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Abstract— We overview the software architecture for a
network of low-powered radars (sensors) that collaboratively 
and adaptively sense the lowest few kilometers of the earth’s
atmosphere. We focus on the system’s main control loop –
ingesting data from remote radars, identifying meteorological 
features in this data, and determining each radar’s future scan
strategy based on detected features and end-user requirements. 
Our initial benchmarks show that that these components
generally have sub-second execution times, making them well-
suited for our NetRad system.

I. INTRODUCTION

Distributed Adaptive Collaborative Sensing (DCAS) of
the atmosphere is a new paradigm for detecting and
predicting hazardous weather using a dense network of
low-powered radars to sense the lowest few kilometers of
the earth’s atmosphere [McLaughlin 2005]. Distributed
refers to the use of large numbers of small radars, spaced 
close enough to “see” close to the ground in spite of the 
Earth’s curvature and avoid resolution degradation 
caused by radar beam spreading. Collaborative operation 
refers to the coordination (when advantageous) of the
beams from multiple radars to view the same region in 
space, thus achieving greater sensitivity, precision, and 
resolution than possible with a single radar. Adaptive 
refers to the ability of these radars and their associated 
computing and communications infrastructure to
dynamically reconfigure in response to changing weather 
conditions and end-user needs. The principal components
of the DCAS system include sensors (radars);
meteorological algorithms that detect, track, and predict 
hazards; interfaces that enable end-users to access the
system; storage; and an underlying substrate of
distributed computation that dynamically processes
sensed data and manages system resources.  NetRad is a 
prototype DCAS system whose goal is to detect a tornado 
within 60 seconds of formation and to track its centroid 
with a temporal error no greater than 60 seconds. At the 
heart (or perhaps more appropriately, the “brains”) of
NetRad is its Meteorological Command and Control
(MC&C) component that performs the system’s main
control loop – ingesting data from remote radars,

identifying meteorological features in this data, reporting 
features to end-users, and determining each radar’s future
scan strategy based on detected features and end-user
requirements. In this sense, NetRad is truly an end-end
system, from the sensing radars through the computing 
and communication infrastructure and algorithms, to the 
end users. In this paper, we describe the software 
architecture of NetRad’s MC&C and present initial 
benchmarks of its computational/communication 
requirements and performance. The important 
components of the MC&C that we study in the paper are 
(i) the data ingest, field retrieval, and meteorological 
detection algorithms, (ii) a feature repository that 
maintains a multi-level grid of feature values with
associated user-based utilities, and that generates new 
sensing tasks for the networked radars, and (iii) a 
resource allocation/optimization process that determines 
the radars’ scan strategy for the next system heartbeat.
We discuss event notification mechanisms, and the
computation of user-based utilities for competing sensing
requests. We also discuss how NetRad timing 
considerations are addressed by structuring the feature
repository as a blackboard system that temporally 
decouples data ingest/processing from the 
generation/optimization of future sensing activity.  Our 
initial benchmarks, obtained by evaluating NetRad 
components using reflectivity and wind velocity data
from the NOAA NEXRAD WSR88D system [NOAA
2005] show that that these components generally have
sub-second execution times, making them well suited for 
use in the NetRad system. 

II. NETRAD SYSTEM OVERVIEW AND THE MC&C
ARCHITECTURE. 
We are currently building a NetRad prototype system to
be deployed in southwestern Oklahoma, consisting of
four mechanically scanned X-band radars atop small 
towers, and a central control site (later to be decentralized 
as the number of radars increases) known as the System
Operations and Control Center (SOCC). The SOCC 
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consists of a cluster of commodity processors and storage
on which the MC&C components execute. 
NetRad radars are spaced approximately 30 km apart from 
each other and together scan an area of 80km x 80km and 
up to3 km in height. Each radar is tasked to scan an 
angular sector of up to 360 degrees in 1-degree 
increments, with a range gate (radial voxel) size of 100 
meters out to 30 km. With two elevation scans during
each tasking, each radar can thus produce up to
360*300*2 = 216K reflectivity and velocity values each 
time it is tasked. While existing meteorological radar 
systems such as NEXRAD generally operate in “sit and 
spin” mode (taking full 360-degree volume scans 
independently of location and type of meteorological
features present), NetRad radars are tasked by the MC&C 
to focus on volumes of high interest to end-users, as 
discussed below. 
Each radar consists of three subsystems:  
x The Rotating Tower Top houses the radar unit and an 

embedded system that monitors the radar’s operational
parameters and enables operator actions in the case of 
anomalies (e.g., mechanical problems).  

