Shark: Scaling File Servers via Cooperative Caching

Siddhartha Annapureddy, Michael J. Freedman, David Mazieres
New York University
http://www.scs.cs.nyu.edu/shark/

Abstract

Network file systems offer a powerful, transparent inter-
face for accessing remote data. Unfortunately, in current
network file systems like NFS, clients fetch data from a
central file server, inherently limiting the system’s ability
to scale to many clients. While recent distributed (peer-to-
peer) systems have managed to eliminate this scalability
bottleneck, they are often exceedingly complex and pro-
vide non-standard models for administration and account-
ability. We present Shark, a novel system that retains the
best of both worlds—the scalability of distributed systems
with the simplicity of central servers.

Shark is a distributed file system designed for large-
scale, wide-area deployment, while also providing a drop-
in replacement for local-area file systems. Shark intro-
duces a novel cooperative-caching mechanism, in which
mutually-distrustful clients can exploit each others’ file
caches to reduce load on an origin file server. Using a dis-
tributed index, Shark clients find nearby copies of data,
even when files originate from different servers. Perfor-
mance results show that Shark can greatly reduce server
load and improve client latency for read-heavy workloads
both in the wide and local areas, while still remaining
competitive for single clients in the local area. Thus,
Shark enables modestly-provisioned file servers to scale
to hundreds of read-mostly clients while retaining tradi-
tional usability, consistency, security, and accountability.

1 Introduction

Users of distributed computing environments often launch
similar processes on hundreds of machines nearly simul-
taneously. Running jobs in such an environment can
be significantly more complicated, both because of data-
staging concerns and the increased difficulty of debug-
ging. Batch-oriented tools, such as Condor [9], can pro-
vide I/O transparency to help distribute CPU-intensive ap-
plications. However, these tools are ill-suited to tasks
like distributed web hosting and network measurement, in
which software needs low-level control of network func-
tions and resource allocation. An alternative is frequently
seen on network test-beds such as RON [2] and Planet-
Lab [24]: users replicate their programs, along with some

minimal execution environment, on every machine before
launching a distributed application.

Replicating execution environments has a number of
drawbacks. First, it wastes resources, particularly band-
width. Popular file synchronization tools do not optimize
for network locality, and they can push many copies of
the same file across slow network links. Moreover, in a
shared environment, multiple users will inevitably copy
the exact same files, such as popular OS add-on packages
with language interpreters or shared libraries. Second,
replicating run-time environments requires hard state, a
scarce resource in a shared test-bed. Programs need suf-
ficient disk space, yet idle environments continue to con-
sume disk space, in part because the owners are loathe
to consume the bandwidth and effort required for redis-
tribution. Third, replicated run-time environments differ
significantly from an application’s development environ-
ment, in part to conserve bandwidth and disk space. For
instance, users usually distribute only stripped binaries,
not source or development tools, making it difficult to de-
bug running processes in a distributed system.

Shark is a network file system specifically designed
to support widely distributed applications. Rather than
manually replicate program files, users can place a dis-
tributed application and its entire run-time environment
in an exported file system, and simply execute the pro-
gram directly from the file system on all nodes. In a
chrooted environment such as PlanetLab, users can even
make /usr/local a symbolic link to a Shark file sys-
tem, thereby trivially making all local software available
on all test-bed machines.

Of course, the big challenge faced by Shark is scala-
bility. With a normal network file system, if hundreds
of clients suddenly execute a large, 40MB C++ program
from a file server, the server quickly saturates its network
uplink and delivers unacceptable performance. Shark,
however, scales to large numbers of clients through a
locality-aware cooperative cache. When reading an un-
cached file, a Shark client avoids transferring the file or
even chunks of the file from the server, if the same data
can be fetched from another, preferably nearby, client. For
world-readable files, clients will even download nearby

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

129

cached copies of identical files—or even file chunks—
originating from different servers.

Shark leverages a locality-aware, peer-to-peer distri-
buted index [10] to coordinate client caching. Shark
clients form self-organizing clusters of well-connected
machines. When multiple clients attempt to read identical
data, these clients locate nearby replicas and stripe down-
loads from each other in parallel. Thus, even modestly-
provisioned file servers can scale to hundreds, possibly
thousands, of clients making mostly read accesses.

There have been serverless, peer-to-peer file systems
capable of scaling to large numbers of clients, notably
Ivy [23]. Unfortunately, these systems have highly non-
standard models for administration, accountability, and
consistency. For example, Ivy spreads hard state over
multiple machines, chosen based on file system data struc-
ture hashes. This leaves no single entity ultimately re-
sponsible for the persistence of a given file. Moreover,
peer-to-peer file systems are typically noticeably slower
than conventional network file systems. Thus, in both ac-
countability and performance they do not provide a substi-
tute for conventional file systems. Shark, by contrast, ex-
ports a traditional file-system interface, is compatible with
existing backup and restore procedures, provides compet-
itive performance on the local area network, and yet easily
scales to many clients in the wide area.

For workloads with no read sharing between users,
Shark offers performance that is competitive with tradi-
tional network file systems. However, for shared read-
heavy workloads in the wide area, Shark greatly reduces
server load and improves client latency. Compared to both
NFSv3 [6] and SFS [21], a secure network file system,
Shark can reduce server bandwidth usage by nearly an or-
der of magnitude and can provide a 4x-6x improvement
for client latency for reading large files, as shown by both
local-area experiments on Emulab wide-area experiments
on the PlanetLab test-bed.

By providing scalability, efficiency, and security, Shark
enables network file systems to be employed in environ-
ments where they were previously impractical. Yet Shark
retains their attractive API, semantics, and portability:
Shark interacts with the local host using an existing net-
work file system protocol (NFSv3) and runs in user space.

The remainder of this paper in organized as follows.
Section 2 details the design of Shark: its file-system com-
ponents, caching and security protocols, and distributed
index operations. Section 3 describes its implementation,
and Section 4 evaluates Shark’s performance. Section 5
discusses related work, and Section 6 concludes.

2 Shark Design

Shark’s design incorporates a number of key ideas aimed
at reducing the load on the server and improving client-

1 Establish secure channel

< >
— » File
- |

' Request file attributes and tokens
Server

Client

Client

Overlay
3 : Initiate secure channel
. < P File
‘ Securely transfer file chunks . Chunks
< »>]
Client Proxies

Figure 1: Shark System Overview. A client machine si-
multaneously acts as a client (to handle local application
file system accesses), as a proxy (to serve cached data to
other clients), and as a node (within the distributed in-
dex overlay). In a real deployment, there may be multiple
file servers that each host separate file systems, and each
client may access multiple file systems. For simplicity,
however, we show a single file server.

perceived latencies. Shark enables clients to securely
mount remote file systems and efficiently access them.
When a client reads a particular file first, it fetches the data
from the file server. Upon retrieving the file, the client
caches it and registers itself as a replica proxy (or proxy
for short) for the “chunks” of the file in the distributed in-
dex. Subsequently, when another client attempts to access
the file, it discovers proxies for the file chunks by query-
ing the distributed index. The client then establishes a se-
cure channel to multiple such proxies and downloads the
file chunks in parallel. (Note that the client and the proxy
are mutually distrustful.) Upon fetching these chunks, the
client registers itself also as a proxy for these chunks.
Figure 1 provides an overview of the Shark system.
First, when a client attempts to read a file, it queries its
file server for the file’s attributes and some opaque tokens
(Step 1 as shown). One token identifies the contents of
the whole file, while other tokens each identify a partic-
ular chunk of the file. A Shark server divides a file into
chunks by running a Rabin fingerprint algorithm on the
file [22]. This technique splits a file along specially cho-
sen boundaries in such a way that preserves data common-

130

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

alities across files, for example, between file versions or
when concatenating files.

