Performance Modeling and System Management
for Multi-component Online Services”

Christopher Stewart and Kai Shen
Department of Computer Science, University of Rochester
{stewart, kshen} @cs.rochester.edu

Abstract

Many dynamic-content online services are comprised
of multiple interacting components and data partitions
distributed across server clusters. Understanding the
performance of these services is crucial for efficient sys-
tem management. This paper presents a profile-driven
performance model for cluster-based multi-component
online services. Our offline constructed application pro-
files characterize component resource needs and inter-
component communications. With a given component
placement strategy, the application profile can be used to
predict system throughput and average response time for
the online service. Our model differentiates remote in-
vocations from fast-path calls between co-located com-
ponents and we measure the network delay caused by
blocking inter-component communications. Validation
with two J2EE-based online applications show that our
model can predict application performance with small
errors (less than 13% for throughput and less than 14%
for the average response time). We also explore how this
performance model can be used to assist system manage-
ment functions for multi-component online services, with
case examinations on optimized component placement,
capacity planning, and cost-effectiveness analysis.

1 Introduction

Recent years have witnessed significant growth in on-
line services, including Web search engines, digital li-
braries, and electronic commerce. These services are of-
ten deployed on clusters of commodity machines in order
to achieve high availability, incremental scalability, and
cost effectiveness [14, 16, 29, 32]. Their software ar-
chitecture usually comprises multiple components, some
reflecting intentionally modular design, others devel-
oped independently and subsequently assembled into a
larger application, e.g., to handle data from independent
sources. A typical service might contain components re-
sponsible for data management, for business logic, and
for presentation of results in HTML or XML.

*This work was supported in part by the National Science Founda-
tion grants CCR-0306473, ITR/IIS-0312925, and CCF-0448413.

Previous studies have recognized the value of us-
ing performance models to guide resource provisioning
for on-demand services [1, 12, 27]. Common factors
affecting the system performance include the applica-
tion characteristics, workload properties, system man-
agement policies, and available resources in the hosting
platform.

However, the prior results are inadequate for predict-
ing the performance of multi-component online services,
which introduce several additional challenges. First,
various application components often have different re-
source needs and components may interact with each
other in complex ways. Second, unlike monolithic appli-
cations, the performance of multi-component services is
also dependent upon the component placement and repli-
cation strategy on the hosting cluster. Our contribution is
a comprehensive performance model that accurately pre-
dicts the throughput and response time of cluster-based
multi-component online services.

Our basic approach (illustrated in Figure 1) is to
build application profiles characterizing per-component
resource consumption and inter-component communica-
tion patterns as functions of input workload properties.
Specifically, our profiling focuses on application charac-
teristics that may significantly affect the service through-
put and response time. These include CPU, memory us-
age, remote invocation overhead, inter-component net-
work bandwidth and blocking communication frequency.
We perform profiling through operating system instru-
mentation to achieve transparency to the application and
component middleware. With a given application profile
and a component placement strategy, our model predicts
system throughput by identifying and quantifying bottle-
neck resources. We predict the average service response
time by modeling the queuing effect at each cluster node
and estimating the network delay caused by blocking
inter-component communications.

Based on the performance model, we explore ways
that it can assist various system management functions
for online services. First, we examine component place-
ment and replication strategies that can achieve high per-
formance with given hardware resources. Additionally,
our model can be used to estimate resource needs to sup-
port projected future workload or to analyze the cost-

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

71

A

L
el /—
oS

Component placement strategy

l—\—. l—\—.

Component resource

consumption profile
N Profile on remote ﬁ

Performance
modeling

Application
invocation overhead

Available resources
and
input workload
characteristics

Inter-component
communication profile Predicted throughput and

average response time

Figure 1: Profile-dri ven performance modeling for an online service containing a front-end Web server, a back-end database, and

several middle-tier components (A, B, and C).

effectiveness of hypothetical hardware platforms. Al-
though many previous studies have addressed various
system management functions for online services [5, 6,
10, 31], they either deal with single application com-
ponents or they treat a complex application as a non-
partitionable unit. Such an approach restricts the man-
agement flexibility for multi-component online services
and thus limits their performance potentials.

The rest of this paper is organized as follows. Sec-
tion 2 describes our profiling techniques to characterize
application resource needs and component interactions.
Section 3 presents the throughput and response time
models for multi-component online services. Section 4
validates our model using two J2EE-based applications
on a heterogeneous Linux cluster. Section 5 provides
case examinations on model-based component place-
ment, capacity planning, and cost-effectiveness analysis.
Section 6 describes related work. Section 7 concludes
the paper and discusses future work.

2 Application Profiling

Due to the complexity of multi-component online
services, an accurate performance model requires the
knowledge of application characteristics that may affect
the system performance under any possible component
placement strategies. Our application profile captures
three such characteristics: per-component resource needs
(Section 2.1), the overhead of remote invocations (Sec-
tion 2.2), and the inter-component communication delay
(Section 2.3).

We perform profiling through operating system instru-
mentation to achieve transparency to the application and
component middleware. Our only requirement on the
middleware system is the flexibility to place components
in ways we want. In particular, our profiling does not
modify the application or the component middleware.
Further, we treat each component as a blackbox (i.e., we
do not require any knowledge of the inner-working of ap-
plication components). Although instrumentation at the

application or the component middleware layer can more
easily identify application characteristics, our OS-level
approach has wider applicability. For instance, our ap-
proach remains effective for closed-source applications
and middleware software.

2.1 Profiling Component Resource Consump-
tion

A component profile specifies component resource
needs as functions of input workload characteristics. For
time-decaying resources such as CPU and disk I/O band-
width, we use the average rates O, and Ogi to cap-
ture the resource requirement specification. On the other
hand, variation in available memory size often has a se-
vere impact on application performance. In particular, a
memory deficit during one time interval cannot be com-
pensated by a memory surplus in the next time interval.
A recent study by Doyle et al. models the service re-
sponse time reduction resulting from increased memory
cache size for Web servers serving static content [12].
However, such modeling is only feasible with intimate
knowledge about application memory access pattern. To
maintain the general applicability of our approach, we
use the peak usage Onem for specifying the memory re-
quirement in the component profile.

The input workload specifications in component pro-
files can be parameterized with an average request arrival
rate Ayorkload and other workload characteristics dworkioad
including the request arrival burstiness and the composi-
tion of different request types (or request mix). Putting
these altogether, the resource requirement profile for a
distributed application component specifies the follow-

ing mapping .

f
(/\workload, 5workload) — (ecpu s gdiska amem)

Since resource needs usually grow by a fixed amount
with each additional input request per second, it is likely
for Ocpu, Odisk> and Omer to follow linear relationships with
>\workload-

72

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

10%

+ Bid
—+— Bid linear fitting
8% o Web server
—o— Web server linear fitting

6%

CPU usage

4%

2%

0%
0 2 4 6 8 10 12
external request rate (in requests/second)

Figure 2: Linear fitting of CPU usage for two RUBiS compo-
nents.

