Decentralized, Adaptive Resource Allocation for Sensor
Networks

Geoffrey Mainland, David C. Parkes, and Matt Welsh
Division of Engineering and Applied Sciences
Harvard University
{mainland,parkes,mdw } @ eecs.harvard.edu

Abstract

This paper addresses the problem of resource allocation in sensor
networks. We are concerned with how to allocate limited energy,
radio bandwidth, and other resources to maximize the value of
each node’s contribution to the network. Sensor networks present
anovel resource allocation challenge: given extremely limited re-
sources, varying node capabilities, and changing network condi-
tions, how can one achieve efficient global behavior? Currently,
this is accomplished by carefully tuning the behavior of the low-
level sensor program to accomplish some global task, such as
distributed event detection or in-network data aggregation. This
manual tuning is difficult, error-prone, and typically does not con-
sider network dynamics such as energy depletion caused by bursty
communication patterns.

We present Self-Organizing Resource Allocation (SORA), a
new approach for achieving efficient resource allocation in sen-
sor networks. Rather than manually tuning sensor resource usage,
SORA defines a virtual market in which nodes sell goods (such as
sensor readings or data aggregates) in response to prices that are
established by the programmer. Nodes take actions to maximize
their profit, subject to energy budget constraints. Nodes individu-
ally adapt their operation over time in response to feedback from
payments, using reinforcement learning. The behavior of the net-
work is determined by the price for each good, rather than by
directly specifying local node programs.

SORA provides a useful set of primitives for controlling
the aggregate behavior of sensor networks despite variance of
individual nodes. We present the SORA paradigm and a sensor
network vehicle tracking application based on this design, as well
as an extensive evaluation demonstrating that SORA realizes an
efficient allocation of network resources that adapts to changing
network conditions.

1 Introduction

Sensor networks, consisting of many low-power, low-
capability devices that integrate sensing, computation, and
wireless communication, pose a number of novel systems
problems. They raise new challenges for efficient com-
munication protocols [13, 44], distributed algorithm de-
sign [11, 24], and energy management [1, 5]. While a num-
ber of techniques have been proposed to address these chal-
lenges, the general problem of resource allocation in sensor
networks under highly volatile network conditions and lim-
ited energy budgets remains largely unaddressed. Current
programming models require that global behavior be spec-
ified in terms of the low-level actions of individual nodes.
Given varying node locations, capabilities, energy budgets,
and time-varying network conditions, this approach makes
it difficult to tune network-wide resource usage. We argue

that new techniques are required to bridge the gap from
high-level goals to low-level implementation.

In this paper, we present a novel approach to adap-
tive resource allocation in sensor networks, called Self-
Organizing Resource Allocation (SORA). In this approach,
individual sensor nodes are modeled as self-interested
agents that attempt to maximize their “profit” for perform-
ing local actions in response to globally-advertised price in-
formation. Sensor nodes run a very simple cost-evaluation
function, and the appropriate behavior is induced by adver-
tising prices that drives nodes to react. Nodes adapt their
behavior by learning their utility for each potential action
through payment feedback. In this way, nodes dynamically
react to changing network conditions, energy budgets, and
external stimuli. Prices can be set to meet systemwide goals
of lifetime, data fidelity, or latency based on the needs of
the system designer.

Consider environmental monitoring [9, 28] and dis-
tributed vehicle tracking [23, 45], which are two oft-cited
applications for sensor networks. Both applications require
nodes to collect local sensor data and relay it to a central
base station, typically using a multihop routing scheme. To
reduce bandwidth requirements, nodes may need to aggre-
gate their local sensor data with that of other nodes. In-
network detection of distributed phenomena, such as gra-
dients and isobars, may require more sophisticated cross-
node coordination [15, 41, 47].

Two general challenges emerge in implementing these
applications. First, nodes must individually determine the
ideal rate for sampling, aggregating, and sending data to
operate within some fixed energy budget. This rate affects
overall lifetime and the accuracy of the results produced
by the network. Each node’s ideal schedule is based on
its physical location, position in the routing topology, and
changes in environmental stimuli. Many current applica-
tions use a fixed schedule for node actions, which is sub-
optimal when nodes are differentiated in this way. Sec-
ond, the system may wish to tune these schedules in re-
sponse to changes in the environment, such as the target
vehicle’s location and velocity, to meet goals of data rate
and latency. More complex adaptations might involve se-
lectively activating nodes that are expected to be near some

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation 315

phenomenon of interest. Currently, programmers have to
implement these approaches by hand and have few tools to
help determine the ideal operating regime of each node.

Rather than defining a fixed node schedule, SORA
causes nodes to individually tune their rate of operation us-
ing techniques from reinforcement learning [37]. Nodes
receive virtual payments for taking “useful” actions that
contribute to the overall network goal, such as listening for
incoming radio messages or taking sensor readings. Each
node learns which actions are profitable based on feedback
from receiving payments for past actions. Network retask-
ing is accomplished by adjusting prices, rather than push-
ing new code to sensor nodes. Network lifetime is con-
trolled by constraining nodes to take actions that meet a
local energy budget.

In this paper, we focus on a specific challenge applica-
tion, vehicle tracking, which provides a rich space of prob-
lems in terms of managing latency, accuracy, communica-
tion overhead, and task decomposition. The SORA model
is not specifically tailored to tracking, however, and can be
readily adopted for other problem domains. We present a
thorough evaluation of the SORA approach using a realistic
sensor network simulator. Our results demonstrate that, us-
ing SORA, resource allocation within the sensor network
can be controlled simply by advertising prices, and that
nodes self-organize to take the set of actions that make the
greatest contribution to the global task under a limited en-
ergy budget. This paper expands on our previous workshop
paper [18] on SORA, presenting a thorough evaluation of
the approach.

We show that SORA achieves more efficient alloca-
tion than static node scheduling (the most commonly-used
approach currently in use), and outperforms a dynamic
scheduling approach that accounts for changes in energy
availability. In addition, SORA makes it straightforward to
differentiate node activity by assigning price vectors that
influence nodes to select certain actions over others.

The rest of this paper is organized as follows. In Sec-
tion 2 we present the background for the SORA approach,
specific goals, and related work. Section 3 presents the
Self-Organizing Resource Allocation model in detail, and
Section 4 describes the use of SORA in our vehicle track-
ing application. Section 5 presents our implementation of
SORA in a realistic sensor network simulator, as well as
evaluation in terms of network behavior and node special-
ization as prices, energy budgets, and other parameters are
tuned. Finally, Section 6 describes future work and con-
cludes.

2 Motivation and Background

Sensor networks consist of potentially many nodes with
very limited computation, sensing, and communication ca-
pabilities. A typical device is the UC Berkeley Mica2
node, which consists of a 7.3 MHz ATmegal28L processor.

128KB of code memory, 4KB of data memory, and a Chip-
con CC1000 radio capable of 38.4 Kbps and an outdoor
transmission range of approximately 300m. The node mea-
sures 5.7cm x 3.1cm x 1.8cm and is typically powered by
2 AA batteries with an expected lifetime of days to months,
depending on application duty cycle. The limited memory
and computational resources of this platform make an inter-
esting design point, as software layers must be tailored for
this restrictive environment. The Mica2 node uses a lean,
component-oriented operating system, called TinyOS [16],
and an unreliable message-passing communication model
based on Active Messages [38].

To begin, we outline the distributed resource allocation
problem that arises in the sensor network domain. We high-
light several prior approaches to this problem and make the
case for market-based techniques as an attractive solution.