Next, a client attempts to discover replica proxies for
the particular file via Shark’s distributed index (Step 2).
Shark clients organize themselves into a key/value in-
dexing infrastructure, built atop a peer-to-peer structured
routing overlay [10]. For now, we can visualize this layer
as exposing two operations, put and get: A client exe-
cutes put to declare that it has something; get returns the
list of clients who have something. A Shark client uses its
tokens to derive indexing keys that serve as inputs to these
operations. It uses this distributed index to register itself
and to find other nearby proxies caching a file chunk.

Finally, a client connects to several of these proxies,
and it requests various chunks of data from each proxy in
parallel (Step 3). Note, however, that clients themselves
are mutually distrustful, so Shark must provide various
mechanisms to guarantee secure data sharing: (1) Data
should be encrypted to preserve confidentiality and should
be decrypted only by those with appropriate read permis-
sions. (2) A malicious proxy should not be able to break
data integrity by modifying content without a client de-
tecting the change. (3) A client should not be able to
download large amounts of even encrypted data without
proper read authorization.

Shark uses the opaque tokens generated by the file
server in several ways to handle these security issues.
(1) The tokens serve as a shared secret (between client
and proxy) with which to derive symmetric cryptographic
keys for transmitting data from proxy to client. (2) The
client can verify the integrity of retrieved data, as the to-
ken acts to bind the file contents to a specific verifiable
value. (3) A client can “prove” knowledge of the token
to a proxy and thus establish read permissions for the file.
Note that the indexing keys used as input to the distributed
index are only derived from the token; they do not in fact
expose the token’s value and thus otherwise destroy its
usefulness as a shared secret.

Shark allows clients to share common data segments on
a sub-file granularity. As a file server provides the tokens
naming individual file chunks, clients can share data at the
granularity of chunks as opposed to whole files.

In fact, Shark provides cross-file-system sharing when
tokens are derived solely from file contents. Consider
the case when users attempt to mount /usr/local (for
the same Operating System) using different file servers.
Most of the files in these directories are identical and even
when the file versions are different, many of the chunks
are identical. Thus, even when distinct subsets of clients
access different file servers to retrieve tokens, one can still
act as a proxy for the other to transmit the data.

In this section, we first describe the Shark file server
(Section 2.1), then discuss the file consistency provided

by Shark (2.2). Section 2.3 describes Shark’s cooperative
caching, its cryptographic operations, and client-proxy
protocols. Finally, we present Shark’s chunking algorithm
(2.4) and its distributed index (2.5) in more depth.

2.1 Shark file servers

Shark names file systems using self-certifying pathnames,
as in SFS [21]. These pathnames explicitly specify all
information necessary to securely communicate with re-
mote servers. Every Shark file system is accessible under
a pathname of the form:

/shark/@server, pubkey

A Shark server exports local file systems to remote clients
by acting as an NFS loop-back client. A Shark client pro-
vides access to a remote file system by automounting re-
quested directories [21]. This allows a client-side Shark
NFS loop-back server to provide unmodified applications
with seamless access to remote Shark file systems. Un-
like NFS, however, all communication with the file server
is sent over a secure channel, as the self-certifying path-
name includes sufficient information to establish a secure
channel.

System administrators manage a Shark server identi-
cally to an NFS server. They can perform backups, man-
age access controls with little difference. They can config-
ure the machine to taste, enforce various policies, perform
security audits etc. with existing tools. Thus, Shark pro-
vides system administrators with a familiar environment
and thus can be deployed painlessly.

2.2 File consistency

Shark uses two network file system techniques to improve
read performance and decrease server load: leases [11]
and AFS-style whole-file caching [14]. When a user at-
tempts to read any portion of a file, the client first checks
its disk cache. If the file is not already cached or the
cached copy is not up to date, the client fetches a new
version from Shark (either from the cooperative cache or
directly from the file server).

Whenever a client makes a read RPC to the file server,
it gets a read lease on that particular file. This lease cor-
responds to a commitment from the server to notify the
client of any modifications to the file within the lease’s
duration. Shark uses a default lease duration of five min-
utes. Thus, if a user attempts to reads from a file—and
if the file is cached, its lease is not expired, and no server
notification (or callback) has been received—the read suc-
ceeds immediately using the cached copy.

If the lease has already expired when the user attempts
to read the file, the client contacts the file server for fresh
file attributes. The attributes, which include file permis-
sions, mode, size, etc., also provide the file’s modification

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

131

Client

File not cached or lease invalidated
+ attributes changed

Send GETTOK

GETTOK (fh, offset, count)

Server

Compute token over entire file

file attributes
file token

From offset to (offset+count),
Split data into chunks
Compute tokens

(chunktok1, offset1, size1)
(chunktok2, offset2, size2)
eof = true

If cached and not modified, done -
Else, start cooperative fetch

Figure 2: Shark GETTOK RPC

and inode change times. If these times are the same as the
cached copy, no further action is necessary: the cached
copy is fresh and the client renews its lease. Otherwise,
the client needs to fetch a new version from Shark.

While these techniques reduce unnecessary data trans-
fers when files have not been modified, each client needs
to refetch the entire file after any modification from the
server. Thus, large numbers of clients for a particular
file system may overload the server and offer poor per-
formance. Two techniques alleviate the problem: Shark
fetches only modified chunks of a file, while its cooper-
ative caching allows clients to fetch data from each other
instead of from the server.

While Shark attempts to handle reads within its cooper-
ative cache, all writes are sent to the origin server. When
any type of modification occurs, the server must invalidate
all unexpired leases, update file attributes, recompute its
file token, and update its chunk tokens and boundaries.

We note that a reader can get a mix of old and new file
data if a file is modified while the reader is fetching file
attributes and tokens from the server. (This condition can
occur when fetching file tokens requires multiple RPCs,
as described next.) However, this behavior is no different
from NFS, but it could be changes using AFS-style whole-
file overwrites [14].

2.3 Cooperative caching

File reads in Shark make use of one RPC procedure not in
the NFS protocol, GETTOK, as shown in Figure 2.

GETTOK supplies a file handle, offset, and count as
arguments, just as in a READ RPC. However, instead of
returning the actual file data, it returns the file’s attributes,
the file token, and a vector of chunk descriptions. Each
chunk description identifies a specific extent of the file by
offset and size, and includes a chunk token for that extent.
The server will only return up to 1,024 chunk descriptions
in one GETTOK call; the client must issue multiple calls
for larger files.