x The Non-rotating Tower Top Subsystem is located
below the rotating joint and houses a data acquisition
board (based on Field Programmable Gate Array
(FPGA) technology), a radar controller, and a Gigabit
Ethernet switch. The FPGA processes raw digitized 
data (at a rate of approximately 100 Mbps) into packets 
that are sent via the switch over a fiber optic cable to 
the Tower Base Subsystem. The radar controller 
controls the movement of the radar pedestal.  

x The Tower Base Subsystem consists of a compute 
cluster (currently just a single node) and an IDE RAID
storage system, connected via a Gigabit Ethernet switch
to a router. The tower base takes raw radar data, 
computes so-called moment data (essentially an average 
of multiple radar-pulse measurements for a given voxel 
of space), while performing quality control (e.g., 
attenuation correction and range folding) on this data. 
The 1 Mbps moment data is sent to the SOCC over
OneNet [OneNet 2005], an IP network operated by the 
Oklahoma state regents, which is configured to provide
4 Mbps connectivity from each radar to the SOCC. Raw 
data is archived at the tower base storage and can be
transferred to SOCC storage in the background. 

The SOCC is a centralized compute cluster (later to be 
decentralized) interconnected via a Gigabit switch, on 
which the MC&C algorithms execute. As shown in Figure 
1, the SOCC has five main components (i) data ingest and 
storage, (ii) meteorological feature detection and multi-
radar merging, (iii) feature repository, (iv) utility and task
generation, and (v) optimization.  We describe each of 
these functions below in more detail, roughly following
the path taken by radar data through the MC&C, and the
resulting re-tasking of the radars. 

A. Data Ingest and Storage 
One SOCC computer is responsible for data ingest, 
archiving and distribution. Here, moment data (as well as 
the higher rate raw data, which is transferred at low 
priority) is streamed from the sensor nodes to the MC&C
detection algorithms, and written to storage. In the future, 
both moment and raw data will be available to end-users 
via a query interface. Data from each elevation scan is 
sent from a remote radar to the MC&C data ingest 
routines using LDM [LDM 2005], client/server
middleware that reliably transfers radar data over a TCP 
connection. Given the pre-provisioning of OneNet 
bandwidth for NetRad use, congestion loss is not a
concern in our initial testbed. However, we are currently
developing a UDP-based transport protocol that uses
application-specific selective dropping for congestion-
control in bandwidth-constrained environments [Banka 
2005]. As illustrated in Figure 1, the per-radar received 
reflectivity and wind velocity data for an elevation scan 
are converted to NetCDF format, and stored in a file. An
event is then posted and distributed among the MC&C 
procedures using the Linear Buffer (LB) pub/sub
construct of the WDSSII software [Hondl 2003]. In
section 3, we report the time needed to transfer an 
elevation scan from sender to receiver over a Gigabit 
LAN switch using LDM, write the associated files and 
post/distribute an event. 

B. Meteorological Feature Detection, Multi-radar Data 
Merging 

Once the notifications of available per-elevation
reflectivity and wind velocity data have been posted,
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various meteorological detection algorithms can then read 
this data and perform feature detection.  Figure 1 shows
two such algorithms: LLSD (for which we provide per-
elevation execution times in Section 3) computes wind
shear and rotational divergence; TDA performs tornado
vortex detection. Other per-radar detection algorithms can
be easily “plugged in” using the LB pub/sub mechanism.
Once a detection algorithm completes its execution, 
notification is provided through the LB. The merge
procedure converts polar coordinate data to
latitude/longitude coordinates, and fuses together spatially 
overlapping data from multiple radars. We benchmark the 
performance of the merge routine in Section 3. 