‘ Component H CPU usage (in percentage) |
Web server 1.525 - Aworkioad + 0.777
Database 0.012 - Aworkload + 3.875
Bid 0.302 - Aworkioad + 0.807
BuyNow 0.056 - Aworkload + 0.441
Category 0.268 - Aworkload + 1.150
Comment 0.079 - Aworkload + 0.568
Item 0.346 - Ayworkload + 0.588
Query 0.172 - Aworkioad + 0.509
Region 0.096 - Aworkioad + 0.556
User 0.403 - Aworkload + 0.726
Transaction 0.041 - Aworkload + 0.528

Table 1: Component resource profile for RUBIS (based on lin-
ear fitting of measured resource usage at 11 input request rates).
Aworkload 18 the average request arrival rate (in requests/second).

We use a modified Linux Trace Toolkit (LTT) [38] for
our profiling. LTT instruments the Linux kernel with
trace points, which record events and forward them to
a user-level logging daemon through the relayfs file
system. We augmented LTT by adding or modifying
trace points at CPU context switch, network, and disk I/O
events to report statistics that we are interested in. We be-
lieve our kernel instrumentation-based approach can also
be applied for other operating systems. During our pro-
file runs, each component runs on a dedicated server and
we measure the component resource consumption at a
number of input request rates and request mixes.

Profiling Results on Two Applications We present
profiling results on two applications based on Enter-
prise Java Beans (EJB): the RUBIS online auction bench-
mark [9, 28] and the StockOnline stock trading appli-
cation [34]. RUBIiS implements the core functional-
ity of an auction site: selling, browsing, and bidding.
It follows the three-tier Web service model contain-
ing a front-end Web server, a back-end database, and
nine movable business logic components (Bid, BuyNow,
Category, Comment, Item, Query, Region, User, and

Component || CPU usage (in percentage) |

Web server 0.904 - Aworkload + 0.779
Database 0.008 - Aworkload + 4.832
Account 0.219 - Aworkload + 0.789
Item 0.346 - Aworkload + 0.781
Holding 0.268 - Aworkload + 0.674
StockTX 0.222 - Aworkload + 0.490
Broker 1.829 - Aworkload + 0.533

Table 2: Component resource profile for StockOnline (based
on linear fitting of measured resource usage at 11 input re-
quest rates). Aworkload 1S the average request arrival rate (in re-
quests/second).

Transaction). StockOnline contains a front-end Web
server, a back-end database, and five EJB components
(Account, Item, Holding, StockTX, and Broker).

Profiling measurements were conducted on a Linux
cluster connected by a 1 Gbps Ethernet switch. Each pro-
filing server is equipped with a 2.66 GHz Pentium 4 pro-
cessor and 512 MB memory. For the two applications,
the EJB components are hosted on a JBoss 3.2.3 appli-
cation server with an embedded Tomcat 5.0 servlet con-
tainer. The database server runs MySQL 4.0. The dataset
for each application is sized according to database dumps
published on the benchmark Web sites [28, 34].

After acquiring the component resource consumption
at the measured input rates, we derive general functional
mappings using linear fitting. Figure 2 shows such a
derivation for the Bid component and the Web server
in RUBIS. The results are for a request mix similar to
the one in [9] (10% read-write requests and 90% read-
only requests). The complete CPU profiling results for
all 11 RUBIS components and 7 StockOnline compo-
nents are listed in Table 1 and Table 2 respectively. We
do not show the memory and disk I/O profiling results
for brevity. The memory and disk I/O consumption for
these two applications are relatively insignificant and
they never become the bottleneck resource in any of our
test settings.

2.2 Profiling Remote Invocation Overhead

Remote component invocations incur CPU overhead
on tasks such as message passing, remote lookup, and
data marshaling. When the interacting components are
co-located on the same server, the component middle-
ware often optimizes away these tasks and some even
implement local component invocations using direct
method calls. As a result, the invocation overhead be-
tween two components may vary depending on how they
are placed on the hosting cluster. Therefore, it is im-
portant to identify the remote invocation costs such that
we can correctly account for them when required by the
component placement strategy.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

73

A

Category
Region

Figure 3: Profile on remote invocation overhead for RUBIS.
The label on each edge indicates the per-request mean of inter-
component remote invocation CPU overhead (in percentage).

It is challenging to measure the remote invocation
overhead without assistance from the component mid-
dleware. Although kernel instrumentation tools such as
LTT can provide accurate OS-level statistics, they do not
directly supply middleware-level information. In partic-
ular, it is difficult to differentiate CPU usage of normal
component execution from that of passing a message or
serving a remote lookup query. We distinguish the re-
mote invocation cost of component A invoking compo-
nent B in a three step process. First, we isolate com-
ponents A and B on separate machines. Second, we
intercept communication rounds initiated by component
A. We define a communication round as a sequence of
messages between a pair of processes on two different
machines in which the inter-message time does not ex-
ceed a threshold. Finally, we associate communication
rounds with invocations. Thus, the remote invocation
cost incurred between components A and B is the sum
of resource usage during communication rounds between
them. Since the components are isolated during the pro-
filing, communication rounds are not likely to be affected
by network noises.

Profiling Results Figure 3 shows the application pro-
file on remote invocation overhead for RUBIS.

2.3 Profiling Inter-Component Communica-
tions

We profile component interaction patterns that may af-
fect bandwidth usage and network service delay between
distributed application components. We measure inter-
component bandwidth consumption by intercepting all
network messages between components during off-line
profile runs. Note that the bandwidth usage also depends
on the workload level, particularly the input user request
rate. By measuring bandwidth usage at various input re-
quest rates and performing linear fitting, we can acquire
per-request communication data volume for each inter-
component link.

The processing of a user request may involve multi-
ple blocking round-trip communications (corresponding

to request-response rounds) along many inter-component
links. We consider the request processing network delay
as the sum of the network delays on all inter-component
links between distributed components. The delay on
each link includes the communication latency and the
data transmission time. Inter-component network delay
depends on the link round-trip latency and the number
of blocking round-trip communications between compo-
nents. We define a round trip as a synchronous write-
read interaction between two components.

