further exploit broadcast nature of wireless medium
to avoid implosion of recovery responses.

Distance guided local failure recovery: Our goal is to
prioritize neighbors based on their distances to the des-
tination so that the nodes closest to the destination can
take over the forwarding. The problem is non-trivial, be-
cause the distance to the destination is not always avail-
able. When the destination is outside the local cluster,
a neighbor only knows the distance to the destination’s
closest beacon, but not the distance from that beacon to
the destination.

To address the issues, each node computes its priority
using the algorithm in Figure 2. It involves two main sce-
narios. In the first scenario, s’s local cluster contains the
destination d. This information is available in s’s failure
recovery request. Then s’s neighbor is assigned one of
the four priorities using the following rules. The neigh-
bors that have d in their clusters are assigned the top 3
priorities, since they can directly route towards destina-
tion using the shortest path. In this case, each neighbor
knows its distance to the destination, and assigns itself a
priority based on the difference between δ(self, d) and
δ(s, d). Neighbors whose local clusters do not contain
the destination are assigned the fourth priority, which is
the lowest.

In the second case, when s’s cluster does not contain
the destination d, only the neighbors that have d in their
clusters are assigned the highest priority, since they can
directly route towards the destination. The other nodes
are assigned priorities by comparing their distances to
the beacon with δ(s, L(d)).

A sender s selects the neighbor from which it receives
the response first as the new next-hop. By assigning
each neighbor i with a timer priority(i) × m + rand ,
a higher priority node sends the response earlier and is
thus favored as the new next-hop node. To avoid colli-
sions, we add a small random timer rand to the priority-
based timer so that different nodes are likely to respond
at different times even when assigned the same priority.
To avoid response implosion, upon hearing a failure re-
sponse to s from someone else, the current node cancels
its own pending recovery response if any. Our evaluation
uses m = 50ms, and rand ranges from 0 to 49ms.

Node failures vs. link failures: The above scheme
works well for link failures. When a node fails, all the
links to and from the failed nodes are down. Therefore
we need to avoid using nodes that use the failed nodes as
next hop. This can be done by letting the sender spec-
ify the failed node. Only the nodes that use different
next hop from the failed node will attempt to recover.
In practice, it is difficult to distinguish between a link
failure and a node failure. Always assuming a node fail-
ure may unnecessarily prune out good next-hops. So we
first optimistically assume that the next hop does not fail,

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 105



// Priorities from highest to lowest: 1, 2, 3, 4
if(d ∈ C(s))

if(d ∈ C(self)) // d is in s’s and self ’s clusters
priority = δ(self, d) − δ(s, d) + 2;

else // d is only in s’s cluster
priority = 4;

end
else if(d ∈ C(self)) // d is only in self ’s cluster

priority = 1;
else // self is outside s’s and d’s clusters

priority = δ(self, L(d)) − δ(s, L(d)) + 3;
end

Figure 2: Computing priority using scoped distance vec-
tors and beacon distance vectors

only the link is down. Therefore we allow nodes with the
same next hop to recover the packet. When the number
of failed attempts pass a threshold, we prevent the nodes
from using the same next hop to recover the packet.

3.6 Other Design Issues

Location directory: So far we assume that the source
knows which beacon node is closest to the destination.
In practice, such information may not be directly avail-
able. In such situation, the source can apply the location
directory scheme described in BVR [4] to lookup such
information. More specifically, beacon nodes are respon-
sible for storing the mapping between non-beacon nodes
and their closest beacons. The closest beacon informa-
tion for node i is stored at H(i), where H is a consis-
tent hash function that maps nodeid to beaconid. The
source contacts the beacon node whose ID is H(dest) to
obtain the closest beacon to dest. The storage cost of lo-
cation directory is much smaller in S4 than that in BVR
(as shown in Section 4), because the source in S4 only
needs to know the closest beacon to its destination while
the source in BVR needs to know the distance between
its destination and all beacon nodes. Moreover, in S4
when destination d is in s’s cluster, no location lookup
is required since s knows the shortest path to d, whereas
BVR as well as other geographic routing schemes always
require location lookup on a new destination. Such prop-
erty is especially beneficial when traffic exhibits locality
(i.e., nodes close to each other are more likely to com-
municate).

Beacon maintenance: When a beacon fails, S4 ap-
plies distance guided local failure recovery to temporar-
ily route around the failure. If the failure persists, we can
apply the beacon maintenance protocol proposed in [4]
to select a new beacon. Beacon maintenance is not the
focus of this paper. Instead, we focus on the routing per-
formance during the transient period after failures occur.

Link quality: Link quality significantly affects routing
performance. We define link quality as the delivery rate
of packet on the link in a given direction. In S4, each
node continuously monitors its links to/from its neigh-
bors. We adopt a passive link estimator layer developed

in [29, 4] for estimating link quality. When a node re-
ceives a beacon packet or SDV update, it first checks if
both the forward and reverse link qualities of the sender
are above a threshold (30% is used in our current imple-
mentation). Only those updates from a sender with good
link quality in both directions will be accepted.

4 Simulation
In this section, we evaluate the efficiency and scalability
of S4 by simulation. We compare S4 with BVR [4], be-
cause BVR is one of the latest scalable routing protocols
and also among the few that have been implemented in
real sensor networks. We use BVR with scoped flooding
since it provides delivery guarantee and offers a fair base-
line comparison. We use three evaluation methodologies:
(i) MATLAB simulation based on the unit disk graph ra-
dio model (presented in this section), (ii) TOSSIM simu-
lation, a packet-level simulator with more detailed wire-
less model (presented in Section 5), and (iii) testbed eval-
uation (presented in Section 6). Our MATLAB simula-
tion results can be directly compared with many previ-
ous work on geographic routing, in which the unit disk
model is used. TOSSIM simulations allow us to study the
performance in more realistic large-scale wireless net-
works. Having both levels of simulations also reveals
how underlying wireless models may affect the routing
performance. For BVR, we validate our matlab imple-
mentation of BVR by comparing with the original BVR
simulation code, and we directly use the original BVR
implementation in TinyOS for TOSSIM evaluation.