2.1 Resource allocation in sensor networks

Sensor networks have been proposed for a wide range of
novel applications. Examples include instrumenting build-
ings, bridges, and other structures to measure response
to seismic events [8, 20], monitoring environmental con-
ditions and wildlife habitats [9, 28], tracking of vehicles
along a road or in an open area [43], and real-time moni-
toring of patient vital signs for emergency and disaster re-
sponse [25, 33].

One of the core challenges of sensor application design
is balancing the resource usage of individual nodes with the
global behavior desired of the network. In general, the se-
quence of actions taken by a node affects local energy con-
sumption, radio bandwidth availability, and overall quality
of the results. However, tuning the resource usage of in-
dividual sensor nodes by hand is difficult and error-prone.
Although TinyOS [16] and other systems provide interfaces
for powering down individual hardware devices such as the
radio and CPU, using these interfaces in a coordinated fash-
ion across the network requires careful planning. For ex-
ample, if a node is sleeping, it cannot receive or route radio
messages.

The typical approach to scheduling sensor operations is
to calculate a static schedule for all nodes in the network.
For example, query-based systems such as TinyDB [26]
and Cougar [46] allow the user to specify a query epoch
that drives periodic sampling, aggregation, and data trans-
mission. Other programming models, such as directed dif-
fusion [12, 17], abstract regions [41], or Hoods [43], ei-
ther assume periodic data collection or leave scheduling to
higher-level code. However, an application that uses a fixed
schedule for every node will exhibit very different energy
consumption rates across the network. For example, nodes
responsible for routing messages will consume more en-
ergy listening for and sending radio messages. Likewise,
nodes on the network periphery may not need to route ra-
dio messages at all.

Another solution is to compute, offline, the optimal
schedule for each node based on a model of radio con-

316

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

nectivity, node location, and physical stimuli that induce
network activity. For example, Adlakha et al. [1] describe
a design-time recipe for tuning aspects of sensor networks
to achieve given accuracy, latency, or lifetime goals. How-
ever, this approach assumes a statically-configured network
where resource requirements are known in advance, rather
than allowing the network behavior to be tuned at runtime
(say, in response to increased activity).

Other systems have attempted to address the node
scheduling problem for specific applications or communi-
cation patterns. For example, Liu et al. [24] describe an
approach to tracking a moving half-plane shadow through
a sensor network that can be used to selectively activate
nodes along the frontier of the shadow. STEM [34] is a
protocol that dynamically wakes nodes along a routing path
to trade energy consumption for latency. LEACH [13] is a
cluster-based routing scheme that rotates the local cluster-
head to distribute energy load across multiple nodes. These
techniques point to more general approaches to adapting
the behavior of sensor networks to maximize lifetime.

Providing application control over resource usage is of-
ten desirable when designing high-level programming ab-
stractions for sensor networks. Abstract regions [41] fo-
cuses on the ability to tune the communication layer to
trade off energy for accuracy. Likewise, TinyDB provides a
lifetime keyword that scales the query sampling and trans-
mission period of individual nodes to meet a user-supplied
lifetime target [27]. Both of these approaches provide a
means for nodes to “self-tune” their behavior to meet spe-
cific systemwide resource and accuracy targets. However,
the general problem of adaptive resource allocation in sen-
sor networks has not been adequately addressed.

2.2 Al-based approaches to resource allocation

The SORA approach draws on the areas of reinforcement
learning and economic theory to yield new techniques for
decentralized optimization in sensor networks. In rein-
forcement learning [37], an agent attempts to maximize
its “reward” for taking a series of actions. Whether or
not a node receives a reward is defined by the success of
the action; for example, whether a radio message is re-
ceived while the node is listening for incoming messages.
The agent’s goal is to maximize its reward, subject to con-
straints on resource usage, such as energy.

The reward for each successful action can be modeled
as a price in a virtual market. By applying ideas from eco-
nomic theory, SORA attempts to achieve efficient resource
allocation in a decentralized fashion. Economics has been
used as an inspiration for solving resource-management
problems in many computational systems, such as net-
work bandwidth allocation [35], distributed database query
optimization [36], and allocating resources in distributed
systems such as clusters, Grids, and peer-to-peer net-
works [3, 4, 7, 10, 39].

Much of this prior work has been concerned with
resource arbitration across multiple self-interested users,

which may attempt to cheat or otherwise hoard resources in
the system for their own advantage. In the sensor network
context, however, we assume that nodes are well-behaved
and program them to behave as the classic economic ac-
tors of microeconomic theory. Thus, we use markets as
a programming paradigm, not because we are concerned
with self-interested behavior of sensor nodes. We need not
model complex game-theoretic behavior, but can instead
focus on nodes that (by design) are classic price-taking eco-
nomic agents.

SORA is inspired by Wellman’s seminal work on
market-oriented programming [30, 40], which uses mar-
ket equilibrium to solve statically-defined distributed op-
timization problems. We believe that SORA is the first
serious attempt to use market-oriented methods to pro-
vide complete runtime control for a real distributed sys-
tem. This systems focus leads us to consider continuous,
real-time resource allocation, while Wellman’s work was
concerned with solving a static allocation problem. Other
recent work has applied economic ideas to specific sensor
network problems. For instance, market-inspired methods
have been suggested for the problems of ad hoc routing [2]
and information-directed query processing [47]. Our goal
in SORA is not to provide a point solution but to address
the general issue of adaptive resource allocation.

3 Self-Organizing Resource Allocation

In Self-Organizing Resource Allocation (SORA), sensor
nodes are programmed to maximize their “profit” by tak-
ing actions subject to energy constraints. Actions that con-
tribute to the network’s overall goal, such as taking useful
sensor readings or forwarding radio messages, result in a
payment to the node taking the action. By setting the price
for each action, the network’s global behavior can be tuned
by the system designer. Nodes continuously learn a model
for which actions are profitable, allowing them to adapt to
changing conditions.

3.1 Goals

The essential problem that SORA addresses is that of deter-
mining the set of local actions to be taken by each sensor
node to meet some global goals of lifetime, latency, and
accuracy for the data produced by the network as a whole.
Each node can take a set of local actions (such as data sam-
pling, aggregation, or routing), each with varying energy
costs and differing contributions to the global task of the
network. Through self-scheduling, nodes independently
determine their ideal behavior (or schedule) subject to con-
straints on local energy consumption. Self-scheduling in
SORA meets three key goals:

Differentiation: Nodes in a sensor network are heteroge-
neous in terms of their position in the network topology,
resource availability, and proximity to phenomena of in-
terest. Through self-scheduling, nodes differentiate their
behavior based on this variance. For example, nodes closer

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation 317

to phenomena of interest should acquire and transmit more
sensor readings than those nodes that are further away.

Adaptivity: Differentiation in nodal behavior should also
vary with time, as external stimuli move, nodes join and
leave the network, energy reserves are depleted, and net-
work connectivity shifts. Such adaptation permits a more
efficient use of network resources. For example, nodes will
consume energy only when it is worthwhile to do so based
on current network conditions, rather than as dictated by an
a priori schedule.

Control: Finally, a system designer should have the ability
to express systemwide goals and effect control over the be-
havior of the network despite uncertainty in the exact state,
energy reserves, and physical location of sensor nodes. For
example, if the data rate being generated by the network
is insufficient for the application’s needs, nodes should be
instructed to perform sampling and routing actions more
frequently. This goal differs from internal adaptation by
nodes, since it requires external observation and manipula-
tion.