Due to the lack of knowledge on the application be-
havior, it is challenging to identify and count blocking
round trip communications at the OS level. Our basic
approach is to intercept system calls involving network
reads and writes during profile runs. System call inter-
ception provides the OS-level information nearest to the
application. We then count the number of consecutive
write-read pairs in the message trace between two com-
ponents. We also compare the timestamps of consecu-
tive write-read pairs. Multiple write-read pairs occurring
within a single network round-trip latency in the profil-
ing environment are counted as only one. Such a situa-
tion could occur when a consecutive write-read pair does
not correspond to each other in a blocking interaction.
Figure 4 illustrates our approach for identifying blocking
round trip communications. To avoid confusion among
messages belonging to multiple concurrent requests, we
process one request at a time during profile runs.

Profiling Results Our profiling results identify the per-
request communication data volume and blocking round-
trip interaction count for each inter-component link. Fig-
ure 5 shows inter-component communication profiles for
RUBIiS. The profiling result for each inter-component
link indicates the per-request mean of profiled target.

2.4 Additional Profiling Issues

Non-Linear functional mappings. In our applica-
tion studies, most of the workload parameter (e.g., re-
quest arrival rate) to resource consumption mappings fol-
low linear functional relationships. We acknowledge that
such mappings may exhibit non-linear relationships in
some cases, particularly when concurrent request execu-
tions affect each other’s resource consumption (e.g., ex-
tra CPU cost due to contention on a spin-lock). However,
the framework of our performance model is equally ap-
plicable in these cases, as long as appropriate functional
mappings can be extracted and included in the applica-
tion profile. Non-linear fitting algorithms [4, 30] can be
used for such a purpose. Note that a non-linear functional
mapping may require more workload samples to produce
an accurate fitting.

Profiling cost. To improve measurement accuracy, we
place each profiled component on a dedicated machine.

74

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

#128 <1.732364sec> NET SEND: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -> 128.151.67.228:8080 SIZE: 1774
#129 <1.734737sec> NET RECV: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -> 128.151.67.228:8080 SIZE:161

#130 <1.736060sec> NET RECV: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -> 128.151.67.228:8080 SIZE:684
#131 <1.738076sec> NET RECV: PID:13661 HOST ADDR -> 128.151.67.29:41800 REMOTE ADDR -> 128.151.67.228:8080 SIZE:1448

#132 <1.738398sec> NET SEND: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -> 128.151.67.228:8080 SIZE:600
#133 <1.738403sec> NET RECV: PID: 13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -> 128.151.67.228:8080 SIZE:568
#134 <1.738421sec> NET SEND: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -> 128.151.67.228:8080 SIZE:363
#135 <1.752501sec> NET RECV: PID:13661 HOST_ADDR -> 128.151.67.29:41800 REMOTE_ADDR -> 128.151.67.228:8080 SIZE:12

Figure 4: Identifying blocking round trip communications based on an intercepted network system call trace. #132——#135 is
counted as only one round trip interaction because #132, #133, and #134 occur very close to each other (less than a single network

round-trip latency in the profiling environment).

Web Server

Database

Database

Figure 5: Inter-component communication profile for RUBIS. In the left figure, the label on each edge indicates the per-request
mean of data communication volume in bytes. In the right figure, the label on each edge indicates the per-request mean of the

blocking round-trip communication count.

This eliminates the interference from co-located compo-
nents without the need of complex noise-reduction tech-
niques [8]. However, the profiling of isolated compo-
nents imposes a large demand on the profiling infrastruc-
ture (i.e., the cluster size equals the number of compo-
nents). With a smaller profiling infrastructure, it would
require multiple profile runs that each measures some
components or inter-component links. At a minimum,
two cluster nodes are needed for per-component resource
consumption profiling (one for the profiled component
and the other for the rest) and three machines are re-
quired to measure inter-component communications. At
these settings for an N-component service, it would
take N profile runs for per-component measurement and
w runs for inter-component communication pro-
filing.

3 Performance Modeling

We present our performance model for cluster-based
multi-component online services. The input of our model
includes the application profile, workload properties,
available resources in the hosting platform, as well as
the component placement and replication strategy. Be-
low we describe our throughput prediction (Section 3.1)
and response time prediction (Section 3.2) schemes. We

discuss several remaining issues about our performance
model in Section 3.3.

3.1 Throughput Prediction

Our ability to project system throughput under each
component placement strategy can be illustrated by the
following three-step process:

1. We first derive the mapping between the input re-
quest rate Aworkload and runtime resource demands
for each component. The CPU, disk I/O bandwidth,
and memory needs epy, sk, @mem can be obtained
with the knowledge of the component resource con-
sumption profile (Section 2.1) and input workload
characteristics. The remote invocation overhead
(Section 2.2) is then added when the component
in question interacts with other components that
are placed on remote servers. The component net-
work resource demand 6ok can be derived from
the inter-component communication profile (Sec-
tion 2.3) and the placement strategy. More specif-
ically, it is the sum of communication data volume
on all non-local inter-component links adjacent to
the component in question.

2. Given a component placement strategy, we can de-
termine the maximum input request rate that can
saturate the CPU, disk I/O bandwidth, network I/0O

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

75

bandwidth, or memory resources at each server. Let
7-CPU(3)7 Tdisk(s)’ Tnetwork(s)y and Tmemow(s) denote
such saturation rates at server s. When a compo-
nent is replicated, its load is distributed to all server
replicas. The exact load distribution is dependent
on the policy employed by the component middle-
ware. Many load distribution strategies have been
proposed in previous studies [13, 25, 26, 40]. How-
ever, most of these have not been incorporated into
component middleware systems in practice. Par-
ticularly, we are only able to employ round-robin
load distribution with the JBoss application server,
which evenly distributes the load among replicas.
Our validation results in Section 4 are therefore
based on the round-robin load distribution model.

3. The system reaches its maximum throughput as
soon as one of the servers cannot handle any more
load. Therefore, the system throughput can be esti-
mated as the lowest saturation rate for all resource
types at all servers:

min

{TCPU (3) 5 Tdisk (S) s Tnetwork (3) > Tmemory (5) }
for all servers

3.2 Response Time Prediction

The service response time for a cluster-based online
service includes two elements: 1) the request execution
time and the queueing time caused by resource com-
petition; and 2) network delay due to blocking inter-
component communications.

Request Execution and Queuing The system-wide
request execution and the queueing time is the sum of
such delay at each cluster server. We use an M/G/1
queue to simplify our model of the average response
time at each server. The M/G/1 queue assumes inde-
pendent request arrivals where the inter-arrival times fol-
low an exponential distribution. Previous studies [7, 11]
found that Web request arrivals may not be indepen-
dent because Web workloads contain many automati-
cally triggered requests (e.g., embedded Web objects)
and requests within each user session may follow par-
ticular user behavioral patterns. We believe our simpli-
fication is justified because our model targets dynamic-
content service requests that do not include automati-
cally triggered embedded requests. Additionally, busy
online services observe superimposed workloads from
many independent user sessions and thus the request
inter-dependencies with individual user sessions are not
pronounced, particularly at high concurrencies.