The file attributes returned by GETTOK include suffi-
cient information to determine if a local cached copy is
up-to-date (as discussed). The tokens allow a client (1) to
discover current proxies for the data, (2) to demonstrate
read permission for the data to proxies, and (3) to verify
the integrity of data retrieved from proxies. First, let us
specify how Shark’s various tokens and keys are derived.

Content-based naming. Shark names content with
cryptographic hash operations, as given in Table 1.

A file token is a 160-bit value generated by a crypto-
graphic hash of the file’s contents I’ and some optional
per-file randomness r that a server may use as a key for
each file (discussed later):

Tr = tok(F) = HMAC,(F)

Throughout our design, HMAC is a keyed hash func-
tion [4], which we instantiate with SHA-1. We assume
that SHA-1 acts as a collision-resistant hash function,
which implies that an adversary cannot find an alternate
input pair that yields the same T'r.!

The chunk token T, in a chunk description is also com-
puted in the same manner, but only uses the particular
chunk of data (and optional randomness) as an input to
SHA-1, instead of the entire file I'. As file and chunk to-
kens play similar roles in the system, we use 7" to refer to
either type of token indiscriminately.

The indexing key I used in Shark’s distributed index
is simply computed by HMAC,(l). We key the HMAC
function with 7" and include a special character | to signify
indexing. More specifically, I refers to the indexing key
for file F', and Iy, for chunk Fj.

The use of such server-selected randomness 7 ensures
that an adversary cannot guess file contents, given only
1. Otherwise, if the file is small or stylized, an adversary

'While our current implementation uses SHA-1, we could similarly
instantiate HMAC with SHA-256 for greater security.

132

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

Symbol Description Generated by . . . Only known by . ..
F File Server and approved readers
E; ith file chunk Chunking algorithm Parties with access to F'
r Server-specific randomness | 7 = PRNG() orr =0 Parties with access to F'
T File/chunk token tok(F) = HMAC,.(F) Parties with access to F/F;
ILE,Ac,Ap Special constants System-wide parameters Public
I Indexing key HMACr(I) Public
ro, TP Session nonces rc,rp = PRNG() Parties exchanging F'/F;
Authc Client authentication token | HMACr(Ac, C, P,rc,rp) | Parties exchanging F/F;
Authp Proxy authentication token | HMACr(Ap, P, P,rp,rc) | Parties exchanging F/F;
Kg Encryption key HMACr(E, C, P,rc,rp) Parties exchanging F/F;

Table 1: Notation used for Shark values

may be able to perform an offline brute-force attack by
enumerating all possibilities.

On the flip-side, omitting this randomness enables
cross-file-system sharing, as its content-based naming can
be made independent of the file server. That is, when
r is omitted and replaced by a string of Os, the distri-
buted indexing key is dependent only on the contents of
F: Ir = HMAChmac,(r)(l). Cross-file-system shar-
ing can improve client performance and server scalability
when nearby clients use different servers. Thus, the sys-
tem allows one to trade-off additional security guarantees
with potential performance improvements. By default, we
omit this randomness for world-readable files, although
configuration options can override this behavior.

The cooperative-caching read protocol. We now spec-
ify in detail the cooperative-caching protocol used by
Shark. The main goals of the protocol are to reduce the
load on the server and to improve client-perceived laten-
cies. To this end, a client tries to download chunks of a
file from multiple proxies in parallel. At a high level, a
client first fetches the tokens for the chunks that comprise
a file. It then contacts nearby proxies holding each chunk
(if such proxies exists) and downloads them accordingly.
If no other proxy is caching a particular chunk of interest,
the client falls back on the server for that chunk.

The client sends a GETTOK RPC to the server and
fetches the whole-file token, the chunk tokens, and the
file’s attributes. It then checks its cache to determine
whether it has a fresh local copy of the file. If not, the
client runs the following cooperative read protocol.

The client always attempts to fetch & chunks in parallel.
We can visualize the client as spawning k threads, with
each thread responsible for fetching its assigned chunk.?
Each thread is assigned a random chunk F}; from the list
of needed chunks. The thread attempts to discover nearby
proxies caching that chunk by querying the distributed in-
dex using the primitive get(Ir, = HMACr,, (1)). If this

2Qur implementation is structured using asynchronous events and
callbacks within a single process, we use the term “thread”here only
for explanatory clarity.

get request fails to find a proxy or does not find one within
a specified time, the client fetches the chunk from the
server. After downloading the entire chunk, the client an-
nounces itself in the distributed index as a proxy for Fj;.

If the get request returns several proxies for chunk Fj,
the client chooses one with minimal latency and estab-
lishes a secure channel with the proxy, as described later.
If the security protocol fails (perhaps due to a malicious
proxy), the connection to the proxy fails, or a newly spec-
ified time is exceeded, the thread chooses another proxy
from which to download chunk F;. Upon downloading
F;, the client verifies its integrity by checking whether
Tr, = tok(F;). If the client fails to successfully down-
load F; from any proxy after a fixed number of attempts,
it falls back onto the origin file server.

Reusing proxy connections. While a client is down-
loading a chunk from a proxy, it attempts to reuse the con-
nection to the proxy by negotiating for other chunks. The
client picks a random chunks still needed. It computes
the corresponding « indexing keys and sends these to the
proxy. The proxy responds with those a chunks, among
the a requested, that it already has. If a = 0, the proxy re-
sponds instead with 3 keys corresponding to chunks that
it does have. The client, upon downloading the current
chunk, selects a new chunk from among those negotiated
(i.e., needed by the client and known to the proxy). The
client then proves read permissions on the new chunk and
begins fetching the new chunk. If no such chunks can be
negotiated, the client terminates the connection.

Client-proxy interactions. We now describe the secure
communication mechanisms between clients and proxies
that ensure confidentiality and authorization. We already
described how clients achieve data integrity by verifying
the contents of files/chunks by their tokens.

To prevent adversaries from passively reading or ac-
tively modifying content while in transmission, the client
and proxy first derive a symmetric encryption key K g be-
fore transmitting a chunk. As the token T'r, already serves

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

133

A

Client Proxy

Auth, T
Auth,,, E (F))

A

Figure 3: Shark session establishment protocol

as a shared secret for chunk Fj, the parties can simply use
it to generate this key.

Figure 3 shows the protocol by which Shark clients es-
tablish a secure session. First, the parties exchange fresh,
random 20-byte nonces r¢ and rp upon initiating a con-
nection. For each chunk to be sent over the connection,
the client must signal the proxy which token T, to use,
but it can do so without exposing information to eaves-
droppers or malicious proxies by simply sending I, in
the clear. Using these nonces and knowledge of T, each
party computes authentication tokens as follows:

Authc
Authp

HMACr,, (Ac.,C, P,rc,rp)
HMACr,. (Ap, P.C,7p,7c)

The Authe token proves to the proxy that the client actu-
ally has the corresponding chunk token 7'z, and thus read
permissions on the chunk. Upon verifying Authc, the
proxy replies with Authp and the chunk F; after apply-
ing F to it.