3.2 SORA overview

In the SORA model, each sensor node acts as an agent
that attempts to maximize its profit for taking a series of
actions. Each action consumes some amount of energy
and produces one or more goods that have an associated
price. Nodes receive payments by producing goods that
contribute value to the network’s overall operation. For ex-
ample, a node may be paid for transmitting a sensor read-
ing that indicates the proximity of a target vehicle, but not
be paid if the vehicle is nowhere nearby. Reacting to this
payment feedback is the essential means of adaptivity in
SORA. Prices are determined by the client of the sensor
network, which can be thought of as an external agent that
receives data produced by the network and sets prices to
induce network behavior.

The local program executed by each node is simple and
avoids high communication overhead in order to operate
efficiently. In the SORA approach, nodes operate using
primarily local information about their state, such as energy
availability. The only global information shared by nodes
is the current set of prices, which are defined by the sensor
network client. To minimize overhead, prices should be
updated infrequently (for example, to effect large changes
in the system’s activity) and can be propagated to nodes
through a variety of efficient gossip or controlled-flooding
protocols [22].

3.3 Goods and actions

The actions that sensor nodes can take depend on the appli-
cation, but typically include sampling a sensor, aggregating
multiple sensor readings, or broadcasting a radio message.
An action may be unavailable if the node does not currently
have enough energy to perform the action. In addition, pro-
duction of one good may have dependencies on the avail-

ability of others. For example, a node cannot aggregate
sensor readings until it has acquired multiple readings.

Taking an action may or may not produce a good of
value to the sensor network as a whole. For example, listen-
ing for incoming radio messages is only valuable if a node
hears a transmission from another node. Likewise, trans-
mitting a sensor reading is only valuable if the reading has
useful informational content. We assume that nodes can de-
termine locally whether a given action deserves a payment.
This works well for the simple actions considered here, al-
though more complex actions (e.g., computing a function
over a series of values) may require external notification
for payments.

3.4 Energy budget

A node’s energy budget constrains the actions that it can
take. We assume that nodes are aware of how much energy
each action takes, which is straightforward to measure of-
fline. The energy budget can be modeled in a number of
different ways. A simple approach is to give each node a
fixed budget that it may consume over an arbitrary period
of time. In this case, however, nodes may rapidly deplete
their energy resources by taking many energy-demanding
actions, resorting to less-demanding actions only when re-
serves get low.

To capture the desire for nodes to consume energy at a
regular rate, we opt to use a token bucket model for the
budget. Each node has a bucket of energy with a maximum
capacity of C' Joules, filling at a rate p that represents the
average desired rate of energy usage (e.g., 1000 J per day).
When a node takes an action, the appropriate amount of en-
ergy is deducted from the bucket. If a node cannot take any
action because its bucket is too low, it must sleep, which
places the node in the lowest-possible energy state.

The capacity C represents the total amount of energy
that a node can consume in one “burst.” If C is set to
the size of the node’s battery, the node is able to consume
its entire energy reserves at once. By limiting C, one can
bound the total amount of energy used by a node over a
short time interval.

3.5 Agent operation

Given a set of actions, goods produced by those actions,
prices for each good, and energy cost for each action, each
agent operates as follows. A node simply monitors its local
state and the global price vector, and periodically selects
the action that maximizes its utility for each action. Upon
taking that action, the node’s energy budget is reduced by
the appropriate amount, and the node may or may not re-
ceive a payment depending on whether its action produced
a valuable good. We define the utility function u(a) for an
action a to be:

| Baps if the action is available
u(a) = { 0 otherwise

318

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

where p, is the current price for action a, and 3, is the
estimated probability of payment for that action, which is
learned by nodes as described below. An action may be
unavailable if either the current energy budget is too low
to take the action, or other dependencies have not been met
(such as lack of sensor readings to aggregate).

In essence, the utility function represents the expected
profit for taking a given action. The parameter 3, is con-
tinuously estimated by nodes over time in response to the
success of taking each action. This is a form of reinforce-
ment learning [37]. After taking an action a, the new value
(3!, is calculated based on whether the action received a pay-
ment:

!/ Oé—‘r(l—&)ﬁa
ﬁ _{ (1_a)ﬁa

a

« represents the sensitivity of the EWMA filter (in our ex-
periments, o = 0.2). In this way, nodes learn which ac-
tions are likely to result in payments, leading to a natural
self-organization depending on the node’s location in the
network or intrinsic capabilities. For example, a node that
has the opportunity to route messages for other nodes will
be paid for listening for incoming radio messages; nodes on
the edges of the network will learn that this action is rarely
(if ever) profitable.

The expected profit for an action will vary over time
due to price adjustments and changing environmental con-
ditions. Therefore, it is important that nodes periodically
“take risks” by choosing actions that have a low payment
probability 5,. We employ an e-greedy action selection
policy. That is, with probability 1 — e (for some small €; we
currently use € = 0.05), nodes select the “greedy” action
that maximizes the utility u(a). However, with probability
€ anode will select an (available) action from a uniform dis-
tribution. In effect, this ignores the value of 3, and allows
a node to explore for new opportunities for profit. Such
exploration prevents a node from never electing to take an
action because it has not recently been paid to do so [37].

Our current reinforcement learning scheme does not
take into consideration other aspects of a node’s state, such
as the sequence of past actions or the state of neighbor-
ing nodes, which may lead to more efficient solutions.
However, these techniques involve considerable complex-
ity, which goes against our goals of simplicity and limiting
per-node state. We intend to explore alternative learning
algorithms as part of future work.

if a receives a payment
otherwise

3.6 Price selection and adjustment

In SORA, the global behavior of the network is controlled
by the client establishing prices for each good. Prices are
propagated to sensor nodes through an efficient global data
dissemination algorithm, such as SPIN [14] or Trickle [22].
The client can also adjust prices as the system runs, for
example, to affect coarse changes in system activity.

There is a complex relationship between prices and
agent behavior. Raising the price for a good will not neces-

Action Energy consumed
sample (single sensor) 841 x107°J
send (single message) 2.45 x 1073 J
listen 5.97 x 107%J
sleep 8.25 x 107°J
aggregate (compute max of array) | 8.41 x 107°.J

Figure 1: Energy consumed for each sensor action.

sarily induce more nodes to produce that good; the dynam-
ics of maximizing expected profits may temper a node’s
desire to take a given action despite a high price. Our ex-
periments in Section 5 demonstrate the effect of varying
prices. As it turns out, subtle changes to prices do not have
much impact on global network behavior. This is because
each node’s operation is mostly dictated by its adaptation to
coarse-grained changes in the local state, such as whether
sampling sensors or listening for incoming radio messages
is currently profitable. Prices serve to differentiate behavior
only when a node has multiple profitable actions to choose
between. Even when one action has a much higher price
than others, nodes will still take a mixture of actions due
to continual exploration of the state space through the e-
greedy learning policy.

The best approach to selecting optimal price settings in
SORA is still an open problem. Given the complexities of
agent operations and unknown environmental conditions,
analytically solving for prices to obtain a desired result is
not generally possible. In a stationary system, it is possible
to search for optimal prices by slowly adjusting each price
and observing its effect on network behavior; this approach
is used by the WALRAS system [40].

A better approach is to determine prices empirically
based on an observation of the network’s behavior at dif-
ferent price points. For example, a system designer can
experiment with a testbed deployment or simulation to un-
derstand the effect of differing prices on overall behavior.
Prices can be readily tuned after deployment, since broad-
casting a new price vector to an active network is not ex-
pensive. This process could be automated by an external
controller that observes the network behavior over time and
adjusts prices accordingly.

