
Trickles: A Stateless Network Stack for
Improved Scalability, Resilience, and Flexibility

Alan Shieh Andrew C. Myers

Dept. of Computer Science
Cornell University
Ithaca, NY 14853

{ashieh,andru,egs}@cs.cornell.edu

Emin Gün Sirer

Abstract
Traditional operating system interfaces and network pro-
tocol implementations force system state to be kept on
both sides of a connection. Such state ties the connec-
tion to an endpoint, impedes transparent failover, per-
mits denial-of-service attacks, and limits scalability. This
paper introduces a novel TCP-like transport protocol
and a new interface to replace sockets that together en-
able all state to be kept on one endpoint, allowing the
other endpoint, typically the server, to operate without
any per-connection state. Called Trickles, this approach
enables servers to scale well with increasing numbers
of clients, consume fewer resources, and better resist
denial-of-service attacks. Measurements on a full imple-
mentation in Linux indicate that Trickles achieves perfor-
mance comparable to TCP/IP, interacts well with other
flows, and scales well. Trickles also enables qualita-
tively different kinds of networked services. Services
can be geographically replicated and contacted through
an anycast primitive for improved availability and per-
formance. Widely-deployed practices that currently have
client-observable side effects, such as periodic server re-
boots, connection redirection, and failover, can be made
transparent, and perform well, under Trickles. The pro-
tocol is secure against tampering and replay attacks, and
the client interface is backwards-compatible, requiring
no changes to sockets-based client applications.

1 Introduction
The flexibility, performance, and security of networked
systems depend in large part on the placement and man-
agement of system state, including both the kernel-level
and application-level state used to provide a service. A
critical issue in the design of networked systems is where
to locate, how to encode, and when to update system
state. These three aspects of network protocol stack de-
sign have far reaching ramifications: they determine pro-
tocol functionality, dictate the structure of applications,
and may enhance or limit performance.

Consider a point-to-point connection between a web
client and server. The system state consists of TCP proto-
col parameters, such as window size, RTT estimate, and
slow-start threshold, as well as application-level data,
such as user id, session id, and authentication status.
There are only three locations where state can be stored,
namely, the two endpoints and the network in the mid-
dle. While the end-to-end argument provides guidance
on where not to place state and implement functionality,
it still leaves a considerable amount of design flexibility
that has remained largely unexplored.

Traditional systems based on sockets and TCP/IP dis-
tribute session state across both sides of a point-to-point
connection. Distributed state leads to three problems.
First, connection failover and recovery is difficult, non-
transparent, or both, as reconstructing lost state is of-
ten non-trivial. Web server failures, for instance, can
lead to user-visible connection resets. Second, dedicat-
ing resources to keeping state invites denial of service
(DoS) attacks that use up these resources. Defenses
against such attacks often disable useful functionality:
few stacks accept piggybacked data on SYN packets,
increasing overhead for short connections, and Internet
servers often do not allow long-running persistent HTTP
connections, increasing overhead for bursty accesses [8].
Finally, state in protocol stacks limits scalability: servers
cannot scale up to large numbers of clients because they
need to commit per-client resources, and similarly can-
not scale down to tiny embedded devices, as there is a
lower bound on the resources needed per connection.

In this paper, we investigate a fundamentally differ-
ent way to structure a network protocol stack, in which
system state can be kept entirely on one side of a net-
work connection. Our Trickles protocol stack enables
encapsulated state to be pushed from the server to the
client. The client then presents this state to the server
when requesting service in subsequent packets to recon-
stitute the server-side state. The encapsulated state thus
acts as a form of network continuation (Figure 1). A new

1

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 175

server-side interface to the network protocol stack, de-
signed to replace sockets, allows network continuations
to carry both kernel and application level state, and thus
enables stateless network services. On the client side, a
compatibility layer ensures that sockets-based clients can
transparently migrate to Trickles. The use of the TCP
packet format at the wire level reduces disruption to ex-
isting network infrastructure, such as NATs and traffic
shapers, and enables incremental deployment.

A stateless network protocol interface and imple-
mentation have many ramifications for service con-
struction. Self-describing packets carrying encapsulated
server state enable services to be replicated and mi-
grated between servers. Failure recovery can be instanta-
neous and transparent, since redirecting a continuation-
carrying Trickles packet to a live server replica will
enable that server to respond to the request immedi-
ately. In the wide area, Trickles obviates the key concern
about the suitability of anycast primitives [3] for stateful
connection-oriented sessions by eliminating the need for
route stability. Server replicas can thus be placed in geo-
graphically diverse locations, and satisfy client requests
regardless of their past communications history. Elim-
inating the client-server binding obviates the need for
DNS redirection and reduces the potential security vul-
nerabilities posed by redirectors. In wireless networks,
Trickles enables connection suspension and migration to
be performed without recourse to intermediate nodes in
the network to temporarily hold state.

A stateless protocol stack can rule out many types of
denial-of-service attacks on memory resources. While
previous work has examined how to thwart DoS attacks
targeted at specific parts of the transport protocol, such as
SYN floods, Trickles provides a general approach appli-
cable for all attacks against kernel and application-level
state.

Overall, this paper makes three contributions. First,
it describes the design and implementation of a network
protocol stack that enables all per-connection state to be
safely migrated to one end of a network connection. Sec-
ond, it outlines a new TCP-like transport protocol and
a new application interface that facilitates the construc-
tion of event-driven, continuation-based applications and
fully stateless servers. Finally, it demonstrates through a
full implementation that applications based on this in-
frastructure achieve performance comparable to that of
TCP, interact well with other TCP-friendly flows, and
scale well.

The rest of the paper describes Trickles in more de-
tail. Section 2 describes the Trickles transport protocol.
Section 3 presents the new stateless server API, while
Section 4 describes the behavior of the client. Section 5
presents optimizations that can significantly increase the
performance of Trickles. Section 6 evaluates our Linux

(A)

(B)

Server Client

x.x.x.2
App/TCP

State m

Client

x.x.x.1
App/TCP
State n

x.x.x.1
App/TCP

State n

Request

k

x.x.x.1
App/TCP

State n+1

Data

k

Client

x.x.x.2

Client

x.x.x.1

Ack

Data

Server

x.x.x.1

Application
State

TCP State

x.x.x.2

Application
State

TCP State

Figure 1: TCP versus Trickles state. (A) TCP holds state
at server, even for idle connection x.x.x.2. (B) Trickles
encapsulates and ships server state to the client.

implementation. Section 7 discusses related work and
Section 8 summarizes our contributions and their impli-
cations for server design.

2 Stateless Transport Protocol

The Trickles transport protocol provides a reliable, high-
performance, TCP-friendly stream abstraction while
placing per-connection state on only one side of the
connection. Statelessness makes sense when connec-
tion characteristics are asymmetric; in particular, when
a high-degree node in the graph of sessions (typically,
a server) is connected to a large number of low-degree
nodes (for example, clients). A stateless high-degree
node would not have to store information about its many
neighbors. For this reason we will refer to the stateless
side of the connection as the server and the stateful side
as the client, though this is not the only way to organize
such a system.

To make congestion-control decisions, the stateless
side needs information about the state of the connection,
such as the current window size and prior packet loss.
Because the server does not keep state about the con-
nection, the client tracks state on the server’s behalf and
attaches it to requests sent to the server. The updated con-
nection state is attached to response packets and passed
to the client. This piggybacked state is called a contin-
uation because it provides the necessary information for
the server to later resume the processing of a data stream.

