Debunking some myths about structured and unstructured overlays

Miguel Castro

Manuel Costa

Antony Rowstron

Microsoft Research, 7 J J Thomson Avenue, Cambridge, UK

Abstract

We present a comparison of structured and unstructured
overlays that decouples overlay topology maintenance
from query mechanism. Structured overlays provide ef-
ficient support for simple exact-match queries but they
constrain overlay topology to achieve this. Unstructured
overlays do not constrain overlay topology or query com-
plexity because they use flooding or random walks to
discover data. It is commonly believed that structured
overlays are more expensive to maintain, that their topol-
ogy constraints make it harder to exploit heterogeneity,
and that they cannot support complex queries efficiently.
We performed a detailed comparison study using sim-
ulations driven by real-world traces that debunks these
widespread myths. We describe techniques that exploit
structural constraints to achieve low maintenance over-
head and we present a modified neighbour selection algo-
rithm that can exploit heterogeneity effectively. We also
describe techniques to perform floods and random walks
on structured topologies. These techniques exploit struc-
tural constraints to support complex queries with better
performance than unstructured overlays.

1 Introduction

There has been much interest in peer-to-peer data shar-
ing applications. They are used by millions of users and
they represent a large fraction of the traffic in the Inter-
net [31]. These applications are built on top of large-
scale network overlays that provide mechanisms to dis-
cover data stored by overlay nodes. There is an ongoing
debate in the research community on the relative mer-
its of two types of overlays: unstructured and structured.
This paper presents a comparison study of unstructured
and structured overlays that contributes to this debate by
debunking some widespread myths.

Unstructured overlays, for example Gnutella [1], or-
ganize nodes into a random graph topology and use
floods or random walks to discover data stored by overlay

nodes. Each node visited during a flood or random walk
evaluates the query locally on the data items that it stores.
This approach supports arbitrarily complex queries and
it does not impose any constraints on the overlay topol-
ogy or on data placement, for example, each node can
choose any other node to be its neighbour in the overlay
and it can store the data it owns. There has been a large
amount of work on improving unstructured overlays, for
example [10, 13, 24].

Structured overlays, like Tapestry [35], CAN [25],
Chord [32] and Pastry [29], were developed to improve
the performance of data discovery. They impose con-
straints both on the topology of the overlay and on data
placement to enable efficient discovery of data. Each
data item is identified by a key and nodes are organized
into a structured graph topology that maps each key to
a responsible node. The data or a pointer to the data is
stored at the node responsible for its key. These con-
straints provide efficient support for exact-match queries;
they enable discovery of a data item given its key in
typically only O(logN) hops with only O(logN) neigh-
bours per node. It is possible to support more complex
queries by building indices on top of structured overlays
but current solutions perform worse than unstructured
overlays [20].

It is commonly believed that structured overlays are
more expensive to maintain in the presence of churn, that
their topology constraints remove the flexibility neces-
sary to exploit heterogeneity, and that they cannot sup-
port complex queries efficiently (see for example, [10]).
This paper presents a detailed comparison of structured
and unstructured overlays that contradicts these myths.

We explore the design space by decoupling overlay
topology maintenance from query mechanisms.

e We evaluate a technique that exploits structure to
reduce maintenance overhead. It eliminates redun-
dant failure detection probes by using structure to
partition failure detection responsibility and to lo-
cate nodes that need to be informed about failures

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

85

and new node arrivals. We show that this technique
can achieve robustness to high rates of churn with
overhead lower than unstructured overlays.

e We describe how to exploit heterogeneity by mod-
ifying any proximity neighbour selection algo-
rithm [8, 35, 16] to adapt the topology such that the
indegree of nodes matches their capacity.

e We introduce techniques to support complex
queries efficiently on structured topologies with-
out constraints on data placement. These tech-
niques perform floods or random walks on struc-
tured topologies but exploit structural constraints
to ensure that nodes are visited only once during
a query, the number of visited nodes is controlled
accurately, and the average capacity of nodes vis-
ited during a query is increased to better exploit
heterogeneity. Additionally, they remove the need
to maintain both a structured and an unstructured
overlay to implement hybrid search strategies [22].

The paper presents results of detailed comparisons be-
tween several representative structured and unstructured
overlay topology maintenance algorithms. These results
were obtained using simulations driven by real-world
traces of node arrivals and departures in the Gnutella
file sharing application [30]. The results show that our
techniques enable structured overlays to cope with high
rates of churn and exploit heterogeneity effectively with
a maintenance overhead comparable to that achieved by
state-of-the-art unstructured overlays.

We also compared the performance of data discovery
using several representative unstructured overlays and
using our techniques to perform floods and random walks
on structured overlays. We used a real trace of content
distribution across nodes in the eDonkey peer-to-peer file
sharing application [12] to drive the simulations. The re-
sults show that our techniques can discover data more
often, faster, or with lower overhead.

The additional functionality provided by structured
overlays has proven important to achieve scalability and
efficiency in a wide range of applications. Structured
overlays can emulate the functionality of unstructured
overlays with comparable or even better performance.

In Section 2, we describe and compare structured and
unstructured topology maintenance protocols assuming
a homogeneous setting. Section 3 extends the struc-
tured topology maintenance protocol to exploit hetero-
geneity in peers’ resources and compares this with un-
structured topology maintenance protocols which exploit
heterogeneity. Section 4 compares the performance of
content discovery using random walks and flooding on
both structured and unstructured topologies, and Section
5 presents our conclusions.

2 Topology maintenance with churn

Measurement studies of deployed peer-to-peer overlays
have observed a high rate of churn [4, 17, 30]; nodes join
and leave these overlays constantly. Therefore, peer-to-
peer overlays should be able to cope with a high rate of
churn.

Can unstructured overlays cope with churn better than
structured overlays?

Each node maintains a set of neighbours to form
an overlay. Structured overlays impose constraints on
the overlay topology; nodes have identifiers and two
nodes can be neighbours only if their identifiers satisfy
certain constraints. Unstructured overlays do not im-
pose constraints on neighbours. Both types of overlay
can improve robustness to churn at the expense of in-
creased maintenance overhead by increasing the num-
ber of neighbours per node and probing them more fre-
quently to detect and replace failed neighbours.

It is believed that maintaining a structured overlay in
the presence of churn is more expensive than maintain-
ing an unstructured overlay because of the constraints
on neighbour selection. This section shows that this is
not necessarily the case. It is possible to use structure to
achieve better robustness with lower maintenance over-
head in a structured overlay.

Structured overlays also impose constraints on data
placement that can result in high overhead under churn
for some applications [5]. We study structured overlays
without these constraints to keep the evaluation indepen-
dent of any particular application. Data placement con-
straints do not result in significant overhead in several ap-
plications (for example, content distribution [9] and Web
caching [19]) and the search technique in Section 4 does
not constrain data placement at all.

This section describes the implementation of struc-
tured and unstructured overlay maintenance protocols
in an homogeneous setting and compares their perfor-
mance. The next section explains how to exploit hetero-
geneity.

2.1 Unstructured overlays

We implemented an unstructured overlay maintenance
protocol based on the specification of Gnutella version
0.4 [15] but we added many optimizations to the proto-
col to ensure a fair comparison.

Gnutella 0.4 organizes overlay nodes into a random
graph. Each node in the overlay maintains a neighbour
table with the network addresses of its neighbours in the
overlay. The neighbour tables are symmetric; if node z
has node y in its neighbour table then node y has node x
in its neighbour table. There is an upper and lower bound
on the number of entries in each node’s neighbour table.