In our current implementation, £ is instantiated by
a symmetric block encryption function, followed by an
MAC covering the ciphertext. However, we note that
Authp already serves as a MAC for the content, and thus
this additional MAC is not strictly needed. > The sym-
metric encryption key Kg for E is derived in a similar
manner as before:

Kg

HMACTFi (E7 07 P7 TCer)

An additional MAC key can be similarly derived by re-
placing the special character E with M. Shark’s use of
fresh nonces ensure that these derived authentication to-
kens and keys cannot be replayed for subsequent requests.

Upon deriving this symmetric key K g, the proxy en-
crypts the data within a chunk using 128-bit AES in
counter mode (AES-CTR). Per each 16-byte AES block,

3The results of Krawczyk [15] speaking on the generic security con-
cerns of “authentication-md-encrypt” are not really relevant here, as we
already expose the raw output of our MAC via I, and thus implicitly
assume that HMAC does not leak any information about its contents.
Thus, the inclusion of Authp does not introduce any additional data
confidentiality concerns.

we use the block’s offset within the chunk/file as its
counter.

The proxy protocol has READ and READDIR RPCs
similar to NFS, except they specify the indexing key I
and Auth¢ to name a file (which is server independent),
in place of a file handle. Thus, after establishing a con-
nection, the client begins issuing read RPCs to the proxy;
the client decrypts any data it receives in response using
K and the proper counter (offset).

While this block encryption prevents a client without
T, from decrypting the data, one may be concerned if
some unauthorized client can download a large number of
encrypted blocks, in the hopes of either learning K g later
or performing some offline attack. The proxy’s explicit
check of Authc prevents this. Similarly, the verifiable
Authp prevents a malicious party that does not hold F;
from registering itself under the public I, and then wast-
ing the client’s bandwidth by sending invalid blocks (that
later will fail hash verification).

Thus, Shark provides strong data integrity guarantees to
the client and authorization guarantees to the proxy, even
in the face of malicious participants.

2.4 Exploiting file commonalities

We describe the chunking method by which Shark can
leverage file commonalities. This method (used by
LBFS [22]) avoids a sensitivity to file-length changes by
setting chunk boundaries, or breakpoints, based on file
contents, rather than on offset position. If breakpoints
were selected only by offset—for instance, by breaking
a file into aligned 16KB chunks—a single byte added to
the front of a file would change all breakpoints and thus
all chunk tokens.

To divide a file into chunks, we examine every over-
lapping 48-byte region, and if the low-order 14 bits of
the region’s Rabin fingerprint [25] equals some globally-
chosen value, the region constitutes a breakpoint. As-
suming random data, the expected chunk size is therefore
214 = 16KB. To prevent pathological cases (such as long
strings of 0), the algorithm uses a minimum chunk size of
2KB and maximum size of 64KB. Therefore, modifica-
tions within a chunk will minimize changes to the break-
points: either only the chunk will change, one chunk will
split into two, or two chunks will merge into one.

Content-based chunking enables Shark to exploit file
commonalities: Even if proxies were reading different
versions of the same file or different files altogether, a
client can discover and download common data chunks,
as long as they share the same chunk token (and no server-
specific randomness). As the fingerprint value is global,
this chunking commonality also persists across multiple
file systems.

134

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

2.5 Distributed indexing

Shark seeks to enable data sharing both between files on
the same file system that contain identical data chunks
across different file systems. This functionality is not sup-
ported by the simple server-based approach of indexing
clients, whereby the file server stores and returns informa-
tion on which clients are caching which chunks. Thus, we
use a global distributed index for all Shark clients, even
those accessing different Shark file systems.

Shark uses a structured routing overlay [33, 26, 29, 37,
19] to build its distributed index. The system maps opaque
keys onto nodes by hashing their value onto a semantic-
free identifier (ID) space; nodes are assigned identifiers
in the same ID space. It allows scalable key lookup (in
O(log(n)) overlay hops for n-node systems), reorganizes
itself upon network membership changes, and provides
robust behavior against failure.

While many routing overlays optimize routes along the
underlay, most are designed as part of distributed hash ta-
bles to store immutable data. In contrast, Shark stores
only small references about which clients are caching
what data: It seeks to allow clients to locate copies of
data, not merely to find network efficient routes through
the overlay. In order to achieve such functionality, Shark
uses Coral [10] as its distributed index.

System overview. Coral exposes two main protocols:
put and get. A Shark client executes the get protocol
with its indexing key I as input; the protocol returns a list
of proxy addresses that corresponds to some subset of the
unexpired addresses put under I, taking locality into con-
sideration. put takes as input I, a proxy’s address, and
some expiry time.

Coral provides a distributed sloppy hash table (DSHT)
abstraction, which offers weaker consistency than tradi-
tional DHTs. It is designed for soft-state where multiple
values may be stored under the same key. This consis-
tency is well-suited for Shark: A client need not discover
all proxies for a particular file, it only needs to find sev-
eral, nearby proxies.

Coral caches key/value pairs at nodes whose IDs are
close (in terms of identifier space distance) to the key be-
ing referenced. To lookup the client addresses associated
with a key I, a node simply traverses the ID space with
RPCs and, as soon as it finds a remote peer storing I,
it returns the corresponding list of values. To insert a
key/value pair, Coral performs a two-phase operation. In
the “forward” phase, Coral routes to nodes successively
closer to [and stops when happening upon a node that is
both full (meaning it has reached the maximum number of
values for the key) and loaded (which occurs when there
is heavy write traffic for a particular key). During the “re-

B

" Overlay Clusters v

Figure 4: Coral’s three-level hierarchical overlay struc-
ture. Nodes (solid circles) initially query others in their
same high-level clusters (dashed rings), whose pointers
reference other proxies caching the data within the same
small-diameter cluster. If a node finds such a mapping to a
replica proxy in the highest-level cluster, the get finishes.
Otherwise, it continues among farther, lower-level nodes
(solid rings), and finally, if need be, to any node within
the system (the cloud).

verse” phase, the client node attempts to insert the value
at the closest node seen. See [10] for more details.

To improve locality, these routing operations are not
initially performed across the entire global overlay: Each
Coral node belongs to several distinct routing structures
called clusters. Each cluster is characterized by a maxi-
mum desired network round-trip-time (RTT) called the di-
ameter. The system is parameterized by a fixed hierarchy
of diameters, or levels. Every node belongs to one cluster
at each level, as shown in Figure 4. Coral queries nodes
in fast clusters before those in slower clusters. This both
reduces the latency of lookups and increases the chances
of returning values stored by nearby nodes.

Handle concurrency via ‘“atomic” put/get. Ideally,
Shark clients should fetch each file chunk from a Shark
server only once. However, a DHT-like interface which
exposes two methods, put and get, is not sufficient to
achieve this behavior. For example, if clients were to wait
until completely fetching a file before referencing them-
selves, other clients simultaneously downloading the file
will start transferring file contents from the server. Shark
mitigates this problem by using Coral to request chunks,
as opposed to whole files: A client delays its announce-
ment for only the time needed to fetch a chunk.