The Trickles protocol simulates the behavior of the
TCP congestion control algorithm by shipping the
kernel-level state, namely the TCP control block (TCB),
to the client side in a transport continuation. The client
ships the transport continuation back to the server in each
packet, enabling the server protocol stack to regenerate
state required by TCP congestion control [26]. Trickles
also supports stateless user-level server applications; to
permit a server application to suspend processing with-
out retaining state, the application may add an analogous

2

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association176

user continuation to outgoing packets.
During the normal operation of the Trickles protocol,

the client maintains a set of user and transport continu-
ations. When the client is ready to transmit or request
data, it generates a packet containing a transport contin-
uation, any loss information not yet known to the server,
a user continuation, and any user-specified data. On pro-
cessing the request, the server protocol stack uses the
transport continuation and loss information to compute
a new transport continuation. The user data and user
continuation are passed to the server application, along
with the allowed response size. The user continuation
and data are used by the application to compute the re-
sponse.

With Trickles, responsibility for data retransmission
lies with the server application, since a reliable queu-
ing mechanism, such as that found in TCP implementa-
tions, is stateful and holds data in a send buffer until it is
acknowledged. Therefore, a Trickles server application
must be able to reconstruct old data, either by supporting
(stateless) reconstruction of previously transmitted data,
or by providing its own (stateful) buffering. This design
allows applications to control the amount of state devoted
to each connection, and share buffer space where possi-
ble.

2.1 Transport and user continuations
The Trickles transport continuation encodes the part of
the TCB needed to simulate the congestion control mech-
anisms of the TCP state machine. For example, the con-
tinuation includes the packet number, the round trip time
(RTT), and the slow-start threshold (ssthresh). In ad-
dition, the client attaches a compact representation of
the losses it has incurred. This information enables the
server to recreate an appropriate TCB. Transport continu-
ations are 75+12m bytes, where m is the number of loss
events being reported to the server (usually m = 1). Our
implementation uses delayed acknowledgments, match-
ing common practice for TCP [1].

The user continuation enables a stateless server appli-
cation to resume processing in an application-dependent
manner. Typically, the application will need information
about what data object is being delivered to the client,
along with the current position in the data stream. For a
web server, this might include the URL of the requested
page (or a lower-level representation such as an inode
number) and a file offset. Of course, nothing prevents
the server application from maintaining state where nec-
essary.

2.2 Security
Migrating state to the client exposes the server to new at-
tacks. It is important to prevent a malicious user or third
party from tampering with server state in order to ex-

tract an unfair share of the service, to waste bandwidth,
to launch a DDoS attack, or to force the server to exe-
cute an invalid state [2]. Such attacks might employ two
mechanisms: modifying the server state—because it is
no longer secured on the server, and performing replay
attacks—because statelessness inherently admits replay
of old packets.

Maintaining state integrity
Trickles protects transport continuations against tamper-
ing with a message authentication code (MAC), signed
with a secret key known only to the server and its repli-
cas. The MAC allows only the server to modify protected
state, such as RTT, ssthresh, and window size. Simi-
larly, a server application should protect its state by using
a MAC over the user continuation. Malicious changes
to the transport or user continuation are detected by the
server kernel or application, respectively.

Hiding losses [19, 10] is a well-known attack on TCP
that can be used to gain better service or trigger a DDoS
attack. Trickles avoids these attacks by attaching unique
nonces to each packet. Because clients cannot predict
nonce values, if a packet is lost, clients cannot substitute
the nonce value for that packet.

Trickles clients signal losses using selective acknowl-
edgment (SACK) proofs, computed from the packet
nonces, that securely describe the set of packets received.
The nonces are grouped by contiguous ranges, and are
compressed into a compact range summary that can be
checked efficiently. Let pi be packet i’s nonce. The range
[m,n] is summarized by XORing together each pi in the
range into a single word. Imposing additional structure
on the nonces enables Trickles to generate per-packet
nonces and to verify multi-packet ranges in O(1) time.
Define a sequence of random numbers rx = f (K, x),
where f is a keyed cryptographic hash function. If
pi = ri⊕ri+1, then p1⊕p2⊕...⊕pn = r1⊕rn+1. Thus,
the server can generate and verify nonces with a constant
number of rx computations. Trickles distinguishes re-
transmitted packets from the original by using a different
server key K ′ to derive retransmitted nonces. This suf-
fices to keep an attacker from using the nonce from the
retransmitted packet to forge a SACK proof that masks
the loss of the original packet.

Note that this nonce mechanism protects against omis-
sion of losses but not against insertion of losses; as in
TCP, a client that pretends not to receive data is self-
limiting because its window size shrinks.

Protection against replay
Stateless servers are inherently vulnerable to replay at-
tacks. Since the behavior of a stateless system is inde-
pendent of history, two identical packets will elicit the
same response. Therefore, protection against replay re-
quires some state. For scalability, this extra state should

3

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 177

(A) (B)

cwnd = 3Server

Client

cwnd = 4 cwnd = 5

Figure 2: A sample TCP or Trickles connection. Each
line pattern corresponds to a different trickle. Initially,
there are cwnd trickles. At points where cwnd increases
(A, B), trickles are split.

be small and independent of the number of connections.
One possible replay defense is a simple hash table keyed
on the transport continuation MAC. This bounds the ef-
fect of a replay attack, and if hash collisions indicate
the presence of an attack, the size of the hash table can
be increased. The hash table records recent packet his-
tory up until a time horizon. Each transport continuation
carries a server-supplied timestamp that is checked on
packet arrival; packets older than the time horizon are
simply discarded. Since the timestamp generation and
freshness check are both performed on the server, clock
synchronization between the client and server is not nec-
essary. The growth of the hash table is capped by pe-
riodically purging and rebuilding it to capture only the
packets within the time horizon.

The replay defense mechanism can be implemented in
the server kernel or in the server application. The ad-
vantage of detecting replay in the kernel is that dupli-
cate packets can be flagged early in processing, reducing
the strain on the kernel-to-application signaling mecha-
nism. Placing the mechanism in the application is more
flexible, because application-specific knowledge can be
applied. For simplicity and flexibility, we have chosen
to place replay defense in the application. In either case,
Trickles is more robust against state-consumption attacks
than TCP.

2.3 The trickle abstraction
Figure 2 depicts the exchange of packets between the two
ends of a typical TCP or Trickles connection. For sim-
plicity, there is no loss, packets arrive in order, and de-
layed acknowledgments are not used. Except where the
current window size (cwnd) increases (at times A and
B), the receipt of one packet from the client enables the
server to send one packet in response, which in turn trig-
gers another packet from the client, and so on. This se-
quence of related packets forms a trickle.

A trickle captures the essential control and data flow
properties of a stateless server. If the server does not
remember state between packets, information can only
flow forward along individual trickles and so the re-
sponse of the server to a packet is solely determined by

the incoming trickle. A stream of packets is decomposed
into multiple disjoint trickles; each packet is a member
of exactly one trickle. These trickles can be thought of
as independent threads that exchange information only
on the client side.

In the Trickles protocol, the congestion control al-
gorithm at the server operates on each trickle indepen-
dently. These independent instances cooperate to mimic
the congestion control behavior of TCP. At a given time
there are cwnd simultaneous trickles. When a packet ar-
rives at the server, there are three possible outcomes. In
the common case, Trickles permits the server application
to send one packet in response, continuing the current
trickle. However, if packets were lost, the server may
terminate the current trickle by not permitting a response
packet; trickle termination reduces the current window
size (cwnd) by 1. The server may also increase cwnd by
splitting the current trickle into k > 1 response packets,
and hence begin k − 1 new trickles.