The average response time at each server can be esti-
mated as follows under the M/G/1 queuing model:

pEle](1 +C2)

E[r] = Ele] +)

where Ele] is the average request execution time; p is
the workload intensity (i.e., the ratio of input request rate
to the rate at which the server resource is completely ex-
hausted); and C., is the coefficient of variation (i.e., the
ratio of standard deviation to the sample mean) of the
request execution time.

The average request execution time at each compo-
nent is the resource needs per request at very low request
rate (when there is no resource competition or queuing in
the system). The average request execution time at each
server Ele] is the sum of such time for all hosted com-
ponents. The workload intensity at each server p can be
derived from the component resource needs and the set of
components that are placed at the server in question. The
coefficient of variation of the request execution time C.
can be determined with the knowledge of its distribution.
For instance, C, = 1 if the request execution time fol-
lows an exponential distribution. Without the knowledge
of such distribution, our application profile maintains an
histogram of execution time samples for each component
and we then use these histograms to determine C, for
each server under a particular placement strategy.

Network Delay Our network delay prediction is based
on the inter-component communication profile described
in Section 2.3. From the profile, we can acquire the per-
request communication data volume (denoted by ;) and
round-trip blocking interaction count (denoted by «;) for
each inter-component link /. Under a particular cluster
environment, let v; and w; be the round-trip latency and
bandwidth, respectively, of link [. Then we can model
the per-request total network delay as:

>

for each non-local inter-component link [

3.3 Additional Modeling Issues

1%
I'= [fﬂ'%—&-—l]
w

Cache pollution due to component co-location.
When components are co-located, interleaved or concur-
rent execution of multiple components may cause pro-
cessor cache pollution on the server, and thus affect the
system performance. Since modern operating systems
employ affinity-based scheduling and large CPU quanta
(compared with the cache warm-up time), we do not
find cache pollution to be a significant performance fac-
tor. However, processor-level multi-threading technolo-
gies such as the Intel Hyper-Threading [19] allow con-
current threads executing on a single processor and shar-
ing level-1 processor cache. Cache pollution is more pro-
nounced on these architectures and it might be necessary
to model such cost and its impact on the overall system
performance.

Replication consistency management. If replicated
application states can be updated by user requests, mech-
anisms such as logging, undo, and redo may be required

76

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

to maintain consistency among replicated states. Pre-
vious studies have investigated replication consistency
management for scalable online services [15, 29, 32, 39].
Consistency management consumes additional system
resources which our current model does not consider.
Since many component middleware systems in practice
do not support replication consistency management, we
believe this limitation of our current model should not
severely restrict its applicability.

Cross-architecture performance modeling. A ser-
vice hosting cluster may comprise servers with multiple
types of processor architectures or memory sizes. Our
current approach requires application profiling on each
of the architectures present in the cluster. Such profil-
ing is time consuming and it would be desirable to sep-
arate the performance impact of application character-
istics from that of server properties. This would allow
independent application profiling and server calibration,
and thus significantly save the profiling overhead for
server clusters containing heterogeneous architectures.
Several recent studies [22, 33] have explored this issue
in the context of scientific computing applications and
their results may be leveraged for our purpose.

4 Model Validation

We perform measurements to validate the accuracy of
our throughput and response time prediction models. An
additional objective of our measurements is to identify
the contributions of various factors on our model accu-
racy. We are particularly interested in the effects of the
remote invocation overhead modeling and the network
delay modeling.

Our validation measurements are based on the RU-
BiS and StockOnline applications described in Sec-
tion 2.1. The application EJB components are hosted
on JBoss 3.2.3 application servers with embedded Tom-
cat 5.0 servlet containers. The database servers run
MySQL 4.0. Although MySQL 4.0 supports mas-
ter/slave replication, the JBoss application server cannot
be configured to access replicated databases. Therefore
we do not replicate the database server in our experi-
ments.

All measurements are conducted on a 20-node hetero-
geneous Linux cluster connected by a 1 Gbps Ethernet
switch. The roundtrip latency (UDP or TCP without con-
nection setup) between two cluster nodes takes around
150 us. The cluster nodes have three types of hard-
ware configurations. Each type-1 server is equipped with
a 2.66 GHz Pentium 4 processor and 512 MB memory.
Each type-2 server is equipped with a single 2.00 GHz
Xeon processor and 512MB memory. Each type-3
server is equipped with two 1.26 GHz Pentium III pro-
cessors and 1 GB memory. All application data is hosted

(A) StockOnline

400

—+— The base model
350 [| =&— The RI model
—— The full model
300 | | —+— Measured results

250

200

150

100

Throughput (requests/second)

50

0 100 200 300 400
Input workload (requests/second)

(B) RUBIS
300 -

250
200
150

100

—— The base model
—&— The RI model
—— The full model
—*— Measured results

Throughput (requests/second)

50

0 50 100 150 200 250
Input workload (requests/second)

Figure 6: Validation results on system throughput.

on two local 10 KRPM SCSI drives at each server.

The performance of a cluster-based online service is
affected by many factors, including the cluster size, the
mix of input request types, the heterogeneity of the host-
ing servers, as well as the placement and replication strat-
egy. Our approach is to first provide detailed results
on the model accuracy at a typical setting (Section 4.1)
and then explicitly evaluate the impact of various factors
(Section 4.2). We summarize our validation results in
Section 4.3.

4.1 Model Accuracy at a Typical Setting

The measurement results in this section are based on a
12-machine service cluster (four are type-1 and the other
eight are type-2). For each application, we employ an
input request mix with 10% read-write requests and 90%
read-only requests. The placement strategy for each ap-
plication we use (shown in Table 3) is the one with high-
est modeled throughput out of 100 random chosen candi-
date strategies. We compare the measured performance
with three variations of our performance model:

#1. The base model: The performance model that does
not consider the overhead of remote component in-
vocation and network delays.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