One approach to setting prices, based on economic prin-
ciples, is to establish a competitive equilibrium, where the
supply of goods produced by the network equals the de-
mand for those goods expressed by the client. This model
is attractive when there are multiple users programming the
sensor network to take different sets of actions on their be-
half, since equilibrium prices ensure that network resources
are shared in an optimal manner. However, computing
equilibrium prices often requires continuous information
on the network’s supply of goods, which may lag pricing
updates. A detailed discussion of this technique is beyond
the scope of this paper, but we return to this problem in
Section 6.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

319

4 Application Example: Vehicle Tracking

As a concrete example of using SORA to manage resource
allocation in a realistic sensor network application, we con-
sider tracking a moving vehicle through a field of sensors.
We selected vehicle tracking as a “challenge application”
for SORA because it raises a number of interesting prob-
lems in terms of detection accuracy and latency, in-network
aggregation, energy management, routing, node specializa-
tion, and adaptivity [6, 43, 45]. Vehicle tracking can be
seen as a special case of the more general data collection
problem also found in applications such as environmental
and structural monitoring [20, 28].

4.1 Tracking overview

In the tracking application, each sensor is equipped with a
magnetometer capable of detecting local changes in mag-
netic field, which indicates the proximity of the vehicle to
the sensor node. One node acts as a fixed base station,
which collects readings from the other sensor nodes and
computes the approximate location of the vehicle based on
the data it receives. The systemwide goal is to track the lo-
cation of the moving vehicle as accurately as possible while
meeting a limited energy budget for each node.

Each sensor node can take the following set of actions:
sample a local sensor reading, send data towards the base
station, listen for incoming radio messages, sleep for some
interval, and aggregate multiple sensor readings into a sin-
gle value. Each node maintains a fixed-length LIFO buffer
of sensor readings, which may be sampled locally or re-
ceived as a radio message from another node. Each entry
in the buffer consists of a tuple containing a vehicle loca-
tion estimate weighted by a magnetometer reading. The
sample action appends a local reading to the buffer, and the
listen action may add an entry if the node receives a mes-
sage from another node during the listen interval.

Aggregation is used to limit communication bandwidth
by combining readings from multiple nodes into a single
value representing the “best” sensor reading. The aggregate
action replaces the contents of the sample buffer with a sin-
gle weighted position estimate, ignoring any sample older
than a programmer-defined constant (10 sec in our simula-
tions). The sleep action represents the lowest-energy state
of a node which is entered when energy is unavailable for
other actions, or no other action is deemed profitable. Fig-
ure 1 summarizes the energy requirements for each action,
based on measurements of the Mica2 sensor node.

4.2 Routing

All radio transmissions route messages towards the base
station using a multihop routing protocol. Nodes are not
assumed to be within a single radio hop of the base. The
choice of routing algorithm is not essential; we use a simple
greedy geographic routing protocol, similar to GPSR [19]
but without any face routing, although other routing algo-
rithms can be used [44, 17]. Messages are forwarded to the

neighboring node that is both physically closer to the desti-
nation (always the base station, in this case) and is currently
executing the /isten action. This protocol assumes a CTS-
RTS MAC layer that allows a node to send a message to any
one of its next-hop neighbors that are currently listening. In
this way, as long as any closer neighbor is currently listen-
ing, the message will be forwarded. This approach meshes
well with the stochastic nature of node actions in SORA
and does not require explicit coscheduling of senders and
receivers.

4.3 Discussion

SORA naturally leads to an efficient allocation of net-
work resources. Individual nodes are constrained to op-
erate within their energy budget, and the schedule for each
node may vary over time depending on network conditions
and external stimuli. Nodes continuously learn which ac-
tions are most profitable and thereby have the most value to
the sensor network as a whole. This emergent behavior is
more effective at allocating limited network resources than
traditional schemes based on static schedules.

The SORA approach captures a number of design trade-
offs that are worth further discussion. One advantage of
this model is that the nodal program is simple: nodes sim-
ply take actions to maximize their expected profit. Nodes
do not reason directly about dependencies or consequences
of a series of actions, ordering, or the rate at which actions
are taken. Because nodes learn the payoff probabilities 3,
they adapt to changing network conditions over time, and
different nodes will take different sets of actions depending
on their utility functions.

Adjusting prices gives the client of the network control
over the behavior of the system, allowing the network to
be readily retasked simply by advertising a new price vec-
tor. However, because nodes operate to maximize their ex-
pected profit, an equilibrium arises that balances the actions
taken by different nodes in the network. For example, in-
creasing the price of the listen action might substantially
reduce the number of nodes that choose to sample or send
sensor readings. However, since listening nodes are only
paid when other nodes send data, the proportion of sending
and listening nodes is kept in balance. This is a valuable
aspect of self-scheduling and does not require explicit co-
ordination across nodes; this equilibrium arises naturally
from the feedback of payments. We demonstrate this as-
pect of SORA in Section 5.

SORA can be viewed as a general approach to decen-
tralized resource allocation in sensor networks, and is not
specifically tailored for data collection and vehicle track-
ing. However, it is worth keeping in mind that many sensor
network applications operate by routing (and possibly ag-
gregating) data towards a single base station, as evidenced
by much prior work in this area [5, 11, 17, 26, 46]. It
seems clear that the SORA approach could be readily ap-
plied to this broad class of systems; for example, SORA
could be used to control the execution of query operators

320 NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

in TinyDB [26].

Extending SORA to other applications involves two ba-
sic steps: first, identifying the set of primitive actions and
goods that the system should expose, and second, measur-
ing the associated energy costs for each action. For ex-
ample, exposing a complex operation such as “compute
the sum-reduce of sensor readings over a node’s k nearest
neighborhood” [41] would be straightforward to wrap as
an SORA action. One requirement for actions is that data
dependencies be made explicit. For example, the send and
aggregate actions depend on the sensor reading buffer be-
ing non-empty. More complex actions might have a richer
set of dependencies that must be met in order to fire. This
suggests that nodes should be able to reason about taking a
sequence of actions to produce some (highly-valued) good;
this is another interesting avenue for future work.

S Experiments and Evaluation

To demonstrate the use of Self-Organizing Resource Al-
location in a realistic application setting, we have imple-
mented the SORA-based vehicle tracking system in a sen-
sor network simulator. This simulator captures a great
deal of detail, including hardware-level sensor operations
and a realistic radio communication model based on traces
of packet loss statistics in an actual sensor network. We
have also implemented the SORA-based tracking applica-
tion in TinyOS [16] using the TOSSIM [21] simulator en-
vironment. However, due to performance limitations in
TOSSIM, the results below are based on our custom simu-
lator that runs roughly an order of magnitude faster. This
performance gain is accomplished primarily by eliminat-
ing the high overhead associated with the TOSSIM GUI,
as well as eliding hardware-level details of node actions
that are not relevant to the SORA approach. We have veri-
fied that the two simulators produce nearly identical results.
The SORA code can be readily ported to run on actual sen-
sor nodes, and we are currently planning to take measure-
ments on our building-wide sensor network testbed [42].

Our evaluation of SORA has three basic goals. First, we
show that SORA allows nodes to self-schedule their actions
to achieve an efficient allocation of network resources. Sec-
ond, we show that SORA achieves much greater energy ef-
ficiency than traditional scheduling techniques without sac-
rificing data fidelity. Third, we show that SORA allows the
system designer to differentiate node actions by varying en-
ergy budgets and price vectors.