Split and terminate change the number of trickles and
hence the number of possible in-flight packets. Conges-
tion control at the server consists of using the client-
supplied SACK proof to decide whether to continue,
terminate, or split the current trickle. Making Trickles
match TCP’s window size therefore reduces to splitting
or terminating trickles whenever the TCP window size
changes. When processing a given packet, Trickles sim-
ulates the behavior of TCP at the corresponding acknowl-
edgment number based on the SACK proof, and then
split or terminate trickles to generate the same number
of response packets. The subsequent sections describe
how to statelessly perform these decisions to match the
congestion avoidance, slow start, and fast retransmit be-
havior of TCP.

2.4 Trickle dataflow constraints
Statelessness complicates matching TCP behavior, be-
cause it fundamentally restricts the data flow allowed be-
tween the processing of different packets. This restric-
tion is the main source of complexity in designing a state-
less transport protocol.

Because Trickles servers are stateless, the server for-
gets all the information for a trickle after processing the
given packet, whereas TCP servers retain this state per-
sistently in the TCB. Consider the comparison in Fig-
ure 3, illustrating what happens when two packets from
the same connection are received in succession. For
Trickles, the state update from processing the first packet
is not available when the second packet is processed at
the point (B). At the earliest, this state update can be
made available at point (D) in the figure, after a round trip
through the client, during which the client fuses packet
loss information from the two server responses and sends
that information back with the second trickle. This ex-

4

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association178

Server

Client

(B)(A) Result from (A)
known to TCP

(C)
Trickles fuses and sends
knowledge of (A), (B)

(D) Trickles server receives
results from both (A) and (B)

Figure 3: Difference in state/result availability between
TCP and Trickles. TCP server knows the result of pro-
cessing (A) earlier than Trickles server.

ample illustrates that server state cannot propagate di-
rectly between the processing of consecutive packets, but
is available to server-side processing a round trip later.

The round-trip delay in state updates makes it chal-
lenging to match the congestion control action of TCP.
Trickles circumvents the delay by using prediction.
When a packet arrives at the server, the server can only
know about packet losses that happened one full win-
dow earlier. It optimistically assumes that all packets
since that point have arrived successfully, and accord-
ingly makes the decision to continue, split, or terminate.
Optimism makes the common case of infrequent packet
loss work well.

Concurrent trickles must respond consistently and
quickly to loss events. By providing each trickle with the
information needed to predict the actions of other trick-
les, redundant operations are avoided. Since the client-
provided SACK proofs control trickle behavior, we im-
pose an invariant on SACK proofs to allow a later trickle
to infer the SACK proof of a previous trickle: given a
SACK proof L, any proof L′ sent subsequently contains
L as a prefix. This prefix property allows the server to
predict SACK proofs prior to L by simply computing a
prefix. Conceptually, SACK proofs cover the complete
loss history, starting from the beginning of the connec-
tion. As an optimization to limit the proof size, a Trick-
les server allows the client to omit initial portions of the
SACK proof once the TCB state fully reflects the server’s
response to those losses. This is guaranteed to occur after
all loss events, once recovery or retransmission timeout
finishes.

With any prediction scheme, it is sometimes necessary
to recover from misprediction. Suppose a packet is lost
before it reaches the server. Then the server does not
generate the corresponding response packet. This situa-
tion is indistinguishable from a loss of the response on
the server to client path: in both cases, the client receives
no response (Figure 4). Consequently, a recovery mech-
anism for response losses also suffices to recover from
request packet losses, simplifying the protocol. Note,
however, that Trickles is more sensitive to loss than TCP.

P1 P3P2

A:(1-3)A:(1)Server

Client P4 P6 P1 P3P2

A:(1-3)A:(1)Server

Client P4 P6

A:(1-2)

Figure 4: Equivalence of reverse and forward path loss
in Trickles. Due to dataflow constraints, the packet fol-
lowing a lost packet does not compensate for the loss
immediately. Neither the server nor the client can distin-
guish between (A) and (B). The loss will be discovered
through subsequent SACK proofs.

While TCP can elide some ACK losses with implicit ac-
knowledgments, such losses in Trickles require retrans-
mission of the corresponding request and data.

2.5 Congestion control algorithm
We are now equipped to define the per-trickle conges-
tion control algorithm. The algorithm operates in three
modes that correspond to the congestion control mecha-
nisms in TCP Reno [1]: congestion avoidance/slow start,
fast recovery, and retransmit timeout. Trickles strives to
emulate the congestion control behavior of TCP Reno
as closely as possible by computing the target cwnd of
TCP Reno, and performing split or terminate operations
as needed to move the number of trickles toward this tar-
get. Between modes, the set of valid trickles changes to
reflect the increase or decrease in cwnd . In general, the
number of trickles will decrease in a mode transition; the
valid trickles in the new mode are known as survivors.

Slow start and congestion avoidance
In TCP Reno, slow start increases cwnd by one per
packet acknowledgment, and congestion avoidance in-
creases cwnd by one for every window of acknowledg-
ments. Trickles must determine when TCP would have
increased cwnd so that it can properly split the corre-
sponding trickle. To do so, Trickles associates each
request packet with a request number k, and uses the
function TCPCwnd(k) to map from request number k
to TCP cwnd , specified as a number of packets. Ab-
stractly, TCPCwnd(k) executes a TCP state machine us-
ing acknowledgments 1 through k and returns the result-
ing cwnd . Given the assumption that no packets are lost,
and no ACK reordering occurs, the request number of
a packet fully determines the congestion response of a
TCP Reno server.

Upon receiving request packet k, the server performs
the following trickle update:

• CwndDelta := TCPCwnd(k) − TCPCwnd(k − 1)

• Generate CwndDelta + 1 responses: continue the
original trickle, and split CwndDelta times.

5

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 179

TCPCwnd(k) =
8
<
:

startCwnd + (k − TCPBase) if k < A
ssthresh if A ≤ k < A + ssthresh
F (k − A) + 1 + ssthresh if A + ssthresh ≤ k

where

A = ssthresh − startCwnd + TCPBase

and F (N) is the largest integer less than the positive value of x
that is a zero of

x(x + 1) − ssthresh(ssthresh + 1)

2
− N

Figure 5: Closed-form solution of TCP simulation.

Assuming TCPCwnd(k) is a monotonically increas-
ing function, which is indeed the case with TCP Reno,
this algorithm maintains cwnd trickles per RTT , pre-
cisely matching TCP’s behavior. If TCPCwnd(k) were
implemented with direct simulation as described above,
it would require O(n) time per packet, where n is the
number of packets since connection establishment. For-
tunately, for TCP Reno, a straightforward strength reduc-
tion yields the closed-form solution shown in Figure 5,
which can be computed in O(1) time.

The TCPCwnd(k) formula is directly valid only for
connections where no losses occur. A connection with
losses can be partitioned at the loss positions into
multiple pieces without losses; TCPCwnd(k) is valid
within each individual piece. The free parameters in
TCPCwnd(k) are used to adapt the formula for each piece:
startCwnd and ssthresh are initial conditions at the
point of the loss, and TCPBase corresponds to the last
loss location.

Fast retransmit/recovery
In fast retransmit/recovery, TCP Reno uses duplicate ac-
knowledgments to infer the position of a lost packet
(Figure 6). The lost packet is retransmitted, the cwnd
is halved, and transmission of new data temporarily
squelched to decrease the number of in-flight packets to
newCwnd. Likewise, Trickles uses its SACK proof to
infer the location of lost packets, retransmits these pack-
ets, halves the cwnd , and terminates a sufficient number
of trickles to deflate the number of in-flight packets to
newCwnd (Figure 7).