77

[Servers [[Pentium4 | Pentium4 | Pentium4 | Pentium4 [Xeon [Xeon | Xeon | Xeon [Xeon [Xeon | Xeon [Xeon
Account Account Account Account Account Account Account Account Account Account Account Account
Stock Item Item Holding Holding Holding Holding Holding Holding Holding StockTX Holding Holding
Online Holding Holding StockTX StockTX StockTX | StockTX | StockTX | StockTX | StockTX Broker Broker StockTX
StockTX StockTX Broker Broker Broker Broker Broker Broker Broker WS WS Broker
Broker Broker WS WS WS WS WS DB
Bid Item User Region BuyNow Region BuyNow WS WS Region BuyNow Category
RUBIiS Query BuyNow Trans. BuyNow WS Trans. Comment
WS WS Query DB
Table 3: Component placement strategies (on a 12-node cluster) used for measurements in Section 4.1.
(A) StockOnline (A) StockOnline
- The base model @ 300}/ —— The base model
. The full model 2 —e— The RI model
100% :] Measured results 3 —— The full model
Q 2 250 | —— Measured results
S 80% B
> 200
8 g
3 60% °
3 ° 8 150
g g
2 40% 8 100
o (]
g
20% 5 50
>
<
0% 0
1 2 3 4 5 6 7 8 9 10 11 12 50% 60% 70% 80% 90%
Cluster nodes Input workload (in proportion to the saturation throughput)
(B) RUBIS (B) RUBIS
200
Il The base model %T —— The base model
N [The full model IS —&— The RI model
100% [Measured results 3 —o— The full model
S 2 150 f| —+— Measured results
g 80% E
=]
8 £
g 60% o 100
a 2
g g
2 40% 3
o o 50 M/
g
20% S
>
<
0% 0
1 2 3 4 5 6 7 8 9 10 11 12 50% 60% 70% 80% 90%

Cluster nodes

Figure 7: Validation results on per-node CPU resource usage
(at the input workload rate of 230 requests/second).

#2. The RI model: The performance model that con-
siders remote invocation overhead but not network
delays.

#3. The full model: The performance model that con-
siders both.

Figure 6 shows validation results on the overall sys-
tem throughput for StockOnline and RUBiS. We mea-
sure the rate of successfully completed requests at dif-
ferent input request rate. In our experiments, a request
is counted as successful only if it returns within 10 sec-
onds. Results show that our performance model can ac-
curately predict system throughput. The error for RUBiS
is negligible while the error for StockOnline is less than
13%. This error is mostly attributed to instable results
(due to timeouts) when the system approaches the satu-
ration point. There is no difference between the predic-

Input workload (in proportion to the saturation throughput)

Figure 8: Validation results on service response time.

tion of the RI model and that of the full model. This is
expected since the network delay modeling does not af-
fect the component resource needs and subsequently the
system throughput. Comparing between the full model
and the base model, we find that the modeling of remote
invocation overhead has a large impact on the prediction
accuracy. It improves the accuracy by 36% and 14% for
StockOnline and RUBIS respectively.

Since the system throughput in our model is derived
from resource usage at each server, we further examine
the accuracy of per-node resource usage prediction. Fig-
ure 7 shows validation results on the CPU resource us-
age at the input workload rate of 230 requests/second
(around 90% workload intensity for both applications).
We do not show the RI model since its resource usage
prediction is the same as the full model. Comparing be-
tween the full model and the base model, we find that the

78

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

StockOnline

600 [| = The base model
—o— The full model
500 | L= Measured results

400

300

200

Throughput (requests/second)

100

0 5 10 15 20
Cluster size (number of nodes)

Figure 9: Validation results on system saturation throughput
at various cluster sizes.

StockOnline
350

—+— The base model
300 H| & The Rl model
—o— The full model
250 L= Measured results

200

150
100 J
50

0 5 10 15 20
Cluster size (number of nodes)

Average response time (milliseconds)

Figure 10: Validation results on service response time at var-
ious cluster sizes. The response time is measured at the input
workload that is around 85% of the saturation throughput.

remote invocation overhead can be very significant on
some of the servers. The failure of accounting it results
in poor performance prediction of the base model.

Figure 8 shows validation results on the average ser-
vice response time for StockOnline and RUBIS. For each
application, we show the average response time when the
input workload is between 50% and 90% of the satura-
tion throughput, defined as the highest successful request
completion rate achieved at any input request rate. Re-
sults show that our performance model can predict the
average response time with less than 14% error for the
two applications. The base model prediction is very poor
due to its low resource usage estimation. Comparing be-
tween the full model and the RI model, we find that the
network delay modeling accounts for an improved accu-
racy of 9% and 18% for StockOnline and RUBIS respec-
tively.

4.2 Impact of Factors

We examine the impact of various factors on the ac-
curacy of our performance model. When we vary one
factor, we keep other factors unchanged from settings in

StockOnline
Hl The base model
— 5001 @ The full model
g [Measured results
g 400 —
0
%]
g
2 300
o
5
2 200
(=2
>
o
£ 100
0
Readonly 10%-write 20%-—write

Service request mixes

Figure 11: Validation results on system saturation throughput
at various service request mixes.

StockOnline

@ [Bl The base model
% 250 Bl The RI model
g [The full model
£ 200 [Measured results
£
[}
£ 150
(o]
(2]
C
o
2 100
o
S
© 50
[
>
<

0

Readonly 10%-write = 20%-write
Service request mixes

Figure 12: Validation results on service response time at vari-

ous service request mixes. The response time is measured at the
input workload that is around 85% of the saturation throughput.

Section 4.1.

Impact of cluster sizes We study the model accuracy
at different cluster sizes. Figure 9 shows the through-
put prediction for the StockOnline application at service
clusters of 4, 8, 12, 16, and 18 machines. At each clus-
ter size, we pick a high-throughput placement strategy
out of 100 random chosen candidate placements. Fig-
ure 10 shows the validation results on the average re-
sponse time. The response time is measured at the input
workload that is around 85% of the saturation through-
put. Results demonstrate that the accuracy of our model
is not affected by the cluster size. The relative accura-
cies among different models are also consistent across
all cluster sizes.

Impact of request mixes Figure 11 shows the through-
put prediction for StockOnline at input request mixes
with no writes, 10% read-write request sequences, and
20% read-write request sequences. Figure 12 shows the
validation results on the average response time. Results

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

79

StockOnline
500 T

Il The base model
I The full model
400 [Measured results

300 [

200

100

Throughput (requests/second)

1 2 3
Number of machine types in the cluster

Figure 13: Validation results on system saturation throughput
at various cluster settings.

StockOnline

350 | | Il The base model
I The RI model
300 | | == The full model
[_] Measured results

250

200

150

100

50

Average response time (milliseconds)

1 2 3
Number of machine types in the cluster

Figure 14: Validation results on service response time at vari-
ous cluster settings. The response time is measured at the input
workload that is around 85% of the saturation throughput.

demonstrate that the accuracy of our model is not af-
fected by different types of input requests.

Impact of heterogeneous machine architectures
Figure 13 shows the throughput prediction for StockOn-
line at service clusters with one, two, and three types of
machines. All configurations have twelve machines in
total. Figure 14 illustrates the validation results on the
average response time. Results show that the accuracy
of our model is not affected by heterogeneous machine
architectures.