We compare the use of SORA to several other imple-
mentations of vehicle tracking that use different schedul-
ing techniques. These include the commonly-used static
scheduling technique, a dynamic energy-aware scheduling
scheme, and a tracking application based on the Berkeley
NEST design as described in [43]. These systems are de-
scribed in detail below.

5.1 Configuration

We simulated a network of 100 nodes distributed semi-
irregularly in a 100x100 meter area. The base station (to
which all nodes route their messages) is located near the
upper-left corner of this area. The energy cost for each ac-
tion is shown in Figure 1. The simulated vehicle moves in a
circular path of radius 30 m at a rate of 1.5 m/sec. Moving
the vehicle through such a path causes nodes in different
areas of the network to detect the vehicle and route sensor
readings towards the base station. The strength of each sen-
sor reading depends on the distance to the vehicle; sensors
cannot detect the vehicle when it is more than 11 meters
away.

Unless otherwise noted, the energy budget for each
node is 1000 J/day, corresponding to a node lifetime of
30.7 days.! The prices for all actions were set to an iden-
tical value, so nodes have no bias towards any particular
action. The exploration probability € is set to 0.05, and the
learning parameter « is set to 0.2. We demonstrate the ef-
fect of varying these parameters in Section 5.7 and 5.8.

5.2 Comparative Analysis

To compare the use of SORA with more traditional ap-
proaches to sensor network scheduling, we implemented
three additional versions of the tracking system. The first
employs static scheduling, in which every node uses a
fixed schedule for sampling, aggregating, and transmitting
data to the base station. This is the most common ap-
proach to designing sensor network applications, typified
by fixed sampling periods in TinyDB [26] and directed
diffusion [17]. The static schedule is computed based on
the energy budget. Given a daily budget of B joules, a
node calculates the rate for performing each round of ac-
tions (sample, listen, aggregate, transmit, and sleep) in or-
der to meet its budget. For example, given a daily budget
of 1000 J, the data collection sequence can be performed
once every 0.4 sec. This schedule is conservative, since not
all nodes will actually detect the vehicle or transmit data
during each period. The same schedule is used for every
node in the network, so nodes do not learn which actions
they should perform, nor adapt their sampling rate to stim-
uli such as the approach of the vehicle.

The second approach employs dynamic scheduling in
which nodes continuously adjust their processing rate
based on their current energy budget. In this way, nodes
that do not consume energy aggregating or transmitting
data can recycle that energy to increase their sampling rate
accordingly.

The third and final approach, the Hoods tracker, is
based on the tracking system implemented using the Hoods
communication model [43]. It is largely similar to the
dynamically-scheduled tracker, except in the way that
nodes calculate the target location. Each node that detects

IThis assumes that a node runs at 3V with 2850 mA-hours of battery
supply.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

321

! E buld Joul
—— Ener et (Joules

A\l
0.09 "\

0.06 \
|

0.03

0.00 L
400 450 500

Time (sec)

L0) E— Beta (sample)
0.80

ey

0.60

0.40
0.20

0.00

400 450 500

Time (sec)

550 600 650

100 F o Beta (listen)
0.80

0.60

0.40
0.20

0.00

400 450 500

Time (sec)

550 600 650

B T T
Listen
* * * *

Sample

smoun o

Aggregate
Send

* S DI NBIIG N S *

* 000 WooANNNS 6 S 40 o * * |

Sleep

400 450 500

550 600 650

Time (sec)

Figure 2: Actions and energy budget for a single node. This figure shows the actions taken, the energy budget, and the
values for the listen and sample actions for node 31, which is along the path of the vehicle.

the vehicle broadcasts its sensor reading to its neighbors.
The node then listens for some period of time, and if its
own reading is the maximum of those it has heard, com-
putes the centroid of the readings (based on the known lo-
cations of neighboring nodes) as the estimated target loca-
tion. This location estimate is then routed towards the base
station. We implemented the Hoods tracker to emulate the
behavior of a previously-published tracking system for di-
rect comparison with the SORA approach.

53 Agent operation

We begin by demonstrating the operation of the sensor net-
work over time, as nodes learn which actions receive pay-
ments. Figure 2 depicts the actions taken, energy budget,
and [values for node 31, which is along the path of the
vehicle. As the vehicle approaches along its circular path
at time ¢t = 470, the node determines that it will be paid
to sample, aggregate, and send sensor readings. As the ve-
hicle departs around time ¢ = 590, the node returns to its
original behavior. At certain times (e.g., at ¢ = 500 and
t = 548), the node receives messages from other nodes
and routes them towards the base station, explaining the in-
crease in (3 for the listen action. When the vehicle is not

nearby, the node mostly sleeps, since no interesting sam-
ples or radio messages are received. The energy bucket
fills during this time accordingly; the bucket capacity C' is
set arbitrarily to 115 mJ, which requires the node to sleep
for 20 seconds to fill the bucket entirely.

Observe that the node performs listen and sample ac-
tions even when its utility for doing so is low (even zero).
This is because the node has enough energy to perform
these actions, and the e-greedy action selection policy dic-
tates that it will explore among these alternatives despite
negligible utility.

5.4 Network activity over time

Figure 3 shows the proportion of (non-sleeping) actions
and energy use by the network over time. As the graph
shows, over 60% of the actions taken by nodes during the
run are sleep. Listen and send consume far more energy
than other actions. The variation in network activity arises
due to the movement of the vehicle. For example, at time
t = 600, the vehicle is closest to the base station, so only
those nodes close to the base are sampling and routing data,
while the rest of the network is dormant.

322

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

M Listen O Sample W Agg N Send

1.0 5

0.8 4

0.6 —

Proportion of Actions

‘!
l N
'l .n .‘ ..I .'i

400 600 800
Time
(a) Non-sleep actions taken

M Listen O Sample W Agg N Send

6_

Energy Used (J)

i

600
Time
(b) Energy use

Figure 3: Actions taken and energy use over time. This graph shows (a) the proportion of non-sleep actions taken by all nodes in the
network and (b) the total energy consumed over time. Over 60% of the actions taken by the network are sleep.

O T L
e e
os et
o} e 'X
0.8 ST N |
&% x
o.X X

0.7 X
_ ¥ 7
x
I 0.6 ,'é){
v ¥ /
y . / p
£ 05 p ¢
S v

k] <

S 04 5
o B X

0.3 7 X!

X ;
0.2 BT SORA, with aggregation —
/ X SORA, no aggregation e
04 AT A Static e |
’ Rl Dynamic a
K Hood
0 ket) . .
0 1 2 3 4 5 6 7 8

Tracking event error

Figure 4: Tracking accuracy. This figure is a CDF of the track-
ing position error over a run of 1000 sec for each of the tracking
systems. The static and dynamic schedulers are the most accurate,
since they operate periodically, while SORA has slightly higher
error due to its probabilistic operation. Disabling aggregation in
SORA causes accuracy to suffer since more readings are deliv-
ered 1o the base station. These three tracking schemes outperform
the Hood-based tracker with the same energy budget.

5.5 Tracking accuracy

To compare SORA with the other scheduling techniques,
we are interested in two metrics: tracking accuracy and en-
ergy efficiency. We do not expect SORA to be more ac-
curate than the other scheduling approaches, however, it is
important that it performs in the same ballpark in order to
be viable.

Figure 4 compares the accuracy of the SORA tracker
with the other three scheduling techniques. For each po-

sition estimate received by the base station, the tracking
error is measured as the difference between the estimated
and true vehicle position af the time that the estimate is re-
ceived. This implies that position estimate messages that
are delayed in the network will increase tracking error,
since the vehicle may have moved in the interim. As the
figure shows, SORA achieves an 80th percentile tracking
error of 3.5 m, only slightly higher than the static and dy-
namic trackers.