Fast retransmit/recovery is entered when the SACK
proof contains a loss. A successful fast retrans-
mit/recovery phase is followed by a congestion avoid-
ance phase. Since multiple trickles must execute the al-
gorithm in parallel, each with a different recovery role,
the SACK prefix property is critical to proper operation,
as it allows each trickle to predict the input and recov-
ery action of preceding trickles. A client that violates the
prefix property in packets it sends to the server will cause

P1 P3 P4 P5 P6 P2’ P7 P8

P2

A1Server

Client

Normal Recovery in progress Recovered

A1’ A1’ A1’ A1’ A6

(B)(A)

Figure 6: TCP recovery. Duplicate ACKs signal recov-
ery (A). Subsequent ACKs are ignored until number of
outstanding packets drops to new cwnd . Recovery ends
when client acknowledges all packets (B).

P1 P3 P4 P5 P6 P2’ P7 P8 P9 P10

P2

A:(1,3)
A:(1,3-4)

(A) (B) (C)

A:(1,2’,3-8)A:(1)Server

Client

Normal Recovery in progress Exit recovery

Figure 7: Trickles Recovery. First packet following loss
triggers a retransmission (A). Trickles are subsequently
terminated to deflate cwnd (B). Recovery ends when
cwnd survivors are generated; cwnd has dropped from
the original value of 5 to 2 (C).

inconsistent computations on the server side, and may re-
ceive data and transport continuations redundantly or not
receive them at all.

For request packet with packet number k during fast
retransmit/recovery mode, Trickles performs the follow-
ing operations:

1. firstLoss := sequence number of

first loss in input

cwndAtLoss := TCPCwnd(firstLoss - 1)

lossOffset := k - firstLoss

newCwnd := numInFlight / 2

The protocol variable firstLoss is derived from
the SACK proof. The SACK proofs for the trickle
immediately after a loss, as well as all subsequent
trickles before recovery, will report a gap. The
SACK prefix invariant ensures that each trickle will
compute consistent values for the protocol variables
shown above.

2. If k acknowledges the first packet after a run of
losses, retransmit the lost packets (Figure 7). This is
required to achieve the reliable delivery guarantees
of TCP. A burstLimit parameter, similar to that
suggested for TCP [1], limits the number of pack-
ets that may be retransmitted in this manner; losses
beyond burstLimit are handled via a timeout and
not via fast retransmit.

6

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association180

3. The goal in fast retransmit is to terminate n =
cwndAtLoss - newCwnd trickles, and generate
newCwnd survivor trickles. We choose to terminate
the first n trickles, and retain the last newCwnd trick-
les using the following algorithm:

(a) If cwndAtLoss - lossOffset < newCwnd,
continue the trickle. Otherwise, terminate the
trickle. (b) If k immediately follows a run of losses,
generate the trickles for all missing requests that
would have satisfied (a).

Test (a) deflates the number of trickles to newCwnd.
First, a sufficient number of trickles are terminated
to drop the number of trickles to newCwnd. Then, all
subsequent trickles become survivors that will boot-
strap the subsequent slow start/congestion avoid-
ance phase. If losses occur while sending the sur-
viving trickles to the client, then the number of out-
standing trickles will fall below newCwnd. So con-
dition (a) guarantees that the new window size will
not exceed the new target, while condition (b) en-
sures that the new window will meet the target.

Note that when the server decides to recreate multi-
ple lost trickles per condition (b), it will not have ac-
cess to corresponding user continuations for the lost
packets. Consequently, the server transport layer
cannot invoke the application and generate the cor-
responding data payload. Instead, the server trans-
port layer simply generates the transport continua-
tions associated with the lost trickles and ships them
to the client as a group. The client then regenerates
the trickles by retransmitting these requests to the
server with matching user continuations.

Following fast recovery, the simulation initial condi-
tions are updated to reflect the conditions at the recovery
sequence number: TCPBase points to the recovery point,
and ssthresh = startCwnd = newCwnd, reflecting the
new window size.

Retransmit timeout
During a retransmit timeout, the TCP Reno sender sets
ssthresh = cwnd/2, cwnd = InitialCwnd , and enters
slow start. In Trickles, the client kernel is responsible for
generating the timeout, as the server is stateless and can-
not keep such a timer. Let firstLoss be the first loss seen
by the client since the last retransmit timeout or success-
ful recovery. For a retransmission timeout request, the
server executes the following steps to initiate slow start:

1. a := firstLoss

ssthresh := TCPCwnd(a-1)/2

cwnd := InitialCwnd

2. Split cwnd − 1 times to generate cwnd survivors.
Set TCPCwnd(k) initial conditions to equivalent
TCP post-recovery state.

2.6 Compatibility with TCP
Trickles is backward compatible with TCP in several im-
portant ways, making it possible to incrementally adopt
Trickles into the existing Internet infrastructure. Com-
patibility at the network level, due to similar wire format,
similar congestion control algorithm, and TCP-friendly
behavior, ensures interoperability with routers, traffic
shapers, and NAT boxes.

The client side of Trickles provides to the client appli-
cation a standard Berkeley sockets interface, so the client
application need not be aware of the existence of Trick-
les, and only the client kernel needs modification

Trickles-enabled clients are compatible with existing
TCP servers. The initial SYN packet from a Trickles
client carries a TCP option to signal the ability to sup-
port Trickles. Servers that are able to support Trickles
respond to the client with a Trickles response packet, and
a Trickles connection proceeds. Servers that understand
only TCP respond with a standard TCP SYN-ACK, caus-
ing the client to enter standard TCP mode.

A Trickles server can also be compatible with standard
TCP clients, by handling standard TCP requests accord-
ing to the TCP protocol. Of course, the server cannot be
stateless for those clients, so some servers may elect to
support only Trickles.

3 Trickles server API
The network transport protocol described in Section 2
makes it possible to maintain a reliable communica-
tions channel between a client and server with no per-
connection state in the server kernel. However, the real
benefit of statelessness is obtained when the entire server
is stateless. The Trickles server API allows servers to
offload user-level state to the client, so that the server
machine maintains no state at any layer of the network
stack.

3.1 The event queue
In the Trickles server API, the server application does
not communicate using per-connection file descriptors,
as these would entail per-connection state. Instead, the
API exports a queue of transport-level events to the ap-
plication. For example, client data packets and ACKs
appear as events. Since Trickles is stateless, events only
occur in response to client packets.

Upon processing a client request packet, the Trickles
transport layer may either terminate the trickle, or con-
tinue the associated trickle and split off zero or more
trickles. If the transport generates a response, a single
event is passed to the application, describing the incom-
ing packet and all the response trickles. The event in-
cludes all the data from the request and also the user con-
tinuation from the request to the application. API state
is linear in the number of unprocessed requests, which

7

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 181

msk send(int fd, minisock *, char *, size t);

msk sendv(int fd, minisock *, tiovec *, int);

msk sendfilev(int fd, minisock *, fiovec *, int);

msk setucont(int fd, minisock *, int pkt,

char* buf, size t);

msk sendbulk(int fd, mskdesc *, int len);

msk drop(int fd, minisock *);

msk detach(int fd, minisock *);

msk extract events(int fd, extract mskdesc in *,

int inlen, msk collection *, int *outlen);

msk install events(int fd, msk collection *, int);

msk request(int fd, char *req, int reqlen,

int reservelen);

Figure 8: The minisocket API.

is bounded by the ingress bandwidth. The event queue
eliminates a layer of multiplexing and demultiplexing
found in the traditional sockets API that can cause ex-
cess processing overhead [4].