4.1 Simulation Methodology
To study the protocols in an ideal wireless environment,
N nodes are randomly placed in a square rectangle re-
gion of size A2 in the simulator. The packet delivery
rates among nodes are derived from the unit disk graph
model. That is, each node has a fixed communication
range R. A node can communicate with all the nodes in-
side R, but cannot communicate with any node outside
R. It is also assumed that there is no packet loss, col-
lision, or network congestion. In the following descrip-
tion, we let N denote the number of nodes, K denote
the number of beacon nodes, R denote communication
range, and A2 denote the size of the area.

We use the following performance metrics to quantify
the efficiency and robustness of S4:
• Routing stretch: the ratio of the route length using

the selected routing protocol to that using the opti-
mal shortest path routing protocol.

• Transmission stretch: the ratio of the total num-
ber of packets transmitted using the selected rout-
ing protocol to that using the optimal shortest path
routing protocol.

• Routing state: the amount of state required to main-
tain at each node.

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association106



• Control traffic: the amount of traffic transmitted for
setting up the routing state and location directory.

Unless specified otherwise, our default simulation sce-
nario uses a 3200-node network with nodes uniformly
distributed in an area of 25 × 25 square units. The com-
munication range R is 1 unit. On average each node has
15.4 immediate neighbors. Beacon nodes are randomly
selected. In BVR, all or a subset of beacon nodes serve
as routing beacons; a node’s coordinate is defined as its
distances to the routing beacons. The number of routing
beacons KR is fixed to 10 for all simulations, because it
is reported to offer a good balance between routing per-
formance and overhead [4]. For each configuration, we
conduct 10 random runs and report the aggregate statis-
tics.

4.2 Simulation Results

4.2.1 Varying the number of beacons (K):

0 20 40 60 80 1001

1.05

1.1

1.15

1.2

1.25

1.3

number of beacons K

av
er

ag
e

ro
ut

in
g

st
re

tc
h

S4
BVR 1−hop
BVR 2−hop

0 20 40 60 80 1001

1.5

2

2.5

3

3.5

number of beacons K

av
er

ag
e

tra
ns

m
iss

io
n

st
re

tc
h S4

BVR 1−hop
BVR 2−hop

(a) Routing stretch (b) Transmission stretch

Figure 3: S4 has routing and transmission stretches close
to 1, which is consistently smaller than those of BVR
algorithms across all numbers of beacons.

Routing and transmission stretches: First we compare
the routing and transmission stretches of S4 and two vari-
ants of BVR by varying the number of beacons K . BVR
1-hop refers to the default BVR algorithm. BVR 2-hop
is an on-demand 2-hop neighbor acquisition. In this ap-
proach, when a node cannot use greedy forwarding to
make progress, it fetches its 1-hop neighbors’ neighbors
to its routing table. BVR 2-hop reduces the routing fail-
ure rate of BVR 1-hop at the cost of higher routing state
and control traffic.

Figure 3(a) compares the routing stretches under S4,
BVR 1-hop, and BVR 2-hop. The stretches are com-
puted based on 32,000 routes between randomly selected
pairs of nodes. We observe that S4 has the lowest average
routing stretch. A closer examination of the simulation
results shows that the worst stretches in S4 are bounded
by 3. This is consistent with the worst-case guaran-
tee provided by S4. In comparison, the average rout-
ing stretches in BVR 1-hop and 2-hop are substantially
higher especially for small K . Moreover their worst-case
routing stretches are even higher (e.g., the worst routing
stretch of BVR 1-hop in the simulation is 6 for K = 56,
and much larger for smaller K).

Figure 3(b) compares transmission stretch among
the three routing protocols. The average transmission
stretches of S4 are consistently below 1.1 under all values
of K . However, both BVR 1-hop and BVR 2-hop have
much higher stretches when K is small. To achieve com-
parable transmission stretches to S4 (though still higher),
the least numbers of beacons required is 56 for BVR
1-hop and 30 for BVR 2-hop. Such high transmission
stretch in BVR is due to its scoped flooding, which is
necessary for its guaranteed delivery.

0 50 1000

2000

4000

6000

8000

10000

number of beacons K

ro
ut

in
g

st
at

e
pe

rn
od

e
(B

yt
e) S4

BVR
BVR 2hop

0 20 40 60 80 1000

200

400

600

800

number of beacons K

ro
ut

in
g

st
at

e
pe

rn
od

e
(#

of
en

tri
es

)

S4
BVR
BVR 2hop

(a) # bytes (b) # routing table entries

Figure 4: Routing state comparison: When K =
√

N ,
the routing state in S4 is half of routing state in BVR.

Routing state: Figure 4 compares routing state per node
under the three routing protocols. The routing state
in S4 include route entries for beacon nodes and for
nodes within local clusters, whereas the routing state in
BVR are determined by the number of neighbors and
the length of their beacon vectors K . 2 We make the
following observations. First, in BVR the average rout-
ing table size proportionally increases with the number
of beacons, while the number of entries remains close
to the number of neighbors. In comparison, the rout-
ing state in S4 first decreases and then slightly increases
with the number of beacon nodes. The routing state in
S4 reaches minimum for K ≈

√
N since it gives a good

balance between global routing state (for beacon nodes)
and local routing state (for nodes in the clusters). These
trends also hold for maximum routing state in BVR and
S4. Second, recall that to achieve a relatively small trans-
mission stretch, 56 beacon nodes are required in BVR.
In this case, the average and maximum routing state in
BVR is twice or more than those of S4. Third, BVR 2-
hop has significantly higher upper bound of routing state
than BVR 1-hop due to the requirement of holding 2-hop
neighbor information.

Control traffic: Figure 5 shows initial control traffic
for setting up routing state. The bandwidth overhead of
BVR 1-hop increases linearly with the number of bea-
cons, because the main overhead is the beacon flooding
messages. In BVR 2-hop, other than beacon flooding,
the control traffic also includes the overhead of fetching

2The size of a routing table entry in S4 is 5-byte long in our implementation.
The routing state of BVR is estimated based on the relevant data structures found
in the BVR implementation code.