86

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

A joining node uses a random walk starting from a
bootstrap node, which is randomly chosen from the set
of nodes already in the overlay, to find other nodes to fill
its neighbour table. It sends the bootstrap node a neigh-
bour discovery message with a counter that is initialized
to the number of nodes required to fill its neighbour ta-
ble. Upon receiving a discovery message, a node checks
whether it has less neighbours than the upper bound. If
this is the case, the node sends a message to the joining
node inviting it to become a neighbour and decrements
the counter in the neighbour discovery message. In either
case, the neighbour discovery message is forwarded to a
randomly chosen neighbour if the counter is still greater
than zero. To increase resilience to node and network
failures, all neighbour discovery messages are acknowl-
edged. If a node does not receive an acknowledgement
within a timeout, it selects another neighbour at random
and forwards the neighbour discovery message to that
neighbour.

In addition to joins, nodes need to detect failures and
replace faulty neighbours. Every ¢ seconds each node
sends an I’m alive message to every node in its neigh-
bour table. Since all nodes do the same and neighbour
tables are symmetric, each node should receive a mes-
sage from each neighbour in each ¢ second period. If a
node does not receive a message from a neighbour, it ex-
plicitly probes them and if no reply is received the node is
assumed to be faulty. We used ¢ = 30 seconds in this pa-
per. Nodes maintain a cache of other nodes that they use
to replace failed neighbours. If the cache is empty, they
obtain new neighbours by sending a neighbour discovery
message to a randomly chosen neighbour. All messages
sent between the nodes are used to replace explicit I'm
alive messages.

Simulation results show that this protocol leads to poor
query performance because the neighbour table of a join-
ing node and those of its neighbours are likely to share a
significant fraction of nodes. This reduces the effective-
ness of floods and random walks to discover data. We
overcome this problem by forwarding the neighbour dis-
covery message over a number of random hops after each
neighbour invitation is sent. We add a hop counter to
discovery messages that is set to R by every node that
replies with a neighbour invitation. Nodes decrement the
hop counter when they forward a discovery message and
they only consider sending a neighbour invitation when
the counter is less than or equal to zero. We used R = 5
in this paper as, from experimental evaluation, this pro-
vided good query performance with small increase in
maintenance overheads.

We use unbiased random walks because we found that
biasing the random walk to nodes with low degree re-
duces overhead but results in poor query performance.
We also experimented with flooding of discovery mes-
sages (as specified in the Gnutella 0.4 protocol) but this

results in additional overhead without improved robust-
ness or query performance.

2.2 Structured overlays

There are several structured overlay maintenance proto-
cols. We chose an implementation of Pastry [29] called
MS Pastry [6] because it has good performance under
churn and has an efficient implementation of proxim-
ity neighbour selection [8]. We modified it to exploit
heterogeneity (as described in the next section). Stud-
ies have shown that other structured overlay maintenance
protocols[21, 28] also perform well under churn.

Structured overlays map keys to overlay nodes. Over-
lay nodes are assigned nodelds selected from a large
identifier space and application objects are identified by
keys selected from the same identifier space. Pastry se-
lects nodelds and keys uniformly at random from the set
of 128-bit unsigned integers and it maps a key & to the
node whose identifier is numerically closest to £ modulo
2128 This node is called the key’s root. Given a message
and a destination key, Pastry routes the message to the
key’s root node. Each node maintains a routing table and
a leaf set to route messages.

Nodelds and keys are interpreted as a sequence of dig-
its in base 2°. We use b = 1 in this paper to minimizes
the maintenance overhead. The routing table is a matrix
with 128 /b rows and 2° columns. The entry in row r and
column c of the routing table contains a random nodeld
that shares the first digits with the local node’s nodeld,
and has the (r + 1)th digit equal to c. If there is no such
nodeld, the entry is left empty. The uniform random dis-
tribution of nodelds ensures that only logys N rows have
non-empty entries on average. Additionally, the column
in row r corresponding to the value of the (r + 1)th digit
of the local node’s nodeld remains empty.

Nodes use a neighbour selection function to select be-
tween two candidates for the same routing table slot.
Given two candidates y and z for slot (r, ¢) in node z’s
routing table, x selects z if 2’s nodeld is numerically
closer than y’s to the nodeld obtained by replacing the
(r + Dyth digit of x’s nodeld by c. This neighbour selec-
tion function promotes stability in routing tables while
distributing load. We chose not to use proximity neigh-
bour selection because it increases overhead slightly and
low delay routes do not seem important for the applica-
tions we study in this paper.

The leaf set connects nodes in a ring. It contains the
1/2 closest nodelds clockwise from the local nodeld and
the [/2 closest nodelds counter clockwise. The leaf set
ensures reliable message delivery. We use [= 32 in
this paper, which provides high robustness to large scale
failures and high churn rates.

At each routing step, the local node normally forwards
the message to a node whose nodeld shares a prefix with

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

87

the key that is at least one digit longer than the prefix
that the key shares with the local node’s nodeld. If no
such node is known, the message is forwarded to a node
whose nodeld is numerically closer to the key and shares
a prefix with the key at least as long. The leaf set is used
to determine the destination node in the last hop.

Exploiting structure to reduce maintenance overhead
Structured overlays can use structure to reduce mainte-
nance overhead in several ways. First, several structured
overlays use structure to initialize the routing tables of
joining nodes efficiently and to announce their arrival.

Node joining in Pastry exploits the topology structure
as follows. A joining node x picks a random nodeld X
and asks a bootstrap node a to route a special join mes-
sage using X as the destination key. This message is
routed to the node z with nodeld numerically closest to
X. The nodes along the overlay route add routing table
rows to the message; node x obtains the rth row of its
routing table from the node encountered along the route
whose nodeld matches x’s in the first » — 1 digits and
its leaf set from z. After initializing its routing table, x
sends the rth row of the table to each node in that row.
This serves both to announce x’s presence and to gos-
sip information about nodes that joined previously. Each
node that receives a row considers using the new nodes
to replace entries in its routing table.

Additionally, structured overlays can eliminate redun-
dant failure detection probes by using structure to parti-
tion failure detection responsibility and to locate nodes
that need to be informed when a failure is detected. For
example, MS Pastry uses this technique to reduce the
number of liveness probes in the leaf set by a factor of
32. Each node sends a single I'm alive message every t;
seconds to its left neighbour in the id space. If a node
does not receive a message from its right neighbour, it
probes the neighbour and marks it faulty if it does not re-
ply. When it marks the neighbour faulty, it discovers the
new member of its leaf set by querying the right neigh-
bour of the failed node and informs all the members of
the new leaf set about the failed node. If several con-
secutive nodes in the ring fail, the left neighbour of the
leftmost node will detect the failure and repair provided
the number of consecutive nodes that failed is less than
1/2 — 1. We use t; = 30 seconds in this paper, which is
equal to the period between I’'m alive messages in the un-
structured overlays. This technique is readily applicable
to systems that organize nodes into a logical ring, for ex-
ample [32, 29, 28], but harder to apply to other systems,
for example [25, 35].

The technique can be extended to eliminate fault de-
tection probes sent to routing table entries. This can
be done in routing tables that constrain each node x to
point to nodes whose identifiers are the closest to specific
points in the identifier space derived from z’s nodeld, for

example, the original Chord [32] finger table and Pastry’s
constrained routing table [7]. For example, Pastry’s con-
strained routing table enables a node that detects the fail-
ure of its right neighbour to locate all nodes with routing
table entries pointing to the failed node with an expected
cost of O(log N) messages. We chose not to use the con-
strained routing table because it eliminates the flexibility
necessary to cope with heterogeneous peers as described
in the next section.