To avoid copying of events, the event queue is a
synchronization-free linked list mapped in both the ap-
plication and kernel; it is mapped read-only in the ap-
plication, and can be walked by the application without
holding locks. While processing requests, the kernel al-
locates all per-request data structures in the shared re-
gion.

3.2 Minisockets
The Trickles API object that represents a remote end-
point is called a minisocket. Minisockets are transient
descriptors that are created when an event is received,
and destroyed after being processed. Like standard sock-
ets, each minisocket is associated with one client, and
can send and receive data. Operationally, a minisocket
acts as a transient TCP control block, created from the
transport continuation in the associated packet. Because
the minisocket is associated with a specific event, the ex-
tent of each operation is more limited. Receive opera-
tions on the minisocket can only return input data from
the associated event, and send operations may not send
more data than is allowed by congestion control. Trick-
les delivers OPEN, REQUEST, and CLOSE events when
connections are created, client packets are received, and
clients disconnect, respectively.

3.3 Minisocket operations
The minisocket API is shown in Figure 8. Minisockets
are represented by the structure minisock *. All min-
isockets share the same file descriptor (fd), that of their
listen (server) socket. To send data with a minisocket, ap-
plications use msk send. It copies packet data to the ker-
nel, constructs and sends Trickles response packets, then
deallocates the minisocket. msk setucont allows the
application to install user continuations on a per-packet
basis. Trickles also provides scatter-gather, zero copy,
and packet batch processing interfaces.

Allowing servers to directly manipulate the min-
isocket queue enables new functionality not possible
with sockets. Requests sent to a node in a cluster can
be redirected to a different node holding a cached copy,
without breaking the connection. During a denial of ser-
vice attack, a server may elect to ignore events altogether.
The event management interface enables such manipula-
tions of the event queue. While these capabilities are
similar to those proposed in [17] for TCP, Trickles can
redistribute events at a packet-level granularity.

The msk extractEvents and msk insertEvents
operations manipulate the event queue to extract or in-
sert minisockets, respectively. The extracted minisock-
ets are protected against tampering by MACs. Extracted
minisockets can be migrated safely to other sockets, in-
cluding those on other machines.

4 Client-side processing

A Trickles client stack implements a Berkeley sockets
interface using the Trickles transport protocol. Thus, the
client application need not be aware of the presence of
Trickles. The structure of Trickles allows client kernels
to use a straightforward algorithm to maintain the trans-
port protocol. The client kernel generates requests us-
ing the transport continuations received from the server,
while ensuring that the prefix property holds on the se-
quence of SACK proofs reported to the server. Should
the protocol stall, the client times out and requests a re-
transmission and slow start.

In addition to maintaining the transport protocol, a
client kernel manages user continuations, storing new
continuations and attaching them to requests as appro-
priate. For instance, the client must provide all continu-
ations needed to generate a particular data request.

4.1 Standardized user continuations

To facilitate client-side management of continuations,
and to simplify server programming, Trickles defines
standard user continuation formats understood by servers
and clients. These formats encode the mapping between
continuations and data requests, and provide a standard
mechanism for bootstrapping and generating new contin-
uations.

Two kinds of continuations can be communicated be-
tween the client and server: output continuations that the
server application uses to resume generating output to the
client at the correct point in the server’s output stream,
and input continuations that the server application uses
to help it resume correctly accepting client input. Hav-
ing separate continuations allows the server to decouple
input and output processing.

8

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association182

4.2 Input continuations
When a client sends data to the server, it accompanies
the data with an appropriate input continuation, except
for the very first packet when no input continuation is
needed. For single-packet client requests, an input con-
tinuation is not needed. For requests that span multiple
packets, an input continuation contains a digest of the
data seen thus far. Of course, if the server needs lengthy
input from the client yet cannot encode it compactly into
an input continuation, the server application will not be
able to remain stateless.

If, after receiving a packet from the client, the server
application is unable to generate response packets, it
sends an updated input continuation back to the client
kernel, which will respond with more client data accom-
panied by the input continuation. The server need not
consume all of the client data; the returned input con-
tinuation indicates how much input was consumed, al-
lowing the client’s transmit queue to be advanced cor-
respondingly. The capability to not read all client data
is important because the server may not be able to com-
pactly encode arbitrarily truncated client packets in an
input continuation.

4.3 Output continuations
When the server has received sufficient client data to be-
gin processing a request, it provides the client with an
output continuation for the response. The client can then
use the output continuation to request the response data.
For a web server, the output continuation might contain
an identifier for the data object being delivered, along
with an offset into that data object.

In general, the client kernel will have a number of out-
put continuations available that have arrived in various
packets from the server. Client requests include the re-
quested ranges of data, along with the corresponding out-
put continuations. To allow the client to select the cor-
rect output continuation, an output continuation includes,
in addition to opaque application-defined data, two stan-
dard fields, validStart and validEnd, indicating the
range of bytes for which the output continuation can be
used to generate data.

The client cannot request an arbitrarily-sized range
because the congestion control algorithm restricts the
amount of data that may be returned for each request.
To compute the proper byte range size, the client sim-
ulates the server’s congestion control action for a given
transport continuation and SACK proof.

5 Optimizations

The preceding sections described the operation of the ba-
sic Trickles protocol. The performance of the basic pro-
tocol is improved significantly by three optimizations.

5.1 Socket caching
While the basic Trickles protocol is designed to be en-
tirely stateless, and thereby consume little memory, it
can be easily extended to take advantage of server mem-
ory when available. In particular, the server host need not
discard minisockets and reconstitute the server-side TCB
from scratch based on the client continuation. Instead, it
can keep minisockets for frequently used connections in
a server-side cache, and match incoming packets to this
pool via a hash table. A cache hit will obviate the need to
reconstruct the server-side state or to validate the MAC
hash on the client-supplied continuation. When pressed
for memory, entries in the minisocket cache can simply
be dropped, as minisockets can be recreated at any time.
Fundamentally, the cache acts as soft-state that can en-
able the server to operate in a stateful manner whenever
resources permit and reduce the processing burden, while
the underlying stateless protocol provides a safety net in
case the state needs to be reconstructed from scratch.

5.2 Parallel requests and sparse sequence numbers
The concurrent nature of Trickles enables a second opti-
mization for parallel downloads. Standard TCP operates
serially, transmitting streams mostly in-order, and im-
mediately filling any gaps stemming from losses. How-
ever, many applications, including web browsers, need
to download multiple files concurrently. With standard
TCP, such concurrent transactions either require multi-
ple connections, leading to well-documented inefficien-
cies [15], or complex application-level protocols, such
as HTTP 1.1 [11], for framing. In contrast, trickles are
inherently concurrent. Concurrency can improve the per-
formance of both fetching and sending data to the server.

The Trickles protocol allows a client application to
concurrently request different, non-adjoining sequence
number ranges from the server on a single connection.
The response packets from the server, which will carry
data belonging to different objects distributed through
the sequence number space, will nevertheless be subject
to a single TCP-friendly flow equation, acting in effect
like a single, HTTP/1.1-like flow with application level
framing. Since, in some cases, the sizes of the objects
may not be known in advance, Trickles clients can con-
servatively dedicate large regions of the sequence num-
ber space to each object. A server response packet may
include a SKIP notification that indicates that the ob-
ject ended before the end of its assigned range. A client
receiving a SKIP logically elides the remainder of the
object region, without reserving physical buffer space,
passing it to applications, or waiting for additional pack-
ets from the server. Consequently, the inherent paral-
lelism between Trickles can be used to multiplex logi-
cally separate transmissions on a given connection, while
subjecting them to the same flow equation.

