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Abstract

The Abstract Task Graph (ATaG) is a data driven pro-
gramming model for end-to-end application develop-
ment on networked sensor systems. An ATaG program
is a system-level, architecture-independent specification
of the application functionality. The application is mod-
eled as a set of abstract tasks that represent types of in-
formation processing functions in the system, and a set
of abstract data items that represent types of informa-
tion exchanged between abstract tasks. Input and out-
put relationships between abstract tasks and data items
are explicitly indicated as channels. Each abstract task
is associated with user-provided code that implements
the actual information processing functions in the sys-
tem. Appropriate numbers and types of tasks can then be
instantiated at compile-time or run-time to match the ac-
tual hardware and network configuration, with each node
incorporating the user-provided code, automatically gen-
erated glue code, and a runtime engine that manages all
coordination and communication in the network. This
paper primarily deals with the key concepts of ATaG and
the program syntax and semantics. The end-to-end ap-
plication development methodology is discussed briefly.

1 Introduction

Wireless sensor networks allow embedded, dense moni-
toring of the physical environment. The challenge in pro-
gramming a sensor network is to coordinate the sensing,
collaborative processing, and data flow in the network
correctly, so that the desired functionality is achieved,
and efficiently, such that performance requirements are
met and the network lifetime is maximized. The need to
manage a large collection of autonomous sensor nodes
poses challenges from a programming perspective. State
of the art programming languages and methods for sen-
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sor networks require the end user to manually trans-
late the global application behavior in terms of local ac-
tions at each node, which is likely to be time-consuming
and error prone for complex applications. Also, the
application-level logic is tightly interfaced with the part
of the program that coordinates lower level services
such as resource management, routing, localization, etc.
This lack of separation between system-level code and
application-level code results in high complexity of cod-
ing non-trivial system behaviors.

There is a growing interest in macroprogramming of
sensor networks [5, 10] which means moving beyond
node-centric programming and instead specifying aggre-
gate behaviors which are then automatically translated by
a compilation framework into node-level specifications.
This is motivated by the realization that the end user will
be a domain expert and not a computer scientist, and will
be primarily interested in the monitoring and control of
physical phenomena. The details of in-network comput-
ing and communication which provides the desired func-
tionality will be of incidental interest in most scenarios.

We introduce a macroprogramming model called the
Abstract Task Graph (ATaG) that builds upon the core
concepts of data driven computing and incorporates
novel extensions for distributed sense-and-respond appli-
cations. The types of information processing functional-
ities in the system are modeled as a set of abstract tasks
with well-defined input/output interfaces. User-provided
code associated with each abstract task implements the
actual processing in the system. An ATaG program is
‘abstract’ because the number and placement of tasks and
the control and coordination mechanisms are determined
at compile-time and/or run-time depending on the char-
acteristics of the target deployment.

ATaG enables a methodology for architecture-
independent development of networked sensing applica-
tions. Architecture independence is the ability to spec-
ify application behavior for a generic, parameterized net-
work architecture. The same application may be auto-
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Figure 1: An ATaG program for environment monitoring

matically synthesized for different network deployments,
or adapted as nodes fail or are added to the system. Fur-
thermore, it allows development of the application to
proceed prior to decisions being made about the final
configuration of the nodes and network.

The focus of the ATaG approach is on simple specifi-
cation of more complex patterns of information flow. A
second objective is to define a process for automatically
analyzing a user-supplied ATaG program and generating
a deployment-specific distributed software system that
consists of (a) the user-supplied application level code,
and (b) a suitably customized runtime system responsible
for control and coordination among the application level
tasks. The present focus of our research is on defining
the syntax and semantics of ATaG, and designing a run-
time system and compiler for functionally correct trans-
lation of architecture-independent ATaG programs into
architecture-specific node-level behaviors. Low level op-
timizations for a specific target platform have not yet
been addressed.