MS Pastry uses a different strategy to detect failures
in the routing table. Since the routing table is not sym-
metrical, a node explicitly probes every member every
t, seconds to detect failures. The routing table probing
period ¢, is set dynamically by each node based on the
node failure rate in the overlay observed by the node [6].
We configured MS Pastry to achieve a 1% loss rate, i.e., a
message routed between a pair of nodes has a probability
of 99% of reaching the destination even in the absence of
retransmissions.

Pastry also has a periodic routing table maintenance
protocol to repair failed entries. Each node x asks a node
in each row of the routing table for the corresponding row
in its routing table. x chooses between the new entries in
received rows and the entries in its routing table using
the neighbour selection function defined above. This is
repeated periodically, for example, every 20 minutes in
the current implementation. Additionally, Pastry has a
passive routing table repair protocol: when a routing ta-
ble slot is found empty during routing, the next hop node
is asked to return any entry it may have for that slot.

These techniques used to reduce overhead in MS Pas-
try are described in detail in [6] and are applicable to
other structured overlays.

2.3 Experimental comparison

We compare the maintenance overhead of the different
overlays using a packet-level discrete-event simulator.
We simulated a transit-stub network topology [34] with
5050 routers. There are 10 transit domains at the top
level with an average of 5 routers in each. Each transit
router has an average of 10 stub domains attached, and
each stub has an average of 10 routers. Routing is per-
formed using the routing policy weights of the topology
generator [34]. The simulator models the propagation
delay on the physical links. The average delay of router-
router links was 40.7ms. In the experiments, each end
system node was attached to a randomly selected stub
router with a link delay of 1ms.

The simulation is driven using a real-world trace of
node arrivals and failures from a measurement study of
Gnutella [30]. The study monitored 17,000 unique nodes
in the Gnutella overlay over a period of 60 hours. It
probed each node every seven minutes to check if it was
still part of the overlay. The average session time over

88

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

—Gnutella 0.4 (8)
Gnutella 0.4 (4)
— Pastr

0 10 20 30 40 50 60
Time(hours)

Figure 1: Maintenance overhead in messages per second
per node over time for the Gnutella 0.4 and Pastry over-
lays.

the trace was approximately 2.3 hours and the number
of active nodes in the overlay varied between 1,300 and
2,700. The failure rate and arrival rates are similar but
there are large daily variations (more than a factor of 3).
There was no application-level traffic during this experi-
ment to isolate the overlay maintenance overhead.

We opted for a simulation study because scalability is
an important attribute of these overlays and the testbeds
we have available cannot cope with the overlay sizes that
we simulate in this and later sections. The code that runs
in the simulator is complete and realistic; it can run in
a real deployment by simply relinking with a different
communication library. The simulator also appears to
be accurate as shown by the validation study presented
in [6], which compares the simulator output with values
measured in a real deployment.

We compare the maintenance overhead of Gnutella 0.4
and Pastry. We used two configurations of Gnutella 0.4:
Gnutella 0.4 (4) bounds the number of neighbours to be
at least 4 and no more than 12, Gnutella 0.4 (8) bounds
the number of neighbours to be at least 8 and no more
than 32. In the experiments, we observed that Gnutella
0.4 (4) has on average 5.8 neighbours and Gnutella 0.4
(8) has on average 11.0 neighbours.

These parameters were chosen because Gnutella 0.4
(4) has maintenance overhead lower than Pastry whereas
Gnutella 0.4 (8) has higher overhead. It is important
to note that both configurations have lower resilience to
churn than Pastry. Each Pastry node has 32 neighbours
in the leaf set alone and it detects and repairs failures of
leaf set neighbours as fast as the Gnutella overlays de-
tect and repair their neighbour failures. A node only gets
partitioned from the overlay if 32 nodes fail before being
replaced in Pastry whereas it only takes 6 nodes to fail in
Gnutella 0.4 (4) and 11 in Gnutella 0.4 (8).

Figure 1 shows the maintenance overhead measured
as the average number of messages per second per node.
The x-axis represents simulation time.

Most of the overhead is due to fault detection mes-
sages in the three overlays. In the Gnutella overlay, nodes

send I’m alive messages to each of their neighbours every
30 seconds. The average number of links per node over
the trace is 5.8 in Gnutella 0.4 (4) and 11.0 in Gnutella
0.4 (8). Therefore, the expected overhead due to fault de-
tection is 0.19 and 0.37 messages per second per node in
Gnutella 0.4 (4) and Gnutella 0.4 (8), respectively. Pas-
try’s maintenance overhead is between the overhead of
Gnutella 0.4 (4) and Gnutella 0.4 (8) most of the time.

Pastry is able to achieve low maintenance overhead
because it exploits structure. The overhead for fault de-
tection of leaf set members is only 0.03 messages per
second per node even though there are 32 nodes in each
node’s leaf set. Additionally, Pastry tunes the routing
table probing period to achieve 1% loss rate (using the
techniques described in [6]). This ensures that it uses
the minimum probe rate that achieves the desired reli-
ability. Pastry’s maintenance overhead varies with the
failure rate observed during the trace because the self-
tuning technique increases the probe rate when the node
failure rate increases. The spikes in maintenance over-
head at approximately 44 hours and after 50 hours are
due to spikes in the node failure rate in the trace. These
spikes in failure rate are probably caused by temporary
loss of network connectivity between the site issuing the
pings and a large fraction of its targets during the collec-
tion of the trace.

It is possible to lower the overhead of Gnutella by re-
ducing the rate of I’'m alive messages or the number of
neighbours but doing this decreases resilience to churn
and degrades search efficiency. It might also be possible
to use techniques similar to Pastry’s to reduce mainte-
nance overhead in Gnutella overlays without decreasing
resilience but this would require introducing a structure
similar to Pastry’s. However, this is not the point.

The important point is that the maintenance overhead
is negligible in all three systems and that structured over-
lays provide additional functionality that has proven use-
ful in a number of applications. For example, the average
number of messages per second per node over the trace
is only 0.26 in Pastry. Furthermore, the vast majority of
these messages are smaller than 100 bytes on the wire.
Therefore, the overhead is less than 26 bytes per second,
which is negligible even for users with slow dialup con-
nections. For comparison, the latest Gnutella specifica-
tion [2] recommends a probing period that results in an
estimated 131 bytes per second per neighbour.

The maintenance overhead is constant in the unstruc-
tured overlays but grows with NV in the structured over-
lay. However, it grows very slowly. The fault detection
traffic, which accounts for most of the maintenance over-
head, is constant for leaf set members and it is propor-
tional to logs (V') for routing table entries. For example,
increasing NN to one billion nodes with a similar pattern
of node arrivals and departures would increase mainte-
nance traffic in the structured overlay to less than 0.69

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

89

messages per second per node (or less than 69 bytes per
second per node), which is still negligible.

3 Exploiting heterogeneity

Nodes in deployed peer-to-peer overlays are heteroge-
neous [30]; they have different bandwidth, storage, and
processing capacities. An overlay that ignores the differ-
ent node capacities must bound the load on any node to
be below the load that the least capable nodes are able
to sustain; otherwise, it risks congestion collapse. It is
important to exploit heterogeneity to improve scalability.

Can unstructured overlays exploit heterogeneity more
effectively than structured overlays?

Structured overlays have constraints on the graph
topology that reduce flexibility to adapt the topology to
exploit heterogeneity. However, some structured over-
lays have significant flexibility in the choice of some
overlay neighbours, which is important to implement
proximity neighbour selection [35, 29, 16, 28]. These
structured overlays can exploit heterogeneity by mod-
ifying the proximity neighbour selection algorithm to
choose nodes with high capacity as overlay neighbours.
We show that this is as effective as recent proposals to
adapt unstructured overlay topologies [10].