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 107



0 20 40 60 80 1000

500

1000

1500

2000

2500

3000

number of beacons K

co
nt

ro
lt

ra
ffi

c
pe

rn
od

e
(B

yt
e) S4

BVR
BVR 2 hop

0 20 40 60 80 1000

100

200

300

400

number of beacons K

co
nt

ro
lt

ra
ffi

c
pe

rn
od

e
(#

of
pa

ck
et

s)

S4
BVR
BVR 2 hop

(a) # bytes (b) # packets

Figure 5: Initial control traffic to set up routing state:
the errorbars show minimum, mean, and maximum traf-
fic across all nodes. The control traffic of S4 decreases
gracefully as the number of beacons increases. When
K =

√
N , the overhead of S4 is 65% higher than that of

BVR 1-hop, but much less than BVR 2-hop.

2-hop neighbor coordinates for the required nodes. We
can see the overhead of on-demand 2-hop neighbor ac-
quisition is significant, which is a big disadvantage of
BVR 2-hop even though its routing stretch is lower than
BVR 1-hop. In S4, control traffic includes beacon flood-
ing and SDV. As K increases, the size of the local clus-
ter of each node decreases, so the number of scoped DV
packets is reduced. When K = 56, the overhead of S4
is 65% higher than that of BVR 1-hop. However since
SDV can be updated incrementally after the initial setup,
its amortized overhead over the long run is reduced. In
terms of the number of packets, S4 is less than twice of
the BVR 1-hop when K ≥

√
N . Note that the number of

packets in S4 can be reduced by grouping SDV packets.
On the other hand, BVR demands large packet size when
the number of beacons is large, and large packets could
be forced to split in order to achieve high delivery rates
under unreliable links.

0 0.05 0.1 0.15 0.20

200

400

600

failure percent

tra
ffi

c
pe

rn
od

e
(B

yt
e) incremental DV

oblivious DV
beacon flooding

0 0.05 0.1 0.15 0.20

50

100

150

failure percent

tra
ffi

c
pe

rn
od

e
(#

of
pa

ck
et

s)

incremental DV
oblivious DV
beacon flooding

(a) # bytes (b) # packets

Figure 6: Control traffic overhead of updating routing
state due to topology changes

To evaluate the overhead of incremental SDV in
S4, we randomly select non-beacon nodes to fail be-
tween two consecutive routing updates to create topol-
ogy changes. There are two ways of updating the routing
state after the initial round: either incrementally update
based on the current routing state (incremental DV), or
builds new routing tables starting from scratch (regular
DV). As shown in Figure 6, when the number of node
failures is small (e.g., within 5%), incremental routing

updates incur lower overhead. Since the typical number
of node failures between consecutive routing updates is
likely to be low, incremental routing updates are useful
in real networks.

0 20 40 60 80 1000

500

1000

1500

2000

2500

3000

number of beacons K

DH
T

tra
ffi

c
pe

rn
od

e
(B

yt
e) S4

BVR 1 hop
BVR 2 hop

0 20 40 60 80 1000

1000

2000

3000

4000

number of beacons KDH
T

an
d

co
nt

ro
lt

ra
ffi

c
pe

rn
od

e(
By

te
)

S4
BVR 1 hop
BVR 2 hop

(a) Location directory setup traffic (b) Overall control traffic

Figure 7: Control traffic overhead comparison
The control traffic to set up the routing table is not

the only overhead. The source should be able to lookup
the location information of the destination. Therefore,
each node should store its location to a directory during
the setup phase. We study such directory setup overhead
by using the location directory scheme described in 3.6:
each node v periodically publishes its location to a bea-
con node bv by using a consistent hashing mechanism. bv

then sends a confirmation back to v if the publishing is
successful. We simulate the initial directory setup over-
head, in which every node publishes its location to the
distributed directory. The results are shown in Figure 7
(a), and they include traffic to and from beacon nodes for
publishing the locations. S4 has the following three ad-
vantages over the BVR. First, the size of location infor-
mation in S4 is significantly smaller than that of BVR,
because in BVR a node’s coordinate is proportional to
the number of beacons, while in S4 a node’s coordinate is
its closest beacon ID. Second, the transmission stretch of
BVR is higher than that of S4. Therefore, it incurs more
traffic in routing a confirmation packet from the beacon
node back to the node publishing its location. Third, it is
more likely that a node changes its coordinates in BVR
than it changes its closest beacon in S4. Therefore, S4 in-
curs a lower overhead in setting up and maintaining the
location directory.

Figure 7(b) shows the overall traffic overhead incurred
in setting up both routing state and directory. We observe
that compared with both variants of BVR, S4 has smaller
overall control traffic, including traffic in setting up both
route and location directory.

Per data packet header overhead: Aside from the con-
trol traffic, routing protocols also have overhead in the
data packet headers. The overhead of S4 includes the
closest beacon ID to the destination and its distance. For
BVR, the overhead mainly depends on the number of
routing beacons KR. The packet header of BVR in-
cludes a KR-long destination coordinate, which has at
least dlog2

(

K
KR

)

e bits indicating which KR nodes are

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association108



chosen out of the total K beacons as the routing beacons
for the destination. For example, a rough estimation sug-
gests that with K = 56 and KR = 10, BVR requires
15-byte packet headers, which is significant compared
to the default packet payload size of 29 bytes in mica2
motes, while S4 only takes 3 bytes in the packet header.

4.2.2 Under obstacles:

0 20 40 60 801

2

3

4

5

6

7

8

number of obstacles

95
th

pe
rc

en
tile

tra
ns

m
iss

io
n

st
re

tc
h S4, obstacle len=1.25

S4, obstacle len=2.5
BVR, obstacle len=1.25
BVR, obstacle len=2.5

Figure 8: Transmission stretch comparison between S4
and BVR in the presence of obstacles.