The Hood tracker performs poorly due to its different
algorithm for collecting and aggregating sensor data. Fig-
ure 5 shows a scatterplot of position estimates received at
the base station for each tracking technique. Hood delivers
far fewer position estimates and exhibits wider variation in
accuracy. Also, disabling aggregation in SORA (by setting
the price for the aggregate action to 0) causes more posi-
tion estimates to be delivered that exhibit greater variation
than the aggregated samples.

5.6 Energy efficiency

By allowing nodes to self-schedule their operation in re-
sponse to external stimuli and energy availability, SORA
achieves an efficient allocation of energy across the net-
work. For each of the scheduling techniques, we measure
the efficiency of resource allocation in terms of the energy
cost to acquire each position estimate in proportion to the
total amount of “wasted” energy in the network.

For each position estimate received by the base station,
we measure the “useful” energy cost of acquiring and rout-
ing that data. This includes the sum energy cost of sam-
pling, (optional) aggregation, radio listening, and trans-
mission of the data along each hop. In the case of esti-

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

323

6 =
R " SORA —i—
55 ¢ + Staticscheduling ---&--

5 Dynamic scheduling ---@-

Mean tracking error (meters)
w
(4]

T80 . 070--0--0-0—-0-0

1 I I I I
500 1000 1500 2000 2500 3000

Energy budget (J/day)
(a) Mean tracking error

0.7

SORA —m—
Static scheduling ---©---
0.6 Dynamic scheduling ---@---

0.5 / o Y
0.4
0.3 /
0.2 00O egue
[S
o} .

0 I I I I
500 1000 1500 2000 2500 3000

Energy budget (J/day)
(b) Energy efficiency

Energy efficiency

0089 %r0--0-0-0-0-9

Figure 6: Tracking accuracy and energy efficiency. This figure shows (a) the mean tracking error and (b) overall system energy

efficiency as the energy budget is varied.

20
10

Hood

0
20

10

Dynamic

= L 1 b Mo i

E 0 W AR ek Ao oSl Wl P o s g Al o i

t

e 20

=

[Static

£ 10 T

B o Lk il e N marrmtsihes ndidy

2 20 | ‘ | | ‘

S SORA, no aggregation

g 10 T R - o
BEREAT LR SRy Y T T XY P A
Vel b N A

SORA, withiaggregation

. L e I ST e Al S
200 300 400 500 600 700 800 900 1000
Time (sec)

Figure 5: Tracking accuracy scatterplots. These scatterplots
show the set of readings delivered to the base station by each
tracking system over time. Hood performs poorly and delivers
far fewer vehicle position estimates. The effect of disabling ag-
gregation in SORA can be seen clearly.

mates with aggregated values, we count both the total en-
ergy cost for each sensor reading in the estimate, as well
as the number of sensor readings represented. Because ag-
gregation amortizes communication overhead across mul-
tiple readings, we expect aggregation to reduce the overall
per-sample energy cost. The total amount of useful energy
consumed by the network is the sum of the energy cost for
all position estimates produced during a run of the tracking
system.

All other energy consumed by the network is wasted
in the sense that it does not result in data being delivered
to the base. In a perfect system, with a priori knowledge
of the vehicle location and trajectory, communication pat-
terns, and so forth, there would be no wasted energy. In
any realistic system, however, there is some amount of
waste. For example, nodes may listen for incoming radio
messages or take sensor readings that do not result in posi-
tion estimates. We define efficiency as the ratio of the total

useful energy consumed by the network to the total energy
consumed (useful plus wasted energy).

It is important to note that the statically-scheduled and
dynamically-scheduled trackers do not make any attempt
to save energy beyond their energy budget. Nodes are pro-
grammed to operate at a rate that consumes the local energy
budget, despite local network conditions. In SORA, how-
ever, many nodes may conserve energy by sleeping when
they have zero utility for any potential action (e.g., because
they are in a quiescent area of the network). The use of
reinforcement learning in SORA allows nodes to tune their
duty cycle in response to local conditions, significantly ex-
tending lifetime.

Figure 6 summarizes the accuracy and efficiency of each
scheduling technique as the energy budget is varied. Each
system varies in terms of its overall tracking accuracy as
well as the amount of energy used. While SORA has
a somewhat higher tracking error compared to the other
scheduling techniques, it demonstrates the highest effi-
ciency, exceeding 66% for an energy budget of 2100 J. The
static and dynamic schedulers achieve an efficiency of only
22%. In SORA, most nodes use far less energy than the
budget allows. The ability of SORA to “learn” the duty
cycle on a per-node basis is a significant advantage for in-
creasing network lifetimes.

5.7 Varying learning parameters

Apart from the energy budgets and prices, two parameters
that strongly affect node behavior in SORA are ¢, the ex-
ploration probability, and «, the EWMA gain for learning
action success probabilities. By varying €, we can trade off
increased energy waste (for exploring the action space) for
faster response to changing network conditions. By varying
«, the system reacts more or less quickly to changes in suc-
cess probabilities; higher values of o cause a node to bias
action selection towards more-recently profitable actions.
Figure 7(a) shows the effect of varying € from 0.01 to
0.5. As the probability of taking a random action increases,

324

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

B Non-learned
B Greedy Profitable
O Greedy Unprofitable

NN
OO

A\

@ Epsilon Profitable
K Epsilon Unprofitable

A

Fraction of Total Energy Use

Y

0.6 -

T
0

Fraction of Total Energy Use

001 005 0.1 0.15 02 0.25
Epsilon

[=]

.5

(a) Varying exploration probability e

B Non-learned

B Greedy Profitable

O Greedy Unprofitable
1.0

@ Epsilon Profitable
K Epsilon Unprofitable

\

0.8 -

I
T
A

0.6

0.4

0.2

0.0

0.1 0.2 0.3 0.5 0.7 0.9 1.0
Alpha

(b) Varying EWMA filter gain o

Figure 7: Effect of varying exploration and learning parameters. (a) « is held constant at 0.2 and the probability of taking a random
action € is varied. (b) € is held constant at 0.05 and the EWMA filter gain is « is varied.

the proportion of energy wasted taking those actions also
increases. However, the proportion of energy wasted taking
the “greedy” action (the action with the highest expected
probability of success) decreases, since nodes learn more
rapidly which actions are profitable by exploring the action
space.

Figure 7(b) shows a similar result for varying o. When
o is increased, nodes react very quickly to changes in ac-
tion success. When o« = 1.0, if an action is successful
once, the node will immediately prefer it over all others.
Likewise, the node will immediately ignore a potentially
profitable action the first time it is unsuccessful. As aresult,
the proportion of energy used on successfully choosing the
greedy action decreases. Also, since the node’s action se-
lection policy is increasingly myopic, nodes spend more
time sleeping. As a result, a greater proportion of energy
is spent on exploratory actions since few “greedy” actions
are considered worthwhile.

5.8 Heterogeneous energy budgets and prices

SORA allows nodes to be differentiated with respect to
their energy budgets, as well as the prices under which they
operate. For example, certain nodes may have access to a
large power supply and should be able to perform more
power-hungry operations than nodes operating off of small
batteries. Likewise, advertising different price vectors to
different nodes allows them to be customized to take cer-
tain actions.