C. The Feature Repository 
NetRad system is a "real-time" system in the sense that 
radars must be re-tasked by the MC&C every 30 seconds
– the system “heartbeat” interval.  This heartbeat interval 
was chosen based on the physical properties of the 
mechanically-scanned radars, the timescale over which 
atmospheric conditions change, and the system goal of
detecting and tracking tornados within 60 seconds. A 
notion of heartbeat also allows the radars to easily
synchronize their operation (e.g., having overlapping
radars scan the same volume in order to perform 3D wind
retrieval), and also helps simplify the optimization of
radar targeting.  As we evolve from mechanically-scanned 
radars to rapidly reconfigurable solid-sate radars, we
expect to relax the notion of a system heartbeat. As
discussed above, radars are retasked based on detected 
meteorological features and the projected future evolution
of these features. In order to decrease the timing 
dependencies between the ingest/processing of radar data
and the generation of radar commands, the MC&C adopts 
a blackboard-like architecture [Jaganathan 1989]. At the 
heart of the MC&C is the feature-repository, a multi-level
grid that stores both the underlying per-voxel reflectivity 
and wind velocity data, as well as higher-level spatially-
coherent meteorological “objects” such as storms cells, 

areas of high wind shear or precipitation, and tornados. 
Each object also has a position, a spatial extent for non-
point objects, and a tag representing the meteorological
phenomenon that the object represents (e.g., storm-cell,
mesocyclone, and tornado). The multi-level grid-
construction procedure writes this information into the
feature repository as needed data becomes available via
the linear buffer, as shown in Figure 2. The generation of
radar commands (the lower half of the control loop in
Figures 1) proceeds asynchronously from the input 
processing of data (the upper half of the control loop). In
this decoupled architecture, detection algorithms
continuously post their results to the feature repository. As 
shown in Figure 2, at 30 second intervals the task
generation component posts a set of tasks based on current
state of the feature repository, and the optimization 
component then processes this task set and generates a 
scan strategy for the radars for the next 30 second cycle. 
In this design, we have relieved the time pressure on the
detection components and somewhat relieved the time
pressure on the MC&C components, task generation and
optimization. One consequence of this design is that data
that is not processed and posted on the feature repository
before the task generation begins will not be acted upon
until the next cycle of the system. This allows the system
to avoid stalling, while waiting for late-arriving data (e.g., 
due to unanticipated network and processing delays). We
are interested in the effects of this "decision lag" and also 
its relationship to the selection of the value of the system
heartbeat. Figure 2 illustrates that the data-driven 
streaming retrieval and detection algorithms write the
results of their execution into the feature repository. 
Starting ' time units (where ' is the execution time of the
task generation and optimization algorithms) before the 
radars are to be re-targeted, the task generation process
executes, followed by the optimization process. These
processes may use all data available (in both the current
time step, and previous time steps) in their computations.
Once the optimization process has completed, the radars 
are then re-targeted for the next 30 second cycle. We note 
here that the feature repository is the central system “data
structure.” It is from here that meteorological objects can 
be obtained and subsequently delivered/displayed to end 
users.  It is here that assimilated exogenous data (e.g., 
from satellite or from NEXRAD) can be stored and 
merged with NetRad-generated data.  

D. Utility, Prediction, and Task Generation
Within the feature repository, each voxel and each object 
has an associated utility that represents the “value” of
scanning that voxel/object during in the next heartbeat. 
The utility value weights considerations such as the time
since the voxel/object was last scanned, the object type 
(e.g., scanning an area with a tornado vortex will have
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higher utility than sensing clear air), and user-based 
considerations such as the distance from a population 
center (e.g., among two objects with identical features, the 
one closer to a population center will have higher utility). 
We are currently developing a predicting component
(shown with dashed lines in Figure 1) that tracks 
meteorological phenomena (e.g., a storm’s centroid) and
predicts their future locations. New objects, corresponding
to the predicted future locations of the phenomena, can
then be added into the feature repository – allowing these
predicting modules to be easily integrated into the current
architecture.  In section 3, we present measured execution 
times of several different algorithms for storm-cell 
centroid tracking. The MC&C task-generation component
takes objects from the feature repository and produces
tasks, with an associated utility, for the optimization
component. We use K-means clustering [Jain 1999] to
generate the tasks. The initial centroids of the clusters are 
chosen by sorting the objects by utility and using the K 
spatially-separated objects with the highest utility as our 
starting points. This simple pre-clustering step is designed
to ensure good spatial coverage for our clusters. The K-
means distance metric uses a 4-dimensional vector of 
parameters: an objects X, Y position, utility, and
meteorological type. The relative weighting of these 
parameters can be adjusted to give differing emphasis to
each parameter. After clustering is complete, a final 
filtering step removes tasks with utility below a given
threshold.