Section 2 presents a sample ATaG program for an en-
vironment monitoring scenario with a view to highlight
the key ideas before discussing them in more detail. Sec-
tion 3 discusses the key concepts of ATaG and the syntax
and semantics of ATaG programs. Details of the system
level support for the ATaG model can be found in [1].
A brief overview of the end-to-end application develop-
ment methodology is provided in Section 4. We discuss
related work in Section 5 and conclude in Section 6.

2 An Illustrative Example

Figure 1 is an ATaG program for an environment moni-
toring system. The application is designed for a network
of sensor nodes, each equipped with a temperature and
a pressure sensor. The application exhibits two behav-
iors: the periodic computation and logging of the maxi-
mum pressure in the system, and the periodic monitoring
of temperature. If the temperature gradient between a
node and its neighbors exceeds a threshold, the node is
required to corroborate the anomaly by surveying a larger
area and then trigger an alarm. Corroboration helps to

avoid false alarms due to a sensor malfunction.
The ATaG programmer first models each behavior in

terms of a pattern of node-level interaction. In this
case, the temperature monitoring requires a neighbor-
to-neighbor exchange of temperature readings for gra-
dient computation, and a many-to-one information flow
for corroboration. The pressure monitoring and logging
can be visualized in terms of information flow with incre-
mental aggregation at each node of a virtual tree topology
– a common pattern for efficient data aggregation.

The next step is to identify the types of processing and
the types of data in the system, referred to in ATaG termi-
nology as abstract tasks and abstract data. The abstract
data for pressure averaging are: Pressure to represent
the reading from the pressure sensor, and Maximum to
represent the (partial) maximum. Similarly, the abstract
data for temperature monitoring are: Temperature to
represent readings from the temperature sensor, and Lo-
calAlarm and GlobalAlarm to represent conditions
where the threshold is violated and corroborated over a
greater area, respectively. The abstract tasks for pres-
sure monitoring are: Sampler to periodically record
the pressure at the node, and Aggregator to track the
maximum pressure readings from the node’s children in
the virtual tree. Similarly, the abstract tasks for temper-
ature monitoring are: Monitor to compute local gradi-
ents, and Corroborator to analyze readings from the
larger neighborhood. The programmer supplies the code
for each abstract task and abstract data. This constitutes
the imperative part of the ATaG program, and is also the
only code written by the programmer.

The input/output interfaces of the abstract tasks are
shown in the figure. Note that Monitor produces
Temperature instances that represent local readings,
and consumes Temperature instances produced by its
neighbors. Since this distinction is between instances of
data and not the type of data, the relationship between the
abstract task and abstract data is both input and output.

The final step is to associate annotations (depicted by
shaded, rounded rectangles) to indicate task placement
and information flow patterns. For instance, the anno-
tations indicate that Monitor is to be instantiated on
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every node in the system, run periodically, and also exe-
cuted when a new Temperature instance is available.
The Temperature instance produced by Monitor is
to transmitted to a1l 1-hop neighbors and not added to
the local data pool. Corroborator will be triggered
by the production of a LocalAlarm by Monitor,
‘pull’ all instances of Temperature within a 10 me-
ter radius, and possibly produce a GlobalAlarm. For
the other behavior, the Aggregator is to be executed
whenever an instance of Pressure is produced locally
(by the periodic Sampler) or an instance of Maximum
is received from any of the node’s children. The output
of Aggregator is to be transmitted up the virtual tree
maintained by the runtime.

3 Programming with ATaG

3.1 Key concepts

ATaG is based on two key concepts: data driven program
flow and mixed imperative-declarative specification.