This section describes the implementation of several
structured and unstructured overlay maintenance proto-
cols that exploit heterogeneity and compares their per-
formance.

3.1 Unstructured overlays

We implemented two unstructured overlay maintenance
algorithms that exploit heterogeneity: a version of
Gnutella 0.6 [2] and a version of Gia [10].

Gnutella 0.6 extends the Gnutella 0.4 protocol by
adding the concept of super-peers [3]. Nodes that are
capable of contributing enough resources to the overlay
are classified as super-peers and organized into a ran-
dom graph using the optimized version of the Gnutella
0.4 protocol (which was described in the previous sec-
tion). Ordinary nodes are not part of the random graph.
Instead, each ordinary node attaches to a small number
of randomly selected super-peers and proxies its data
discovery queries through them. Ordinary nodes select
super-peers to attach to using a random walk with a mod-
ified neighbour discovery message and they exchange
I’m alive messages with the selected super-peers to de-
tect failures. This topology places most of the search and
overlay maintenance load on super-peers.

Gia [10] provides a more fine-grained adaptation to
heterogeneity. Each node selects a numerical capacity
value that abstracts the amount of resources that it is
willing to contribute to the overlay. Gia adapts the over-

lay topology such that nodes with higher capacity have
higher degree. Since high-degree nodes receive a larger
fraction of the traffic, this ensures that they have the ca-
pacity to handle this traffic. Gia’s fine-grained approach
to exploit heterogeneity can perform better than simply
using super-peers [10].

We implemented Gia exactly as described in [10].
Node discovery is implemented using a random walk
(as described for Gnutella 0.4) but the nodes use Gia’s
pick_neighbor_to_drop function [10] to decide whether
to send back a neighbour invitation message. Topology
adaptation is driven by Gia’s satisfaction_level function,
which increases with the sum of the ratio between the
capacity and degree of each neighbour. This function
is evaluated periodically and nodes with a low satisfac-
tion level attempt to find a new neighbour to increase the
level. The adaptation interval is computed as in Gia (with
the parameters K = 256 and 7" = 10 seconds).

3.2 Structured overlays

We implemented two structured overlay maintenance
protocols based on Pastry that exploit heterogeneity: Su-
perPastry uses super-peers like Gnutella 0.6 and Het-
eroPastry uses topology adaptation like Gia.

It is simple to exploit the super-peers concept in a
structured overlay. The super-peers are organized into
a structured overlay using the Pastry algorithm described
in the previous section. Ordinary peers do not join this
overlay. Instead they attach to a small number of super-
peers as in Gnutella 0.6. Ordinary peers select super-
peers to attach to by routing to random destination keys
through a bootstrap super-peer. They exchange I'm alive
messages with the selected super-peers to detect failures
as in Gnutella 0.6.

The implementation of capacity-aware topology adap-
tation in structured overlays is less obvious. We propose
a simple solution based on existing proximity neigh-
bour selection algorithms [29, 35, 16]. These algo-
rithms select the closest neighbours in the underlying
network subject to the structural constraints on the topol-
ogy. They can be modified to provide capacity-aware
topology adaptation by using a proximity metric that re-
flects node capacity.

HeteroPastry uses the Pastry algorithm described in
the previous section except that it achieves capacity-
aware topology adaptation by modifying the neighbour
selection function to take node capacity into account.
Given two candidates y and z for slot (7, ¢) in node x’s
routing table, = selects z if it has capacity greater than
y or if z and y have the same capacity and z’s nodeld is
numerically closer than y’s to the nodeld obtained by re-
placing the (r 4 1)th digit of z’s nodeld by c. We assume
that node capacities are quantized into a few discrete val-
ues for the randomization based on nodelds to be effec-

90

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

tive at distributing load. It is possible to design neighbour
selection functions that combine several capacity metrics
and even network proximity.

In addition to specifying capacity, nodes can specify
an upper bound on their indegree, i.e., the number of
nodes with routing table entries pointing to them. This
bound is likely to be a function of their capacity. We
modified Pastry to ensure that the number of routing ta-
ble entries pointing to a node does not exceed the speci-
fied bound. Each node x keeps track of nodes with rout-
ing table entries that point to « (backpointers) and sends
backoff messages when the number of backpointers ex-
ceeds the indegree bound. It is necessary to keep track
of backpointers because neighbour links in Pastry rout-
ing tables are not symmetric. Neighbour links in the leaf
set are symmetric and their number is fixed at 32 in this
paper. They are not counted as part of the indegree of x
unless they also have a routing table entry pointing to z.

Nodes keep track of backpointers by passively moni-
toring messages received from other nodes. They add a
node to the backpointer set when they receive a message
from the node and, every D seconds, they remove nodes
from which they did not receive messages for more than
2D seconds. D is set to the routing table probing period
because nodes send probes to their routing table entries
every routing table period.

If the number of backpointers exceeds the bound after
adding a new node, the local node x selects one of the
backpointers for removal and sends that node a backoff
message. For each backpointer y with z in slot (r,¢)
of its routing table, the numerical distance between z’s
nodeld and the nodeld obtained by replacing the (r+1)th
digit of y’s nodeld by c is computed. x selects the node
with the maximal distance for eviction. This policy is
dual of the neighbour selection function (except that it is
oblivious to capacity) to provide stability.

Nodes that receive a backoff message remove the
sender from their routing tables and insert the sender in
a backoff cache. We modified the neighbour selection
function to ensure that it never selects nodes in the back-
off cache. The current implementation removes entries
from the backoff cache after four routing table probing
periods.

Our solution is not applicable to some structured over-
lays that provide no flexibility at all in the selection of
neighbours, for example, the original Chord [32] and
CAN [25]. Tt is possible to use virtual nodes [32] to
adapt these structured overlays to different node capaci-
ties. Each physical node can simulate a number of virtual
overlay nodes proportional to its capacity. The problem
is that node capacities can vary by several order of mag-
nitude. Therefore, the number of virtual nodes must be
much larger than the number of physical nodes, which
results in a large increase in maintenance traffic that can
render this solution impractical.

0.45

0.4 Gnutella 0.6
— SuperPast

o f
[N}

Messages / second / node
o S o
o © 4 %)
[o

o

0 10 20 30 40 50 60
Time(hours)

Figure 2: Maintenance overhead in messages per sec-
ond per node over time for the two overlays using super-
peers.

3.3 Experimental comparison

We compared the maintenance overhead of the different
overlay maintenance algorithms that exploit heterogene-
ity to achieve scalability. We used the experimental setup
in Section 2.3, which does not include any query traffic,
to isolate the maintenance overheads.

Gnutella 0.6 and SuperPastry were configured with
similar parameters to allow a fair comparison. Each or-
dinary node selected 3 super-peers as proxies and each
super-peer acted as a proxy for up to 30 ordinary nodes.
Each super-peer in Gnutella 0.6 had at least 10 super-
peer neighbours and at most 32. The indegree bound
of super-peers in SuperPastry was also 32. The simula-
tor provided each joining node with a randomly selected
super-peer to bootstrap the joining process and joining
nodes were marked super-peers with a probability of 0.2.
Figure 2 shows the maintenance overhead measured as
the number of messages sent per second per node.

The maintenance overhead is dominated by the cost
of failure detection as before. In Gnutella 0.6, a node
has 7.5 neighbours on average, which results in 0.25 I'm
alive messages per second per node on average. This
accounts for most of the control traffic has shown in Fig-
ure 2. Both systems incur the same communication over-
head between ordinary peers and super-peers. SuperPas-
try achieves lower overhead than Gnutella 0.6 because
it exploits structure to reduce failure detection overhead.
The overhead is negligible in both systems.