Figure 8 shows the behavior of the tracking system
where 20% of the nodes are given a large energy budget of
3000 J/day, effectively allowing them to ignore energy con-
straints for the purpose of selecting actions. The large en-
ergy budget nodes automatically elect to perform a greater

number of listen and send actions, while the other nodes
mostly perform sample actions, which consume far less
energy overall. Identical prices are used throughput the
network, showing that differences in energy budget have
a profound effect on resource allocation.

Advertising different price vectors to different sets of
nodes is another way to specialize behavior in SORA. Fig-
ure 9 shows a case where 20% of the nodes are configured
as “routers” with all prices set to 0, except for listening, ag-
gregation, and sending. The other nodes act as “sensors”
with nonzero prices only for sampling and sending. As the
figure shows, each group of nodes exhibits very different
behavior over the run, with sensor nodes performing a large
number of sampling and send actions, while router nodes
primarily listen and transmit. Routers spend a great deal of
time sleeping because most actions (e.g., aggregation and
sending) are unavailable, and listening consumes too much
energy to perform continually.

6 Future Work and Conclusions

The design of sensor network applications is complicated
by the extreme resource limitations of nodes and the un-
known, often time-varying, conditions under which they
operate. Current approaches to resource management are
often extremely low-level, requiring that the operation of
individual sensor nodes be specified manually. In this pa-
per, we have presented an technique for resource allocation
in sensor networks in which nodes act as self-interested
agents that select actions to maximize profit, subject to en-
ergy limitations. Nodes self-schedule their local actions in
response to feedback in the form of payments. This allows
nodes to adapt to changing conditions and specialize their
behavior according to physical location, routing topology,

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

325

M Listen O Sample W Agg N Send

1.0

0.8

i 'n'
\ \
n:. mn.‘ .. 'n..'n]
1 : i...l...|. l...l...|. l..
I

Proportion of Actions

...

I l‘.'.l \
\) i l
Y
e ||
||| I |||||
400 600

Time
(a) Large energy budget

M Listen O Sample W Agg M Send

1.0

0.8

0.6

0.4 —

Proportion of Actions

200 400 600 800 1000
Time
(b) Small energy budget

Figure 8: Exploiting heterogeneous energy budgets. Here, 20% of the nodes are given a large energy budget of 3000 J/day (a),
where the rest of the nodes use a smaller energy budget of 500 J/day (b). The large energy budget nodes automatically take on a greater
proportion of the energy load in the system, choosing to perform a far greater number of listen and send actions than the low-energy

nodes.

and energy reserves.

Exploiting techniques from reinforcement learning and
economic theory yields new insights into the allocation of
scarce resources in an adaptive, decentralized fashion. Our
initial work on SORA raises a number of interesting ques-
tions that we wish to explore in future work. These are
described in summary below.

Equilibrium pricing: As discussed earlier, a system is in
competitive equilibrium (Pareto optimal) when prices are
selected such that supply of goods equals demand. This
is an attractive model for allowing multiple users to al-
locate and share sensor network resources in an optimal
fashion. However, such an approach raises a number of
practical problems that must be addressed before it can be
applied to sensor networks. The traditional titonnement
approach [29] is to increase prices on undersupplied goods
(and vice versa for oversupplied goods) until reaching equi-
librium, and execute trade only after prices have been se-
lected. A real system must depart from this approach in
that it operates continuously. As a result, since supply and
demand may lag price adjustments, true equilibrium may
never be reached.

In addition, calculating equilibrium prices generally re-
quires clients to have global information on the supply pro-
vided by each sensor node at the currently-proposed prices.
We are exploring techniques in which aggregate supply in-
formation is collected and piggybacked on other transmis-
sions to the base station. However, clients must then oper-
ate on incomplete and out-of-date supply information. An-
other approach is to collect supply information at several

price points simultaneously, allowing the client to adjust
prices based on the resulting gradient information.

Richer pricing models: More complex pricing schemes
can be used to induce sophisticated behaviors in the net-
work. For example, rather than pricing only those goods
that result from single actions, we can price sequences of
actions. Consider aggregating multiple sensor readings into
a single value for transmission. Rather than price the final
aggregate value and requiring an agent to reason about a
sequence of actions to achieve that result, we can establish
prices for each step in the sequence and introduce control
or data dependencies between actions. Another question is
that of location-based prices, in which goods are priced dif-
ferently in different areas of the network. This can be used
to establish a ring of “sentry nodes” around the perimeter
of the network that wake other nodes in the interior when
the entrance of a vehicle is detected.

New application domains: We intend to explore other ap-
plications for the SORA technique. As discussed earlier,
this requires that nodes be programmed with new actions
and corresponding energy consumption models. One ap-
plication that we are actively investigating involves sen-
sor networks for emergency medical care and disaster re-
sponse [25]. This scenario involves establishing multicast
communication pathways between multiple vital sign sen-
sors worn by patients and handheld devices carried by res-
cuers and doctors. We envision SORA providing a mech-
anism for efficient bandwidth and energy allocation in this
environment.

326 NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

M Listen O Sample W Agg N Send

1.0 4

0.8+

0.6 —

0.4+

Proportion of Actions

Time
(a) Routers

M Listen O Sample W Agg N Send

1.0

0.8+

0.6 o

0.4+

Proportion of Actions

0.2+

3 N
ih ol
(I8 N
N
| |I|.'.|||I ..‘l

00 1000

L S b il
200 400 600 8

Time
(b) Sensors

Figure 9: Specialization through pricing. Here, 20% of the nodes are configured as “routers” (left) using prices for listening,
aggregation, and sending. The other 80% of the nodes are configured as “sensors” (right) and only have prices for sampling and
sending. As the figure shows the proportion of actions taken by each group of nodes differs greatly according to the prices.

Integration with programming languages: Finally, our
broader research agenda for sensor networks involves
developing high-level macroprogramming languages that
compile down to local behaviors of individual nodes.
SORA presents a suite of techniques for scheduling node
actions and managing energy that could be integrated into
such a language. For example, TinyDB’s SQL-based query
language could be implemented using SORA to control the
execution of query operators on each node, rather than the
current model of relying on a static schedule. We have
completed the initial design of a functional macroprogram-
ming language for sensor networks that compiles down to
a simple per-node state machine that could be readily im-
plemented using a SORA-based model [31, 32].

Acknowledgments

The authors wish to thank our shepherd, Amin Vahdat, as
well as the anonymous reviewers for their comments on this

paper.

References

[1] S. Adlakha, S. Ganeriwal, C. Schurgers, and M. B. Srivastava. Den-
sity, accuracy, latency and lifetime tradeoffs in wireless sensor net-
works - a multidimensional design perspective. In review, 2003.

[2] L. Anderegg and S. Eidenbenz. Ad hoc-VCG: a truthful and cost-
efficient routing protocol for mobile ad hoc networks with selfish
agents. In Proc. MMOBICOM’03, September 2003.

[3] A.AuYoung, A. C. Snoeren, A. Vahdat, and B. Chun. Resource al-
location in federated distributed computing infrastructures. In Proc.
First Workshop on Operating System and Architectural Support for
the on demand IT InfraStructure, October 2004.

[4] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-
based load management in federated distributed systems. In Proc.
First Symposium on Networked Systems Design and Implementation
(NSDI °04), March 2004.

[5]1 A.Boulis, S. Ganeriwal, and M. B. Srivastava. Aggregation in sen-
sor networks: An energy - accuracy tradeoff. In Proc. IEEE work-
shop on Sensor Network Protocols and Applications, 2003.