We now study the performance of S4 and BVR in the
presence of obstacles using the same methodology as in
[4]. The obstacles are modeled as horizontal or vertical
walls, which completely block wireless signals. (They
do not reflect wireless signals.) We vary the number and
length of those randomly placed obstacles. We find that
the median transmission stretches of S4 and BVR are
1.00 and 1.04, respectively. They are both insensitive
to the obstacles. However, as shown in Figure 8, the 95th
percentile of the transmission stretches of S4 and BVR
are quite different: S4 has a constant 95th percentile
stretch around 1.2 regardless the existence of obstacles,
while the transmission stretch of BVR increases with the
number of the obstacles and the length of the obstacles.
For example, when there are 75 obstacles with length 2.5
times of the transmission range, 12.9% of the links are
blocked by them. As a result, the 95th percentile trans-
mission stretch of BVR increases up to 7.9 due to the
irregular topology, while the stretch of S4 stays around
1.2. This is because S4’s worst-case routing stretch guar-
antee is independent of network topologies.

4.2.3 Summary

Our evaluation shows that S4 provides a worst-case rout-
ing stretch of 3 and an average routing stretch around
1.1 - 1.2 in all evaluation scenarios. When K =

√
N

(a favorable operating point for both S4 and BVR), S4
has significantly smaller routing state than BVR. While
the initial route setup traffic in S4 is higher than that of
BVR, due to its compact location representation, its total
control traffic including location setup is still compara-
ble to that of BVR. Furthermore S4 can efficiently adapt
to small topology changes using incremental routing up-
date. Finally, BVR 1-hop is more scalable than BVR
2-hop due to its lower control traffic and routing state.
So in the following evaluation, we only consider BVR

1-hop as a baseline comparison.

5 TOSSIM Evaluation
We have implemented a prototype of S4 in nesC lan-
guage for TinyOS [9]. The implementation can be di-
rectly used both in TOSSIM simulator [18] and on real
sensor motes. In this section, we evaluate the perfor-
mance of S4 using extensive TOSSIM packet-level sim-
ulations. By taking into account actual packet transmis-
sions, collisions, and losses, TOSSIM simulation results
are more realistic.

Our evaluation considers a wide range of scenarios by
varying the number of beacon nodes, network sizes, net-
work densities, link loss rates, and traffic demands. More
specifically, we consider two types of network densities:
a high density with an average node degree of 16.6 and a
low density with an average node degree of 7.6. We use
both lossless links and lossy links that are generated by
LossyBuilder in TOSSIM. Note that even when links are
lossless, packets are still subject to collision losses. In
addition, we examine two types of traffic: a single flow
and 5 concurrent flows. The request rate is one flow per
second for single-flow traffic, and 5 flows per second for
5-flow traffic. The simulation lasts for 1000 seconds. So
the total number of routing requests is 1000 for single-
flow traffic, and 5000 for 5-flow traffic. We compare S4
with BVR, whose implementation is available from the
public CVS repository of TinyOS.

5.1 Routing Performance
First we compare S4 with BVR in stable networks. To
achieve stable networks, we let each node periodically
broadcast RBDV and SDV packets every 10 seconds.
Data traffic is injected into the network only after route
setup is complete. BVR uses scoped flooding after a
packet falls back to the closest beacon to the destina-
tion and greedy forwarding still fails, whereas S4 uses
the distance guided failure recovery scheme to recover
failures. To make a fair comparison, in both BVR and S4
beacon nodes periodically broadcast and build spanning
trees, and RBDV is turned off in S4.

5.1.1 Varying the number of beacons

We vary the number of beacon nodes from 16 to 40 while
fixing the total number of nodes to 1000.

Routing success rate: We study 4 configurations: a sin-
gle flow with lossless links, a single flow with lossy links,
5 flows with lossless links, and 5 flows with lossy links.
In the interest of space, Figure 9 only shows the results of
the first and last configurations. “HD” and “LD” curves
represent results under high and low network densities,
respectively.

We make the following observations. First, under loss-
less links with 1 flow, S4 always achieves 100% success

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 109



15 20 25 30 35 40
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Number of Beacons

Su
cc

es
s

Ra
te

Single Flow, Lossless Links

S4−HD−Lossless
S4−LD−Lossless
BVR−HD−Lossless
BVR−LD−Lossless

15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Beacons

Su
cc

es
s

Ra
te

5 Flows, Lossy Links

S4−HD−Lossy
S4−LD−Lossy
BVR−HD−Lossy
BVR−LD−Lossy

(a) Lossless links w/ 1 flow (b) Lossy links w/ 5 flows

Figure 9: Compare routing success under different num-
bers of beacons, network densities and traffic patterns.

rate. In comparison, BVR achieves close to 100% suc-
cess only in high-density networks, but its success rate
reduces to 93% under low network density with 16 bea-
cons. Why BVR does not provide delivery guarantee
even under perfect channel condition? After a packet
is stuck at the fallback beacon, scoped flooding is used,
which could cause packet collisions and reduce packet
delivery rate. Second, under lossy links with 5 flows,
packet losses are common, and the performance of both
S4 and BVR degrades. Nevertheless, S4 still achieves
around 95% routing success rate in high-density net-
works, while success rate of BVR drops dramatically.
The large drop in BVR is because its scoped flooding
uses broadcast packets, which have no reliability support
from MAC layer; in comparison, data packets are trans-
mitted in unicast under S4, and benefit from link layer
retransmissions. Third, the success rate is lowest under
low-density networks, with lossy links and 5 flows. Even
in this case S4 achieves 70% - 80% success rate, while
the success rate of BVR is reduced to below 50%.

15 20 25 30 35 40
1

1.1

1.2

1.3

1.4

1.5

Number of Beacons

Ro
ut

in
g

St
re

tc
h

Single Flow, Lossless Links

BVR−HD−Lossless
BVR−LD−Lossless
S4−HD−Lossless
S4−LD−Lossless

15 20 25 30 35 40
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of Beacons

Ro
ut

in
g

St
re

tc
h

5 Flows, Lossy Links

BVR−HD−Lossy
BVR−LD−Lossy
S4−HD−Lossy
s4−LD−Lossy

(a) Lossless links w/ 1 flow (b) Lossy links w/ 5 flows

Figure 10: Compare routing stretch under different num-
bers of beacons, network densities, and traffic patterns.