We also ran experiments to compare the maintenance
overhead of Gia and HeteroPastry. Gia was configured
using the parameters in [10]. The lower bound on the
number of neighbours in Gia is 3 and the upper bound
is max (3, min(128, %)) [10], where C' is the capacity
of the node. We use the same bounds on the indegree of
nodes in HeteroPastry. The capacity of a node (in both
overlays) is selected when it joins according to the prob-
abilities in Table 1, which were taken from [10].

Figure 3 plots the maintenance overhead in messages
per second per node against time for Gia and HeteroPas-

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

91

Capacity | Probability
1 0.2
10 0.45
100 0.3
1000 0.049
10000 0.001

Table 1: Node capacity distribution

Gia
— HeteroPastry I

o
©

o
~

o
o

4
o

Messages / second / node
© o o o
o - N w S~

o
o

20 30 40 50 60
Time(hours)

Figure 3: Maintenance overhead in messages per second
per node over time for Gia and HeteroPastry.

try. Failure detection messages account for most of the
overhead as in previous experiments. Nodes in Gia have
15.6 neighbours on average, which results in 0.52 I'm
alive messages per second per node. The overhead of
HeteroPastry is almost identical to the overhead incurred
by the version of Pastry that does not exploit heterogene-
ity and does not bound indegrees (which is shown in Fig-
ure 1).

Figure 3 shows that the overhead of topology adap-
tation in both Gia and HeteroPastry is negligible. The
next set of results show that topology adaptation in Het-
eroPastry is also effective.

We examined the routing tables of live HeteroPastry
nodes five hours into the trace and calculated the aver-
age capacity of the nodes in routing table entries at each
routing table level across the 2627 live nodes. Figure 4
shows the results.

Topology adaptation fills routing tables with high ca-
pacity nodes. The average capacity of nodes in levels up

10000

1000 N

100 B\E,v,\
10

1

01234567 89 1011121314151617181920
Level of routing table

Average capacity of members

Figure 4: Average capacity of nodes in routing table en-
tries at each level in HeteroPastry.

200
180
160

N
S

120
100

@
S

Average indegree

583
[[T T[]

N
o

1 10 100 1000 10000
Capacity

o

Figure 5: Average indegree of nodes with each capacity
value.

to 5 is above 897. The capacity decreases when the level
increases because of stronger structural constraints. A
node in level [of the routing table must match the nodeld
of the local node in the first [digits. The size of the set
of nodes that can be selected to fill slots at level [+ 1 is
half the size of the set of nodes that can fill slots at level
l. Therefore, the probability that these sets include high
capacity nodes decreases as the level increases. Since
most nodes have less than 12 (log2(2627)) levels in their
routing tables, there is some noise for levels above 12.
We also measured the average indegree of nodes with
each capacity value at the same point in time. The re-
sults are in Figure 5. The average indegree of the two
nodes with capacity 10000 is above the indegree bound
of 128. This happens because nodes are very likely to se-
lect nodes with capacity 10000 for the top levels of their
routing tables and these pointers are only removed after
the node receives a backoff message. The results show
that topology adaptation in HeteroPastry is effective at
distributing the indegree according to capacity.

4 Data queries

Complex queries are important in mass-market data shar-
ing applications [10]. Since users do not know the exact
names of the files they want to retrieve, the exact-match
queries offered by structured overlays are not directly
useful in these applications. Users discover data with
keyword searches, which are readily supported by un-
structured overlays that visit a subset of random nodes in
the overlay and execute the search query locally at each
visited node.

Can unstructured overlays support complex queries
more efficiently than structured overlays?

Several research prototypes support keyword searches
using the exact-match queries of structured overlays [27,
33, 14, 18] to implement inverted indices. The basic idea
is to use the structured overlay to map keywords to over-
lay nodes. The node responsible for a keyword stores an
index with the location of all documents that contain the
keyword. When a file is added to the system, the nodes

92

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

responsible for the keywords in the file are contacted to
update the appropriate indices. A query for documents
containing a set of keywords contacts the nodes respon-
sible for those keywords and intersects their indices.

Unfortunately, this approach has several problems.
Maintaining the indices in the presence of churn is ex-
pensive and popular keywords may be mapped to low
capacity nodes that cannot cope with the load [10]. Ad-
ditionally, the queries can be expensive because they re-
quire computing the intersection of large indices. The
analysis in [20] shows that this approach performs worse
than flooding queries to 60,000 nodes in a random graph.
Therefore, this approach performs significantly worse
than recent unstructured overlays like Gia [10]. Addi-
tionally, unstructured overlays can support even more so-
phisticated queries that are not supported by the inverted
indices approach, for example, regular expressions and
range queries on multiple attributes.

This section explores a different approach to support-
ing complex queries in structured overlays. We devel-
oped a hybrid system that uses the topology from struc-
tured overlays with the data placement and data discov-
ery strategies of unstructured overlays. We introduce
new techniques to perform floods or random walks over
structured topologies that provide support for arbitrar-
ily complex queries. These techniques take advantage
of structural constraints on the topology to ensure that
nodes are visited only once during a query, to control
the number of nodes that are visited accurately, and to
increase the average capacity of nodes visited during a
query to exploit heterogeneity more effectively.

The results in the previous sections show that it is pos-
sible to maintain a structured overlay that exploits het-
erogeneity with low maintenance overhead. Addition-
ally, the hybrid system does not constrain data place-
ment; nodes do not have to incur the overhead of up-
dating distributed indices for each keyword in their files.
This section compares the performance of random walks
and floods on the overlays that were described in the pre-
vious section.

4.1 Unstructured overlays

We used random walks to discover data because they
have been shown to induce lower overhead than the con-
strained floods [23] used by current versions of Gnutella.
These random walks are biased to prefer nodes with
higher degree in Gia and are unbiased in the other un-
structured overlays. The original Gia [10] biased the ran-
dom walks to prefer nodes with higher capacity but our
experimental results indicate that preferring nodes with
higher degree yields both higher success rate and lower
delay. We present results for this optimized version of
Gia.

We observed that random walks in Gia were likely to

visit the same node more than once, which resulted in
worse search performance. We added a list to each query
with all the nodes already visited by the query to prevent
this. Nodes do not forward a query to a node that is in
this list.

All unstructured overlays use one hop replication,
which has been shown to improve search performance
in unstructured overlays [10]. A node replicates an index
of its content at each of its neighbours. In Gnutella 0.6,
these indices are only replicated at super peers.

4.2 Structured Overlays

The hybrid system exploits structure to implement ran-
dom walks and constrained floods more efficiently.

Flooding in random graphs is inefficient because each
node is likely to be visited more than once. In a graph
with an average degree of £, a flood that visits all nodes
will send on average (k — 1) x N messages (where N
is the size of the overlay). Additionally, it is difficult to
control the number of nodes visited during a constrained
flood. Floods are constrained using a time-to-live field
in the query message that is decremented every time the
query is forwarded. The query is not forwarded when
the time-to-live field drops to zero. This provides very
coarse control over the number of nodes visited.

The hybrid system can do better by replacing flood-
ing with the broadcast mechanisms that have been pro-
posed for structured overlays [26, 9, 11]. We use Pas-
try’s broadcast mechanism [9] to flood queries to over-
lay nodes. A node y broadcasts a query by sending the
query to all the nodes z in its routing table. Each query
is tagged with the routing table row r of node x. When
a node receives a query tagged with r, it forwards the
query to all nodes in its routing table in rows greater than
r if any.