9

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 183

 0

 20

 40

 60

 80

 100

 2000 4000 6000 8000 10000 12000

A
gg

re
ga

te
 tr

an
sf

er
 ra

te

(M
b/

s)

Number of clients

TCP
Trickles

Figure 9: Aggregate throughput for Trickles and TCP.
TCP fails for tests with more than 6000 clients.

Trickles clients can also send multiple streams of data
to the server using the same connection. A stateless
server is oblivious to the number of different input se-
quences on a connection. By performing multiple server
input operations in parallel, a client can reduce the total
latency of a sequence of such operations.

5.3 Delta encoding
While continuations add extra space overhead to each
packet, predictive header compression can be used to
drastically reduce the size of the continuations transmit-
ted by the server. Since the Trickles client implementa-
tion simulates the congestion control algorithm used by
the server, it can predict the server’s response. Conse-
quently, the server need only transmit those fields in the
transport continuation that the client mispredicts (e.g. a
change due to an unanticipated loss), or cannot generate
(e.g. timestamps). Of course, the server MAC still needs
to be computed and transmitted on every continuation, as
the client cannot compute the secure server hash.

6 Evaluation
In this section, we evaluate the quantitative performance
of Trickles through microbenchmarks, and show that
it performs well compared to TCP, consumes few re-
sources, scales well with the number of clients, and in-
teracts well with other TCP flows. We also illustrate,
through macrobenchmarks, the types of new services that
the Trickles approach enables.

We have implemented the Trickles protocol stack in
the Linux 2.4.26 kernel. Our Linux protocol stack im-
plements the full transport protocol, the interface and
the SKIP and parallel request mechanisms described ear-
lier. The implementation consists of 15,000 total lines of
code, structured as a loadable kernel module, with min-
imal hooks added to the base kernel. We use AES [9]
for the keyed cryptographic hash function. All results in-
clude at least six data points; error bars indicate the 95%
confidence interval.

All microbenchmarks in this section were performed
on an isolated Gigabit Ethernet using 1.7GHz Pentium

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000 12000 14000 16000

Tr
an

sf
er

 ra
te

 (M
b/

s)

Object size

Trickles piggyback
TCP

Trickles

Figure 10: Trickles and TCP throughput for a single, iso-
lated client at various object sizes.

4’s, with 512 MB RAM, and Intel e1000 gigabit net-
work interfaces. To test the network layer in isolation,
we served all content from memory rather than disk.

6.1 Microbenchmarks

In this section, we use a high-performance server mi-
crobenchmark to examine the throughput, scaling, and
TCP-friendliness properties of Trickles.

Throughput
We tested throughput using a point-to-point topology
with a single server node placed behind a 100 Mb/sec
bottleneck link. Varying numbers of simultaneous client
instances (distributed across two real CPUs) repeatedly
fetched a 500 kB file from the server. A fresh connection
was established for each request.

Figure 9 shows that the aggregate throughput achieved
by Trickles is within 10% of TCP at all client counts.
Regular TCP consumes memory separately for each con-
nection to buffer outgoing data until it is acknowledged.
Beyond 6000 clients, TCP exhausts memory, forcing the
kernel to kill the server process. In contrast, the Trick-
les kernel does not retain outgoing data, and recomputes
lost packets as necessary from the original source. Con-
sequently, it does not suffer from a memory bottleneck.

With Trickles, a client fetching small objects will
achieve significant performance improvements because
of the reduction in the number of control packets (Fig-
ure 10). Trickles requires fewer packets for connection
setup than TCP. Trickles processes data embedded in
SYN packets into output continuations without holding
state, and can send an immediate response; to avoid cre-
ating a DoS amplification vulnerability, the server should
not respond with more data than it received. In con-
trast, TCP must save or reject SYN data; because hold-
ing state increases vulnerability to SYN flooding, most
TCP stacks reject SYN data. Unlike TCP, Trickles does
not require FIN packets to clean up server-side state. The
combination of SYN data and lower connection overhead
improves small file transfer throughput for Trickles, with
a corresponding improvement in transfer latency.

10

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association184

 0

 100

 200

 300

 0 2000 4000 6000 8000 10000 12000

M
em

or
y

(M
B

)

Number of clients

TCP
Trickles

Figure 11: Memory utilization. Includes socket struc-
tures, socket buffers, and shared event queue.

Trickles
TCP

1009080706050403020100
CPU utilization (%)

Copy+Checksum
Crypto
Other

Figure 12: Server-side CPU overhead on a 1 Gb/s link.

Memory and CPU utilization
We next examine the memory and CPU utilization of
the Trickles protocol. For this experiment, we elimi-
nated the bottleneck link in the network and connected
the clients to the server through the full 1Gb/sec link to
pose a worst-case scenario.

Not surprisingly, Trickles consistently achieves better
memory utilization than TCP (Figure 11). TCP memory
utilization increases linearly with the number of clients,
while statelessness enables Trickles to uses a constant,
small amount of memory.

Reduced memory consumption in the network layer
can improve system performance for a variety of appli-
cations. In web server installations, persistent, pipelined
HTTP connections are known to reduce download la-
tencies, though they pose a risk because increased con-
nection duration can increase the number of simultane-
ous connections. Consequently, many websites disable
persistent connections to the detriment of their users.
Trickles can achieve the benefits of persistent connec-
tions without suffering from scalability problems. The
low memory requirement of Trickles also enables small
devices with restricted amounts of memory to support
large numbers of connections. Finally, Trickles’s smaller
memory footprint provides more space for caching, ben-
efiting all connections.

Figure 12 shows a breakdown of the CPU overhead
for Trickles and TCP on a 1 Gb/s link when Trickles is
reconstructing its state for every packet (i.e. soft-state
caching is turned off). Not surprisingly, Trickles has
higher CPU utilization than TCP, since it verifies and
recomputes state that it does not keep locally. The over-

 0

 10

 20

 30

 40

 50

A
ve

ra
ge

 tr
an

sf
er

 ra
te

(M
b/

s)

Foreground to background connections ratio
1 : 1 1 : 2 1 : 3 1 : 4 1 : 5 1 : 49 1 : 99

TCP
Trickles

Figure 13: Interaction of Trickles and TCP.

head is evenly split between the cryptographic operations
required for verification and the packet processing re-
quired to simulate the TCP engine. While the Trickles
CPU overhead is higher, it does not pose a server bottle-
neck even at gigabit speeds.

Interaction with TCP flows
New transport protocols must not adversely affect exist-
ing flows on the Internet. Trickles is designed to gen-
erate similar packet-level behavior to TCP, and should
therefore achieve similar performance as TCP under sim-
ilar conditions. To confirm this, we measured the band-
width achieved by Trickles in the presence of back-
ground flows. We constructed a dumbbell topology with
two servers on the same side of a 100 Mb bottleneck
link, and two clients on the other side. The remaining
links from the servers and clients to their respective bot-
tleneck routers operated at 1000 Mb. Each server was
paired with one client, with connections occurring only
within each server/client pair. One pair generated a sin-
gle “foreground” TCP or Trickles flow. The other pair
generated a variable number of background TCP flows.
We compared the throughput achieved by the foreground
flow for Trickles and TCP, versus varying numbers of
background connections (Figure 13). In all cases, Trick-
les performance was similar to that of TCP.