Routing stretch: Figure 10 compares the average rout-
ing stretch of S4 and BVR. The average routing stretch
is computed only for the packets that have been success-
fully delivered. Although the worst stretch of S4 is 3,
its average stretch is only around 1.1 - 1.2 in all cases. In
comparison, BVR has significantly larger routing stretch:
its average routing stretch is 1.2 - 1.4 for 1 flow, and 1.4
- 1.7 for 5 flows. Moreover its worst routing stretch (not
shown) is 8.

Transmission Stretch: As shown in Figure 11(a), the
transmission stretch of S4 is close to its routing stretch,
while the transmission stretch of BVR is much larger
than its routing stretch due to its scoped flooding. Fig-
ure 11(b) shows CDF of transmission stretches under 32
beacon nodes. We observe that the worst-case transmis-
sion stretch in S4 is 3, and most of the packets have trans-
mission stretch very close to 1.

15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

Number of Beacons

Tr
an

sm
iss

io
n

St
re

tc
h

Single Flow, Lossless Links

BVR−LD−Lossless
BVR−HD−Lossless
S4−HD−Lossless
S4−LD−Lossless

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Transmission Stretch

CD
F

Single Flow, Lossless Links

S4−LD−Lossless
S4−HD−Lossless
BVR−LD−Lossless
BVR−HD−Lossless

(a) Average transmission stretch (b) CDF of transmission stretch

Figure 11: Transmission stretch comparison

Control traffic overhead: Compared with BVR, S4 in-
troduces extra control traffic of SDV to construct routing
tables for local clusters. To evaluate this overhead, we
count the average control traffic (in bytes and number
of packets) that each node generates under lossless links
and a single flow. We separate the global beacon traffic
and local SDV traffic. The results are shown in Figure 12.
Note that beacon traffic overhead is the same for both S4
and BVR.

15 20 25 30 35 40
50

100

150

200

250

300

350

400

450

Number of Beacons

Co
nt

ro
lO

ve
rh

ea
d

(B
yt

es
)

Single Flow, Lossless Links

Beacon−HD−Lossless
DV−HD−Lossless
Beacon−LD−Lossless
DV−LD−Lossless

15 20 25 30 35 40
10

20

30

40

50

60

70

80

Number of Beacons

Co
nt

ro
lO

ve
rh

ea
d

(P
ac

ke
ts

)
Single Flow, Lossless Links

Beacon−HD−Lossless
DV−HD−Lossless
Beacon−LD−Lossless
DV−LD−Lossless

(a) Control traffic in Bytes (b) Control traffic in number of packets

Figure 12: Control traffic overhead under different num-
bers of beacons and network densities

We can see that when the number of beacons is small,
the SDV traffic dominates, since the cluster sizes are rel-
atively large in such case. As the number of beacons
increases, the amount of SDV traffic decreases signif-
icantly. In particular, when there are 32 beacons (≈√

1000), the amount of SDV traffic is comparable to the
amount of global beacon traffic. Moreover, if we include
control traffic for setting up location directory, the total
control traffic in S4 would be comparable to that of BVR,
as shown in Figure 7.

Routing state: We compare routing state of S4 and BVR
as follows. For S4, the routing state consists of a bea-

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association110



con routing table and a local cluster table. For BVR,
the routing state consists of a beacon routing table and
a neighbor coordinate table. We first compare the total
amount of routing state in bytes between S4 and BVR.

15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

900

Number of Beacons

Ro
ut

in
g

St
at

e
(B

yt
es

)

Single Flow, Lossy Links

S4−HD−Lossy
BVR−HD−Lossy
S4−LD−Lossy
BVR−LD−Lossy

15 20 25 30 35 40
10

20

30

40

50

60

70
Single Flow, High Density, Lossy Links

Number of Beacons

Nu
m

be
ro

fe
nt

rie
s

S4: cluster table
BVR: coordinate table
S4: beacon table
BVR: beacon table

(a) Average routing state (b) number of routing table entries

Figure 13: Routing state comparison under different
numbers of beacons and network densities with lossy
links (single flow)

Figure 13(a) shows the average routing state over all
nodes. We make the following observations. First, net-
work density has little impact on the routing state of S4,
but has large impact on BVR. This is because in S4 the
local cluster sizes are not sensitive to network density,
while in BVR each node stores the coordinates of its
neighbors and its routing state increases with density.
Second, the amount of routing state in BVR increases
with the number of beacons. In comparison, S4’s routing
state does not necessarily increase with the number of
beacons, since increasing the number of beacons reduces
the local cluster size. Third, when the number of beacons
is 32 (≈

√
1000) or above, the routing state in S4 is less

than BVR. Similar results have been observed in other
TOSSIM configurations as well as MATLAB simulation
results in Section 4.

Figure 13(b) further shows the number of entries in
beacon routing table, local cluster table and neighbor co-
ordinate table. The beacon table curves of S4 and BVR
overlap, since it is common for both. Note that although
the coordinate tables in BVR have fewer entries than the
cluster tables in S4, the total size of the coordinate tables
are generally larger since each coordinate table entry is
proportional to the number of beacons.

Table 1 shows maximum routing state of S4 and BVR
under high density and low density. The maximum num-
ber of routing entries is around 4.5 times of

√
1000 (the

expected average cluster size), but still an order of mag-
nitude smaller than 1000 (the flat routing table size) in
shortest path routing. This suggests that random bea-
con selection does a reasonable job in limiting worst-case
storage cost.

max S4 state (B) max BVR state (B) max S4 routing entries
HD 680 960 136
LD 715 920 143

Table 1: Maximum routing state of S4 and BVR

5.1.2 Varying network size

We also evaluate the performance and scalability of S4
when the network size is varied from 100 to 4000. For
each network size N , we select K ≈

√
N nodes as bea-

con nodes. In the interest of space, we only present re-
sults under lossless links and a single flow.