A node may have a missing entry in a slot in its rout-
ing table, for example, because it pointed to a node that
failed. The broadcast overcomes this problem by using
Pastry to route the query to a node with the appropriate
nodeld to fill the slot (if there is any) [9]. Almost all
nodes receive the query only once but the technique to
deal with empty routing table slots may result in a small
number of duplicates.

We place an upper bound on the row number of entries
to which the query is forwarded to constrain the flood.
This bounds the number of nodes visited to a power of
two. It is simple to extend this mechanism to provide
arbitrarily fine grained control over the number of nodes
visited.

This mechanism can easily be modified to perform
random walks rather than floods by performing a breadth
first traversal of the tree used for flooding. This can be
done by adding a set of nodes to visit in the query mes-
sage. A random walk query message includes the tag r,

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

93

350

Number of nodes

1 10 100 1000
Number of cached files

10000

Figure 6: Distribution of the number of files per node for
the eDonkey file trace [12].

an array q with queues of nodes indexed by routing ta-
ble row, and a bound d on the maximum row number to
traverse. When the query is received at node z, it ap-
pends the nodes in each routing table row 7’ to queue
q[r'] provided that r < 7’ < d. Then, if queue ¢[r] is not
empty, removes the next node from the queue and for-
wards the query to this node. If ¢[r] is empty, the query
is forwarded to the first node in queue g[r + 1] and 7 is
incremented. If all queues are empty, the random walk is
complete.

The results in the previous section show that the aver-
age capacity of the nodes in routing table entries in Het-
eroPastry decreases as the row number increases. There-
fore, the mechanism that we use to bound the floods and
random walks biases them to visit nodes with higher ca-
pacity in HeteroPastry.

We also implement one hop replication in the hybrid
system. Each node replicates an index of its local content
on the nodes in its routing table. Therefore, it is expected
to replicate its index in logs (V) other nodes.

4.3 Experimental comparison

We compared the performance of random walks on struc-
tured and unstructured overlays. We used the basic ex-
perimental setup described in the previous sections but
we simulated queries and node file stores.

We used a real-world trace of files stored by eDon-
key [12] peers to model the sets of files stored by sim-
ulated nodes. There are 37,000 peers in the trace and,
for each peer, there is a record with the identifiers of the
files stored by the peer. Figure 6 shows the distribution
of the number of files stored by each peer. It excludes
the 25,172 peers that have no files. We model the set of
files stored by each node as follows: when a node joins,
the simulator chooses a random unused record from the
trace and assigns the files in the record to the node.

There are approximately 923,000 unique files. File
copies exhibit a heavy-tailed zipf-like distribution as
shown in Figure 7. Full details about the trace can be
found in [12].

I
S
S

)
a
S

[
=3
S

Number of copies
o TN
o o o (=3 o
&3 8 &3 8 3

o

1 10 100 1000 10000 100000 1000000

Popularity ranking

Figure 7: Number of files versus file rank for the eDon-
key file trace [12].

The eDonkey trace does not include queries but the
number of copies of a file is strongly correlated with the
number of queries that it satisfies. Therefore, our query
distribution matches the distribution of the number of
copies of files.

Each node generates 0.01 query messages per second
using a Poisson process and each query searches for a
file in the trace. The simulator maintains the distribution
of the number of copies of files stored by nodes that are
currently in the overlay. The target file for each query is
chosen from this distribution (which is a sample of the
distribution in Figure 7). This ensures that at least one
copy of the target file is stored in the overlay when the
query is initiated.

In all the experiments, we bound random walks to visit
at most 128 nodes. When a node x receives a query, it
checks if the target file is stored locally or if it is stored
by nodes whose indices are replicated locally. In the first
case, the query is satisfied and x does not forward the
query further. In the second case, x contacts a random
node y which it believes has a copy of the file. If y has
the file, the query is satisfied and y sends an acknowl-
edgment back to z. If x receives the acknowledgment
before a timeout, it stops forwarding the query. Other-
wise, x contacts another random node that it believes has
the file or it forwards the query if there are no more such
nodes.

We measured the fraction of queries that are satisfied
and the delay from the moment a query is initiated until
it is satisfied. We also measured the load by counting the
number of messages sent per second per node.

4.3.1 Gnutella trace

We compared the performance of data discovery on the
overlays that exploit heterogeneity. Figure 8 shows the
query success rate, Figure 9 shows the delay for success-
ful queries, and Figure 10 shows the overhead in mes-
sages per second per node. The results show that fine-
grained topology adaptation performs better than using
super-peers. HeteroPastry achieves significantly higher

94

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

[N}

Success rate
o 4
o> @
m }%

- - -HeteroPastry
ia

—Gnutella 0.6

——SuperPast

o
~

o
N

o

10 20 30 40 50 60
Time(hours)

o

Figure 8: Query success rate.

30000

——Gnutella 0.6
—— SuperPastry

25000

20000 -

5000 oy

Dela! (ms)

10000 we ..

5000

0 10 20 30 40 50 60
Time(hours)

Figure 9: Query delay for successful queries.

success rate, and lower delay and overhead than Super-
Pastry and Pastry. We also ran experiments with overlays
that do not exploit heterogeneity and found that they per-
form significantly worse.

SuperPastry and Gnutella 0.6 achieve very similar per-
formance by all metrics. But HeteroPastry achieves
significantly better performance than all the others. It
achieves the highest success rate, the lowest delay, and
the lowest overhead. This demonstrates that HeteroPas-
try can exploit heterogeneity effectively to improve scal-
ability; the high success rate indicates that the bound on
the length of random walks can be small and the low de-
lay shows that they are likely to terminate early, which
results in low overhead. The other systems would re-
quire longer random walks to achieve the success rate of
HeteroPastry, which would increase their overhead.

All the overlay maintenance algorithms benefit from
suppression of failure detection traffic by query traffic.
For example, Gia’s overhead without queries is approx-
imately twice the overhead of Gnutella 0.6. The over-
heads of the two are comparable with queries because
of the suppression of failure detection traffic and shorter
random walks.

So far we have considered the overhead averaged over
all live nodes in each 10 minute window in the trace.
Since both Gia and HeteroPastry adapt the topology to
distribute load according to node capacity, we looked at
the distribution of the number of messages per second
per node in the ten minutes preceding the 5 hour mark
in the trace. The total number of messages received in

184 Gia ——Gnutella 0.6
o _' SuperPastry - - -HeteroPastry
G M"'M
14 4]
2
51.2 4 e 3
]
8 17 .
- .
208 - ' o
[y it ¢ LA
061 e e o
2 g
204

0.2

0 T T T T T
0 10 20 30 40 50 60

Time (hours)

Figure 10: Messages per second per node.