Still, given that Shark is designed for environments that
may experience abrupt flash crowds—such as when test-
bed or grid researchers fire off experiments on hundreds
of nodes almost simultaneously and reference large exe-
cutables or data files when doing so—we investigated the
practice of clients optimistically inserting a mapping to
themselves upon initiating a request. A production use of

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

135

Client

Server

l—»Authserver

? [Syst coTTT T c ’I ”””” ! [Shark cint/srv protocol] ! s . [NFS3]
. [System I ient Master 1 Server Mast
(};all] ! ! Enc'd, MAC'd L L 3
‘ INFS3] ! NFS Mounter<-| TCcP] Shark Server | _Kernel
| Shark Client | NFS 3
Kernel } I [Shark cintjorx protocol] Server
] 1 Cache Proxy L USRS
NFS 3 S | Encd, MAC'
Client TCP
Corald

Other client nodes

Other client proxies

Figure 5: The Shark system components

Coral in a web-content distribution network takes a simi-
lar approach when fetching whole web objects [10].

Even using this approach, we found that an origin
server can see redundant downloads of the same file
when initial requests for a newly-popular file occur syn-
chronously. We can imagine this condition occurring in
Shark when users attempt to simultaneously install soft-
ware on all test-bed hosts.

Such redundant fetches occur under the following race
condition: Consider that a mapping for file ' (and thus
Ir) is not yet inserted into the system. Two nodes both
execute get(Ir), then perform a put. On the node closest
to I, the operations serialize with both gets being han-
dling (and thus returning no values) before either put.

Simply inverting the order of operations is even worse.
If multiple nodes first perform a put, followed by a get,
they can discover one another and effectively form cycles
waiting for one another, with nobody actually fetching the
file from the server.

To eliminate this condition, we extended store opera-
tions in Coral to provide return status information (like
test-and-set in shared-memory systems). Specifically, we
introduce a single put/get RPC which atomically per-
forms both operations. The RPC behaves similar to a put
as described above, but also returns the first values dis-
covered in either direction. (Values in the forward put di-
rection help performance; values in the reverse direction
prevent this race condition.)

While of ultimately limited use in Shark given small
chunk sizes, this extension also proved beneficial for other
applications seeking a distributed index abstraction [10].

3 Implementation

Shark consists of three main components, the server-side
daemon sharksd, the client-side daemon sharkcd and
the coral daemon corald, as shown in Figure 5. All

three components are implemented in C++ and are built
using the SFS toolkit [20]. The file-system daemons in-
teroperate with the SFS framework, using its automounter,
authentication daemon, etc. corald acts as a node
within the Coral indexing overlay; a full description can
be found in [10].

sharksd, the server-side daemon, is implemented as
a loop-back client which communicates with the kernel
NFS server. sharksd incorporates an extension of the
NFSv3 protocol—the GETTOK RPC—to support file-
and chunk-token retrieval. When sharksd receives a
GETTOK call, it issues a series of READ calls to the
kernel NFS server and computes the tokens and chunk
breakpoints. It caches these tokens for future reference.
sharksd required an additional 400 lines of code to the
SFES read-write server.

sharkcd, the client-side daemon, forms the biggest
component of Shark. In addition to handling user re-
quests, it transparently incorporates whole-file caching
and the client- and server-side functionality of the Shark
cooperative cache. The code is 12,000 lines.

sharkcd comprises an NFS loop-back server which
traps user requests and forwards them to either the origin
file server or a Shark proxy. In particular, a read for a
file block is intercepted by the loop-back server and trans-
lated into a series of READ calls to fetch the entire file.
The cache-management subsystem of sharkcd stores all
files that are being fetched locally on disk. This cache pro-
vides a thin wrapper around file-system calls to enforce
disk usage accounting. Currently, we use the LRU mech-
anism to evict files from the cache. The cache names are
also chosen carefully to fit in the kernel name cache.

The server side of the Shark cooperative cache imple-
ments the proxy, accepting connections from other clients.
If this proxy cannot immediately satisfy a request, it regis-
ters a callback for the request, responding when the block

136

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

has been fetched. The client side of the Shark cooper-
ative cache implements the various fetching mechanism
discussed in Section 2.3. For every file to be fetched,
the client maintains a vector of objects representing con-
nections to different proxies. Each object is responsible
for fetching a sequence of chunks from the proxy (or a
range of blocks when chunking is not being performed
and nodes query only by file token).

sharkcd also supports the use of xfs, a device driver
bundled with the ARLA [35] implementation of AFS, in-
stead of NFS. However, given that the PlanetLab environ-
ment on which we performed testing does not have xfs,
we do not present those results in this paper.

During Shark’s implementation, we discovered and
fixed several bugs in both the OpenBSD NFS server and
the xfs implementation.

4 Evaluation

This section evaluates Shark against NFSv3 and SFS to
quantify the benefits of its cooperative-caching design for
read-heavy workloads. To measure the performance of
Shark against these file systems, without the gain from
cooperative caching, we first present microbenchmarks
for various types of file-system access tests, both in the
local-area and across the wide-area. We also evaluate the
efficacy of Shark’s chunking mechanism in reducing re-
dundant transfers.

Second, we measure Shark’s cooperative caching
mechanism by performing read tests both within the con-
trolled Emulab LAN environment [36] and in the wide-
area on the PlanetLab v3.0 test-bed [24]. In all experi-
ments, we start with cold file caches on all clients, but first
warm the server’s chunk token cache. The server required
0.9 seconds to compute chunks for a 10 MB random file,
and 3.6 seconds for a 40 MB random file.

We chose to evaluate Shark on Emulab, in addition
to wide-area tests on PlanetLab, in order to test Shark
in a more controlled, native environment: While Emu-
lab allows one to completely reserve machines, individ-
ual PlanetLab hosts may be executing tens or hundreds
of experiments (slices) simultaneously. In addition, most
PlanetLab hosts implement bandwidth caps of 10 Mb/sec
across all slices. For example, on a local PlanetLab ma-
chine operating at NYU, a Shark client took approxi-
mately 65 seconds to read a 40 MB file from the local
(non-PlanetLab) Shark file server, while a non-PlanetLab
client on the same network took 19.3 seconds. Further-
more, deployments of Shark on large LAN clusters (for
example, as part of grid computing environments) may
experience similar results to those we report.

The server in all the microbenchmarks and the Planet-
Lab experiments is a 1.40 GHz Athlon at NYU, running
OpenBSD 3.6 with 512 MB of memory. It runs the cor-

responding server daemons for SFS and Shark. All mi-
crobenchmark and PlanetLab clients used in the experi-
ments ran Fedora Core 2 Linux. The server used for Em-
ulab tests was a host in the Emulab test-bed; it did not
simultaneously run a client. All Emulab hosts ran Red-
Hat Linux 9.0. Both SFS and Shark issued READ RPCs
over TCP for blocks of 8 KB (the packet MTU on FC2’s
loopback interface is limited to 16 KB by default; we
were unable to modify this default for our PlanetLab ex-
periments). NFS, on the other hand, issued read requests
over UDP for blocks of 32 KB, requiring four times fewer
RPCs and thus significantly less overhead.

4.1 Alternate cooperative protocols

This section considers several alternative cooperative-
caching strategies for Shark in order to characterize the
benefits of various design decisions.