0 1000 2000 3000 4000 5000
1

2

3

4

5

6

Number of Nodes

Tr
an

sm
iss

io
n

St
re

tc
h

Single Flow, Lossless Links

BVR
S4

0 1000 2000 3000 4000
0

200

400

600

800

1000

1200

Number of Nodes

Ro
ut

in
g

St
at

e
(B

yt
es

)

Single Flow, Lossless Links

BVR beacon
BVR non−beacon
S4 beacon
S4 non−beacon

(a) Transmission stretch (b) Routing state

Figure 14: Comparison under different network sizes

Figure 14(a) shows the average transmission stretch
of S4 and BVR under different network sizes. The error
bars represent 5- and 95- percentiles. S4 achieves smaller
transmission stretches and smaller variations in the
stretches. In BVR, packets experience higher medium
stretch and higher stretch variation due to greedy for-
warding and scoped flooding.

Figure 14(b) shows the average routing state. For both
S4 and BVR, the routing state tends to increase with
O(

√
N). This suggests both S4 and BVR are scalable

with network sizes. In particular, even when the net-
work size is 4000, majority of nodes can store the routing
state in a small portion of a 4KB RAM (the RAM size on
Mica2 motes we experimented with). Moreover, S4 uses
less routing state than BVR when the number of beacon
nodes is

√
N , because the coordinate table size in BVR

is linear to the number of beacon nodes.

success
rate

routing
stretch

transmission
stretch

control
traffic (B)

routing
state (B)

S4 1 1.07 1.08 96 158
BVR 0.994 1.20 1.31 46 232

Table 2: Performance comparison in 100-node networks.

To further study the performance of S4 in smaller net-
works, we compare S4 and BVR in networks of 100
nodes. Due to space limitation, we only include the re-
sults for the case of single flow traffic with lossless links.
Table 2 shows that in 100-node networks S4 outperforms
BVR in terms of routing success rate, routing stretch,
transmission stretch, and routing state. S4 incurs more
control overhead of BVR due to the extra SDV traffic,
though its overall control traffic (after including location
directory setup traffic) is still comparable to that of BVR.

5.2 Impact of Node Failures
To evaluate the performance of S4 under node failures,
we randomly kill a certain number of nodes right after

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 111



the control traffic is finished. We distinguish between
beacon and non-beacon failures, and show the results
under lossless links and single flow traffic in compari-
son with BVR. By default, scoped flooding is enabled in
BVR.

0 10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1
Single Flow, Lossless Links

Number of Non−beacons Killed

Su
cc

es
s

Ra
te

S4 w/ DLF
BVR
S4 w/o DLF

2 4 6 8 10 12 14 16

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Single Flow, Lossless Links

Number of Beacons Killed

Su
cc

es
s

Ra
te

S4 w/ DLF
BVR
S4 w/o DLF

(a) Random non-beacon failures (b) Random beacon failures

Figure 15: Impact of DLF on success rate (1000 nodes,
32 beacons, low density)

Figure 15 shows that failure recovery can significantly
increase the success rate under both non-beacon and
beacon failures. DLF in S4 is more effective than the
scoped flooding in BVR for the following reasons. First,
scoped flooding results in packet collisions. Second, S4
uses unicast for data transmissions and benefits from link
layer retransmissions. Third, if some node between the
beacon and destination fails, DLF can recover such fail-
ures, while scoped flooding cannot.

0 10 20 30 40 50 60
1.05

1.1

1.15

1.2

1.25
Single Flow, Lossless Links

Number of Non−beacons Killed

Ro
ut

in
g

St
re

tc
h

S4 w/ DLF
BVR
S4 w/o DLF

2 4 6 8 10 12 14 16
1.05

1.1

1.15

1.2

1.25
Single Flow, Lossless Links

Number of Beacons Killed

Ro
ut

in
g

St
re

tc
h S4 w/ DLF

BVR
S4 w/o DLF

(a) Random non-beacon failures (b) Random beacon failures

Figure 16: Impact of DLF on routing stretch (1000
nodes, 32 beacons, low density)

Next we compute the average routing stretch over all
successfully delivered packets. As we expect, packets
going through failure recovery take longer than normal
paths. Interestingly, as shown in Figure 16, the average
routing stretch is only slightly higher than the case of no
failure recovery, which indicates the robustness of S4.

5.3 Summary
Our TOSSIM evaluation further confirms that S4 is scal-
able to large networks: the average routing state scales
with O(

√
N) in an N -node network. The routing and

transmission stretches in S4 is around 1.1-1.2. This is
true not only in lossless networks under single flow traf-
fic, but also under lossy wireless medium, packet col-
lisions arising from multiple flows, and significant fail-

ures. This demonstrates that S4 is efficient and resilient.
In comparison, the performance of BVR is sensitive to
wireless channel condition. Even under loss-free net-
works, it may not provide 100% delivery guarantee due
to possible packet collisions incurred in scoped flooding.
Its routing and transmission stretches also increase with
wireless losses and failures.

6 Testbed Evaluation
We have deployed the S4 prototype on a testbed of 42
mica2 motes with 915MHz radios on the fifth floor of
ACES building at UT Austin. While the testbed is only
moderate size and cannot stress test the scalability of S4,
it does allow us to evaluate S4 under realistic radio char-
acteristics and failures. We adjust the transmission power
to -17dBm for all control and data traffic to obtain an in-
teresting multi-hop topology. With such a power level,
the testbed has a network diameter of around 4 to 6 hops,
depending on the wireless link quality. 11 motes are con-
nected to the MIB600 Ethernet boards that we use for
logging information. They also serve as gateway nodes
to forward commands and responses for the remaining
31 battery-powered motes. 3

We measure packet delivery rates by sending broad-
cast packets on each mote one by one. Two motes have
a link if the delivery rates on both directions are above
30%. Because no two nodes will broadcast packets at
the same time, the measurement result is optimistic in the
sense that channel contention and network congestion is
not considered. The average node degree is 8.7. We ob-
serve that a short geographic distance between two motes
does not necessarily lead to good link quality. Some of
the links are very asymmetric and their qualities vary dra-
matically over time. Such link characteristics allow us to
stress test the performance and resilience of S4.