1 == — 1
L r— ya ra
0.9 1 /
0.8 —| 10 / ’ |
: }]
wo7 || —100 | I !
fohe ——1000 f I :
20.6 T—{ — 10000 [— i
05 f ~
S !
504 1
g [
o3 |
0.2 |
0.1 1
1
0 -
0.01 0.1 1 10 100

Messages / second

Figure 11: Cumulative distribution of messages per sec-
ond per node for each capacity value in HeteroPastry.

this 10 minute window was 2.4 times higher for Gia than
HeteroPastry. Figures 11 and 12 show the cumulative
distribution of the number of messages per second per
node for each capacity value in HeteroPastry and Gia.
The maximum message rate observed was only 42.63
for Gia and 26.48 for HeteroPastry. Both systems do a
good job of distributing message load according to ca-
pacity; nodes with higher capacity receive more mes-
sages. The message rate for nodes with capacity 1 is
low; the median is only 0.17 and the 95th percentile is
only 0.30 in HeteroPastry, and the median is 0.11 and
the 95th percentile is 0.13 in Gia. For the nodes with
capacity 10 in HeteroPastry, the median is also 0.17 and
the 95th percentile is 0.32, and the median is 0.11 and the
95th percentile is 0.14 in Gia. Since the indegree of 1-

11

09 1! | f L
10 |

0.8 =1 —100 I 1

207 +— ——1000 I t

k-1 — -1

S06 0000 | :

205 |

2

504

I

w034

Messages / second

Figure 12: Cumulative distribution of messages per sec-
ond per node for each capacity value in Gia.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

95

[[Capacity [1 [10 [100 [1000 [10000]
Gia Mean 3 3 23.56 | 126.02 128
Median 3 3 24 128 128
95th 3 3 25 128 128
Hetero- Mean 2.15 | 2.38 | 14.50 | 104.66 128
Pastry Median 2 3 15 125 128
95th 3 3 24 128 128

Table 2: Distribution of replicas of node indices for dif-
ferent capacity values in Gia and HeteroPastry.

and 10-capacity nodes is bounded to the same value, this
is not surprising. In both Gia and HeteroPastry, the 100-
capacity nodes incur a higher overhead than the 1- and
10-capacity nodes but a lower overhead than the 1000-
capacity nodes.

The figures also show that the load on any node is suf-
ficiently low (with a query rate of 0.01 queries per second
per node) that flow control is not necessary. Gia’s flow
control mechanism [10] can be applied to HeteroPastry
to enable scaling to higher query rates.

We also studied the distribution of replicas of node in-
dices, which is another indicator of the effectiveness of
both systems in adapting the topology to diffferent node
capacities. Table 2 summarises the distribution of repli-
cas of indices for each capacity value in both systems.
The total numbers of index replicas is 27,707 in Het-
eroPastry and 38,153 in Gia. Both systems do a good
job at distributing index replicas (and indegree) accord-
ing to node capacity. Gia replicates more because it is
more effective at pushing replicas to nodes with capacity
100 and 1000.

HeteroPastry maintains significantly less index repli-
cas than Gia but it performs better because its random
walks visit nodes with more index replicas and more di-
verse index replicas than those visited by random walks
in Gia. In Gia, nodes that are close in the overlay topol-
ogy tend to share the same high capacity neighbours.
This reduces the number of unique files known by a node
and its neighbours and it forces biased random walks to
visit low capacity nodes before they can find new high
capacity nodes to visit. Since the number of index repli-
cas stored by a node is proportional to its capacity, this
results in poor performance. The topology adaptation
and random walk mechanisms in HeteroPastry exploit
structure to prevent this problem; the constraints on the
node identifiers of neighbours and nodes visited during
a random walk ensure that the initial set of nodes vis-
ited has high capacity and knows about more unique
files. This results in HeteroPastry visiting significantly
less nodes with capacity 100 during random walks than
Gia (as shown in Figure 11).

o
o A
3

‘ —=—Gia

- & ‘HeteroPastry

)

[I S I S)
£
*

messages / second / node

o

o

o

100 200 300 400 500 600
session time (minutes)

Figure 13: Messages per second per node for Gia and
HeteroPastry versus session time.

4.3.2 Poisson traces

The experiments described so far use a trace of node
arrivals and departures collected in a real Gnutella de-
ployment. The next set of experiments compare the per-
formance of Gia and HeteroPastry using artificial traces
with more nodes and different rates of churn. These
traces have Poisson node arrivals and an exponential dis-
tribution of node session times with the same rate. We
generated traces with session times of 5, 15, 30, 60, 120
and 600 minutes and in all cases the average number of
nodes was 10,000. We used the same data and query dis-
tribution as in the previous experiments. It is important
to note that a session time of 5 minutes is short; indeed,
it is 28 times shorter than the average session time of 2.3
hours observed in the Gnutella trace.

Figure 13 shows the total number of messages per sec-
ond per node for the different session times. Both Gia
and HeteroPastry have low overhead across all session
times.

Gia’s overhead is almost constant across all session
times. Short session times increase Gia’s overhead
because of increased retransmissions and traffic to fill
neighbour tables. However, this is offset by a decrease
in fault detection traffic due to a decrease in the average
number of neighbours; there are 15.1 neighbours when
the session time is 600 and 10.7 when it is 5.

HeteroPastry has a lower message overhead than Gia
for session times of 30 minutes or greater. This overhead
decreases between 60 and 600 minutes because Het-
eroPastry adapts the routing table probing rate to match
the failure rate. HeteroPastry incurs a higher message
overhead than Gia for extremely high churn rates mostly
due to the overhead of maintaining the leaf set. This
overhead could be reduced without impacting query suc-
cess rate and delay by using a smaller leaf set or disabling
the mechanisms to ensure strong leaf set consistency [6],
which are not important in this application.

Figure 14 shows the lookup success rate for the dif-
ferent session times. As in previous experiments, Het-
eroPastry achieves a success rate higher than Gia across
all session times.

96

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

§ 04 - ¢ -HeteroPastry
®0.3 —=—Gia

0 100 200 300 400 500 600
Session time (minutes)

Figure 14: Query success rate for Gia and HeteroPastry
versus session time.

12000

Random walks
10000 — Flooding
8000 -

6000 -

Delay (ms)

4000

2000

0

0 10 20 30 40 50 60
Time(hours)

Figure 15: Query delay when using constrained flooding
and random walks in HeteroPastry.

The success rates with 10,000 nodes are lower than
those observed before because there are more nodes and
random walk length is still bound to 128. There are at
most 2,700 active nodes at any time in the Gnutella trace.
This also results in higher message overhead with 10,000
nodes even with a session time of 600 minutes.

The delay incurred for successful lookups is similar
in both HeteroPastry and Gia. HeteroPastry achieves a
lower average delay per lookup because it has a higher
success rate and failed lookups take longer to complete
on average than successful lookups. Therefore, Het-
eroPastry achieves a delay at least 12% lower than Gia
with 5 minute session times and at least 43% lower with
600 minutes session time.

4.3.3 Constrained floods

We also compared the performance of constrained flood-
ing and random walks in HeteroPastry. We configured
constrained floods to visit at most 128 nodes as with the
random walks. Both algorithms visit exactly the same
128 nodes when the query fails so they have the same
success rate.

Figure 15 shows the delay for successful queries using
both constrained floods and random walks. It shows that
constrained flooding can locate content faster than ran-
dom walks. This is not surprising because constrained
flooding visits nodes in parallel; all 128 nodes are vis-
ited after only 7 hops. It takes 128 hops to visit all

/ node
2> on

il — Flooding
Random walks

»

Messages / second

o o oo
o N r O ® =

20 30 40 50 60
Time(hours)

o
24

Figure 16: Messages per second per node when using
constrained floods and random walks in HeteroPastry.

the nodes with the random walk. Additionally, random
walks use acknowledgments and retransmissions to re-
cover when the query is forwarded to a node that fails.
This introduces delays that increase when the failure rate
in the trace increases (as shown in Figure 15). The de-
lay of constrained floods remains constant because we
do not use acknowledgments and retransmissions and in-
stead rely on redundancy to cope with node failures. We
observed the same success rate for both flooding and
random walks, which demonstrates the effectiveness of
using redundancy to cope with node failure during con-
strained floods.