Impact of placement and replication strategies Fi-
nally, we study the model accuracy at different com-
ponent placement and replication strategies. Figure 15
shows the throughput prediction for StockOnline with
the throughput-optimized placement and three random
chosen placement strategies. Methods for finding high-
performance placement strategies will be discussed in
Section 5.1. Figure 16 shows the validation results on
the average response time. Small prediction errors are

StockOnline

350 Il The base model
— [The full model
g 300 [_] Measured results | |
g
@ 250
2 —
[
3 200
o
S 150
o
=
=4
3 100
=

50

0

OPT RAND#1 RAND#2 RAND#3
Placement strategies

Figure 15: Validation results on system saturation throughput
at various placement strategies.

StockOnline

g, [Bl The base model
g %0 B The RI model
] [The full model
2 200 [Measured risults i
£
[}
£ 150
(0]
(2]
c
o
2 100
o
S
o 50
[
>
<

0

OPT RAND#1 RAND#2 RAND#3
Placement strategies

Figure 16: Validation results on service response time at vari-
ous placement strategies. The response time is measured at the
input workload that is around 85% of the saturation throughput.

observed at all validation cases.
4.3 Summary of Validation Results

e Our model can predict the performance of the two
J2EE applications with high accuracy (less than
13% error for throughput and less than 14% error
for the average response time).

e The remote invocation overhead is very important
for the accuracy of our performance model. Without
considering it, the throughput prediction error can
be up to 36% while the prediction for the average
response time can be much worse depending on the
workload intensity.

e Network delay can affect the prediction accuracy
for the average response time by up to 18%. It
does not affect the throughput prediction. However,
the impact of network delay may increase with net-
works of lower bandwidth or longer latency.

e The validation results are not significantly affected
by factors such as the cluster size, the mix of in-
put request types, the heterogeneity of the hosting

80

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

[Servers [Pentium4 | Pentium4 | Pentium4 [Pentium4 | Xeon | Xeon | Xeon [Xeon [Xeon [Xeon | Xeon [Xeon |
Simulate Holding Item Item Item Holding Holding Holding Account Account Account Account Account
annealing StockTX StockTX StockTX Holding Broker Broker Broker Broker Broker Broker Broker Broker
OPT Broker Broker Broker Broker WS WS WS WS WS WS WS WS
DB
Item Item Account Holding Account Account Account Account Account Account Account Account
Random StockTX Broker Item StockTX Item Item Item Item Item Item Item Item
sampling Broker DB Holding Broker StockTX | StockTX | StockTX | StockTX | StockTX | StockTX | StockTX | StockTX
OPT WS StockTX Broker Broker Broker Broker Broker Broker Broker Broker
Broker WS WS WS WS WS WS WS WS
Low Item Item WS WS Account Holding StockTX Broker Broker Broker Broker DB
replication Broker Broker Broker Broker Broker WS WS WS

Table 4: Component placement strategies (on a 12-node cluster) used for

strategy is not shown.

servers, and the placement strategy.

5 Model-based System Management

We explore how our performance model can be
used to assist system management functions for multi-
component online services. A key advantage of model-
based management is its ability to quickly explore the
performance tradeoff among a large number of system
configuration alternatives without high-overhead mea-
surements. Additionally, it can project system perfor-
mance at hypothetical settings.

5.1 High-performance Component Placement

Our objective is to discover a component placement
and replication strategy that achieves high performance
on both throughput and service response time. More
specifically, our target strategy should be able to sup-
port a large input request rate while still maintaining an
average response time below a specified threshold. Our
model proposed in this paper can predict the performance
with any given component placement strategy. However,
the search space of all possible placement strategies is
too large for exhaustive check. Under such a context,
we employ optimization by simulated annealing [21, 24].
Simulated annealing is a random sampling-based opti-
mization algorithm that gradually reduces the sampling

scope following an “annealing schedule”.

We evaluate the effectiveness of our approach on a 12-
node cluster (the same as in Section 4.1) using the Stock-
Online application. We set the response time threshold
of our optimization at 1 second. The number of samples
examined by our simulated annealing algorithm is in the
order of 10,000 and the algorithm takes about 12 seconds
to complete on a 2.00 GHz Xeon processor. For compar-
ison, we also consider a random sampling optimization
which selects the best placement out of 10,000 randomly
chosen placement strategies. Note that both of these ap-
proaches rely on our performance model.

For additional comparison, we introduce two place-
ment strategies based on “common sense”, i.e., without

measurements in Section 5.1. The “all replication”

StockOnline
300
? 250
Q
o
&
B 200
0
Q
3
g,' 150
2
£, 100
3 —— Simulated annealing OPT
.—E 50 —&— Random sampling OPT
—— All replication
—— Low replication
0
0 50 100 150 200 250 300 350

Input workload (requests/second)

Figure 17: System throughput under various placement strate-
gies.

the guidance of our performance model. In the first strat-
egy, we replicate all components (except the database)
on all nodes. This is the suggested placement strategy in
the JBoss application server documentation. High repli-
cation may introduce some overhead, such as the compo-
nent maintenance overhead at each replica that is not di-
rectly associated with serving user requests. In the other
strategy, we attempt to minimize the amount of replica-
tion while still maintaining balanced load. We call this
strategy low replication. Table 4 lists the three placement
strategies except all replication.

Figure 17 illustrates the measured system throughput
under the above four placement strategies. We find that
the simulated annealing optimization is slightly better
than the random sampling approach. It outperforms all
replication and low replication by 7% and 31% respec-
tively. Figure 18 shows the measured average response
time at different input workload rates. The response time
for low replication rises dramatically when approaching
220 requests/second because it has a much lower satu-
ration throughput than the other strategies. Compared
with random sampling and all replication, the simulated
annealing optimization achieves 22% and 26% lower re-
sponse time, respectively, at the input workload rate of
250 requests/second.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

81

StockOnline

w
o
o

—— Simulated annealing OPT
—&— Random sampling OPT
| | <— All replication

—— Low replication

(]
(=3
o

- —_ N N
o (42 o o
o o o o

(42
o

Average response time (milliseconds)

0
100 150 200 250
Input workload (requests/second)

Figure 18: Average service response time under various place-
ment strategies.

StockOnline

80
—+— Simulated annealing OPT
—— All replication
64 | | = All replication linear proj.
¢
2
2 48
=]
o
K
£ 32
=]
o
o
o
16

0 200 400 600 800 1000 1200 1400
Projected workload rate (requests/second)

Figure 19: Capacity planning using various models.

5.2 Capacity Planning

The ability of predicting future resource needs at fore-
cast workload levels allows an online service provider
to acquire resources in an efficient fashion. Figure 19
presents our capacity planning results for StockOnline on
simulated annealing-optimized placement and all repli-
cation placement. The base platform for capacity plan-
ning is a 12-node cluster (four type-1 nodes and eight
type-2 nodes). Our performance model is used to project
resource needs at workload levels that could not be sup-
ported in the base platform. We assume only type-2
nodes will be added in the future. Previous work [23]
has suggested linear projection-based capacity planning
where future resource requirement scales linearly with
the forecast workload level. For the comparison purpose,
we also show the result of linear projection. The base
performance for linear projection is that of all replication
on the 12-node cluster.