6.1 Routing Performance
We randomly preselect 6 nodes out of 42 nodes as bea-
con nodes for S4. The distance from any node to its
closest beacon is at most 2 hops. After 10 minutes of
booting up all the motes, we randomly select source and
destination pairs to evaluate routing performance. The
sources are selected from all 42 motes and the destina-
tions are selected from the 11 motes that are connected
to the Ethernet boards. All destinations dump the packet
delivery confirmation through UART to the PC for fur-
ther analysis. For each routing request, unless the source
is connected to an Ethernet board, we choose the gate-
way mote that is the closest to the source to forward
a command packet. The command packet is sent with

3Unfortunately, we are unable to compare S4 against BVR in our
testbed. Current BVR implementation requires all motes have Ethernet
boards connected to send and receive routing commands. However
our testbed only has 11 motes with Ethernet connections, which would
make the evaluation less interesting.

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association112



time period # pkts per sec routing success rate
0 - 70.1 min 1 99.9%

70.1 - 130.2 min 2 99.1%

Table 3: Routing success rate in the 42-node testbed.

the maximum power level, and up to 5 retransmissions
so that the source is very likely to receive it. Upon re-
ceiving the routing request, the source will send back
a response packet with the maximum power level and
potential retransmissions, to acknowledge successful re-
ception of the routing request. Each routing request is
tagged with a unique sequence number to make the oper-
ation idempotent. The data packet will be sent (with the
reduced power level) after the command traffic to avoid
interference.

We send routing requests at 1 packet per second for
the first 70 minutes (altogether 4210 packets), and then
double the sending rate thereafter for another 60 minutes
(altogether 7701 packets). As shown in Table 3, the rout-
ing success rate is 99.1-99.9%, and consistent over time.
This demonstrates the resilience of S4 in a real testbed.

Next we use multiple constant bit rate (CBR) flows to
increase the network load. In each multiple flow test,
we randomly pick n source destination pairs, and instru-
ment the sources to send consecutive packets at the rate
of 1 packet per s seconds. This is essentially having n/s
random flows per second. The flows start after a pre-
defined idle period to avoid potential collisions with the
command traffic. We choose s = 2, and test up to 6 con-
current flows (i.e., n is up to 12). For each experiment,
we repeat it for 10 times. Figure 17(a) plots the median
routing success rates in different flow settings. The error
bars indicate the best-case and worst-case routing suc-
cess rate. We see the median success rate gracefully de-
grades with an increasing number of concurrent flows.
Our log collected from the gateway motes indicates that
some of the failures are due to the limitation of single
forwarding buffer per node. Such failure happens when
two or more flows try to concurrently route through the
same node. Note that this is not a protocol limitation
in S4. We could remove many such failures by having a
more complete implementation with multiple forwarding
buffers, which will be part of our future work.

Finally we study the routing efficiency of S4. Note
that it is impossible to calculate the true routing stretch
in a real wireless network because the topology is always
changing and the packet loss rates depend on the traffic
pattern so that the optimal routes are changing, too. In-
stead, we compare S4 against the pseudo optimal hop
count metric. The pseudo optimal hop count of a route
is defined as the shortest path length in a snapshot of the
network topology. In our experiment, we use broadcast-
based active measurement to obtain the pairwise packet
delivery rates before the routing test starts. The deliv-

ery rates are averaged over 1-hour measurement period.
Note that the real optimal routes could be either better
or worse than the pseudo optimal ones due to topology
changes, and the delivery rates tend to be optimistic due
to no packet collision in the measurement. The routing
tests follow the measurement within 30 minutes. We ran-
domly select source and destination pairs and send rout-
ing requests at 1 packet per second for 5000 seconds.
Then we change the number of beacons from 6 to 3, and
repeat the same test. The shortest paths from the topol-
ogy snapshot are computed offline. Figure 17(b) shows
that more than 95% of the routes are within 1-hop dif-
ference from the pseudo optimal hops under 6 beacons.
Interestingly, S4 sometimes achieves better performance
than the pseudo optimal scheme. This is because dur-
ing the 5000-second routing experiment, S4 adapts to the
change of topology so that it can take advantages of new
links and reduce path lengths. The number of beacons
also has both positive and negative effects on routing per-
formance. When fewer beacons are selected, the nodes
tend to have larger routing tables so that more nodes can
be reached via the shortest paths; however, having fewer
beacons also leads to more control traffic so that the link
estimator will have a more pessimistic estimation on link
quality due to packet collision. Underestimating link
quality apparently hurts the routing performance.

In the same experiment, we also study the routing state
per node in S4. Figure 17(c) compares the numbers of
local routing table entries used under 6 and 3 beacons.
Using 6 beacons yields smaller routing tables. A node
in S4 has local routing state towards its neighbor unless
the neighbor is a beacon node. Therefore the number of
routing entries at each node is generally larger than the
number of its neighbors. We find that on average, when
6 beacons are used, the routing table has only 3 more
entries than a typical neighborhood table, which suggests
that the routing state in S4 is small.

6.2 Routing Under Node Failures

To stress test the resilience of S4, we artificially intro-
duce node failure in our testbed. We randomly select
non-gateway motes to kill one by one, and study the
routing performance. We send one routing request per
second for 50 minutes, altogether generating 3000 pack-
ets. The source node is randomly selected from the cur-
rent live nodes and the destination is one of the gate-
way motes. Note that we do not start any SDV update
or beacon broadcast after the initial setup stage in order
to study the effectiveness of the failure recovery mech-
anism alone. As shown in Figure 17(d), in the first 30
minutes, even when 20 motes are killed, including a bea-
con node, the routing success rate is still close to 100%.
The routing success rate starts to drop after 30 minutes,
due to congestion at some bottleneck links. When the

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & ImplementationUSENIX Association 113