First, we examine whether clients should issue requests
for chunks sequentially (seq), as opposed to choosing a
random (previously unread) chunk to fetch. There are
two additional strategies to consider when performing
sequential requests: Either the client immediately pre-
announces itself for a particular chunk upon requesting
it (per an “atomic” put/get as in Section 2.5), or the client
waits until it finishes fetching a chunk before announcing
itself (via a put).

Second, we disable the negotiation process by which
clients may reuse connections with proxies and thus
download multiple chunks once connected. In this case,
the client must query the distributed index for each chunk.
We consider such sequential strategies to examine the ef-
fect of disk scheduling latency: for single clients in the
local area, one intuits that the random strategy limits the
throughput to that imposed by the file server’s disk seek
time, while we expect the network to be the bottleneck
in the wide area. Yet, one intuits that when multiple
clients operate concurrently, the random strategy allows
all clients to fetch independent chunks from the server
and later trade these chunks among themselves. Using
a purely sequential strategy, the clients all advance only
as fast as the few clients that initially fetch chunks from
the server.

4.2 Microbenchmarks

For the local-area microbenchmarks, we used a local ma-
chine at NYU as a Shark client. Maximum TCP through-
put between the local client and server, as measured by
ttcp, was 11.14 MB/sec. For wide-area microbench-
marks, we used a client machine located at the University
of Texas at El Paso. The average round-trip-time (RTT)
between this host and the server, as measured by ping, is
67 ms. Maximum TCP throughput was 1.07 MB/sec.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

137

31.4 127.6

0.5+

Normalized execution time

0.0 =

106.2

0.5

Normalized execution time

0.0 -

10 MB file read

40 MB file read

[Jsks
NFSv3
- Shark, no Coral

Shark, seq
- Shark, rand

7.13
6.70

small file reads

[JsEs
NFSv3
- Shark, no Coral

Shark, seq
- Shark, rand

303

small file reads

Figure 6: Local-area (top) and wide-area (bottom) microbenchmarks. Normalized application performance for various
types of file-system access. Execution times in seconds appear above the bars.

Access latency. We measure the time necessary to per-
form four types of file-system accesses: (1) to read 10 MB
and (2) 40 MB large random files on remote hosts, and (3)
to read large numbers of small files. The small file test
attempts to read 1,000 1 KB files evenly distributed over
ten directories.

We performed single-client microbenchmarks to mea-
sure the performance of Shark. Figure 6 shows the per-
formance on the local- and wide-area networks for these
three experiments, We compare SFS, NFS, and three
Shark configurations, viz Shark without calls to its dis-
tributed indexing layer (nocoral), fetching chunks from
a file sequentially (seq), and fetching chunks in random
order (rand). Shark issues up to eight outstanding RPCs
(for seq and rand, fetching four chunks simultaneously
with two outstanding RPCs per chunk). SFS sends RPCs
as requested by the NFS client in the kernel.

For all experiments, we report the normalized median
value over three runs. We interleaved the execution of
each of the five file systems over each run. We see that
Shark is competitive across different file system access
patterns and is optimized for large read operations.

Chunking. In this microbenchmark, we validate that
Shark’s chunking mechanism reduces redundant data
transfers by exploiting data commonalities.

We first read the tar file of the entire source tree for
emacs v20.6 over a Shark file system, and then read the
tar file of the entire source tree for emacs v20.7. We
note that of the 2,083 files or directories that comprise
these two file archives, 1,425 have not changed between
versions (i.e., they have the identical md5 sum), while 658
of these have changed.

Figure 7 shows the amount of bandwidth savings
that the chunking mechanism provides when reading the

60 4 2932 2945
g
7 40 1416
X
172]
2
= 20+
0-
20.6 20.7 New

Figure 7: Bandwidth savings from chunking. ‘“New” re-
flects the number of megabytes that need to be transferred
when reading emacs 20.7 given 20.6. Number of chunks
comprising each transfer appears above the bars.

newer emacs version. When emacs-20.6.tar has
been cached, Shark only transfers 33.8 MB (1416 chunks)
when reading emacs-20.7. tar (of size 56.3 MB).

4.3 Local-area cooperative caching

Shark’s main claim is that it improves a file server’s scala-
bility, which retaining its benefits. We now study the end-
to-end performance of reads in a cooperative environment
with many clients attempting to simultaneously read the
same file(s).

In this section, we evaluate Shark on Emulab [36].
These experiments allowed us to evaluate various coop-
erative strategies in a better controlled environment. In all
the configurations of Shark, clients attempt to download a
file from four other proxies simultaneously.

Figure 8 shows the cumulative distribution functions
(CDFs) of the time needed to read a 10 MB and 40
MB (random) file across 100 physical Emulab hosts,

138

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

10 MB read
——— Shark, rand, negotiation
Shark, rand
--+ Shark, seq, pre

Percentage completed within time

Time since initialization (sec)

40 MB read
—— Shark, rand, negotiation
Shark, rand
-+ Shark, seq, pre

Percentage completed within time

i I I L I
300 400 500
Time since initialization (sec)

800

Figure 8: Client latency. Time (seconds) for 100 LAN
hosts to read a 10 MB (top) and 40 MB (bottom) file.

comparing various cooperative read strategies of Shark,
against vanilla SFS and NFS. In each experiment, all hosts
mounted the server and began fetching the file simultane-
ously. We see that Shark achieves a median completion
time < % that of NFS and < % that of SFS. Furthermore,
its 95th percentile is almost an order of magnitude better
than SFS.

Shark’s fast, almost vertical rise (for nearly all strate-
gies) demonstrates its cooperative cut-through routing:
Shark clients effectively organize themselves into a distri-
bution mesh. Considering a single data segment, a client
is part of a chain of nodes performing cut-through rout-
ing, rooted at the origin server. Because clients may act
as root nodes for some blocks and act as leaves for oth-
ers, most finish at almost synchronized times. The lack of
any degradation of performance in the upper percentiles
demonstrates the lack of any heterogeneity, in terms of
both network bandwidth and underlying disk/CPU load,
among the Emulab hosts.

Interestingly, we see that most NFS clients finish
at loosely synchronized times, while the CDF of SFS
clients’ times has a much more gradual slope, even though
both systems send all read requests to the file server. Sub-
sequent analysis of NFS over TCP (instead of NFS over
UDP as shown) showed a similar slope as SFS, as did
Shark without its cooperative cache. One possible expla-
nation is that the heavy load on (and hence congestion
at) the file server imposed by these non-cooperative file

160 Emulab hosts |

Shark, 40MB

140 - Shark, 10MB |

Bandwidth transmitted (MB)

Unique Shark proxies

Figure 9: Proxy bandwidth usage. MBs served by each
Emulab proxy when reading 40 MB and 10 MB files.

systems causes TCP to back-off, greatly reducing system
throughput.

We find that a random request strategy, coupled with
inter-proxy negotiation, distinctly outperforms all other
evaluated strategies. A sequential strategy effectively saw
the clients furthest along in reading a file fetch the lead-
ing (four) chunks from the origin file server; other clients
used these leading clients as proxies. Thus, modulo possi-
ble inter-proxy timeouts and synchronous requests in the
non-pre-announce example, the origin server saw at most
four simultaneous chunk requests. Using a random strat-
egy, more chunks are fetched from the server simultane-
ously and thus propagate quicker through the clients’ dis-
semination mesh.