Continuation optimizations
The SKIP and parallel continuation request mechanisms
allow Trickles to efficiently support pipelined transfers,
enhancing protocol performance over wide area net-
works. We verified their effectiveness over WAN con-
ditions by using nistnet [7] to introduce artificial delays
on a point-to-point, 100 Mb link. The single client main-
tained 10 outstanding pipelined requests, and the server
sent advanced SKIP notifications when 50% of the file
was transmitted.

We compared the performance of TCP and Trickles
for pipelined connections over a point-to-point link with
10ms RTT. The file size was 250kB. This object size
ensures that the link can be filled, independent of the
continuation request mechanism. Trickles achieves 86
Mb/s, and TCP 91 Mb/s. Thus, with SKIP hints Trickles
achieves performance similar to that of TCP.

11

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 185

RTT (ms)
10 20 50 100

Tr
an

sf
er

 ra
te

 (M
b/

s)

0

10

20

30

40

50

60

70
TCP pipelined
Trickles Skip
Trickles Skip+Request

Figure 14: Throughput comparison of pipelined transfers
with 20 kB objects, smaller than the bandwidth-delay
product.

We also verified that issuing continuation re-
quests in parallel improves performance. We added
the msk request() interface that takes application-
specified data and reliably transmits the data to the server
for conversion into an output continuation. These re-
quests are non-blocking, and multiple such requests can
be pending at any time. In Figure 14, the object sizes
are small, so a Trickles client using SKIP with the sock-
ets interface cannot receive output continuations quickly
enough to fill the link. The Trickles client supporting par-
allel requests can receive continuations more frequently,
resulting in performance comparable to TCP.

Summary
Compared to TCP, Trickles achieves similar or better
throughput and scales asymptotically better in terms of
memory. It is also TCP-friendly. Trickles incurs a sig-
nificant CPU utilization overhead versus baseline TCP,
but this additional CPU utilization does not pose a per-
formance bottleneck even at gigabit speeds. The continu-
ation management mechanisms allow Trickles to achieve
performance comparable to TCP over a variety of simu-
lated network delays and with both pipelined and non-
pipelined connections.

6.2 Macrobenchmarks
The stateless Trickles protocol, and the new event-driven
Trickles interface, enable a new class of stateless ser-
vices. We examine three such services, and we also eval-
uate Trickles under real-world network loss and delay.

PlanetLab measurements
We validated Trickles under real Internet conditions us-
ing PlanetLab [5]. We ran a variant of the throughput ex-
periment in which both the server and the client were lo-
cated in our local cluster, but with all traffic between the
two nodes redirected (bounced) through a single Planet-
Lab node m. Packets are first sent from the source node
to m, then from m to the destination node. Thus, packets
incur twice the underlying RTT to PlanetLab.

RTT (ms)
50 100 150 200 250 300 350

Tr
an

sf
er

 ra
te

 (M
b/

s)

0
1
2
3
4
5
6
7
8

TCP
Trickles
Trickles Piggyback

Figure 15: Trickles and TCP PlanetLab throughput.

 0
 200
 400
 600
 800

 1000

 5 10 15 20 25 30

In
st

an
ta

ne
ou

s
tra

ns
fe

r r
at

e
(M

b/
s)

Time (seconds)

TCP 0ms
Trickles 0ms

Figure 16: Failover behavior. Disconnection occurs at
t = 10 seconds.

Figure 15 summarizes the average throughput for a
160kB file. PlanetLab nodes are grouped into 50 ms bins
by the RTT measured by the endpoints. Trickles achieves
similar performance to TCP under comparable network
conditions.

Instantaneous failover
Trickles enables connections to fail over from a failed
server to a live backup simply through a network-level
redirection. If network conditions do not change signifi-
cantly during the failover to invalidate the protocol pa-
rameters captured in the continuation, a server replica
can resume packet processing transparently and seam-
lessly. In contrast, TCP recovery from server failure fun-
damentally requires several out of band operations. TCP
needs to detect the disconnection, re-establish the con-
nection with another server, and then ramp back up to
the original data rate.

We compared Trickles and TCP failover on a 1000
Mb single server/single client connection. At 10 sec-
onds, the server application is killed and immediately
restarted. Figure 16 contains a trace illustrating the re-
covery of Trickles and TCP. Since transient server fail-
ures are equivalent to packet loss at the network level,
Trickles flows can recover quickly and transparently us-
ing fast recovery or slow start. The explicit recovery
steps needed by TCP increases its recovery time.

Packet-level load balancing
Trickles requests are self-describing, and hence can be
processed by any server machine. This allows the net-
work to freely dispatch request packets to any server.
With TCP, network level redirection must ensure that

12

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association186

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

In
de

x

Number of connections

TCP
Trickles

Figure 17: Jain’s fairness index in load balancing cluster
with two servers and two clients. Allocation is fair when
each client receives the same number of bytes.

packets from a particular flow are always delivered to
the same server. Hence, Trickles allows load balancing
at packet granularity, whereas TCP allows load balancing
only at connection granularity.

Packet-level granularity improves bandwidth alloca-
tion. We used an IP layer packet sprayer to implement
a clustered web server with two servers and two clients.
The IP packet sprayer uses NAT to present a single ex-
ternal server IP to the clients. In the test topology, the
clients, servers, and packet sprayer are connected to a
single Ethernet switch. The servers are connected to the
switch at 100 Mb to introduce a single bottleneck on the
server–client path.

TCP and Trickles tests used different load balanc-
ing algorithms. TCP connections were assigned to
servers using the popular “least connections” heuristic,
which permanently assigns new TCP connections to the
node with the least number of connections at arrival
time. Trickles connections were processed using a per-
packet algorithm that dispatched packets on a round-
robin schedule.

Figure 17 compares the Jain’s fairness index[14] of the
total throughput versus the uniform allocation. For most
data points, Trickles more closely matches the uniform
distribution than TCP does.

Dynamic content
Loss recovery in a stateless system may require the re-
computation of past data; this is more challenging for dy-
namic content. To demonstrate the generality of stateless
servers, we implemented a watermarking media server
that modifies standard media files to custom versions
containing a client-specific watermark. Such servers
are relevant for DRM media distribution systems, where
content providers may apply client-specific transforms to
digital media before transmission. Client customization
inherently prevents multiple simultaneous downloads of
the same object from sharing socket buffers, thus increas-
ing the memory footprint of the network stack.

We built a JPEG watermarking application that pro-
vides useful insights into continuation encoding for state-
less operation. JPEG relies on Huffman coding of image
data, which requires a non-trivial continuation structure.

The exact bit position of a particular symbol after Huff-
man coding is not purely stateless, as it is dependent on
the bit position of the previous symbols.

In our Trickles-based implementation of such a server,
the output continuation records the bit alignments of en-
coded JPEG coding units at regular intervals. When gen-
erating output continuations, the server runs the water-
marking algorithm to determine these bit positions, and
discards the actual data. While processing a request, the
server consults the bit positions in the output continua-
tion for the proper bit alignment to use for the response.

7 Related Work
Previous work has noted the enhanced scalability and se-
curity properties of stateless protocols and algorithms.
Aura et al. [2] developed a general framework for con-
verting stateful protocols to stateless protocols, and ap-
plied this to authentication protocols, and noted denial-
of-service resilience and potential for anycast applica-
tions as benefits of stateless protocols. Trickles deals
with the more general problem of streaming data, pro-
vides a high performance stateless congestion control al-
gorithm. Stateless Core Routing (SCORE) [22] redis-
tributes state in routing algorithms to improve scalabil-
ity. Rather than placing state at the core routers, where
holding state is expensive and often infeasible, SCORE
moves the state to the edge of the network.