2 4 60

0.2

0.4

0.6

0.8

1

number of concurrent flows per second

ro
ut

in
g

su
cc

es
s

ra
te

(a) Routing success rate under multi-
ple concurrent flows

−1 0 1 2 30

0.2

0.4

0.6

0.8

1

hops in S4 − pesudo optimal hops

CD
F

6 beacons
3 beacons

(b) CDF of the hop count differ-
ence to pseudo optimal

0 10 20 300

0.2

0.4

0.6

0.8

1

number of routing table entries

CD
F

neighbor only
6 beacons
3 beacons

(c) Routing table size

0 10 20 30 40 50 600

0.5

1

ro
ut

in
g

su
cc

es
s

ra
te

time (minute)
0 10 20 30 40 50 0

20

40

nu
m

be
ro

fd
ea

d
no

de
s

Beacon #5 is dead

Beacon #4 is dead and 
the network is partitioned

the network
is further partitioned 
into 3 sub networks

routing success rate

number of dead nodes

(d) Routing performance under node
failure

Figure 17: Experiments on the 42-node testbed

second beacon is killed, the network is partitioned and
more routing failures are expected. The third major per-
formance degradation occurs after all 31 non-gateway
motes are dead, which causes further network partitions.
These results show that S4 is resilient to failures.

7 Conclusion
We present S4 as a scalable routing protocol in large
wireless networks to simultaneously minimize routing
state and routing stretch in both normal conditions and
under node or link failures. S4 incorporates a scoped
distance vector protocol (SDV) for intra-cluster routing,
a resilient beacon distance vector protocol (RBDV) for
inter-cluster routing, and distance-guided local failure re-
covery (DLF) for achieving resilience under failures and
topology changes. S4 uses small amounts of routing state
to achieve a worst-case routing stretch of 3 and an av-
erage routing stretch of close to 1. Evaluation across
a wide range of scenarios, using high-level and packet-
level simulators, and real testbed deployment show that
S4 achieves scalability, efficiency, and resilience.

Acknowledgement
Thank Deepak Ganesan, Ratul Mahajan, and the anony-
mous reviewers for their helpful comments on the earlier
versions of this paper. We thank Rodrigo Fonseca and
Sylvia Ratnasamy for sharing their BVR source code,
and thank Yin Zhang for the helpful discussion. This re-
search is sponsored in part by National Science Founda-
tion CNS-0546755, ANI-0319168, CNS-0434515, and
Olga and Alberico Pompa Professorship of Engineering
and Applied Science at University of Pennsylvania.

References
[1] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed

delivery in ad-hoc wireless networks. In Proc. of DIALM, Aug 1999.

[2] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: Network routing inspired by DHTs. In Proc. of ACM
SIGCOMM, Sept. 2006.

[3] L. Cowen. Compact routing with minimum stretch. J. of Algorithms, 2001.

[4] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and
I. Stoica. Beacon Vector Routing: Scalable Point-to-Point Routing in Wire-
less Sensornets. In Proc. of NSDI’05, May 2005.

[5] H. Frey and I. Stojmenovic. On delivery guarantees of face and combined
greedy-face routing in ad hoc and sensor networks. In Proc. of MOBICOM
2006, Sept. 2006.

[6] K. Gabriel and R. Sokal. A new statistical approach to geographic variation
analysis. Systematic Zoology, pages 259–278, 1969.

[7] M. Gerla, X. Hong, and G. Pei. Landmark routing for large ad hoc wireless
networks. In Proc. of Globecom, Nov. 2000.

[8] Z. J. Haas, M. R. Pearlman, and P. Samar. The zone routing protocol (ZRP)
for ad hoc networks. Internet-draft, IETF MANET Working Group, July
2002.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System
architecture directions for networked sensors. In Proc. of the ASPLOS,
2000.

[10] D. Johnson, D. Maltz, and J. Broch. DSR: The dynamic source routing
protocol for multihop wireless ad hoc networks. In Ad Hoc Networking,
2001.

[11] B. Karp and H. Kung. Greedy perimeter stateless routing for wireless net-
works. In Proc. of ACM MOBICOM, Aug. 2000.

[12] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing made
practical. In Proc. of NSDI’05, May 2005.

[13] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. On the pitfalls of geo-
graphic face routing. In Proc. of DIAL-M-POMC, 2005.

[14] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc
routing: Of theory and practice. In Proc. of ACM PODC, 2003.

[15] F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geo-
metric mobile ad-hoc routing. In Proc. of DIALM, 2002.

[16] B. Leong, B. Liskov, and R. Morris. Geographic routing without planariza-
tion. In Proc. of NSDI’06, May 2006.

[17] B. Leong, S. Mitr, and B. Liskov. Path vector face routing: Geographic
routing with local face information. In Proc. of IEEE ICNP, Nov. 2005.

[18] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate and scalable
simulation of entire tinyos applications. In Proc. of ACM SenSys, 2003.

[19] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith. S4: Small state and small
stretch routing protocol for large sensor networks. In University of Texas at
Austin, Dept. of Computer Science, Technical Report TR-07-06, Feb. 2007.

[20] J. Newsome and D. Song. GEM: Graph embedding for routing and data-
centric storage in sensor networks without geographic information. In Proc.
of ACM SenSys’03, Nov. 2003.

[21] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. In Proc. of ACM
SIGCOMM, 1994.

[22] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector routing.
In Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and
Applications, Feb. 1999.

[23] A. Post and D. Johnson. Self-organizing hierarchical routing for scalable
ad hoc networking. Rice CS Technical Report TR04-433, 2004.

[24] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica. Geo-
graphic routing without location information. In Proc. of ACM Mobicom,
Sept. 2003.

[25] M. Thorup and U. Zwick. Approximate distance oracles. In Proc. of ACM
STOC, 2001.

[26] M. Thorup and U. Zwick. Compact routing schemes. In Proc. of SPAA, Jul.
2001.

[27] G. Toussaint. The relative neighborhood graph of a finite planar set. Pattern
Recognition, pages 261–268, 1980.

[28] P. F. Tsuchiya. The landmark hierarchy: a new hierarchy for routing in very
large networks. In Proc. of SIGCOMM, 1988.

[29] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reli-
able multhop routing in sensor networks. In Proc. of ACM SenSys’03, Nov.
2003.

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation USENIX Association114