Figure 9 shows the total amount of bandwidth served by
each proxy as part of Shark’s cooperative caching, when
using a random fetch strategy with inter-proxy negotiation
for the 40 MB and 10 MB experiments. We see that the
proxy serving the most bandwidth contributed four and
seven times more upstream bandwidth than downstream
bandwidth, respectively. During these experiments, the
Shark file server served a total of 92.55 MB and 15.48
MB, respectively. Thus, we conclude that Shark is able
to significantly reduce bandwidth a file server’s band-
width utilization, even when distributing files to large
numbers of clients. Furthermore, Shark ensures that any
one cooperative-caching client does not assume excessive
bandwidth costs.

4.4 Wide-area cooperative caching

Shark’s main claim is that it improves a file server’s scala-
bility, which still maintaining security, accountability, etc.
In our cooperative caching experiment, we study the end-
to-end performance of attempting to perform reads within
a large, wide-area distributed test-bed.

On approximately 185 PlanetLab hosts, well-
distributed from North America, Europe, and Asia,
we attempted to simultaneously read a 40 MB random

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

139

100

80 [

60 [

40

Percentage completed within time

20

40 MB read
Shark

1000 1500
Time since initialization (sec)

Figure 10: Client latency. Time (seconds) for 185 hosts to
finish reading a 40 MB file using Shark and SFS.

2500

160 F "PlanetLab hosts]

Shark, 40MB |

140
120
100
80 [
60 [
40

Bandwidth transmitted (MB)

20

0

1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 920
Unique Shark proxies

Figure 11: Proxy bandwidth usage. MBs served by each
PlanetLab proxy when reading 40 MB files.

file. All hosts mounted the server and began fetching the
file simultaneously.

Figure 10 shows a CDF of the time needed to read the
file on all hosts, comparing Shark with SFS.

% done in (sec) || 50% | 75% | 90% | 95% | 98%
Shark 334 350 375 394 481
SFS 1848 | 2129 | 2241 | 2364 | 2396

We see that, between the 50th and 98th percentiles, Shark
is five to six times faster than SFS. The graph’s sharp
rise and distinct knee demonstrates Shark’s cooperative
caching: 96% of the nodes effectively finish at nearly the
same time. Clients in SFS, on the other hand, complete at
a much slower rate.

Wide-area experiments with NFS repeatedly crashed
our file server (i.e., it caused a kernel panic). We were
therefore unable to evaluate NFS in the wide area.

Figure 10 shows the total amount of bandwidth served
by each proxy during this experiment. We see that the
proxy serving the most bandwidth contributed roughly
three times more upstream than downstream bandwidth.

Figure 12 shows the number of bytes read from our file
server during the execution of these two experiments. We
see that Shark reduces the server’s bandwidth usage by an
order of magnitude. In fact, we believe that the Shark’s
client cache implementation can be improved to reduce
bandwidth usage quite further: We are currently examin-
ing the trade-offs between continually retrying the coop-
erative cache and increased client latency.

7400
S 1.0
= |
2
=
=
]
2 |
T 054
= |
g
3 954
0.0
SFS Shark

Figure 12: Server bandwidth usage. Megabytes read from
server as a 40 MB file is fetched by 185 hosts.

5 Related Work

There are numerous network file systems designed for
local-area access. NFS [31] provides a server-based file
system, while AFS [14] improves its performance via
client-side caching. Some network file systems pro-
vide security to operate on untrusted networks, includ-
ing AFS with Kerberos [32], Echo [18], Truffles [27], and
SES [21]. Even wide-area file systems such as AFS do not
perform any bandwidth optimizations necessary for types
of workloads and applications Shark targets. Addition-
ally, although not an intrinsic limitation of AFS, there are
some network environments that do not work as well with
its UDP-based transport compared to a TCP-based one.
This section describes some complementary and alternate
designs for building scalable file systems.

Scalable file servers. JetFile [12] is a wide-area net-
work file system designed to scale to large numbers of
clients, by using the Scalable Reliable Multicast (SRM)
protocol, which is logically layered on IP multicast. Jet-
File allocates a multicast address for each file. Read re-
quests are multicast to this address; any client which has
the data responds to such requests. In JetFile, any client
can become the manager for a file by writing to it—which
implies the necessity for conflict-resolution mechanisms
to periodically synchronize to a storage server—whereas
all writes in Shark are synchronized at a central server.
However, this practice implies that JetFile is intended for
read-write workloads, while Shark is designed for read-
heavy workloads.

High-availability file systems. Several local-area sys-
tems propose distributing functionality over multiple col-
located hosts to achieve greater fault-tolerance and avail-
ability. Zebra [13] uses a single meta-data server to se-
rialize meta-data operations (e.g. i-node operations), and
maintains a per-client log of file contents striped across
multiple network nodes. Harp [17] replicates file servers
to ensure high availability; one such server acts as a pri-

140

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

mary replica in order to serialize updates. These tech-
niques are largely orthogonal to, yet possibly could be
combined with, Shark’s cooperative caching design.

Serverless file systems. Serverless file systems are de-
signed to offer greater local-area scalability by replicating
functionality across multiple hosts. xFS [3] distributes
data and meta-data across all participating hosts, where
every piece of meta-data is assigned a host at which to
serialize updates for that meta-data. Frangipani [34] de-
centralizes file-storage among a set virtualized disks, and
it maintains traditional file system structures, with small
meta-data logs to improve recoverability. A Shark server
can similarly use any type of log-based or journaled file
system to enable recoverability, while it is explicitly de-
signed for wide-area scalability.

Farsite [1] seeks to build an enterprise-scale distributed
file system. A single primary replica manages file writes,
and the system protects directory meta-data through a
Byzantine-fault-tolerant protocol [7]. When enabling
cross-file-system sharing, Shark’s encryption technique is
similar to Farsite’s convergent encryption, in which files
with identical content result in identical ciphertexts.

Peer-to-peer file systems. A number of peer-to-peer file
systems—including PAST [30], CFS [8], Ivy [23], and
OceanStore [16]—have been proposed for wide-area op-
eration and similarly use some type of distributed-hash-
table infrastructure ([29, 33, 37], respectively). All of
these systems differ from Shark in that they provide a
serverless design: While such a decentralized design re-
moves any central point of failure, it adds complexity, per-
formance overhead, and management difficulties.

PAST and CFS are both designed for read-only data,
where data (whole files in PAST and file blocks in CFS)
are stored in the peer-to-peer DHT [29, 33] at nodes clos-
est to the key that names the respective block/file. Data
replication helps improve performance and ensures that
a single node is not overloaded. In contract, Shark uses
Coral to index clients caching a replica, so data is only
cached where it is needed by applications and on nodes
who have proper access permissions to the data.

Ivy builds on CFS to yield a read-write file system
through logs and version vectors. The head of a per-client
log is stored in the DHT at its closest node. To enable
multiple writers, Ivy uses version vectors to order records
from different logs. It does not guarantee read/write con-
sistency. Also managing read/write storage via versioned
logs, OceanStore divides the system into a large set of un-
trusted clients and a core group of trusted servers, where
updates are applied atomically. Its Pond prototype [28]
uses a combination of Byzantine-fault-tolerant protocols,
proactive threshold signatures, erasure-encoded and block
replication, and multicast dissemination.