Continuations are used in several existing systems.
SYN cookies are a classic modification to TCP that uses
a simple continuation to eliminate per-connection state
during connection setup [6, 27]. NFS directory cookies
[25] are application continuations.

Continuations for Internet services have been explored
at a coarser granularity than in Trickles. Session-based
mobility [21] adds continuations at the application layer
to support migration and load balancing. Service Contin-
uations [23, 24] record state snapshots, and move these
to new servers during migration. In these systems, con-
tinuations are large and used infrequently in explicit mi-
gration operations controlled by connection endpoints.
Trickles provides continuations at packet level, enabling
new functionality within the network infrastructure.

Receiver-driven protocols [12, 13] provide clients with
more control over congestion control. Since congestion
often occurs near clients, and is consequently more read-
ily detectable by the client, such systems can adapt to
congestion more quickly. Trickles contributes a secure,
light-weight congestion control algorithm that enforces
strong guarantees on receiver behavior.

Several kernel interfaces address the memory and
event-processing overhead of network stacks. IO-
lite [18] reduces memory overhead by enabling buffer
sharing between different connections and the filesystem.
Dynamic buffer tuning [20] allocates socket buffer space

13

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 187

to connections where it is most needed. Event interfaces
such as epoll(), kqueue(), and others [16, 4] provide effi-
cient mechanisms for multiplexing events from different
connections.

8 Conclusions and future work

Trickles demonstrates that it is possible to build a com-
pletely stateless network stack that offers many of the
desirable properties of TCP; namely, efficient, reliable
transmission of data streams between two endpoints.
As a result, the stateless side of a Trickles connection
can offer good performance with a very small memory
footprint. Statelessness in Trickles extends all the way
into applications: the server-side API enables servers
to export their state to the client through a user contin-
uation mechanism. Cryptographic hashes prevent un-
trusted clients from tampering with server state. Trickles
is backwards compatible with existing TCP clients and
servers, and can be adopted incrementally.

Beyond efficiency and scalability, statelessness en-
ables new functionality that is awkward or impossible
in a stateful system. Trickles enables load-balancing
at packet granularity, instantaneous failover via packet
redirection, and transparent connection migration. Trick-
les servers may be replicated, geographically distributed,
and contacted through an anycast primitive, and yet pro-
vide the same semantics as a single stateful server.

Statelessness is a valuable property in many do-
mains. The techniques used to convert TCP to a stateless
protocol—for example, the methods for working around
the intrinsic information propagation delays—may also
have applications to other network protocols and dis-
tributed systems.

Acknowledgments

We would like to thank Paul Francis, Larry Peterson, and
the anonymous reviewers for their feedback.

This work was supported by the Department of the Navy,
Office of Naval Research, ONR Grant N00014-01-1-0968; and
National Science Foundation grants 0208642, 0133302, and
0430161. Andrew Myers is supported by an Alfred P. Sloan
Research Fellowship. Opinions, findings, conclusions, or rec-
ommendations contained in this material are those of the au-
thors and do not necessarily reflect the views of these sponsors.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right notation thereon.

References
[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.

RFC 2581, Apr. 1999.
[2] T. Aura and P. Nikander. Stateless Connections. In Proceedings

of the International Conference on Information and Communica-
tion Security, pages 87–97, Beijing, China, Nov. 1997.

[3] H. Ballani and P. Francis. Towards a Deployable IP Anycast Ser-
vice. In Proceedings of the Workshop on Real, Large Distributed
Systems, San Francisco, CA, Dec. 2004.

[4] G. Banga, J. C. Mogul, and P. Druschel. A Scalable and Ex-
plicit Event Delivery Mechanism for UNIX. In Proceedings of
the USENIX Annual Technical Conference, pages 253–265, Mon-
terey, CA, June 1999.

[5] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Oper-
ating Systems Support for Planetary-Scale Network Services. In
Proceedings of the Symposium on Networked Systems Design and
Implementation, San Francisco, CA, Mar. 2004.

[6] D. Bernstein. SYN Cookies. http://cr.yp.to/syncookies.html.
[7] M. Carson and D. Santay. NIST Net. http://www-

x.antd.nist.gov/nistnet.
[8] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and

I. Pratt. Performance Optimizations for Wireless Wide-Area Net-
works: Comparative Study and Experimental Evaluation. In Pro-
ceedings of MobiCom, Philadelphia, PA, Sept. 2004.

[9] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1999.
[10] D. Ely, N. Spring, D. Wetherall, S. Savage, and T. Anderson.

Robust Congestion Signaling. In Proceedings of the International
Conference on Network Protocols, pages 332 – 341, Riverside,
CA, Nov. 2001.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP / 1.1. RFC 2616, June 1999.

[12] R. Gupta, M. Chen, S. McCanne, and J. Walrand. A Receiver-
Driven Transport Protocol for the Web. In Proceedings of IN-
FORMS, San Antonio, TX, Nov. 2000.

[13] H.-Y. Hsieh, K.-H. Kim, Y. Zhu, and R. Sivakumar. A Receiver-
Centric Transport Protocol for Mobile Hosts with Heterogeneous
Wireless Interfaces. In Proceedings of MobiCom, San Diego, CA,
Sept. 2003.

[14] R. Jain. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. John Wiley and Sons, Inc., 1991.

[15] B. Krishnamurthy, J. C. Mogul, and D. M. Kristol. Key Differ-
ences between HTTP/1.0 and HTTP/1.1. In Proceedings of the
World Wide Web Conference, Toronto, Canada, May 1999.

[16] J. Lemon. Kqueue: A Generic and Scalable Event Notification
Facility. In Proceedings of the USENIX Annual Technical Con-
ference, Boston, MA, June 2001.

[17] J. Mogul, L. Brakmo, D. E. Lowell, D. Subhraveti, and J. Moore.
Unveiling the Transport. SIGCOMM Computer Communications
Review, 34(1):99–106, 2004.

[18] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A Unified
I/O Buffering and Caching System. In Proceedings of the Sym-
posium on Operating Systems Design and Implementation, New
Orleans, LA, Feb. 1999.

[19] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP
Congestion Control with a Misbehaving Receiver. SIGCOMM
Computer Communications Review, 29(5):71–78, 1999.

[20] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP Buffer
Tuning. In Proceedings of ACM SIGCOMM, Vancouver, Canada,
Aug. 1998.

[21] A. C. Snoeren. A Session-Based Approach to Internet Mobility.
PhD thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Dec. 2002.

[22] I. Stoica. Stateless Core: A Scalable Approach for Quality of
Service in the Internet. PhD thesis, Department of Electrical and
Computer Engineering, Carnegie Mellon University, 2000.

[23] F. Sultan. System Support for Service Availability, Remote Heal-
ing and Fault Tolerance Using Lazy State Propagation. PhD
thesis, Division of Computer and Information Sciences, Rutgers
University, Oct. 2004.

[24] F. Sultan, A. Bohra, and L. Iftode. Service Continuations: An
Operating System Mechanism for Dynamic Migration of Internet
Service Sessions. In Proceedings of the Symposium on Reliable
Distributed Systems, Florence, Italy, Oct. 2003.

[25] Sun Microsystems. NFS: Network File System Protocol Specifi-
cation. RFC 1094, Mar. 1989.

[26] G. Wright and W. Stevens. TCP/IP Illustrated, Volume 2.
Addison-Wesley Publishing Company, Reading, MA, Oct. 1997.

[27] A. Zúquete. Improving the Functionality of SYN Cookies. In
Proceedings of the IFIP Communications and Multimedia Secu-
rity Conference, Portoroz, Slovenia, Sept. 2002.

14

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association188