Results in Figure 19 illustrate that our optimized strat-
egy consistently saves resources compared with all repli-
cation. The saving is at least 11% for projected work-
load of 1000 requests/second or higher. Comparing be-
tween the modeled all replication and linearly projected

StockOnline

n
o

—+— Using type-1 machines
—— Using type-2 machines
—— Using type-3 machines

o
o

o]
o

Cost (thousand US dollars)
N o
o o

n
o

0
0 200 400 600 800 1000 1200 1400

Projected workload rate (requests/second)

Figure 20: Cost-effectiveness of various machine types.

all replication, we find that the linear projection signifi-
cantly underestimates resource needs (by about 28%) at
high workload levels. This is partially due to hetero-
geneity in the machines being employed. More specif-
ically, four of the original nodes are type-1, which are
slightly more powerful than the type-2 machines that are
expected to be added. Additionally, linear projection
fails to consider the increased likelihood of remote in-
vocations at larger clusters. In comparison, our perfor-
mance model addresses these issues and provides more
accurate capacity planning.

5.3 Cost-effectiveness Analysis

We provide a model-based cost-effectiveness analy-
sis. In our evaluation, we plan to choose one of the
three types of machines (described in the beginning of
Section 4) to expand the cluster for future workloads.
We examine the StockOnline application in this evalu-
ation. Figure 20 shows the estimated cost when each
of the three types of machines is employed for expan-
sion. We acquire the pricing for the three machine types
from www.epinions.com and they are $1563, $1030,
and $1700 respectively. Although type-2 nodes are less
powerful than the other types, it is the most cost-effective
choice for supporting the StockOnline application. The
saving is at least 20% for projected workload of 1000 re-
quests/second or higher. Such a cost-effectiveness analy-
sis would not be possible without an accurate prediction
of application performance at hypothetical settings.

6 Related Work

Previous studies have addressed application resource
consumption profiling. Urgaonkar et al. use resource us-
age profiling to guide application placement in shared
hosting platforms [36]. Amza et al. provide bottleneck
resource analysis for several dynamic-content online ser-

82

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

vice benchmarks [3]. Doyle et al. model the service re-
sponse time reduction with increased memory cache size
for static-content Web servers [12]. The Magpie tool
chain actually extracts per-request execution control flow
through online profiling [8]. The main contribution of
our profiling work is that we identify a comprehensive
set of application characteristics that can be employed to
predict the performance of multi-component online ser-
vices with high accuracy.

A very recent work by Urgaonkar et al. [35] models a
multi-tier Internet service as a network of queues. Their
view of service tiers is not as fine-grained as application
components in our model. Additionally, service tiers are
organized in a chain-like architecture while application
components can interact with each other in more com-
plex fashions. As a result, their model cannot be used
to directly guide component-level system management
such as distributed component placement. On the other
hand, our approach uses a simple M/G/1 queue to model
service delay at each server while their model more ac-
curately captures the dependencies of the request arrival

processes at different service tiers.
Recent studies have proposed the concept of

component-oriented performance modeling [17, 37].
They mainly focus on the design of performance char-
acterization language for software components and the
way to assemble component-level models into whole-
application performance model. They do not describe
how component performance characteristics can be ac-
quired in practice. In particular, our study finds that the
failure of accounting the remote invocation overhead can

significantly affect the model accuracy.
Distributed component placement has been examined

in a number of prior studies. Coign [18] examines
the optimization problem of minimizing communication
time for two-machine client-server applications. ABA-
CUS [2] focuses on the placement of I/O-specific func-
tions for cluster-based data-intensive applications. Ivan
et al. examine the automatic deployment of component-
based software over the Internet subjected to throughput
requirements [20]. Most of these studies heuristically op-
timize the component placement toward a performance
objective. In comparison, our model-based approach al-
lows the flexibility to optimize for complex objectives
(e.g., a combination of throughput and service response
time) and it also provides an estimation on the maximum
achievable performance.

7 Conclusion and Future Work

This paper presents a profile-driven performance
model for cluster-based multi-component online ser-
vices. We construct application profiles characterizing
component resource needs and inter-component commu-

nication patterns using transparent operating system in-
strumentation. Given a component placement and repli-
cation strategy, our model can predict system throughput
and the average service response time with high accu-
racy. We demonstrate how this performance model can
be employed to assist optimized component placement,
capacity planning, and cost-effectiveness analysis.

In addition to supporting static component placement,
our model may also be used to guide dynamic runtime
component migration for achieving better performance.
Component migration requires up-to-date knowledge of
runtime dynamic workload characteristics. It also desires
a migration mechanism that does not significantly dis-
rupt ongoing service processing. Additionally, runtime
component migration must consider system stability, es-
pecially when migration decisions are made in a decen-
tralized fashion. We plan to investigate these issues in
the future.

Project Website More information about this work,
including publications and releases of related tools and
documentations can be found on our project website:
www.cs.rochester.edu/u/stewart/component.html.

Acknowledgments We would like to thank Peter
DeRosa, Sandhya Dwarkadas, Michael L. Scott, Jian
Yin, Ming Zhong, the anonymous referees, and our shep-
herd Dina Katabi for helpful discussions and valuable
comments. We are also indebted to Liudvikas Bukys and
the rest of the URCS lab staff for maintaining the exper-
imental platform used in this study.

References

[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,
R. Becker-Szendy, R. Golding, A. Merchant, M. Spaso-
jevic, A. Veitch, and J. Wilkes. Minerva: An Automated
Resource Provisioning Tool for Large-Scale Storage Sys-
tems. ACM Trans. on Computer Systems, 19(4):483—-418,
November 2001.

K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dynamic
Function Placement for Data-Intensive Cluster Comput-
ing. In Proc. of the USENIX Annual Technical Conf., San
Diego, CA, June 2000.

[3] C. Amza, A. Chanda, A. L. Cox, S. Elnikety, R. Gil,
K. Rajamani, W. Zwaenepoel, E. Cecchet, and J. Mar-
guerite. Specification and Implementation of Dynamic
Web Site Benchmarks. In Proc. of the 5th IEEE Work-
shop on Workload Characterization, Austin, TX, Novem-
ber 2002.

[4] E. Anderson. Simple Table-based Modeling of Storage
Devices. Technical Report HPL-SSP-2001-04, HP Labo-
ratories, July 2001.