Large file distribution. BitTorrent [5] is a widely-
deployed file-distribution system. It uses a central server
to track which clients are caching which blocks; using in-
formation from this meta-data server, clients download
file blocks from other clients in parallel. Clients access
BitTorrent through a web interface or special software.

Compared to BitTorrent, Shark provides a file-system
interface supporting read/write operations with flexible
access control policies, while BitTorrent lacks authoriza-
tion mechanisms and supports read-only data. While Bit-
Torrent centralizes client meta-data information, Shark-
stores such information in a global distributed index, en-
abling cross-file-system sharing (for world-readable files)
and taking advantage of network locality.

6 Conclusion

We argue for the utility of a network file system that can
scale to thousands of clients, while simultaneously pro-
viding a drop-in replacement for local-area file systems.
We present Shark, a file system that exports existing local
file systems, ensures compatibility with existing admin-
istrative procedures, and provides performance competi-
tive with other secure network file systems on local-area
networks. For improved wide-area performance, Shark
clients construct a locality-optimized cooperative cache
by forming self-organizing clusters of well-connected ma-
chines. They efficiently locate nearby copies of data us-
ing a distributed index and stripe downloads from mul-
tiple proxies. This simultaneously reduces the load on
file servers and delivers significant performance improve-
ments for the clients. In doing so, Shark appears promis-
ing for achieving the goal of a scalable, efficient, secure,
and easily-administered distributed file system.

Acknowledgments. We thank Vijay Karamcheti,
Jinyuan Li, Robert Grimm, our shepherd, Peter Druschel,
and members of NYU systems group for their helpful
feedback on drafts of this paper. We would like to
thank Emulab (Robert Ricci, Timothy Stack, Leigh
Stoller, and Jay Lepreau) and PlanetLab (Steve Muir
and Larry Peterson) researchers for assistance in running
file-system experiments on their test-beds, as well as
Eric Freudenthal and Jayanth Kumar Kannan for remote
machine access. Finally, thanks to Jane-Ellen Long at
USENIX for her consideration.

This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the
NSF under Cooperative Agreement No. ANI-0225660.
Michael Freedman is supported by an NDSEG Fellow-
ship. David Mazieres is supported by an Alfred P. Sloan
Research Fellowship.

USENIX Association

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

141

References

(1]

[2]

[3]

[4]

[5]
[6]

(7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Watten-
hofer. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. In OSDI, Boston, MA, Decem-
ber 2002.

D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Mor-
ris. Resilient overlay networks. In SOSP, pages 131-145, Banff,
Canada, October 2001.

T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roseli, and R. Y. Wang. Serverless network file systems. ACM
Trans. on Computer Systems, 14(1):41-79, February 1996.

M. Bellare, R. Canetti, and H. Krawczyk. Keyed hash func-
tions and message authentication. In Advances in Cryptology—
CRYPTO 96, Santa Barbara, CA, August 1996.

BitTorrent. http://www.bittorrent.com/, 2005.

B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3 pro-
tocol specification. RFC 1813, Network Working Group, June
1995.

M. Castro and B. Liskov. Proactive recovery in a byzantine-fault-
tolerant system. In OSDI, San Diego, October 2000.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. In SOSP, Banff, Canada,
Oct 2001.

D. H. J Epema, Miron Livny, R. van Dantzig, X. Evers, and Jim
Pruyne. A worldwide flock of condors: Load sharing among
workstation clusters. J. Future Generations of Computer Systems,
12:53-65, 1996.

M. J. Freedman, E. Freudenthal, and D. Maziéres. Democratiz-
ing content publication with Coral. In NSDI, San Francisco, CA,
March 2004.

C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mech-
anism for distributed file cache consistency. In SOSP, pages 202—
210, December 1989.

B. Gronvall, A. Westerlund, and S. Pink. The design of a multicast-
based distributed file system.

J. H. Hartman and J. K. Ousterhout. The Zebra striped network file
system. In SOSP, December 1993.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. J. West. Scale and perfor-
mance in a distributed file system. ACM Trans. on Computer Sys-
tems, 6(1):51-81, February 1988.

H. Krawczyk. The order of encryption and authentication for pro-
tecting communications (or: How secure is ssl?). In Advances in
Cryptology—CRYPTO 2001, Santa Barbara, CA, 2001.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for global-
scale persistent storage. In ASPLOS, Cambridge, MA, Nov 2000.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and
M. Williams. eplication in the Harp file system. Operating Systems
Review, 25(5):226-238, October 1991.

T. Mann, A. D. Birrell, A. Hisgen, C. Jerian, and G. Swart. A
coherent distributed file cache with directory write-behind. ACM
Trans. on Computer Systems, 12(2):123-164, May 1994.

P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer in-
formation system based on the xor metric. In IPTPS, Cambridge,
MA, Mar 2002.

D. Mazieres. A toolkit for user-level file systems. In USENIX,
Boston, MA, Jun 2001.

[21]

[22]

[23]

[24]
[25]

[26]

(27

[28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

D. Maziéres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Sep-
arating key management from file system security. In SOSP, Ki-
awah Island, SC, December 1999.

A. Muthitacharoen, B. Chen, and D. Maziéres. A low-bandwidth
network file system. In SOSP, October 2001.

A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
read/write peer-to-peer file system. In OSDI, Boston, MA, De-
cember 2002.

PlanetLab. http://www.planet-lab.org/, 2005.

M. Rabin. Fingerprinting by random polynomials. Technical Re-
port TR-15-81, Center for Research in Computing Technology,
Harvard University, 1981.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In ACM SIGCOMM, San
Diego, CA, August 2001.

P. Reiher, Jr. T. Page, G. J. Popek, J. Cook, and S. Crocker. Truffles
—a secure service for widespread file sharing. In PSRG Work-
shop on Network and Distributed System Security, San Diego, CA,
1993.

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Ku-
biatowicz. Pond: the OceanStore prototype. In FAST, Berkeley,
CA, March 2003.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc.
IFIP/ACM Middleware, November 2001.

A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
SOSP, Banff, Canada, October 2001.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.
Design and implementation of the Sun network filesystem. In Sum-
mer 1985 USENIX, Portland, OR, June 1985.

J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An au-
thentication service for open network systems. In Winter 1988
USENIX, Dallas, TX, February 1988.

I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for internet applications. In IEEE/ACM Trans. on
Networking, 2002.

C. Thekkath, T. Mann, and E Lee. Frangipani: A scalable distri-
buted file system. In SOSP, Saint Malo, France, October 1997.

A. Westerlund and J. Danielsson. Arla—afree AFS client. In 7998
USENIX, Freenix track, New Orleans, LA, June 1998.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar. An integrated ex-
perimental environment for distributed systems and networks. In
OSDI, Boston, MA, December 2002.

B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubi-
atowicz. Tapestry: A resilient global-scale overlay for service de-
ployment. IEEE J. Selected Areas in Communications, 22(1):41—
53,2003.

142

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation

USENIX Association