[6] R.Brooks,P. Ramanathan, and A. Sayeed. Distributed target classi-
fication and tracking in sensor networks. Proceedings of the IEEE,
November 2003.

[71 R.Buyya. Economic-based Distributed Resource Management and
Scheduling for Grid Computing. PhD thesis, Monash University,
April 2002.

[8] Center for Information Technology Research in the In-
terest of Society. Smart buildings admit their faults.
http://www.citris.berkeley.edu/applications/
disaster_ response/smartbuil%dings.html,2002.

[9] A. Cerpa,]J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.
Habitat monitoring: Application driver for wireless communications
technology. In Proc. the Workshop on Data Communications in
Latin America and the Caribbean, Apr. 2001.

[10] S. H. Clearwater, editor. \Market-Based Control: A Paradigm for

Distributed Resource Allocation. World Scientific, 1996.

[11] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Hei-

demann. An evaluation of multi-resolution search and storage in
resource-constrained sensor networks. In Proc. the First ACM Con-
ference on Embedded Networked Sensor Systems (SenSys 2003),
November 2003.

[12] J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Es-

trin, and D. Ganesan. Building efficient wireless sensor networks
with low-level naming. In Proc. the 18th SOSP, Banff, Canada, Oc-
tober 2001.

[13] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-

efficient communication protocol for wireless microsensor net-
works. In Proc. the 33rd Hawaii International Conference on System
Sciences (HICSS), January 2000.

[14] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols

for information dissemination in wireless sensor networks. In Proc.
the 5th ACM/IEEE Mobicom Conference, August 1999.

[15] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond

average: Towards sophisticated sensing with queries. In Proc. the
2nd International Workshop on Information Processing in Sensor
Networks (IPSN ’03), March 2003.

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.

Pister. System architecture directions for networked sensors. In

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation 327

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Proc. the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 93—104,
Boston, MA, USA, Nov. 2000.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion:
A scalable and robust communication paradigm for sensor networks.
In Proc. International Conference on Mobile Computing and Net-
working, Aug. 2000.

L. Kang, S. Lahaie, G. Mainland, D. C. Parkes, and M. Welsh. Using
virtual markets to program global behavior in sensor networks. In
Proc. 11th ACM SIGOPS European Workshop, Leuven, Belgium,
September 2004.

B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing
for wireless networks. In Proc. the Sixth Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking (MobiCom
2000), Boston, MA, August 2000.

V. A. Kottapalli, A. S. Kiremidjian, J. P. Lynch, E. Carryer, T. W.
Kenny, K. H. Law, and Y. Lei. Two-tiered wireless sensor network
architecture for structural health monitoring. In Proc. the SPIE 10th
Annual International Symposium on Smart Structures and Materi-
als, San Diego, CA, March 2000.

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
scalable simulation of entire TinyOS applications. In Proc. the First
ACM Conference on Embedded Networked Sensor Systems (SenSys
2003), November 2003.

P. Levis, N. Patel, S. Shenker, and D. Culler. Trickle: A self-
regulating algorithm for code propagation and maintenance in wire-
less sensor networks. In Proc. the First USENIX/ACM Symposium
on Networked Systems Design and Implementation (NSDI), 2004.

D. Li, K. Wong, Y. H. Hu, and A. Sayeed. Detection, classification
and tracking of targets in distributed sensor networks. IEEE Signal
Processing Magazine, 19(2), March 2002.

J. Liu, P. Cheung, L. Guibas, and F. Zhao. A dual-space approach
to tracking and sensor management in wireless sensor networks. In
Proc. First ACM International Workshop on Wireless Sensor Net-
works and Applications, September 2002.

K. Lorincz, D. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel,
V. Shnayder, G. Mainland, S. Moulton, and M. Welsh. Sensor
Networks for Emergency Response: Challenges and Opportunities.
IEEE Pervasive Computing, Oct-Dec 2004.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG:
A Tiny AGgregation Service for Ad-Hoc Sensor Networks. In Proc.
the 5th OSDI, December 2002.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks. In
Proc. the ACM SIGMOD 2003 Conference, June 2003.

A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Ander-
son. Wireless sensor networks for habitat monitoring. In ACM Inter-
national Workshop on Wireless Sensor Networks and Applications
(WSNA’02), Atlanta, GA, USA, Sept. 2002.

A. Mas-Colell, M. D. Whinston, and J. R. Green. Microecononmic
Theory. Oxford University Press, 1995.

T. Mullen and M. P. Wellman. Some issues in the design of market-
oriented agents. In W. et al., editor, Intelligent Agents: Theories,
Architectures and Languages, volume 2. Springer-Verlag, 1996.

R. Newton, Arvind, and M. Welsh. Building up to macroprogram-
ming: An intermediate language for sensor networks. In Proc.
Fourth International Conference on Information Processing in Sen-
sor Networks (IPSN’05), April 2005.

R. Newton and M. Welsh. Region streams: Functional macropro-
gramming for sensor networks. In Proc. the First International
Workshop on Data Management for Sensor Networks (DMSN),
Toronto, Canada, August 2004.

S. Rhee and S. Liu. An ultra-low power, self-organizing wireless
network and its applications to noninvasive biomedical instrumen-
tation. Proc. IEEE/Sarnoff Symposium on Advances in Wired and
Wireless Communications, March 2002.

C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Topology
management for sensor networks: Exploiting latency and density. In
Proc. MobiHoc, 2002.

S. Shenker. Fundamental design issues for the future Internet. JEEE

Journal on Selected Areas in Communications, 13(7), September
1995.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer,
A. Sah, and C. Staelin. An economic paradigm for query processing
and data migration in Mariposa. In Proc. the 3rd International Con-
ference on Parallel and Distributed Information Systems, September
1994.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, 1998.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active messages: a mechanism for integrating communication and
computation. In Proc. the 19th Annual International Symposium on
Computer Architecture, pages 256-266, May 1992.

C. A. Waldspruger, T. Hogg, B. A. Huberman, J. O. Kephart, and
S. Stornetta. Spawn: A Distributed Computational Economy. /[EEE
Transactions on Software Engineering, 18(2):103—-177, February
1992.

M. P. Wellman. Market-oriented programming: Some early lessons.
In S. Clearwater, editor, Market-Based Control: A Paradigm for Dis-
tributed Resource Allocation. World Scientific, 1996.

M. Welsh and G. Mainland. Programming sensor networks using
abstract regions. In Proc. the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI ’04), March
2004.

G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: A wire-
less sensor network testbed. In Proc. Fourth International Con-
ference on Information Processing in Sensor Networks (IPSN’05),
Special Track on Platform Tools and Design Methods for Network
Embedded Sensors (SPOTS), April 2005.

K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A neigh-
borhood abstraction for sensor networks. In Proc. the International
Conference on Mobile Systems, Applications, and Services (MO-
BISYS ‘04), June 2004.

A. Woo, T. Tong, and D. Culler. Taming the underlying challenges
of reliable multihop routing in sensor networks. In Proc. the First
ACM Conference on Embedded Networked Sensor Systems (SenSys
2003), November 2003.

Y. Xu and W.-C. Lee. On localized prediction for power efficient
object tracking in sensor networks. In Proc. Ist International Work-
shop on Mobile Distributed Computing, May 2003.

Y. Yao and J. E. Gehrke. The Cougar approach to in-network query
processing in sensor networks. ACM Sigmod Record, 31(3), Septem-
ber 2002.

F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative sig-
nal and information processing: An information directed approach.
Proc. the IEEE, 91(8):1199-1209, 2003.

328

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