K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,
M. Kalantar, S. Krishnakumar, D. Pazel, J. Pershing, and
B. Rochwerger. Oceano — SLA Based Management of A
Computing Utility. In Proc. of the 7th Int’l Symp. on In-
tegrated Network Management, Seattle, WA, May 2001.

[2

[

[5

—

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

83

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

M. Aron, P. Druschel, and W. Zwaenepoel. Cluster
Reserve: A Mechanism for Resource Management in
Cluster-based Network Servers. In Proc. of the ACM SIG-
METRICS, pages 90-101, Santa Clara, CA, June 2000.

P. Barford and M. Crovella. Generating Representative

Web Workloads for Network and Server Performance
Evaluation. In Proc. of the ACM SIGMETRICS, pages

151-160, Madison, WI, June 1998.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for Request Extraction and Workload Modeling.
In Proc. of the 6th USENIX OSDI, pages 259-272, San
Francisco, CA, December 2004.

E. Cecchet, J. Marguerite, and W. Zwaenepoel. Perfor-
mance and Scalability of EJB Applications. In Proc. of
the 17th ACM Conf. on Object-oriented Programming,
Systems, Languages, and Applications, pages 246-261,
Seattle, WA, November 2002.

J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vah-
dat, and R. P. Doyl. Managing Energy and Server Re-
sources in Hosting Centers. In Proc. of the 18th ACM
SOSP, pages 103-116, Banff, Canada, October 2001.

S. Deng. Empirical Model of WWW Document Arrivals
at Access Link. In Proc. of the IEEE Conf. on Communi-
cations, pages 1797-1802, Dallas, TX, June 1996.

R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M.
Vahdat. Model-based Resource Provisioning in a Web
Service Utility. In Proc. of the 4th USENIX Symp. on
Internet Technologies and Systems, Seattle, WA, March
2003.

D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adap-
tive Load Sharing in Homogeneous Distributed Systems.
IEEE Trans. on Software Engineering, 12(5):662-675,
May 1986.

A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-Based Scalable Network Services. In
Proc. of the 16th ACM SOSP, pages 78-91, Saint Malo,

France, October 1997.

S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, Distributed Data Structures for In-
ternet Service Construction. In Proc. of the 4th USENIX
OSDI, San Diego, CA, October 2000.

S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler. The
MultiSpace: An Evolutionary Platform for Infrastructural
Services. In Proc. of the USENIX Annual Technical Conf.,
Monterey, CA, June 1999.

S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C.
Wallnau. Packaging Predictable Assembly. In Proc. of
the First IFIP/ACM Conf. on Component Deployment,
Berlin, Germany, June 2002.

G. C. Hunt and M. L. Scott. The Coign Automatic
Distributed Partitioning System. In Proc. of the Third
USENIX OSDI, New Orleans, LA, February 1999.

Hyper-Threading Technology.
/technology/hyperthread.

A.-A.lvan, J. Harman, M. Allen, and V. Karamcheti. Par-
titionable Services: A Framework for Seamlessly Adapt-
ing Distributed Applications to Heterogeneous Environ-
ments. In Proc. of the 11th IEEE Symp. on High Per-
formance Distributed Computing, pages 103—112, Edin-
burgh, Scotland, July 2002.

S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vec-
chi. Optimization by Simulated Annealing. Science,
220(4598):671-680, May 1983.

G. Marin and J. Mellor-Crummey. Cross-Architecture
Performance Predictions for Scientific Applications Us-
ing Parameterized Models. In Proc. of the ACM SIGMET-
RICS, pages 2—13, New York, NY, June 2004.

http://www.intel.com

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

D. A. Menascé and V. A. F. Almeida. Capacity Plan-
ning for Web Performance: Metrics, Models, and Meth-
ods. Prentice Hall, 1998.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller. Equation of State Calcu-
lations by Fast Computing Machines. J. Chem. Phys.,
21(6):1087-1092, 1953.

M. Mitzenmacher. On the Analysis of Randomized Load
Balancing Schemes. In Proc. of the 9th ACM SPAA, pages
292-301, Newport, RI, June 1997.

V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-Aware Request

Distribution in Cluster-based Network Servers. In Proc.
of the 8th ASPLOS, pages 205-216, San Jose, CA, Octo-

ber 1998.

D. Petriu and M. Woodside. Analysing Software Re-
quirements Specifications for Performance. In Proc. of
the Third Int’l Workshop on Software and Performance,
Rome, Italy, July 2002.

RUBIS: Rice University Bidding System. http://rubis
.objectweb.org.

Y. Saito, B. N. Bershad, and H. M. Levy. Manageabil-
ity, Availability, and Performance in Porcupine: a Highly
Scalable, Cluster-based Mail Service. ACM Trans. on
Computer Systems, 18(3):298-332, August 2001.

G. A. Seber. Nonlinear Regression Analysis. Wiley, New
York, 1989.

K. Shen, H. Tang, T. Yang, and L. Chu. Integrated
Resource Management for Cluster-based Internet Ser-
vices. In Proc. of the 5th USENIX OSDI, pages 225-238,
Boston, MA, December 2002.

K. Shen, T. Yang, and L. Chu. Clustering Support and
Replication Management for Scalable Network Services.
IEEE Trans. on Parallel and Distributed Systems - Spe-
cial Issue on Middleware, 14(11):1168-1179, November
2003.

A. Snavely, L. Carrington, and N. Wolter. Modeling
Application Performance by Convolving Machine Sig-
natures with Application Profiles. In Proc. of the 4th
IEEE Workshop on Workload Characterization, Austin,
TX, December 2001.

The StockOnline Benchmark. http://forge.objectweb.org
/projects/stock-online.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An Analytical Model for Multi-tier Internet
Services and Its Applications. In Proc. of the ACM SIG-
METRICS (to appear), Banft, Canada, June 2005.

B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource
Overbooking and Application Profiling in Shared Host-
ing Platforms. In Proc. of the 5th USENIX OSDI, pages
239-254, Boston, MA, December 2002.

X. Wu and M. Woodside. Performance Modeling from
Software Components. In Proc. of the 4th Int’l Workshop
on Software and Performance, pages 290-301, Redwood
City, CA, January 2004.

K. Yaghmour and M. R. Dagenais. Measuring and Char-
acterizing System Behavior Using Kernel-Level Event
Logging. In Proc. of the USENIX Annual Technical Conf.,
San Diego, CA, June 2000.

H. Yu and A. Vahdat. Design and Evaluation of a Con-
tinuous Consistency Model for Replicated Services. In
Proc. of the 4th USENIX OSDI, San Diego, CA, October
2000.

S. Zhou. A Trace-Driven Simulation Study of Dynamic
Load Balancing. IEEE Trans. on Software Engineering,
14(9):1327-1341, September 1988.

84

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