In data driven computing, tasks are passive objects
that are defined in terms of their input and output in-
terface. Tasks do not interact with each other. The
basic primitives available to the programmer are get-
Data() and putData() for consumption and pro-
duction of data items respectively from the data pool.
A task is automatically scheduled for execution when
its operands become available. This scheduling is per-
formed by an underlying runtime system that manages
the data pool. The data driven paradigm is attractive for
several reasons. Tasks can use data items at the desired
level of abstraction without worrying about how they are
produced. Programs are highly extensible and reusable
because there is no direct task-to-task coupling. From
an implementation perspective, data driven programming
can be naturally supported by an event driven runtime
system, resulting in efficient resource utilization. An
‘event’ is the production or consumption of a data item
from the data pool.

Mixed imperative-declarative specification facilitates
a clear separation of functionality from other non-
functional aspects such as task placement and coordina-
tion. For sensor networks, this separation is especially
critical because it allows the same program to be syn-
thesized without modification onto various deployments
by interpreting the declarative part differently. Also, we
chose to design a visual programming interface for speci-
fying the declarative aspect, thereby eliminating the need
for programmers to learn a new syntax. Support for both
network awareness and network transparency through
such separation of concerns has been explored in the dis-
tributed computing community [6, 8] – our motivation
is to design suitable mechanisms that are useful for net-
worked sensing applications.

3.2 Syntax

ATaG captures global application behavior in a network-
aware but network-independent way. The close coupling
of sensor networks with the physical environment, and
the dependence of in-network processing on the spatio-
temporal location of data being processed mandate net-
work awareness. On the other hand, requirements
of portability and architecture independence require a
model and representation that is network independent.
Note that ATaG does not hide parallelism. The compiler
translates a concise and architecture-independent but ex-
plicitly parallel specification into the node-level control
and coordination behavior.

An ATaG program is a set of abstract declarations. An
abstract declaration can be one of three types: abstract
task, abstract data, or abstract channel. Hereafter, we
occasionally omit the word ‘abstract’ for sake of brevity
when the meaning is apparent. Each abstract declaration
consists of a set of annotations. Each annotation is a 2-
tuple where the first element is the type of annotation,
and the second element is the value.

Abstract task: Each abstract task declaration represents
a type of processing that could occur in the application.
The number of instances of the abstract task existing in
the system at a given time is determined in the context
of a specific network description by the annotations as-
sociated with that declaration. Each task is labeled with
a unique name by the programmer. Associated with each
task declaration is an executable specification in a tra-
ditional programming language that is supported by the
target platform. Table 1 describes the annotations that
can be associated with a task declaration in the current
version of ATaG.

Abstract data: Each abstract data declaration represents
a type of application-specific data object that could be ex-
changed between abstract tasks. ATaG does not associate
any semantics with the data declaration. The number of
instances of a particular type of data object in the system
at a given time is determined by the associated annota-
tions in the context of a specific deployment and depends
on the instantiation and firing rules of tasks producing or
consuming the data objects.

Each data declaration is labeled with a unique name.
Similar to the executable code associated with the task
declaration, an application-specific payload is associated
with the data declaration. This payload typically con-
sists of a set of variables in the programming language
supported by the target platform. No annotations are cur-
rently associated with abstract data items.

Abstract channel: The abstract channel associates a task
declaration with a data declaration and represents not just
which data objects are produced and/or consumed by a
given task, but which instances of those types of data

EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association 21



Type: Instantiation
value[:parameter] Description
one-on-node-ID:id Create one instance of the task on node id
one-anywhere Create one instance of the task on any node in the network
nodes-per-instance:[/]n Create one instance of the task for each n nodes of the network. When n is preceded by

a “/”, create exactly n instances of the task and divide the total number of nodes into n
non-overlapping domains, each owned by one instance.

area-per-instance:[/]area Same as for nodes-per-instance. Parameter denotes area of deployment instead of number
of nodes. The non-overlapping domains are in terms of area of deployment, not number
of nodes.

spatial-
extent:��� ��� ��� ��� � � �

Create one instance of the task on every node that is deployed in the polygon defined by
the co-ordinates ���� ���, ���� ���, � � �, ���� ���.