E. Optimization
The input to the radar targeting components is a list of 
objects that can potentially be scanned and their 
associated utility. The optimization module determines, 
for each radar, the angular sector to be scanned (targeted) 
by that radar for the next 30-second cycle. The overall 
utility of a given configuration of the radars, will depend 
not only on the utility of the objects scanned, but also the 
size of the sector (since larger sectors imply less time
spent sensing a given radial) and the number of radars
targeting a given volume (since more radars illuminating a 
volume implies higher accuracy of measurement). For our 
first testbed, a simple “brute-force” approach towards
optimization is used that enumerates all possible 
configurations and computes the associated overall utility.
In section 3, we present measured execution times for this
approach. Other, more scalable, approaches towards
optimization are currently being investigated. 
III. BENCHMARKING OF INDIVIDUAL MC&C

COMPONENTS

In this section, we present empirical measurements of the
execution times of various NetRad MC&C components 
highlighted in Figure 1. All measurements were 
performed on a PC (3.2 GHz Intel CPU, 1 GB RAM)

running Linux (RedHat 2). NetRad MC&C component
execution times will depend on the radar data ingested by
the system.  Since, the NetRad system is not completely

build or deployed, we use existing NEXRAD [NOAA
2005] radar data and other sources, as described below, as 
input to the NetRad MC&C components. Recall that 
NEXRAD radars operate in “sit and spin” mode and thus 
the data ingested in one time period has no influence on
the radars’ scan strategy in a subsequent time period.
Before presenting component runtimes, let us describe the 
radar data inputs used. Unless otherwise noted, we use the
following six NEXRAD radar data sets, which provide
per-radial range-gate reflectivity and wind velocity data.
The data sets can be obtained from [CASA NEXRAD-
data 2005]. The data in cases 1-4 are generated by a single 
radar; in cases 5 and 6 data comes from two partially 
overlapping radars. Each data set consists of sets of
elevation scans, with a set of scans taken every five 
minutes. These sets of elevation scans are the input to our
MC&C algorithms. 
Test 
Case

Location Date of 
event 

Description of Events Single/Mul
ti Radar 

1 KLCH
Lake
Charles  
LA 

11/02 
2004

Late season thunderstorm
activity with scattered weak 
mesocyclones, tornadoes, 

waterspouts. 

Single 

2 KTLX 
Tulsa OK 

5/03
1999

Extreme supercell outbreak 
including an F-5 tornado,

costliest tornado in history.

Single 

3 KFSD 
Sioux Falls

SD 

5/30-31
1998

Tornado outbreak with a 
number of vortices in close 

proximity to each other. 

Single 

4 KMLB
Melbourne 

FL 

9/05
2004

Hurricane Frances as it 
approaches Atlantic Coast 
of Florida at Category 2/3 

with large, well defined eye 
and intense banding. 

Single 

5 KDDC 
Dodge City

KS 

6/06
2004

A strong bow-echo
sweeping across the state of 

Kansas.   

Multi 

6 KICT
Wichita 

KS 

6/06
2004

A view of the 
aforementioned bow-echo 
case from a radar located 

further from the event.   

Multi 

Table 1: NEXRAD input data sets 

A. Data Transmission, Storage, Event Posting 
We begin our benchmarking of the MC&C by
considering the time needed to transfer radar data from a 
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Figure 3: LDM to LDM, NetCDF file creation, event posting
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remote radar to the SOCC, store the per-elevation data in
NetCDF format at the SOCC and post a notification event
on the LB.  Our measurements show that approximately 
one second is needed to compress and transfer a per-
elevation scan from radar to SOCC over a Gigabit switch.
We note that the nominal media transmission time
(transmitting 20 KB of data into a Gigabit link) would 
increase from .00001 sec to .01sec if the link speed were
changed to 1 Mbps.  Thus, computing times rather than
network media transmission times are the dominant
factor here. We also note that these run times are for TCP 
transfers. We are currently developing a radar transport
protocol that uses recent throughput measurements to
avoid a slow-start phase [Schmitt 2002], and an
application-specific congestion control/packet drop
protocol [Banka 2005], as discussed in section 3. Once
data arrives at the SOCC, reflectivity and velocity data 
files are created and an event is posted. Figure 3 shows 
that less than a second of runtime is needed to perform 
these operations. 