Figure 16 shows the number of messages per sec-
ond per node when using constrained floods and ran-
dom walks in HeteroPastry. It demonstrates the advan-
tage of random walks over flooding; random walks re-
sult in lower overhead because they stop when they find
a copy of the file and visit less nodes than constrained
floods on average. It is interesting to note that the over-
head with constrained floods is comparable to the over-
head in the unstructured overlays. Additionally, some
peer-to-peer applications discover multiple nodes with
matching content, for example, to enable more efficient
downloads with some form of striping. The benefit of
random walks over constrained floods decreases in this
case. Constrained floods are likely to be the best strategy
for many applications.

5 Conclusion

It is commonly believed that unstructured overlays cope
with churn better, exploit heterogeneity more effectively,
and support complex queries more efficiently than struc-
tured overlays. This paper shows that coping with churn,
exploiting heterogeneity and supporting complex queries
are not fundamental problems for structured overlays.
We describe how to exploit structure to achieve high
resilience to churn with maintenance overhead as low
as unstructured overlays and how to modify proximity
neighbour selection to exploit heterogeneity effectively
to improve scalability. Additionally, we present a hybrid

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

97

system that uses the search and data placement strategies
of unstructured overlays on a structured overlay topol-
ogy. Simulation results using a real-world trace show
that the hybrid system can support complex queries with
lower message overhead while providing higher query
success rates and lower response times than the state of
the art in unstructured overlays.

The additional functionality provided by structured
overlays has proven important to achieve scalability and
efficiency in a wide range of applications. Structured
overlays can emulate the functionality of unstructured
overlays with comparable or even better performance.
Interestingly, it is not clear that unstructured overlays can
efficiently emulate the same functionality as structured
overlays.

References
[1] The Gnutella 04 protocol specification, 2000.
http://dss.clip2.com/GnutellaProtocol04.pdf.
[2] The Gnutella 0.6 protocol specification, 2002.

http://www.limewire.org/.
[3] Kazaa, 2002. http://www.kazaa.com/.

[4] BHAGWAN, R., SAVAGE, S., AND VOELKER, G. Understanding
availability. In IPTPS’03 (Feb. 2003).

[5] BLAKE, C., AND RODRIGUES, R. High Availability, Scalable
Storage, Dynamic Peer Networks: Pick Two. In HotOS IX (May
2003).

[6] CASTRO, M., COSTA, M., AND ROWSTRON, A. Performance
and dependability of structured peer-to-peer overlays. In DSN’04
(June 2004).

[71 CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A.,
AND WALLACH, D. S. Security for structured peer-to-peer over-
lay networks. In OSDI’02 (Dec. 2002).

[8] CASTRO, M., DRUSCHEL, P., HU, Y. C., AND ROWSTRON,
A. Proximity neighbor selection in tree-based structured peer-
to-peer overlays. Tech. Rep. MSR-TR-2003-52, Microsoft Re-
search, Aug. 2003.

[9] CASTRO, M., JONES, M. B., KERMARREC, A.-M., ROw-
STRON, A., THEIMER, M., WANG, H., AND WOLMAN, A. An
evaluation of scalable application-level multicast built using peer-
to-peer overlays. In Infocom’03 (Apr. 2003).

[10] CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM,
N., AND SHENKER, S. Making Gnutella-like p2p systems scal-

able. In SIGCOMM’03 (Aug. 2003).

EL-ANSARY, S., ALIMA, L. O., BRAND, P., AND HARIDI, S.
Efficient broadcast in structured p2p networks. In /PTPS’03 (Feb.
2003).

[11]

[12] FESSANT, F. L., HANDURUKANDE, S., KERMARREC, A.-M.,
AND MASSOULIE, L. Clustering in peer-to-peer file sharing

workloads. In IPTPS’04 (Feb. 2004).

GANESAN, P., SUN, Q., AND GARCIA-MOLINA, H. Yappers:
A peer-to-peer lookup service over arbitrary topology. In Info-
com’03 (Apr. 2003).

[13]

[14] GNAWALL, O. A keyword set search system for peer-to-peer net-

works, 2002. Master Thesis, MIT.

[15] The Gnutella protocol specification, 2000. http://dss.

clip2.com/GnutellaProtocol04.pdf.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

GuMMADI, K. P., GUMMADI, R., GRIBBLE, S. D., RAT-
NASAMY, S., SHENKER, S., AND STOICA, I. The impact of
DHT routing geometry on resilience and proximity. In SIG-
COMM’03 (Aug. 2003).

GuMMADI, P. K., DUNN, R. J., SAROIU, S., GRIBBLE, S. D.,
LEVY, H. M., AND ZAHORJAN, J. Measurement, modeling,
and analysis of a peer-to-peer file-sharing workload. In SOSP’03
(Oct. 2003).

HARREN, M., HELLERSTEIN, J. M., HUEBSCH, R., Loo,
B. T., SHENKER, S., AND STOICA, I. Complex queries in DHT-
based peer-to-peer networks. In /PTPS’02 (Mar. 2002).

IYER, S., ROWSTRON, A., AND DRUSCHEL, P. Squirrel: A
decentralized peer-to-peer web cache. In PODC’02 (July 2002).

L1, J.,, Loo, B. T., HELLERSTEIN, J., KAASHOEK, F.,
KARGER, D. R., AND MORRIS, R. On the feasibility of peer-to-
peer web indexing and search. In /PTPS’03 (Feb. 2003).

L1, J., STRIBLING, J., GIL, T. M., MORRIS, R., AND
KAASHOEK, M. F. Comparing the performance of distributed
hash tables under churn. In /PTPS’04 (Feb. 2004).

Loo, B. T., HELLERSTEIN, J. M., HUEBSCH, R., SHENKER,
S., AND STOICA, I. Enhancing P2P file sharing with an Internet-
scale query processor. In VLDB’04 (Sept. 2004).

LV, Q., Cao, P,, COHEN, E., L1, K., AND SHENKER, S. Search
and replication in unstructured peer-to-peer networks. In ICS’02
(June 2002).

Lv, Q., RATNASAMY, S., AND SHENKER, S. Can heterogeneity
make Gnutella scalable? In IPTPS’02 (Feb. 2002).

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND
SHENKER, S. A scalable content-addressable network. In SIG-
COMM’01 (Aug. 2001).

RATNASAMY, S., HANDLEY, M., KARP, R., AND SHENKER, S.
Application-level multicast using content-addressable networks.
In NGC’01 (Nov. 2001).

REYNOLDS, P., AND VAHDAT, A. Efficient peer-to-peer key-
word searching. In Middleware’03 (Nov. 2003).

RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J.
Handling churn in a DHT. In USENIX’04 (June 2004).

ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-peer
systems. In Middleware’01 (Nov. 2001).

SAROIU, S., GUMMADI, K., AND GRIBBLE, S. A measurement
study of peer-to-peer file sharing systems. In MMCN’02 (Jan.
2002).

SEN, S., AND WANG, J. Analyzing peer-to-peer traffic across
large networks. In Internet Measurement Workshop (Nov. 2002).

StoicA, 1., MORRIS, R., KARGER, D., KAASHOEK, M. F.,
AND BALAKRISHNAN, H. Chord: A scalable peer-to-peer
lookup service for Internet applications. In SIGCOMM’01 (Aug.
2001).

TANG, C., XU, Z., AND DWARKADAS, S. Peer-to-peer informa-
tion retrieval using self-organizing semantic overlay networks. In
SIGCOMM’03 (Aug. 2003).

ZEGURA, E., CALVERT, K., AND BHATTACHARIJEE, S. How to
model an internetwork. In INFOCOM’96 (1996).

ZHAO, B. Y., KUuBIaTOWICZ, J. D., AND JOSEPH, A. D.
Tapestry: An infrastructure for fault-resilient wide-area location
and routing. Tech. Rep. UCB-CSD-01-1141, U. C. Berkeley, Apr.
2001.

98

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