Type: Firing rule
value[:parameter] Description
periodic:p Schedule task for periodic execution with period of p seconds.
any-data Schedule task for execution when at least one of the input data items are available.
all-data Schedule task for execution only when all the input data items are available.

Table 1: Abstract Task: Annotations

Type: Initiation
value Description
push The runtime system at the site of production of each instance of the associated abstract

data item is responsible for sending the instance to nodes hosting suitable instances of
the consumer task(s).

pull The runtime system at the node hosting an instance of the consumer task is responsible
for requesting the required instance(s) of the associated abstract data item from the site(s)
of production.

Type: Interest
value[:parameter] Description

[�]local Channel applies to the local data pool of the task instance. The negation qualifier ex-
cludes the local data pool, and can be used in conjunction with other qualifiers.

neighborhood-hops:n Channel includes all nodes within the n-hop neighborhood of the node hosting the task
instance

neighborhood-distance:d Channel includes all nodes within a distance d of the node hosting the task instance
all-nodes Channel includes all nodes in the system
domain Channel includes all nodes that are owned by the task instance. This value is used in

conjunction with the nodes-per-instance or area-per-instance values of the Instantiation
annotation of the abstract task.

parent Channel applies to the parent of the node hosting the task instance - in the virtual tree
topology imposed on the network by the runtime system.

children Channel applies to all children of the node hosting the task instance - in the virtual tree
topology imposed on the network by the runtime system.

Table 2: Abstract Channel: Annotations
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items are of interest to a particular instance of the task.
Table 2 describes the annotations that can be associated
with an abstract channel in the current version of ATaG.
The abstract channel is the key to concise, flexible, and
architecture-independent specification of common pat-
terns of information flows in the network. For instance,
spatial dissemination and collection patterns may be ex-
pressed using simple annotations such as “l-hop,” “lo-
cal,” or “all nodes,” on output and input channels. More
sophisticated annotations may be defined as needed or
desired for a particular application domain.

3.3 Semantics

The two basic primitives available to the programmer are
getData() and putData() for consuming and pro-
ducing data items. The runtime system manages the data
pool and moves data between producers and consumers.
We now briefly summarize the semantics of ATaG.

If the task is periodic, it is scheduled for execution
when the periodic timer expires, regardless of the state of
its input data items. The per-task timer is set to zero each
time the task begins execution and is said to expire when
the timer value becomes equal to the task’s period. If the
task is any-data, it is scheduled for execution as soon as
a new instance of any of its input data items is available.
If the task is all-data, it is scheduled for execution as
soon as a new instance of each of its input data items is
available. Other valid firing rules are periodic� any-data
and periodic � all-data.

Each well-behaved task must invoke exactly one
getData() call for each of its input data items, and
may invoke at most one putData() for each of its out-
put data items. getData() is a destructive read from
the task’s perspective. Once a particular instance of a
data item is read by a task, it is considered to be elimi-
nated from the data pool as far as that task is concerned.

Task execution is atomic. Each application-level task
will run to completion before another application-level
task can begin execution. All members of the set of de-
pendent tasks of a particular data item are executed be-
fore other tasks that might be dependent on the output
data items of the tasks in this set are executed. Whenever
the production of an instance of a data item results in one
or more of its dependent tasks to become ready, those
tasks will consume the same instance when they invoke
a getData() on the input data item. This means that
the particular instance that triggered the task(s) will not
be overwritten or removed from the data pool before ev-
ery scheduled dependent task finishes execution. The im-
plication of this is that putData() is not guaranteed to
succeed if an instance of the abstract data item being pro-
duced cannot be overwritten. Such situations might arise
if, for example, the rate of production of an abstract data
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Figure 2: Application development with ATaG

item is greater than the rate of consumption. The appli-
cation developer is responsible for checking for success
or failure of putData().