B. Detection Algorithms 
Figure 4 shows the per-elevation scan runtime needed by
the LLSD algorithm. The standard deviation of the 
runtime is shown by the lower-valued super-imposed bar.
LLSD requires less than 0.3 seconds per elevation scan on
average, with the runtime decreasing with an increasing 
elevation angle. This behavior results from the fact that 
radar beams e aimed higher in the atmosphere, see
decreased meteorological activity. Figure 5 shows the 
merge runtime for the 6 test cases. We took measurements
for all six single radar cases and the additional case where

the data for KICT and KDDC is merged. These radars 
have an overlap of roughly 50% percent. The results show 
that the runtime increases by approximately 30% with this 
amount of overlap. The difference between the single
radar and the multiple radar case (KICT/KDDC) is that 
both coordinate conversion and data fusion must be 

performed for the overlapping region. Again, we see sub-
second runtimes for this component.  

C. Task Generation, Prediction
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Figure 5: merge runtime, single and multi-radar cases

Recall from our earlier discussion, that the input to the
task and utility generation routines is a multi-level grid of
lat/long reflectivity and wind velocity values, with higher
level “objects” superimposed on this grid. In order to use
NEXRAD data in a NetRad MC&C environment, we 
assume that the NEXRAD data covers an 80km x 80km
area. Two different timing values are collected. The first is 
the run time of the K-Means algorithm, the second is the 
time taken posting features to the feature repository. 
Additional data collected includes the number of points 
being clustered and the number of iterations required
before the K-Means stabilizes on a set of clusters. Figure 
6 also shows the runtime for hypothetical scenarios for
coarser and finer grid sizes. We have also investigated the 
computational requirements of three approaches towards 
storm cell tracking: the WDSS II SCIT algorithm 
[Johnson 1998], a simple Kalman filtering algorithm, and 
a switched Kalman filtering algorithm A comparison of 
the tracking performance of these three algorithms is
beyond the scope of this paper; see [Manfredi 2005] for 
details. Here, we note each algorithm requires less than 30 
msec of execution time to perform one-step prediction,
over 35 storm cell centroid tracks provided by NSSL. 

D. Radar Scanning Optimization 
The final step in closing the control loop is for the 
optimization module to determine the sectors to be 
scanned by the radars.  The execution time of the
optimization algorithm will depend on the number of 
radars, the extent to which the radars overlap, and the 
number/location/size of the meteorological objects in the 
radars’ field. Figure 7 plots the average run time and 
standard deviation for the optimization module under
several different scenarios, using the KFSD data.  Along 

Figure 4: LLSD Run Time Per-Elevation Scan 
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the x-axis we vary the number of radars symmetrically
placed in the 80x80 grid. We control the amount of 
overlap of the radars’ footprint by changing the radius of
each radar’s circular footprint.  Three runtime curves are
plotted for the case of zero overlap (the edges of the 

radars’ footprint are coincident but non-overlapping), 33%
overlap, and 67% overlap.  For the case of 4 radars placed 
on 80km x 80km grid with 33% overlap, we see that the 
expected runtime is approximately 30 ms. 

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have described the software architecture
of the meteorological command and control (MC&C)
component of a NetRad prototype system currently under 
development – a dense network of low-powered radars
that collaboratively and adaptively sense the lowest few
kilometers of the earth’s atmosphere The MC&C 
performs the system’s main control loop – ingesting data
from remote radars, identifying meteorological features
in this data, reporting features to end-users, and
determining each radar’s future scan strategy based on
detected features and end-user requirements. Our initial 
benchmarks, obtained by evaluating NetRad components 
using NEXRAD data show that that these components
generally have sub-second execution times, making them
well-suited for use in the NetRad system. Our future 
research will include the deployment and demonstration
of the NetRad system, and continued enhancement of the 
detection, tracking, and optimization components.   Thus 
far we have focused on a centralized view of the
command and control architecture, which is appropriate
given the relatively small number of radars in the initial
testbed.  However, several factors make control more
difficult as the network scales, and preclude a purely 
centralized architecture. We are thus currently 
investigating distributed MC&C architectures that take
advantage of the limited coupling among radars over
large geographic areas.  
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