4 Application Development Methodology

Figure 2 depicts the application development methodol-
ogy using ATaG. The application developer graphically
inputs the declarative part of the ATaG program and a
description of the target deployment in the form of an
annotated network graph (ANG), which is not discussed
in this paper. The ANG contains information such as the
number of nodes, the co-ordinates of each node, network
connectivity, etc. A code generator analyzes the ATaG
program, determines the I/O dependencies between tasks
and data objects, and generates code templates for the
abstract tasks and data. The programmer populates the
code templates with application functionality. The com-
piler then interprets the program annotations in the con-
text of the ANG, and generates configuration files for
each node that customize the behavior of that node based
on its role in the system. Finally, compile-ready code is
generated for each node in the network.

The graphical interface to the programming and syn-
thesis environment is through a configurable graphi-
cal tool suite called the Generic Modeling Environment
(GME) [4]. The declarative part of the ATaG program
which consists of the various declarations and their anno-
tations is specified visually. In fact, we exploit the com-
posability of ATaG and allow users to create libraries of
ATaG programs that can be simply concatenated to build
larger applications. GME stores the model defined by
the user in a canonical format. Tools called model inter-
preters can read from and write to this model database.
In our case, model interpreters were written for the com-
ponents represented by unshaded boxes in Fig. 2.

EESR ’05: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services USENIX Association 23



5 Related Work

The core ideas of ATaG have been applied in different
contexts in the distributed computing community. Mod-
ular, extensible, and convenient parallel programming
was the motivation for the data driven paradigm in the
Data Driven Graph [11] model. Separating the core ap-
plication functionality from other concerns such as task
placement and coordination was one of the primary mo-
tivations of efforts such as Distributed Oz [6] and IBM’s
PIMA project [2]. Tuple spaces [3, 9] provides a content
addressable persistent shared memory for coordination
across distributed processes. Although the notion of a
shared data store also exists in ATaG, our ‘active’ data
pool abstraction that schedules tasks based on the avail-
ability of data instances is fundamentally different from
the ‘passive’ tuple space whose modifications are really
a side effect of task execution on different nodes.

TinyDB [7], Regiment [10], Kairos [5], and Seman-
tic Streams [12] are examples of macroprogramming
methodologies for sensor networks. While ATaG ex-
plores a mixed imperative-declarative programming style
and data-driven program flow, TinyDB provides a declar-
ative SQL-like query interface for sensor data. Regi-
ment is a demand-driven functional language based on
Haskell, with support for region-based aggregation, fil-
tering, and function mapping. Kairos is an imperative,
control-driven programming paradigm that provides a
distributed shared memory abstraction to the node level
program. The Semantic Streams markup and declara-
tive query language, based on Prolog, is used to specify
queries over semantic information directly, while the ac-
tual selection, wiring, and optimization of low level mod-
ules to implement the querying is performed by a service
composition framework.

6 Conclusion and Future Work

We have presented a novel method for specifying sen-
sor network programs based on the Abstract Task Graph.
ATaG programs consist of two parts: a declarative sec-
tion, which specifies the connectivity between tasks and
constraints on their placement and communication; and
an imperative section, with the implementation of the
tasks written in a traditional computer language. In the
current system, these tasks are instantiated on the nodes
at compile-time, but in future work, we plan to inves-
tigate fully dynamic versions, instantiating tasks based
on the current network hardware and connectivity and
the underlying measurements. This will probably be re-
stricted to the more capable hardware platforms. In any
case, the declarative specification is fully portable to both
other network architectures and other hardware architec-
tures, requiring at most a porting of the individual task

code, which represents only a small fraction of the sys-
tem functionality.

This paper focused on the key concepts of ATaG and
the syntax and semantics of ATaG programs. We did
not cover issues such as the operational semantics of the
compiler and synthesis system, valid and invalid con-
structs in ATaG and opportunities for performance op-
timization in the runtime. Finally, the set of annotations
and the synthesis and analysis tools available thus far are
limited; for the platform to achieve wider applicability,
we expect to extend these significantly in the future.
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